JP2017503267A - 自律移動ロボット - Google Patents

自律移動ロボット Download PDF

Info

Publication number
JP2017503267A
JP2017503267A JP2016541584A JP2016541584A JP2017503267A JP 2017503267 A JP2017503267 A JP 2017503267A JP 2016541584 A JP2016541584 A JP 2016541584A JP 2016541584 A JP2016541584 A JP 2016541584A JP 2017503267 A JP2017503267 A JP 2017503267A
Authority
JP
Japan
Prior art keywords
robot
wall
sonar
distance
robot body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016541584A
Other languages
English (en)
Inventor
ジェニファー スミス
ジェニファー スミス
Original Assignee
アイロボット コーポレイション
アイロボット コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイロボット コーポレイション, アイロボット コーポレイション filed Critical アイロボット コーポレイション
Publication of JP2017503267A publication Critical patent/JP2017503267A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/54Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 with receivers spaced apart
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/881Radar or analogous systems specially adapted for specific applications for robotics

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

ロボット(100)は、前方及び後方部分(112、114)を有するロボット本体(110)と、ソナーシステム(530)と、駆動システム(120)と、制御システム(210)とを含む。ソナーシステムは、ロボット本体上に配置され、かつロボット本体の前面(113)に沿って配置されたエミッタ(530ej−530e;j)のアレイと、レシーバ(530iv 530r4)のアレイとを有する。エミッタは、音波(532)を放出し、レシーバは、音波の反射を受信する。エミッタのアレイは、奇数個のエミッタを含み、レシーバのアレイは、偶数個のレシーバを含む。駆動システムは、ロボット本体を支持し、かつ経路(60)に沿って床面(10)を横切ってロボットを操作する。制御システムは、駆動システム及びソナーシステムと通信する。制御システムは、レシーバのアレイから受信したセンサ信号を処理する。【選択図】 図1

Description

本発明の開示は、自律移動ロボットに関する。
ロボットは、一般的に、コンピュータ又は電子プログラミングによって案内される電気機械的機械である。移動ロボットは、それらの環境において動き回る機能を有し、かつ1つの物理的位置に固定されない。今日一般的に使用される移動ロボットの例は、無人搬送車(AGV)である。AGVは、一般的に、床のマーカ又はワイヤに追従するか、又はナビゲーションのための視覚システム又はレーザを使用する移動ロボットである。移動ロボットは、産業、軍事、及びセキュリティ環境に見出すことができる。それらはまた、娯楽のための又は真空掃除及び家庭補助のようなある一定のタスクを実行するための消費者製品として現れている。
電気掃除機ロボットは、一般的に、空気ポンプを使用して床又は支持面から埃及び汚れを浮き上がらせるための部分真空を生成する。電気掃除機ロボットは、典型的には、その後の廃棄のために埃を埃バッグ又はサイクロンのいずれかに回収する。家庭に、並びに産業に使用される電気掃除機は、小型バッテリ作動持ち式デバイス、家庭内中央電気掃除機、空になる前に数百リットルの埃を取り扱うことができる超大型固定式産業電気機器、及び大量の流出物の回収又は汚染土壌の除去のための自走式吸引トラックのような様々なサイズ及びモデルで存在する。
自律ロボット式電気掃除機は、一般的に、床を真空掃除しながら居住空間及び一般的な障害物をナビゲートする。自律ロボット式電気掃除機は、壁、家具、又は階段のような障害物を識別かつ回避するセンサを含むことができる。一部のロボットは、例えば、ナビゲーション又は障害物検出及び障害物回避のためのその周囲環境に関するデータを取得するために様々なセンサを使用することができる。
本発明の開示の1つの態様は、ロボット本体と、ソナーシステムと、側面距離センサ(optical side ranging sensor)と、少なくとも1つの段差センサと、駆動システムと、制御システムとを含む自律移動ロボットを提供する。ロボット本体は、前方駆動方向を定め、かつ前方駆動方向に対する前方部分及び後方部分を有する。前方部分は、ロボット本体の周囲直径に沿って位置決めされたコーナによって境界付けられた実質的に直線的な前面を有する。ソナーシステムは、前面に沿った設定された距離でロボット本体上に配置されたソナーエミッタのアレイ及びソナーレシーバのアレイである。エミッタは、音波を放出し、レシーバは、音波の反射を受信する。各エミッタは、レシーバに隣接して配置され、各エミッタ及びレシーバ対は、前面から壁までの距離を測定する。側面距離センサは、ロボット本体の側面上に配置され、かつ前面のコーナに隣接して位置決めされる。
これに加えて、駆動システムは、ロボット本体を支持し、かつ経路に沿って床面を横切ってロボットを操作するように構成される。制御システムは、ロボット本体によって支持され、かつ駆動システム、ソナーシステム、側面距離センサ、及びロボット本体の底面上に配置された少なくとも1つの段差センサと通信する。制御システムは、レシーバのアレイから受信したセンサ信号を処理し、壁に対する前面の接近の角度を計算し、壁に最も近いコーナ距離を計算し、衝突を避けるためにロボット本体を回転し、かつロボット本体が壁追従距離閾値(threshold wall following distance)で壁に隣接して進行する状態で前方駆動方向を壁と平行に位置合わせする。
本発明の開示の実施は、以下の特徴のうちの1又は2以上を含むことができる。一部の実施において、エミッタのアレイは、奇数個のエミッタを含み、レシーバのアレイは、偶数個のレシーバを含み、各エミッタは、2つのレシーバ間に配置される。一部の実施において、エミッタのアレイは、3つのエミッタを含み、レシーバのアレイは、4つのレシーバを含む。これに加えて又はこれに代えて、制御システムは、各放出音波を分離する時間閾値(threshold duration of time)を有するソナー放出サイクルを実行することができる。一部の実施において、各放出音波を分離する持続時間は、約5ミリ秒−約25ミリ秒である。一部の実施において、各放出音波を分離する持続時間は、約15ミリ秒である。これに加えて、ソナー放出サイクルは、約30ミリ秒−約60ミリ秒のサイクル完了期間を有することができる。一部の実施において、ソナー放出サイクルは、45ミリ秒のサイクル完了期間を有することができる。
一部の実施において、ロボットは、前面のコーナのうちの1つに隣接し、かつロボット本体の周囲を超えて延びる側面ブラシを更に含む。一部の実施において、ロボットは、前方部分上に配置され、かつコントローラと通信するバンプセンサを含む。バンプセンサの起動は、ソナーエミッタ及びレシーバアレイによって検出された引っ込んだ壁部分よりも近い突出部の存在を示し、突出部の存在下では、ロボットは、ロボットから壁の引っ込んだ部分までの第2の壁追従距離に対応する信号値閾値を較正する。第2の壁追従距離は、ロボットを壁追従距離閾値に等しい距離で突出部の最も近い部分に隣接して進行させる。
制御システムは、方向固定駆動指令(direction-lock drive command)を実行することができる。方向固定駆動指令は、ロボットが、ある位置から離れて閾値距離を進行するまで、最近進行した経路を回避する。ロボットが最も近い障害物を検出した時に、制御システムは、方向固定駆動無効化指令(direction-lock drive override command)を実行し、方向固定駆動無効化指令は、ロボットが最も近い検出された障害物の位置に関わらず閾値距離を進行するまで回転方向を維持する。
一部の実施において、ロボット本体は、前方駆動方向に垂直な横軸を定める。前方本体部分は、横軸と実質的に平行な前面を有することができる。更に、駆動システムは、前方駆動方向に対してロボット本体の右側面及び左側面に隣接して横軸に沿って実質的に対向する右及び左従動輪モジュールを含むことができる。一部の実施において、ロボットの前方部分は、実質的に矩形形状を有し、ロボットの後方部分は、実質的に円形形状を有する。
直線前面は、高さを定める。一部の実施において、エミッタのアレイ及びレシーバのアレイは、実質的に前面の中間高さに沿って配置される。他の例において、アレイのエミッタは、前面の中間高さから第1の距離閾値に配置され、レシーバのアレイは、前面の中間高さから第2の距離閾値に配置することができる。第1の距離閾値は、第2の距離閾値と異なる場合がある。
本発明の開示の別の態様は、床面を横切って自律移動ロボットを作動させる方法を提供する。本方法は、ロボット本体の実質的に直線の前面の長さに沿って距離を置いて配置されたソナーエミッタのアレイ及びソナーレシーバのアレイを発射する段階を含む。前面の各端部は、ロボット本体の円周によってトレースされる円周に沿って位置する。エミッタアレイ内の各エミッタは、レシーバアレイのレシーバに隣接して配置され、各エミッタ及びレシーバ対は、前面から壁までの距離を測定する。これに加えて、本方法は、レシーバのアレイによって受信したセンサ信号を処理する段階と、ロボットが壁と接触することなしに、2つのエミッタ及びレシーバ対によって測定される時の前面と壁の間の少なくとも2つの距離を決定する段階とを含む。本方法は、壁に対する前面の接近の角度を計算する段階と、壁に最も近いコーナ距離を計算する段階とを含む。最も近いコーナ距離が回転距離閾値に到達した状態で、本方法は、ロボット本体を回転して衝突を回避する段階と、前方駆動方向を壁と平行に位置合わせする段階と、壁に最も近いロボットの側面を壁追従距離閾値に位置決めする段階とを含む。
一部の実施において、エミッタのアレイ内のエミッタのうちの1つによって放出される各音波を分離する時間閾値は、約5ミリ秒−約25ミリ秒である。一部の実施において、エミッタのアレイ内のエミッタのうちの1つによって放出される各音波を分離する時間閾値は、15ミリ秒である。各放出音波を分離するソナー放出サイクルは、約30ミリ秒−約60ミリ秒のサイクル完了期間を有することができる。一部の実施において、各放出音波を分離するソナー放出サイクルは、約45ミリ秒のサイクル完了期間を有する。
本方法は、ロボットが壁に隣接して進行しながら、ロボット本体の側面上に配置され、かつ前面の少なくとも1つのコーナに隣接して位置決めされた側面距離センサを繰返し発射する段階を含むことができる。側面距離センサは、ロボットが壁追従距離閾値を維持し、かつ壁に追従しながら衝突を回避するように壁までの距離を測定する。一部の実施において、壁追従距離閾値は、ロボットの周囲を超えて延びる側面ブラシが壁に接触することを可能にする。
一部の実施において、本方法は、ロボットを逆に回転及び/又は駆動しながら少なくとも1つの段差センサを用いて床までの距離を測定する段階を含む。段差センサが段差を検出した場合に、制御システムは、ロボットが駆動及び/又は回転するのを停止する。
本発明の開示の別の態様は、経路に沿って床面を横切って自律移動ロボットを作動させる方法を提供する。本方法は、ロボットによって定められたロボット本体上に配置されたエミッタから音波を放出する段階と、コンピュータプロセッサ上で挙動システムを実行する段階とを含む。挙動システムは、ロボット本体上に配置されたレシーバからセンサ信号を受信し、かつセンサ信号に基づいて少なくとも1つの挙動を実行する。センサ信号は、レシーバによって受信した音波反射を示している。ロボットが面を横切って操作されている場合に、挙動システムは、各放出音波を分離する時間閾値(例えば、15ミリ秒)を有するソナー放出サイクルを実行する。ソナー放出サイクルは、45ミリ秒のサイクル完了期間を有することができる。
一部の実施において、本方法は、ロボットがロボットの経路内の障害物の存在を示すセンサ信号を受信した場合に小刻み駆動指令を実行する段階を更に含む。小刻み指令は、対応する小刻み角度だけ前方駆動方向に対して各々が傾斜した一連の交替する(alternating)右及び左駆動指令を含む。対応する右及び左駆動指令の小刻み角度は、異なる場合がある。
本方法は、ロボットが壁の存在を示すセンサ信号を受信した場合に突出距離よりも大きい壁追従距離を有する壁追従挙動を実行する段階を更に含むことができる。壁追従距離は、ロボット本体と壁の間の距離であり、突出距離は、壁と突出部の間の距離である。壁追従挙動の実行中に、ロボットは、壁から離れた距離閾値で駆動することができる。ソナー放出サイクルは、時間閾値に等しいサイクル完了期間を有することができる。
一部の実施において、本方法は、コンピュータプロセッサが、ロボットが2つの壁によって形成されたコーナにあることを示すセンサ信号を受信した場合に、方向固定駆動指令を実行する段階を更に含む。方向固定指令は、ロボットが距離閾値を進行するまで最近進行した経路を回避する。
本発明の開示の1又は2以上の実施の詳細が添付図面及び以下の説明に示されている。他の態様、特徴、及び利点は、説明及び図面からかつ特許請求の範囲から明らかであろう。
様々な図面内の同様の参照記号は、同様の要素を示している。
例示的自律移動ロボットの斜視図である。 図1に示すロボットの底面図である。 図1に示すロボットの上面斜視図である。 図1に示すロボットの底面斜視図である。 図1に示すロボットの側面図である。 例示的自律移動ロボットの上面斜視図である。 図6Aに示すロボットの底面斜視図である。 掃除のための例示的自律移動ロボットの斜視図である。 移動ロボットのコントローラによって実行される例示的制御システムの概略図である。 図1に示すロボットの代替正面図である。 図1に示すロボットの代替正面図である。 図1に示すロボットの代替正面図である。 ソナーシステムを有する例示的自律ロボットの上面図である。 ソナーシステムを有する例示的自律ロボットの上面図である。 壁に真正面に接近する時の例示的自律ロボットの上面図である。 壁までのソナー信号測距の上面図である。 斜めに壁に接近して壁に接触することなく回転して再位置決めする時の例示的自律ロボットの上面図である。 斜めに壁に接近し、センサ測定を行って壁に接触することなく再位置決めするためにどのくらい後退及び/又は回転するかを決定する時の例示的自律ロボットの上面図である。 接触することなく壁に位置合わせするために回転した後に距離閾値で壁追従する時の例示的自律ロボットの上面図である。 突出部に接近する時の例示的自律ロボットの側面図である。 突出部に接近する時の例示的自律ロボットの側面図である。 壁追従挙動を実行する時の図11A及び図11Bのロボットの上面図である。 コーナをナビゲートする例示的自律ロボットの上面図である。 コーナをナビゲートする例示的自律ロボットの上面図である。 コーナをナビゲートする例示的自律ロボットの上面図である。 コーナをナビゲートする例示的自律ロボットの上面図である。 小刻み指令を実行する例示的自律ロボットの斜視図である。 自律移動ロボットを作動させるための作動の例示的構成の概略図である。 ソナー反響強度に基づいて物体を検出する例示的自律ロボットの斜視図である。
移動可能に支持された自律ロボットは、ロボットがその周囲を認識することを可能にするセンサシステムを使用して床面をナビゲートすることができる。一部の実施において、ロボットは、ロボットの環境を表し、かつロボット上の1又は2以上のセンサを使用して解像された仮想空間であるロボットの周りの局所知覚空間(LPS)を決定する。
図1−図6Bを参照すると、一部の実施において、ロボット100は、例えば、x、y、及びθ成分を有する駆動指令に基づいて床面10を横切ってロボット100を操作することができる駆動システム120によって支持された本体110を含む。ロボット本体110は、前方部分112及び後方部分114を有する。図1−図5は、矩形前方部分112及び丸い後方部分114を有する例示的ロボット100を示している。前方部分112は、実質的に直線の前面113、及び/又は本体110によって定められた横軸Xに実質的に平行である前面113を有することができる。図6A及び図6Bは、ロボット本体110の丸い(例えば、円形)前方及び後方部分112、114を有する例示的ロボット100を示している。
駆動システム120は、右及び左従動輪モジュール120a、120bを含む。ホイールモジュール120a、120bは、横軸Xに沿って実質的に対向し、かつそれぞれの右及び左ホイール124a、124bを駆動するそれぞれの右及び左駆動モータ122a、122bを含む。駆動モータ122a、122bは、実質的にそれぞれのホイール124a、124bの上に任意的に位置決めされた駆動モータ122a、122bで本体110に取外可能に接続することができる(例えば、ファスナ又は工具不要接続を通して)。ホイールモジュール120a、120bは、本体110に取外可能に取り付けられ、かつ掃除面10と係合するようにバネ付勢することができる。一部の実施において、ホイール124a、124bは、ホイールモジュール120a、120bに取外可能に接続される。ホイール124a、124bは、ホイールモジュール120a、120bの(滑り易い床(例えば、木、濡れた床)の上の牽引力を改善する落下付勢懸架システム(図示せず)を有することができる。ロボット100は、ロボット本体110の前方部分112を支持するために配置されたキャスタホイール126を含むことができる。ロボット本体110は、ロボット100のあらゆる電気構成要素に給電する電源102(例えば、バッテリ)を支持する。
ロボット100は、本体110によって定められた3本、すなわち、横軸X、前後軸Y、及び中心垂直軸Zの相互に垂直な軸に対する移動の様々な組合せを通して面10を横切って移動ことができる。前後軸Yに沿った前方駆動方向は、F(時に以下「前方」と呼ぶ場合がある)と指定され、前後軸Yに沿った後方駆動方向は、A(時に以下「後方」と呼ぶ場合がある)と指定される。横軸Xは、ホイールモジュール120a、120bの中心点によって定められた軸に沿ってロボット100の実質的に右側Rと左側Lの間を延びる。
ロボット100は、X軸の周りに傾斜することができる。ロボット100は、南の位置に傾斜する時に、後方部分114に向けて傾斜し(以下「ピッチアップ」と呼ぶ場合がある)、北の位置に傾斜する時に、後方部分114に向けて傾斜する(以下「ピッチダウン」と呼ぶ場合がある)。更に、ロボット100はY軸の周りに傾斜する。ロボット100は、Y軸の東に傾斜することができ(以下「右ロール」と呼ぶ場合がある)、又はロボット100は、Y軸の西に傾斜することができる(以下「左ロール」と呼ぶ場合がある)。従って、X軸の周りのロボット100の傾斜の変化は、ピッチの変化であり、Y軸の周りのロボット100の傾斜の変化は、ロールの変化である。更に、ロボット100は、右、すなわち、東の位置に、又は左、すなわち、西の位置に傾斜することができる。一部の実施において、ロボットは、北東、北西、南東、及び南西のような傾斜位置を有するX軸の周りに及びY軸の周りに傾斜する。ロボット100が床面10を横断している時に、ロボット100は、Z軸の周りに右回転又は左回転することができる(以下ヨーの変化と呼ぶ場合がある)。ヨーの変化により、ロボットは、移動しながら右回転又は左回転する。従って、ロボット100は、ピッチ、ロール、又はヨーの1又は2以上の変化を同時に有することができる。
本体110の前方部分112は、バンパー130を含むことができ、バンパーは、ロボット本体110の前面/表面113を含むことができ、一部の実施において、バンパー130は、ロボット本体110の一部であり、他の例において、バンパー130は、ロボット本体110に付属するアセンブリである。例えば、バンパー130は、ホイールモジュール120a、120bが床/支持面10を横切ってロボット100を推進する時にロボット100の駆動経路において1又は2以上の事象を検出する(例えば、1又は2以上のセンサを通して)。ロボット100は、事象に応答してロボット100を操作するように(例えば、障害物18から離れる方向に)ホイールモジュール120a、120bを制御することによってバンパー130によって検出された事象(例えば、障害物18、段差、壁24、キャビネット、及びそれらの突出部25)に応答することができる。一部のセンサは、バンパー130上に配置されると本明細書に説明するが、これらのセンサは、これに加えて又はこれに代えて、ロボットの底面116を含むが(例えば、機械的スイッチ)これに限定されずロボット100上の様々な異なる位置のいずれにも配置することができる。バンパー130は、ロボット本体110の前面113に対する相補的形状を有する。
本体110の上部部分115は、1又は2以上のユーザ指令を受信し及び/又はロボット100のステータスを表示するユーザインタフェース140を含むことができる。ユーザインタフェース140は、ユーザインタフェース140によって受信した1又は2以上の指令がロボット100によるルーチン(例えば、掃除ルーチン)の実行を開始することができるように、ロボット100によって担持されたロボットコントローラ150と通信する。コントローラ150は、非一時的メモリ154(例えば、ハードディスク、フラッシュメモリ、ランダムアクセスメモリ)と通信するコンピュータプロセッサ12(例えば、中心演算処理装置)を含む。
ロボットコントローラ150(制御システムを実行する)は、ロボット100に、壁追従する方式、床を磨くような方式で操作する、障害物18(例えば、椅子、テーブル、ソファーのような)が検出された時に進行方向を変えるなどのアクションを取らせる挙動300を実行することができる。ロボットコントローラ150は、各ホイールモジュール120a、120bの回転速度及び方向を独立して制御することによって掃除面を横切ってあらゆる方向にロボット100を操作することができる。例えば、ロボットコントローラ150は、前方F、逆方向(後方)A、右R及び左L方向にロボット100を操作することができる。
図7A及び図7Bを参照すると、信頼性が高くてロバストな自律移動をもたらすために、ロボット100は、ロボット100がその環境において取るべきアクションに対してインテリジェント判断を行うことを可能にするのに十分なロボットの環境(局所知覚空間)の認知力を生成するために互いに関連して使用することができるいくつかの異なるタイプのセンサ520、530、535を有するセンサシステム500を含むことができる。センサシステム500は、ロボット本体110によって支持された1又は2以上のタイプのセンサ520、530、535を含むことができ、センサには、障害物検出障害物回避(ODOA)センサ、通信センサ、ナビゲーションセンサなどを含むことができる。例えば、これらのセンサ520、530、535には、近接度センサ、接触センサ、カメラ(例えば、容積測定点クラウド撮像、3次元(3D)撮像、又は距離画像センサ、可視光カメラ及び/又は赤外線カメラ)、ソナー、レーダ、遠くのターゲットの範囲及び/又は他の情報を見つけるために散乱光の特性を測定する光学リモートセンシングを伴うことができるLIDAR(光感知測距),LADAR(レーザ検出及び測距)などを含むことができるがこれらに限定されない。一部の実施において、センサシステム500は、測距ソナーセンサ530、近接度(例えば、赤外線)段差センサ520、520a−520d、接触センサ540、レーザスキャナ、及び/又は撮像ソナーを含む。
ロボット100は、床面10を掃除又は処理する掃除システム160を含むことができる。一部の実施において、自律ロボット100は、面10を横断しながらその面10を掃除することができる。ロボット100は、面10の上方に負圧(例えば、部分真空)を印加することによってデブリを攪拌し、及び/又は面10からデブリを浮き上がらせて、面10からデブリを回収していることによって面10からデブリを除去することができる。掃除システム160は、乾式掃除システム160a及び/又は湿式掃除システム160bを含むことができる。乾式掃除システム160は、横軸Xに平行に延び、かつ床面に接触するためにロボット本体110によって回転可能に支持される(例えば、剛毛及び/又は叩きフラップを有する)従動ローラブラシ162を含むことができる。従動ローラブラシ162は、デブリを床面から攪拌して攪拌されたデブリを回収ビン163に投げ込むか又は案内する。湿式掃除システム160bは、横軸Xに沿って延びて洗浄液を面上へ分注する流体アプリケータを含むことができる。
図3を参照すると、一部の実施において、センサシステム500は、ロボット100の全体的な重心CGRに対するロボット100の慣性モーメントを測定及びモニタするためにコントローラ10と通信する慣性測定ユニット(IMU)510を含む。コントローラ150は、通常の負担のない作動に対応する信号閾値からのIMU510からのフィードバックのあらゆる偏差をモニタすることができる。例えば、ロボット100が直立位置から離れる方向にピッチした場合に、ロボット100は、「衣服しわ寄せ状態」にあり、又は他に妨げられており、又は誰かが重いペイロードを突然追加した可能性がある。これらの事例において、ロボット100の安全作動を保証するために緊急アクション(回避操作、再較正、及び/又は聴覚/視覚的警告発令を含むがこれらに限定されない)を取る必要があると考えられる。
停止から加速する時に、コントローラ150は、ロボット転倒を防止するためにその全体的重心CGRからのロボット100の慣性モーメントを考慮に入れることができる。コントローラ150は、現在の慣性モーメントを含む姿勢のモデルを使用することができる。ペイロードが支持された時に、コントローラ150は、全体的重心CGRに及ぼす負荷の影響を測定してロボット慣性モーメントの移動をモニタすることができる。これが可能ではない場合に、コントローラ150は、駆動システム120に試験のためのトルク指令を適用し、実験的に安全な限界を決定するためにIMU510を使用してロボットの実際の線形角加速度を測定することができる。
IMU510は、相対値に基づいてロボット100の慣性モーメントを測定及びモニタすることができる。一部の実施においてかつある期間にわたって、一定移動は、IMUをドリフトさせる場合がある。コントローラ150は、IMU510を再較正してゼロにリセットする再設定指令を実行する。IMU510をリセットする前に、コントローラ150は、ロボット100が傾斜状態であるかを決定し、ロボット100が平坦面上にある場合に限りリセット指令を出す。
図7Aを参照すると、一部の実施において、ロボット100は、ロボット100が、障害物18に衝突するか又は階段から落ちることなく、かつ掃除のために比較的汚い床面積をインテリジェントに認識する掃除ロボット100の場合に床面10をナビゲートすることを可能にするように構成されたナビゲーションシステム200を含む。更に、ナビゲーションシステム200は、床面10を横切って決定論的及び疑似ランダムパターンでロボット100を操作することができる。ナビゲーションシステム200は、ロボットコントローラ150上に格納され及び/又は上で実行される挙動ベースのシステムとすることができる。ナビゲーションシステム200は、センサシステム500と通信し、駆動指令を決定して駆動システム120に発令することができる。ナビゲーションシステム200は、ロボット挙動300に影響を与えてそれを構成し、その結果、ロボット100は、系統的な事前に計画された移動で挙動することができる。一部の実施において、ナビゲーションシステム200は、データをセンサシステム500(例えば、慣性測定ユニット510、赤外線センサ520、520a−520d、及びソナーセンサ530、535)から受信し、ロボット100が横断するための望ましい経路を計画する。
図3及び図7Bを参照すると、一部の実施において、コントローラ150(例えば、コンピュータプロセッサ152上で実行可能な命令を格納することができる非一時的メモリ154と通信する1又は2以上のコンピュータプロセッサ152を有するデバイス)は、制御システム210を実行し、制御システム210は、互いに通信する挙動システム211及び制御調停システム210bを含む。制御調停システム210bは、ロボットアプリケーション220を動的に追加して制御システム210から除去することを可能にし、かつアプリケーション220が各々いずれの他のアプリケーション220も知る必要なしにロボット100を制御することを可能にすることを容易にする。換言すると、制御調停システム210bは、アプリケーション220とロボット100のリソース240の間の単一優先順位付き制御機構をもたらす。
アプリケーション220は、同時に実行され(例えば、プロセッサ上で)、かつロボット100を同時に制御するためにメモリに格納されるか、又はロボット100と通信することができる。アプリケーション220は、挙動システム210aの挙動300にアクセスすることができる。独立に配備されたアプリケーション220は、実行時に及びロボットリソース240(例えば、駆動システム120及び/又は掃除システム160、160a、160b)を共有するために動的に組み合わされる。実行時に、アプリケーション220間にロボットリソース240を動的に共有する低レベルのポリシーが実行される。ポリシーは、どのアプリケーション220がそのアプリケーション220によって必要とされるように(例えば、アプリケーション220間の優先順位階層)ロボットリソース240を制御するかに対して決定する。アプリケーション220は、動的に開始及び停止することができ、かつ互いに独立して完全に実行される。制御システム210はまた、互いを補助するために共に組み合わせることができる複雑な挙動300を可能にする。
制御調停システム210bは、制御アービター260と通信する1又は2以上のアプリケーション220を含む。制御調停システム210bは、アプリケーション220のための制御調停システム210bとのインタフェースをもたらす構成要素を含むことができる。そのような構成要素は、認証、分散型リソース制御アービター、指令バッファ方式、及びアプリケーション220の優先順位付けの編成などの複雑性を抽出かつ封入して除去することができる。制御アービター260は、あらゆるアプリケーション220から指令を受信し、アプリケーションの優先順位に基づいて単一指令を生成してその関連のリソース240に向けて公開する。制御アービター260は、状態フィードバックをその関連のリソース240から受信してアプリケーション220にバックアップを送ることができる。ロボットリソース240は、1又は2以上のハードウエアコントローラを有する機能モジュール(例えば、アクチュエータ、駆動システム、及びその群)のネットワークとすることができる。制御アービター260の指令は、特定のアクションを実行するためにリソース240固有のものである。コントローラ150上で実行可能な動力学モデル230は、現在のロボット状態の評価に向けてロボット100の様々な部分の重心(CGR),慣性モーメント、及び慣性の外積を計算するように構成される。
一部の実施において、挙動300は、センサシステム500のような複数のソースからセンサフィードバックを先験的限界及び情報を有してロボット100の許容アクションに関する評価フィードバックに結合する階層的状態完全評価機能を提供するプラグ−イン構成要素である。挙動300は、アプリケーション220内にプラグ可能であるので(例えば、アプリケーション220の内側又は外側に存在する)、それらは、アプリケーション220又は制御システム210のあらゆる他の部分を修正する必要がなく除去及び追加することができる。各挙動300は、独立型ポリシーである。挙動300をより強力にするために、複雑な組合せ機能を有することができるように、複数の挙動300の出力を別の挙動の入力に共に取り付けることは可能である。挙動300は、ロボット100の総合認識の管理可能な部分を実行することを意図している。
図示の例において、挙動システム210aは、センサシステム500によって察知される障害物18(図9B)に基づいて反応するロボットアクション(例えば、方向転換、回転、障害物18の前の停止など)を決定する障害物検出/障害物回避(ODOA)挙動300aを含む。別の挙動300は、検出された壁24の近くで駆動する(例えば、壁に向けて及び壁から離れる方向に駆動するという小刻みパターンで)壁追従挙動300bを含むことができる。他の挙動300は、埃探し挙動300c(センサが床面上で汚いスポットを検出すると、ロボット100は掃除に向けてスポットの方向に向きを変える)、スポット掃除挙動300d(例えば、ロボットは、特定のスポットを掃除するためにコーンローパターンに沿う)、方向固定挙動30Ge、段差挙動(例えば、ロボットは階段を検出して階段から落ちるのを回避する)、静止挙動、反傾き挙動、及び反摂取挙動、反ホイール詰まり挙動を含むことができる。
ロボットプラットフォーム上でのセンサ520、530配置に関わるいくつかの課題がある。第1に、センサ520、530は、ロボット100の周りの関心区域の最大カバレージを有するように設けられる必要がある。第2に、センサ520、530、535は、ロボット100自体がセンサに対する絶対最小の閉塞を引き起こすように設けられる必要があり、要するに、センサは、ロボット100自体によって「見えなくなる」ように設けることはできない。第3に、センサ520、530の配置及び取り付けは、プラットフォームの工業設計の残りのものに対して侵入的であるべきではない。美観の観点から、センサ520、530、535が目立たずに取り付けられたロボット100の方が、そうでない場合よりも「魅力的である」と仮定することができる。実用性の観点から、センサ520、530、535は、通常のロボット作動(障害物の捕捉)と干渉しないように取り付けられるべきである。
図3及び図8A−図9Bを参照すると、一部の実施において、センサシステム500は、ソナーシステム530を含む。ソナーは、Sound Navigation and Rangingの頭字語であり、音を利用して環境内でナビゲートする技術である。ソナーシステム530は、ロボット100の通り道において障害物18a−18dを検出するために音波伝播を使用する。ソナーは、2つのタイプ、すなわち、能動ソナー及び受動ソナーとすることができる。受動ソナーは、他の障害物18によって作られた音を聴取し、一方、能動ソナーは、音のパルスを放出して、パルスが障害物18から反射する時にパルスが生成する反響を聴取する。ソナーシステム530は、エミッタ530e、レシーバ530r、変換器156、及び信号プロセッサ158を含む能動ソナーである。ソナーエミッタ530eから送信された電気パルスは、変換器156によって音波に変換され、与えられた方向に伝播する。ソナーエミッタ530eから物体18までの距離は、一定かつ公知の音速に起因して測定することができる。送信信号と信号が物体18から跳ね返る受信信号の間の時間経過を測定することができ、これは、放出された音波の跳ね返りを生成した物体までの距離の計算をもたらす。
一部の実施において、ソナーシステム530は、エミッタ530e1−530e3のアレイ及びレシーバ530r1−530r4のアレイを含む。図8A−図8Cに示すように、エミッタのアレイは、3つのエミッタ530eを含み、レシーバのアレイは、4つのレシーバ530rを含む。各エミッタ530eは、2つのレシーバ530r間に配置される。エミッタ530e及びレシーバ530rは、ロボット本体110のバンパー130、又はロボット本体110の前面113上に配置される。エミッタ530e及びレシーバ530rは、ロボット本体110の前方周囲面113に沿って互いに隣接して配置される。一部の実施において、ロボット100のバンパー130又は前面113は、ロボット本体110の上部部分115から底部部分116まで延びる高さDTを有する。一部の実施において、エミッタ530e及びレシーバ530rのアレイは、前面113から上にほぼ半分まで長手方向中央線Lに隣接して配置される。ロボット本体100が正方形の前部部分を有する場合に、ソナーシステム530は、横軸Xに平行な直線内に配置することができる。エミッタ530e及びレシーバ530rは、直線上でバンパー高さDTの中間高さDMに配置することができる(図8A)。中間高さDは、バンパー高さDTの半分である。
図8B及び図8Cを参照すると、エミッタ530e及びレシーバ530rは、横軸Xに沿って離間し、かつ横軸Xに平行な直線上に各々配置することができ、エミッタ530e及びレシーバ530rは、垂直距離DSよって分離される。エミッタ530eは、バンパー130の中間高さDMから垂直距離DEにあり、レシーバ530rは、バンパー130の高さDMから垂直距離DRにある。エミッタ530e及びレシーバ530rは、互いから垂直距離DSよって分離することができる。一部の実施において、各エミッタ530e1は、エミッタ530eのアレイ内の最も近い隣接エミッタ530e2から水平距離Eで前面113に沿って位置決めされ、各レシーバ530r3は、レシーバ530rのアレイ内の最も近い隣接レシーバ530r4から水平距離Rで前面113に沿って位置決めされる。一部の実施において、各エミッタ530e2は、最も近い隣接レシーバ530r3から水平距離ERで前面に沿って位置決めされる。他のエミッタ530e及びレシーバ530rの構成も可能とすることができる。これに加えて、エミッタ530e及びレシーバ530rは、ロボット本体110の右側と左側、ロボット本体110の裏側、又はあらゆる他の適切な位置のようなロボット本体110の他の部分上に配置することができる。
図9A及び図9Bを参照すると、ソナーシステム530は、バンパー130の上側部分132上に(図1を参照されたい)及び/又はバンパー130の前面113上に配置することができる。ソナーシステム530は、音波532を放出するように配置されたエミッタ530e及び受信波動場534において放出された音波532の反射を受信するように配置されたレシーバ530rを含む。エミッタ530e及びレシーバ530rは、前方駆動方向Fに沿って配置される。放出音波532及び受信音波534は、約45°−約270°の角度β1、β2を各々有することができる。更に、ソナーシステム530は、前方駆動方向Fに対して左右及び/又は上下扇形方向に音波を放出することができる。
一部の実施において、ソナーシステム530は、音波を放出する異なるシーケンスを含む。センサシステム500は、ソナーエミッタ530e1−530e3の各々から放出される音波532を同時に放出することができ、従って、反射波534を同時に受信することができる。同時に発射されるソナーエミッタ530e1−530e3の各々は、明確かつ区別可能である周波数を有し、レシーバ530r1−530r3の各々によって測定される距離は、ロボット100の前面113の長手方向中央線Lに沿ったエミッタ530eの位置によって受信かつ識別される。一部の実施において、ソナーシステム530は、第1のエミッタ530eからエミッタ波532を放出することができ、時間閾値(例えば、1msec、2msec、3msec、....20msec)後に、ソナーシステム530は、第2のエミッタ波532を第2のエミッタ530eから放出する。一部の実施において、制御システム210は、各放出音波を分離する時間閾値(例えば、1msec、2msec、3msec、...20msec)を有するソナー放出サイクルを実行する。ソナー放出サイクルは、ロボット本体110上の各エミッタ530eが音波532を放出するのに要求される時間に存在する。一部の実施において、2つの隣接エミッタ530eからの放出間の時間は、約5ミリ秒−約25ミリ秒である。一部の実施において、2つの隣接エミッタ530eからの放出間の時間は、約15ミリ秒である。更に、ソナー放出サイクルは、約30ミリ秒−約60ミリ秒のサイクル完了期間を有することができる。一部の実施において、ソナー放出サイクルは、45ミリ秒の完了期間を有する。
一部の実施において、ソナーシステム530は、図9A及び図9Bに示すように、3つのエミッタ530e1−530e3及び4つのレシーバ530r1−530r4を含む。4つのレシーバ530rは、バンパー130上で互いから水平に等距離に配置され、かつ2つのレシーバ530r間の中間に配置されたエミッタ530eよって分離される。センサシステム530は、15ミリ秒毎に音波532を放出し、従って、完全なソナー放出サイクルは、全てのエミッタ530eが音波532を送るのに45ミリ秒かかる。図9Bは、障害物18に衝突するエミッタ530eからの放出音波を示し、レシーバ530rは、反射音波を受信する。レシーバ530rが反射音波532を受信した時に、信号プロセッサ158は、受信音波532を処理する。
正方形前部又は平坦前面113(例えば、図1−図5)を有するロボット100は、円形ロボットのようには単に定められた位置で回転して衝突なしで壁のような障害物18から離れることはできない。円形ロボット100(例えば、図6A及び図6B)の周縁は、ロボットの円周に沿ってあらゆる位置でロボット100の中心Cまで等距離である。しかし、正方形前部ロボット100の前面113は、ロボット100の中心Cを中心とするプロファイル円105(図2に破線で図示)を超えてロボット100の丸い後方部分114の周縁に沿ってトレースされる。前面113のコーナ113a、113bが壁24のような障害物と衝突せずに定められた位置で回転するには、障害物18からのロボット100の前面113の距離及び接近の角度αを知ることが必要であると考えられる。プロファイル105は、中心Cからコーナ113a(前面113の113b)の各々までの設定距離寸法及び設定コーナ距離DFCを有する。
側面センサ535と組み合わせてソナーセンサ530をロボット100の前面113上に有することは、バンパー130のバンプセンサ540を起動させるために繰返し障害物18と衝突する必要なしに壁24及び他の障害物18に遭遇する正方形前部ロボットに優美なナビゲーション上の利点を与える。側面センサ535と組み合わせたソナーセンサ530により、正方形前部ロボット100は、衝突なしに障害物18又は一連の障害物18を避けながら移動することができる。更に、ソナーセンサ530により、正方形前部ロボット100は、接触なしに壁に位置合わせし、かつ壁24に隣接して衝突することなく進行することができる。そのようなロボット100が壁24から離れるように、又は壁に沿った壁追従に向けて壁24と位置合わせするように移動するために回転する必要がある量は、ロボット100の接近の角度αに依存し、接近の角度は、前面113上のソナーセンサ530のアレイによって行われた測定値から決定することができる。
図10A及び図10Bを参照すると、一部の実施において、ロボット100が壁24正面に接近してエミッタ530e1−530e3から信号(エミッタ波532)を放出した時に、レシーバ530r1−530r4は、各エミッタ波532によって検出された壁24までの最短距離Dminを記録する。図10Aの正面接近において、Dminは、エミッタ530e1−530e3の各々に対して等しく、ロボット100は、前面113の壁WDまでの距離が回転距離閾値WDよりも大きいか又は下回るか否かに応じて、衝突を回避するために優美に回転するか又は壁24から後退して離れる。ソナーセンサ530が、距離閾値WD未満である前面113の長さに沿った距離測定値WDとしてエミッタ530e1−530e3の最短距離Dminを記録する場合に、ロボット100は、壁24と衝突することなく回転するには壁24に近過ぎる。ロボット100は、ソナーセンサ530によって測定された距離WDを使用して、回転距離閾値WTまでの逆方向距離を決定する。ロボット100は、前面113のコーナ113a、113bが壁24と衝突するのを防止するために回転する前に回転距離閾値WTまで後退して壁24から離れる。ソナーセンサ530は、距離測定値を提供し、ロボット100は、ソナーセンサ530がロボット本体110上の既知の位置に設けられた状態で既知の寸法であるので、ロボット100は、検出された障害物18、24と衝突することなく回る必要がある限りにおいてのみ後退する。
一部の実施において、ロボット100は、前面113の前部コーナ113a、113bに隣接して配置された前部段差検出器520a、520b(例えば、赤外線センサ)及びホイール120b、120aの後方に位置決めされた後部段差検出器520c、520d(例えば、赤外線センサ)を有する。ロボット100が後退する時に、後部段差検出器520c、520dは、ロボット100の背後又は両側の段差を検出することができる。コントローラ150は、段差検出器520a−dから受信した信号に基づいて回避挙動300を実行し、その結果、ロボット100が段差から落ちるのを防止する。ロボット100が回転Tを実行する時に、前部段差検出器520a、520bの1又は2以上及び/又は後部段差検出器520c、520dの1又は2以上は、ロボット100の背後又は両側の段差を検出することができる。
ロボット100は、外側ホイール120a、120bだけを逆回転させ、及び/又は異なる速度でホイール120a、120bを逆回転させて回転Tを実行することができ、そのためにロボット100は、前面113が壁24に対して傾斜した位置まで後退する。一部の実施において、前面113は、図10Cに示すように、壁24に対して45°の角度αで傾斜させることができる。ロボット100が後退しながら壁24から離れるように回転している間、エミッタ530e1−530e3は、放出波532を放出し続け、ロボット100は、壁24からのエミッタ530e1−530e3の距離Dmin、Dmaxを計算する。ロボット100は、衝突を回避するためにどれだけ後退し続け、かつ距離閾値WTを過ぎると後退しないで回転するかを決定することができる。
一部の実施において、ロボット100は、エミッタ530e1−530e3のうちの2つからのエミッタ波532の2つの測定された最短距離Dminと前面113に沿った2つのエミッタ530e間の既知の距離との違いを計算し、壁24に対する前面113の角度αを計算する。図10Dは、明瞭に分るように一部の要素付番が取り除かれた図10Cの略示表現である。この例において、第1のエミッタ530e1及び第3のエミッタ530e3は、壁24までのそれぞれの最小距離Dmin1、Dmin3を測定する。第1のエミッタ530e1及び第3のエミッタ530e3は、既知のエミッタ分離距離E13で前面113の長手方向中央線Lに沿って配置される。エミッタ530e及びレシーバ530rは、前面113に沿った既知の位置に配置されるので、ロボット100は、三角法を使用して壁24に対する前面113の角度αを計算する。前面113は、既知の寸法、例えば、長さlであるので、ロボット100は、計算された角度αと、コーナ113a、113bまでのレシーバ530r及び/又はエミッタ530eの既知のコーナ距離関Rl、Elとに基づいて壁24までのコーナ113a、113bの距離を計算する。移動中のロボット100の前部コーナ113aが回転距離閾値WT又は約回転距離閾値WTである壁24までの距離に到達した時に、ロボット100は、衝突を回避するために回転する。
この同じ計算により、正方形前部を有するロボット100は、ロボット100が図10Cに示すように角度αで壁24に接近した時に後退することなく回転するためにどのような角度が必要であるかを決定することができる。この例において、ロボット100は、後退することなく定められた位置で回転するが、それは、壁24までの前面113の距離WDは、距離閾値WTを下回らないからである。エミッタ530eのうちの2つの少なくとも2つの測定された距離Dminに基づいて、ロボット100は、壁24に対するその接近の角度α及び前面113の内側コーナ113aが壁24からどの程度の距離かを知る。
図10Dが示すように、ロボット100が壁24と平行に前進方向Fを位置合わせした状態で、側面センサ535は、壁24に沿って順次的な測定を行ってロボット100を壁追従距離閾値WFに維持する。一部の実施において、側面センサ535は、1つのエミッタ535e及び1つのレシーバ535rを有するソナーセンサである。他の例において、側面センサ535は、1つのエミッタ535e及び1つのレシーバ535rを有する赤外線(IF)センサである。一部の実施において、側面センサ535は、1よりも多いエミッタ535e及び/又は1よりも多いレシーバ535rを有するIR又はソナーセンサとすることができる。側面センサ535は、例えば、IR、レーザ、3D容積測定点クラウド又はソナーのようなあらゆるタイプの側面距離センサとすることができる。側面センサ535によって受信した信号を使用して、ロボット100は、壁追従挙動300bを実行し、進行中に順次的な測定を行って壁追従距離WFを維持し、そのためにロボット100は、衝突なしで壁24に沿って進行する。一部の実施において、壁追従距離WFは、ロボット100の周囲を超えて延びる側面ブラシ128が壁24に接触することを可能にする値に設定される。ロボット100は、進行経路を占有してロボット100が回転して障害物18、24と接触することなく障害物18、24を回避することを必要とするあらゆる障害物18、24を検出するようにロボット100が壁追従挙動300bを実行する時に、前面113に沿ってソナーセンサ530から放出波532を放出し続けることができる。
ソナーセンサアレイ530が、ロボット100が弱くなることを可能にする1つの特定の課題は、キャビネット突出部に沿った壁追従又はトウキックの課題である。図11A−図11Cを参照すると、一部の実施において、ロボット100は、床10を横断し、突出距離WOだけ下側の引っ込んだ壁部分24bから上側最外壁部分24aをオフセットする突出部25を有する壁24に接近する。そのような突出部の例は、キャビネットに接近するとつま先をぶつけることを防止するために高級家具基部に一般的に組み込まれた台所又は浴室「トウキック」である。典型的に、トウキックは、少なくとも約3インチの深さ及び約少なくとも3 1/2インチの高さを有し、すなわち、下側の引っ込んだ壁部分24bは、高さ約3 1/2ンチであり、上側最外壁部分24aから約3インチの突出距離WOだけ奥まっている。制御システム210は、突出距離WOよりも大きい壁追従距離WFを有する壁追従挙動300bを実行しなければならない。壁追従距離WFは、ロボット本体110と(床10に平行に測定された)壁24の引っ込んだ部分24b(すなわち、下側部分)との間の距離である。突出距離WOは、最外壁部分24aと(床10に平行に測定された)引っ込んだ壁部分24bの間の距離である。
そのような突出部25がロボットの環境に存在する時に、ロボット100は、予め決められた全域的壁追従距離WFが突出距離WOよりも短い場合があるので、壁24に追従する静的距離閾値を使用することができない。上述のサンプル突出部寸法に関して、ロボット100が突出部を受け入れる設定された静的壁追従距離WFを有する場合に、ロボット100は、突出部25が存在しなかった時でも、3インチよりも大きい距離WFで常に壁追従することになり、従って、突出部25を有していない壁24の近くで掃除することができない。ロボット100が突出部25に沿って壁追従するのに全域的閾値設定値に依存することができないので、ロボット100は、他のセンサ入力に応答して壁突出部25の存在を決定し、最外壁部分24aに沿って繰返しその部分の中に回転して接触することなく実質的に追従するが、これは、移動中のロボット100の進行を妨げると考えられる。
図11Bに示す例において、ロボット100は、接触センサ(例えば、バンパー130)を使用して、壁24の上側最外部分24aにできるだけ近い時を決定する。この時点で、ソナーセンサ530は、距離WOで下側の引っ込んだ壁24bを検出するが、最外壁部分24aとのバンパー130の衝突は、ソナーセンサ530によって測定された距離と矛盾する。センサ信号のこの組合せにより、図10−図10Dを参照して上述した後退、回転、位置合わせルーチンがトリガされる。ロボット100は、距離閾値を後退し、かつ回転して壁24bとその側面距離センサ535(例えば、ソナーセンサや1Rセンサ)を位置合わせすることを可能にする。ロボット100は、回転する間、壁24bの引っ込んだ部分からの距離を動的に較正して壁追従距離閾値WFを選び、壁24aの上側最外部分の近くをそれに衝突することなく進行する。この壁追従距離閾値WFは、突出部25を有していない平坦な壁24に沿って進行するよりもロボットが突出部25に沿って進行する時の方が大きい。壁追従挙動300bの実行中に、壁WDまでの距離は、ロボットの本体110と壁24bで最も近い部分との間の距離に用途によって決定されるオフセット(例えば、側面ブラシ128がちょうど平坦な壁24に触れることを保証するための)を加えたものである。ロボット100が平坦な壁24に沿って進行する時に、図10Dの場合と同様に、壁追従距離WFは、本体110と壁24の間に対して望ましい壁距離WDに等しい(例えば、ロボット100の周囲を超えて延びる側面ブラシ128がちょうど平坦な壁24に触れることを保証するために)。
図12A−図12Dを参照すると、ロボット本体110は、ほぼ円形の周囲又は部分的に矩形の周囲を有することができる(図示のように)。一部の実施において、本体110の前方部分112は、矩形の周囲を有し、本体110の後方部分114は、円形の周囲を有する。本体110の矩形前方部分112は、コーナへのアクセスを容易にし、円形の後方部分114は、ロボット100がコーナ26内で回転を行う時に壁コーナ26をクリアすることを容易にする。部分的に矩形の周囲を有するロボット本体110は、周囲直径(ロボット100を外接し、かつ前部コーナ113a、113bを含む円107の直径DFC)よりも小さい距離だけ分離された障害物を避けることを含むいくつかの課題に直面する。円形ではないロボット100は、全ての障害物構成を避けるために定められた位置で回転することができない。ロボット100は、コーナ壁26に接近する時に、コーナ26を避けるために定められた位置で回転することができない。ロボット100が図12A及び図12Bのように定められた位置で回転する場合に、ロボット100は動けなくなる場合がある。一部の実施において、ロボット100は、図12Dに示すように回転を行う前に図12Cに示すように後方方向にコーナ26から後退することができる。ロボット100は、正面右回転FR又は正面左回転を提供することができる。ソナーセンサ530を有するロボット100は、本明細書の例に説明するように、このコーナ状態において図10A−図10Dに関して説明する後退、回転、及び位置合わせルーチンを使用することができる。
一部の実施において、ロボット100は、右側Rで障害物18aに当たり、左Lに回転して障害物18を回避する。一部の実施において、ロボット100は、その後に、左側Lで別の障害物18bに衝突する。これらの障害物18、18b間で前後に進行することを回避するために、ロボット100は、元の方向(左)に回転した後に設定された距離が得られるように軌跡に沿って進行し続ける。この方向固定指令は、反応挙動システム210aを無効にする。方向固定無効化モードの時に、制御システム210は、ロボット100が距離閾値を進行するまでは無関係に新しい方向に進行することを維持する。ロボット100のソナーセンサ530は、接触なしの障害物検出及び回避を可能にするので、一部の実施において、ロボット100は、ロボット100が衝突しなかった障害物18の検出に応答して新しい針路を維持する方向固定指令を有する。
一部の実施において、ソナーセンサ530が移動距離閾値内で2つの障害物を検出した場合に、ロボット100は、方向固定挙動無効化300eを実行する。方向固定挙動無効化300eは、障害物側(障害物18が存在するロボット110の側)に関わらずロボット100が距離閾値を進行するまで回転方向を維持する。方向固定挙動無効化300eは、ロボット100が内側コーナ26のような閉じた領域を避けることを可能にする。
ソナーセンサ530は、ロボット100が壁24と図9Bに示す椅子脚部18a−18bのような他の障害物18とを区別することを可能にする。ソナーセンサ530が壁24上に放出波532を放出した時に、戻り信号の数及び受信のタイミングの比率は一貫している。ソナーセンサ530が椅子脚部18a−18d上に放出波532を放出した時に、戻り信号の数及び受信のタイミングの比率は一貫していない。椅子脚部18a−18dを壁24と区別した後に、ロボット100は、椅子脚部18a−18d回りで及び/又はそれを通って移動し、ロボット移動針路間の突然の強打を回避するように椅子脚部18a、18bと衝突することを回避する。ソナーセンサ530が放出波532を放出した時に、ロボット100は、椅子脚部18aの周りで回転することにより、検出した最も近いターゲット障害物、ここでは、椅子脚部18aを回避し、新しい障害物18bが第1の検出された物体18aよりも有意に近い場合に限り、再び方向を切り換える。一部の実施において、ヒステリシスを使用して、ロボット100は、新しい障害物18bの周りで回転するために2回目に方向を変えた時に、第1の検出された障害物18aを引き続き回避する。このようにして、前面113に沿って配置されたソナーセンサ530を有するロボット100は、椅子脚部18a−18d及び他の壁以外の支柱のような障害物の集合を円滑に回避することができる。ロボット100は、進行し、かつ抜け出すことができない障害物18の場に潜在的に進行して入る時に、針路間の強打なしに接触なしの障害物回避及び検出のためにソナーセンサ530を使用するが、それは、障害物18が周囲直径(ロボット100に外接し、かつ前部コーナ113a、113bを含む円107の直径)よりも小さい距離だけ分離されるからである。
図14は、経路60に沿って床面10を横切ってロボット100を作動させる方法1400を示している。方法1400は、音波532をロボット本体110上に配置されたエミッタ530eから放出する段階1410を含む。方法1400は、コントローラ150上で(例えば、コンピュータプロセッサ上で)挙動システム210a(例えば、ODOA(障害物検出/障害物回避)挙動300a、壁追従挙動300b、埃探し挙動300c、スポット掃除挙動300d、方向固定挙動300e)を実行する段階1420を含む。挙動システム210aは、ロボット本体110上に配置されたレシーバ530rからセンサ信号を受信して、センサ信号に基づいて少なくとも1つの挙動300を実行する。センサ信号は、レシーバ530rによって受信した音波反射を示している。ロボット100が面10を横切って操作されている場合に、挙動システム300は、各放出音波を分離する時間閾値を有するソナー放出サイクルを実行する1430。時間閾値は、1msec、2msec、3msec、…、20msecとすることができる。ソナー放出サイクルは、45ミリ秒のサイクル完了期間を有することができる。
方法1400は、ロボット100が壁24の存在を示すセンサ信号を受信する場合に突出距離WOよりも大きい壁追従距離WFを有する壁追従挙動300bを実行する段階を更に含むことができる。壁追従距離WFは、ロボット本体110と壁24の感知された部分(例えば、壁24の下側部分24b)との間の水平距離であり、突出距離WOは、壁24上の最外部分24aと壁24の下側の引っ込んだ部分24bとの間の水平距離である。壁距離WDは、ロボットの本体110と壁24bの最も近い部分との間の距離に用途によって決定されたオフセット(例えば、ロボット本体110の周囲を超えて延びる側面ブラシ128がちょうど平坦な壁24に触れることを保証するための)を加えたものである。壁追従挙動300bの実行中に、ロボット100は、壁24から離れた距離閾値で駆動することができる。ロボット100は、側面距離センサ535を使用して、進行を距離閾値に維持する。
一部の実施において、方法1400は、コントローラ150が移動距離閾値内で2つの障害物18に接触した場合に、方向固定無効化300eを実行する段階を更に含む。方向固定挙動無効化300eは、ロボット100が距離閾値を進行するまでロボット100の障害物側に関わらず回転方向を維持する。方向固定挙動無効化300eは、ロボットが内側コーナ26のような閉じた領域を避けることを可能にする。
一部の実施において、コントローラ150上で(例えば、コンピュータプロセッサ上で)実行可能な推定又は制御ソフトウエアは、センサシステム500によって生成された様々なデータタイプを使用して実行されるアルゴリズムの組合せを使用する。推定ソフトウエアは、センサシステム500から収集されたデータを処理して、ロボット100がどこに例えば障害物18と衝突することなく移動することができるかに関するナビゲーション判断を行うためのデータを出力する。
図15を参照すると、一部の実施において、ロボット100は、ソナーシステム530を使用して壁24と非壁18(例えば、家具、床上の物体のような)を区別する。図6A及び図6Bに示す円形ロボット100は、ソナーエミッタ530eのアレイ及び湾曲した前面113に沿って配置されたソナーレシーバ530rのアレイを含む。湾曲した前面113は、ソナーエミッタ及びレシーバ530e、530rを前方駆動方向Fの右R及び左Lの方向に向け、平坦前面113よりも比較的広い全体的なソナーシステム530視野を可能にし、この比較的より広い全体的な視野により、ソナーエミッタ及びレシーバ530e、530rは、実質的に前方駆動方向Fに沿って向けられる。矩形前部ロボット100では、ソナーエミッタ及びレシーバ530e、530rは、ソナーシステム530のより広い視野をもたらすためにロボット本体110の右側R及び左側L上に配置することができる。
制御システム210は、ソナー反響の強度に基づいて検出された物体18、24のタイプを認識することができる。例えば、放出されたソナー信号532は、硬い壁24では音の大きい反響で、及びビロード又はファブリック家具(非壁障害物)18では柔らかい反響で戻ることになる。制御システム210は、物体18、24までの距離を決定するために放出波532が戻る時間を測定し、硬い物体と柔らかい物体18(24)とを区別して、どのソナーレシーバ530rが反響信号又は最も音の大きい(最も強力な)反響信号を受信するかに基づいて物体18、24がロボット100に対してどこにあるかを決定することができる。これは、ロボット100が、例えば、柔らかい紐のスタックを識別することを可能にすることができる。どこに物体があるかを知ることはまた、ロボット100が最も近いターゲット、及びどの角度でターゲットから向きを変えたらよいかを決定するのを補助する。図示の例において、ロボット100は、ソナーレシーバ530rによって受信したハード(強力な)ソナー反響信号に基づいて壁24の検出を認識する。更に、ロボット100は、最も左のソナーレシーバ530r上で音が最も大きい反響を受信することに基づいて壁24が左側Lに位置すると決定する。ロボット100はまた、非壁障害物18、この場合は椅子の検出を認識する。ロボット100はまた、ソナーレシーバ530rを横切って実質的に均一で(すなわち、反響信号が左又は右の側L、R寄りに強くならない)比較的柔らかい反響信号を受信することによって非壁障害物18が前方駆動方向Fに沿って直線的前方に位置すると決定する。左側L上で壁24及び直線的前方で非壁障害物18を検出することに応答して、ロボット100は、右側Rに移動することによって検出された障害物18、24を回避するように(制御システム210を通じて)操作される。ソナーシステム530を使用して、ロボット100は、ロボット100に対する(例えば、ソナーレシーバ530rの既知の位置に対する)検出された障害物18、24の距離及び位置を決定することができ、かつそれらの障害物18、24との衝突を回避するように操作することができる。
本明細書に説明する主題及び機能的作動の実施は、本明細書に開示する構造及び構造的均等物を含むデジタル電子回路に、又はコンピュータソフトウエア、ファームウエア、又はハードウエアに、又はその1又は2以上の組合せに実施することができる。更に、本明細書に説明する主題は、1又は2以上のコンピュータプログラム製品、すなわち、データ処理装置の作動による実行のために又はこの作動を制御するためにコンピュータ可読媒体上に符号化されたコンピュータプログラム命令の1又は2以上のモジュールとして実施することができる。
本明細書は、多くの詳細を含むが、これらは、本発明の開示の範囲又は主張することができる事柄の範囲に関する制限と解釈されず、むしろ、本発明の開示の特定の実施固有の特徴の説明として解釈しなければならない。別々の実施との関連において本明細書に説明するある一定の特徴も、単一実施での組合せで実施することができる。逆に、単一実施の関連で説明する様々な特徴も、別々に又はあらゆる適切な部分組合せで複数の実施で実施することができる。更に、特徴は、特定の組合せで作用すると上述し、かつそのようなものとして最初に主張したが、主張する組合せからの1又は2以上の特徴は、一部の場合に組合せから削除することができ、主張する組合せは、部分組合せ又は部分組合せの変形に関連する場合がある。
同様に、作動は、特定の順番で図面に示されているが、これは、そのような作動が図示の特定の順番で又は連続的な順番で実行され、又は望ましい結果をもたらすために全ての示す作動が実行されることを必要とすると理解すべきではない。ある一定の状況では、マルチタスク及び平行処理を有利とすることができる。更に、上述の実施形態における様々なシステム構成要素の分離は、そのような分離を全ての実施形態において必要とするとは理解されず、説明するプログラム構成要素及びシステムは、一般的に単一ソフトウエア製品内に互いに統合することができ、又は複数のソフトウエア製品にパッケージ化することができることを理解しなければならない。
いくつかの実施を説明した。それにもかかわらず、様々な修正を本発明の開示の精神及び範囲から逸脱することなく行うことができることは理解されるであろう。従って、他の実施も特許請求の範囲にある。例えば、特許請求の範囲に説明するアクションは、異なる順番で実行し、依然として望ましい結果を達成することができる。
10 床面
100 ロボット
113 前面
140 ユーザインタフェース
535 側面距離センサ

Claims (20)

  1. 自律移動ロボット(100)であって、
    前方駆動方向(F)を定め、かつ前記前方駆動方向(F)に対する前方及び後方部分(112、114)を有するロボット本体(110)であって、前記前方部分(112)が、前記ロボット本体(110)の周囲直径に沿って位置決めされたコーナ(113a、113b)によって境界付けられた実質的に直線の前面(113)を有する、前記ロボット本体(110)と、
    前記ロボット本体(110)を支持し、かつ床面(10)を横切って前記ロボット(100)を操作するように構成された駆動システム(120)と、
    前記前面(113)の長さに沿って配置されたソナーエミッタ(530e1−530e3)のアレイとソナーレシーバ(530r1−530r4)のアレイとを含み、前記ロボット本体(110)上に配置されたソナーシステム(530)であって、各エミッタ(530e、530e1、530e2、530e3)が、レシーバ(530r、530r1、530r2、530r3、530r4)に隣接して配置され、かつ音波(532)を放出し、各レシーバ(530r、530r1、530r2、530r3、530r4)が、音波反射(532)を受信することができ、各エミッタ及びレシーバ対(530e、530r)が、前記前面(113)から壁(24、24a、24b)までの距離(WD)を測定する、前記ソナーシステム(530)と、
    前記ロボット本体(110)の側面上に配置され、かつ前記前面(113)の少なくとも1つのコーナ(113a、133b)に隣接して位置決めされた光学側面距離センサ(535)と、
    前記ロボット本体(110)によって支持され、かつ前記駆動システム(120)、前記ソナーシステム(530)、及び前記側面距離センサ(535)と通信する制御システム(210)と、
    を含み、
    前記制御システム(210)は、
    前記ソナーレシーバ(530r1−530r4)のアレイから受信したセンサ信号に基づいて前記壁(24、24a、24b)に対する前記前面(113)の接近の角度(α、θ)を決定し、
    前記前面(113)のコーナ(113a、113b)から前記壁(24、24a、24b)までの最短距離として測定されるコーナ距離(WD)について、前記壁(24、24a、24b)までの最も近いコーナ距離(WD)を決定し、かつ
    前記駆動システム(120)に前記ロボット本体(110)を旋回させて前記壁(24、24a、24b)との衝突を回避させ、かつ、前記ロボット本体(110)が壁追従距離閾値(WT)で前記壁(24、24a、24b)に隣接して進行する状態で、前記前方駆動方向(F)を前記壁(24、24a、24b)と平行に整合させるようにする、
    ロボット(100)。
  2. 前記ソナーエミッタ(530e1−530e3)のアレイは、3つのソナーエミッタ(530e、530e1、530e2、530e3)を含み、前記ソナーレシーバ(530r1−530r4)のアレイは、4つのソナーレシーバ(530r、530r1、530r2、530r3、530r4)を含み、前記ソナーエミッタ(530e、530e1、530e2、530e3)及び前記ソナーレシーバ(530r、530r1、530r2、530r3、530r4)は、交替するパターンに配置される、請求項1に記載のロボット(100)。
  3. 前記制御システム(210)は、各放出された音波(532)を分離する時間閾値を有するソナー放出サイクルを実行する、請求項1に記載のロボット(100)。
  4. 前記時間閾値は15ミリ秒であり、及び/又は、前記ソナー放出サイクルは45ミリ秒のサイクル完了期間を有する、請求項3に記載のロボット(100)。
  5. 前記ロボット本体(110)の前記前方部分(112)上に配置され、かつ前記コントローラ(150)と通信するバンプセンサ(540)を更に含み、
    前記バンプセンサ(540)の起動が、前記ソナーシステム(530)によって感知された前記壁(24、24a、24b)の引っ込んだ部分(24b)よりも前記ロボット本体(110)に近い壁(24、24a、24b)の突出部(25)の存在を示す、請求項1に記載のロボット(100)。
  6. 前記制御システム(210)は、前記ロボット本体(110)から前記壁(24、24a、24b)の前記引っ込んだ部分(24b)までの引っ込んだ壁(24b)における追従距離に対応する信号値閾値を較正し、前記ロボット(100)が前記壁追従距離閾値(WT)に等しい距離(WD)で前記壁(24、24a、24b)におけるより近い突出部(25)に隣接して進行するようにする、請求項5に記載のロボット(100)。
  7. 前記ソナーシステム(530)が最も近い障害物(18、18a、18b、24)を検出した時に、前記制御システム(210)は、前記ロボット(100)に対する前記最も近い検出された障害物(18、18a、18b、24)の位置に関わらず、前記ロボット(100)が距離閾値を進行するまで、旋回方向を維持する方向固定駆動無効化指令を実行する、請求項1に記載の方法(100)。
  8. 前記前面(113)の前記コーナ(113a、113b)のうちの1つに隣接して前記ロボット本体(110)上に配置され、かつ前記ロボット本体(110)の周囲を超えて延びる側面ブラシ(128)を更に含む、請求項1に記載のロボット(100)。
  9. 前記ロボット(100)の前記前方部分(112)は実質的に矩形形状を有し、前記ロボット(100)の前記後方部分(114)は実質的に円形形状を有する、請求項1に記載のロボット(100)。
  10. 前記ロボット本体(110)上に配置され、かつ前記ロボット(100)の下の床までの距離を測定するように配列された段差センサ(520、520a−520d)を更に含み、
    前記制御システム(210)は、感知された段差の指示を前記段差センサ(520、520a−520d)から受信することに応答して、前記駆動システム(120)に前記ロボット本体(110)を逆方向に駆動させるようにする、及び/又は旋回させるようにする、請求項1に記載のロボット(100)。
  11. 自律移動ロボット(100)を作動させる方法(1400)であって、
    前記ロボット(100)のロボット本体(110)の前方部分(112)の前面(113)の長さに沿って配置されたソナーエミッタ(530e1−530e3)のアレイとソナーレシーバ(530r1−530r4)のアレイとを含むソナーシステム(530)から音波(532)を放出する段階であって、前記前方部分(112)が、前記ロボット本体(110)の周囲直径に沿って位置決めされたコーナ(113a、113b)によって境界付けられた実質的に直線の前面(113)を有し、各エミッタ(530e、530e1、530e2、530e3)が、レシーバ(530r、530r3、530r2、530r3、530r4)に隣接して配置され、かつ音波(532)を放出し、各レシーバ(530r、530r1、530r2、530r3、530r4)が、音波反射(532)を受信することができ、各エミッタ及びレシーバ対(530e、530r)が、前記前面(113)から壁(24、24a、24b)までの距離(WD)を測定する、前記放出する段階と、
    コンピュータプロセッサ(152)を使用して、前記ソナーレシーバ(530r1−530r4)のアレイから受信したセンサ信号に基づいて前記壁(24、24a、24b)に対する前記前面(113)の接近の角度(α、θ)を決定する段階と、
    前記コンピュータプロセッサ(152)を使用して、前記前面(113)のコーナ(113a、113b)から前記壁(24、24a、24b)までの最短距離として測定されるコーナ距離(WD)について、前記壁(24、24a、24b)までの最も近いコーナ距離(WD)を決定する段階と、
    前記ロボット本体(110)を旋回させて前記壁(24、24a、24b)との衝突を回避する段階と、
    前記ロボット本体(110)が壁追従距離閾値(WT)だけ前記壁(24、24a、24b)からオフセットした状態で、前記前方駆動方向(F)を前記壁(24、24a、24b)と平行に整合させる段階と、を含む、方法(1400)。
  12. 各放出された音波(532)を分離する時間閾値を有するソナー放出サイクルを実行する段階を更に含む、請求項11に記載の方法(1400)。
  13. 前記時間閾値は15ミリ秒であり、及び/又は、前記ソナー放出サイクルは45ミリ秒のサイクル完了期間を有する、請求項12に記載の方法(1400)。
  14. 前記ロボット本体(110)の側面上に配置され、かつ前記前面(113)の少なくとも1つのコーナ(113a、133b)に隣接して位置決めされた側面距離センサ(535)を使用して、前記壁(24、24a、24b)までの側面距離を繰返し測定する段階と、
    前記壁追従距離閾値(WT)を維持しながら前記壁(24、24a、24b)と実質的に平行な経路(60)に沿って駆動する段階と、を更に含む、請求項11に記載の方法(1400)。
  15. 前記壁(24、24a、24b)の引っ込んだ部分(24b)よりも前記ロボット本体(110)に近い前記壁(24、24a、24b)の突出部(25)の存在の指示を受信する段階と、
    前記ロボット本体(110)から前記壁(24、24a、24b)の前記引っ込んだ部分(24b)までの追従距離に対応する信号値閾値を較正し、前記壁追従距離閾値に等しい距離で前記壁(24、24a、24b)におけるより近い突出部(25)に隣接して進行させるようにする段階と、を更に含む、請求項11に記載の方法(1400)。
  16. 最も近い障害物(18、18a、18b、24)の検出を受信することに応答して、前記ロボット(100)に対する最も近い検出された前記障害物(18、18a、18b、24)の位置に関わらず、前記ロボット(100)が距離閾値を進行するまで旋回方向を維持する方向固定駆動無効化指令を実行する段階を更に含む、請求項11に記載の方法(1400)。
  17. 前記壁追従距離閾値は、前記ロボット本体(110)上に配置され、かつ前記ロボット本体(110)の周囲を超えて延びる側面ブラシ(128)が前記壁(24、24a、24b)に接触することを可能にする、請求項11に記載の方法(1400)。
  18. 逆方向に旋回及び/又は駆動しながら、前記ロボット本体(110)上に配置された少なくとも1つの段差センサ(520、520a−520d)を使用して、前記ロボット(100)の下の床までの距離を測定する段階を更に含む、請求項11に記載の方法(1400)。
  19. 前記段差センサ(520、520a−520d)が段差を検出した時に、逆方向に駆動する及び/又は方向転換する段階を更に含む、請求項18に記載の方法(1400)。
  20. 前記ロボット(100)の前記前方部分(112)は実質的に矩形形状を有し、前記ロボット(100)の後方部分(114)は実質的に円形形状を有する、請求項11に記載の方法(1400)。
JP2016541584A 2013-12-18 2014-11-19 自律移動ロボット Pending JP2017503267A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361917562P 2013-12-18 2013-12-18
US61/917,562 2013-12-18
PCT/US2014/066351 WO2015094553A1 (en) 2013-12-18 2014-11-19 Autonomous mobile robot

Publications (1)

Publication Number Publication Date
JP2017503267A true JP2017503267A (ja) 2017-01-26

Family

ID=53367457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016541584A Pending JP2017503267A (ja) 2013-12-18 2014-11-19 自律移動ロボット

Country Status (5)

Country Link
US (1) US9278690B2 (ja)
EP (1) EP3082543B1 (ja)
JP (1) JP2017503267A (ja)
CN (1) CN206950128U (ja)
WO (1) WO2015094553A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140350A (ja) * 2016-02-05 2017-08-17 パナソニックIpマネジメント株式会社 自律走行型掃除機、その補助ブラシ、および、自律走行型掃除機を備える掃除機システム
WO2019212173A1 (ko) * 2018-04-30 2019-11-07 엘지전자 주식회사 청소기 및 그 제어방법
WO2019212172A1 (ko) * 2018-04-30 2019-11-07 엘지전자 주식회사 청소기 및 그 제어방법
KR20190134714A (ko) * 2017-04-11 2019-12-04 아미크로 세미컨덕터 씨오., 엘티디. 지도 예측에 기반한 로봇 운동 제어 방법
JP2020038665A (ja) * 2018-09-04 2020-03-12 アイロボット・コーポレーション 自律移動ロボットのナビゲーション
CN111433697A (zh) * 2017-09-01 2020-07-17 罗博艾特有限责任公司 用于自主移动机器人的运动规划
JP2020141797A (ja) * 2019-03-05 2020-09-10 東芝ライフスタイル株式会社 自律型掃除機
JP2021122448A (ja) * 2020-02-04 2021-08-30 東芝ライフスタイル株式会社 自律型掃除機
JP2022525543A (ja) * 2019-03-21 2022-05-17 シャークニンジャ オペレーティング エルエルシー アダプティブセンサーアレイシステムおよび方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9504367B2 (en) * 2013-11-20 2016-11-29 Samsung Electronics Co., Ltd. Cleaning robot and method for controlling the same
CN104977927A (zh) * 2014-04-14 2015-10-14 科沃斯机器人科技(苏州)有限公司 表面处理机器人系统
US9704043B2 (en) 2014-12-16 2017-07-11 Irobot Corporation Systems and methods for capturing images and annotating the captured images with information
US9918605B2 (en) 2015-04-09 2018-03-20 Irobot Corporation Wall following robot
KR101649665B1 (ko) * 2015-04-29 2016-08-30 엘지전자 주식회사 이동 로봇 및 그 제어방법
TWI617907B (zh) * 2015-07-30 2018-03-11 Yan cheng xiang Robot for automatically adjusting moving path and method thereof
DE102015119501A1 (de) 2015-11-11 2017-05-11 RobArt GmbH Unterteilung von Karten für die Roboternavigation
US11172608B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
US11172605B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
EP3510358B1 (en) 2016-09-09 2021-11-10 Dematic Corp. Automated guided vehicle
JP2018061703A (ja) * 2016-10-13 2018-04-19 シャープ株式会社 自走式電子機器
US10732127B2 (en) * 2016-10-26 2020-08-04 Pixart Imaging Inc. Dirtiness level determining system and surface cleaning machine
US10375880B2 (en) 2016-12-30 2019-08-13 Irobot Corporation Robot lawn mower bumper system
DE112017006839T5 (de) * 2017-01-16 2019-09-26 Fujitsu Limited Informationsverarbeitungsvorrichtung, Datenbankerzeugungsvorrichtung, Verfahren, Programm und Speichermedium
SE540794C2 (en) * 2017-02-06 2018-11-13 Acconeer Ab An autonomous mobile robot with radar sensors
CN106990387B (zh) * 2017-05-22 2019-08-16 湖南云辙科技有限公司 定位用导轨带的投影数据获取方法
US11914077B2 (en) * 2017-08-16 2024-02-27 Laser Technology, Inc. System and method for determination of origin displacement for a laser rangefinding instrument
AU2018356126B2 (en) * 2017-10-25 2021-07-29 Lg Electronics Inc. Artificial intelligence moving robot which learns obstacles, and control method therefor
CN107792220A (zh) * 2017-10-26 2018-03-13 苏州英诺达自动化科技有限公司 一种agv小车用高强度智能防护栏
JP6599420B2 (ja) * 2017-12-01 2019-10-30 本田技研工業株式会社 自動搬送車
USD907084S1 (en) * 2017-12-14 2021-01-05 The Hi-Tech Robotic Systemz Ltd Mobile robot
USD896858S1 (en) * 2017-12-14 2020-09-22 The Hi-Tech Robotic Systemz Ltd Mobile robot
USD906390S1 (en) * 2017-12-14 2020-12-29 The Hi-Tech Robotic Systemz Ltd Mobile robot
USD879851S1 (en) * 2017-12-29 2020-03-31 Beijing Geekplus Technology Co., Ltd. Robot
CN108089200A (zh) * 2018-01-12 2018-05-29 深圳慎始科技有限公司 一种具有线形固态雷达的清扫机器人
CN110119136A (zh) * 2018-02-05 2019-08-13 苏州宝时得电动工具有限公司 自移动设备及其障碍物检测方法
CN108189040B (zh) * 2018-03-09 2023-06-27 成都圭目机器人有限公司 一种污水管线检测机器人系统
USD879852S1 (en) * 2018-03-15 2020-03-31 Beijing Geekplus Technology Co., Ltd. Mobile robot
CN108455153B (zh) * 2018-04-17 2024-03-22 兰剑智能科技(临邑)有限公司 通道机补货车
EP3928329B1 (en) 2018-04-23 2024-04-03 SharkNinja Operating LLC Techniques for bounding cleaning operations of a robotic surface cleaning device within a region of interest
USD870401S1 (en) * 2018-04-27 2019-12-17 Maidbot, Inc. Robot body
JP7037249B2 (ja) * 2018-05-22 2022-03-16 日立グローバルライフソリューションズ株式会社 自律走行型掃除機
CN108958254B (zh) * 2018-07-23 2020-10-30 深圳市银星智能科技股份有限公司 自移动机器人
USD911406S1 (en) * 2018-08-17 2021-02-23 Grey Orange Pte. Ltd Robot for moving articles within a facility
USD873173S1 (en) 2018-08-28 2020-01-21 Asi Technologies, Inc. Automated guided vehicle
US10921819B2 (en) 2018-08-28 2021-02-16 Asi Technologies, Inc. Automated guided vehicle system and automated guided vehicle for use therein
US11398309B2 (en) * 2018-11-27 2022-07-26 Alarm.Com Incorporated Automated surface sterilization techniques
CN109388143B (zh) * 2018-11-29 2024-03-12 天佑电器(苏州)有限公司 机器人及其行走控制方法
CN115122323A (zh) * 2019-08-09 2022-09-30 科沃斯机器人股份有限公司 自主移动设备
SE544561C2 (en) * 2020-05-08 2022-07-19 Husqvarna Ab An outdoor robotic work tool comprising an environmental detection system
CN111857153B (zh) * 2020-07-31 2023-09-19 北京石头世纪科技股份有限公司 一种距离检测装置及扫地机器人
CN112162294B (zh) * 2020-10-10 2023-12-15 北京布科思科技有限公司 一种基于激光传感器的机器人结构检测方法
TWD219796S (zh) * 2020-10-15 2022-07-11 大陸商北京石頭世紀科技股份有限公司 清潔機器人
TWI812904B (zh) * 2020-12-09 2023-08-21 鴻海精密工業股份有限公司 自動閃避方法以及自主移動設備
USD967883S1 (en) * 2021-01-06 2022-10-25 Grey Orange International Inc. Robot for handling goods in a facility
CN112782706B (zh) * 2021-01-11 2022-05-10 山东新一代信息产业技术研究院有限公司 机器人超声波传感器障碍物检测方法及系统
US11940800B2 (en) 2021-04-23 2024-03-26 Irobot Corporation Navigational control of autonomous cleaning robots
US11884223B2 (en) 2021-12-01 2024-01-30 Google Llc Ground vehicle bumper system
SE2250230A1 (en) * 2022-02-21 2023-08-22 Husqvarna Ab An outdoor robotic work tool comprising an environmental detection system adapted to detect obstacles
US20230330873A1 (en) * 2022-04-14 2023-10-19 Samsung Electronics Co, Ltd. Method and apparatus for proximity detection and proximity direction estimation
CN116954225B (zh) * 2023-07-28 2024-03-05 南京安透可智能系统有限公司 基于多波束声呐的城市管道环境中潜航器避障系统与方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006268498A (ja) * 2005-03-24 2006-10-05 Funai Electric Co Ltd 自走式掃除機
JP2009104444A (ja) * 2007-10-24 2009-05-14 Panasonic Corp 自律走行装置およびプログラム
US20100286825A1 (en) * 2007-07-18 2010-11-11 Ho-Seon Rew Mobile robot and controlling method thereof
WO2013036284A1 (en) * 2011-09-07 2013-03-14 Irobot Corporation Sonar system for remote vehicle
JP2013106820A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp 自走式掃除機
JP2013146587A (ja) * 2005-12-02 2013-08-01 Irobot Corp 自律型カバレッジロボット
US20130263889A1 (en) * 2012-04-06 2013-10-10 Samsung Electronics Co., Ltd. Robot cleaner and method of controlling the same
JP2014527841A (ja) * 2012-03-15 2014-10-23 アイロボット コーポレイション ロボット用の柔軟な固体バンパー

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1900885A (en) 1930-12-01 1933-03-07 Hoover Co Suction cleaner
US4710020A (en) 1986-05-16 1987-12-01 Denning Mobil Robotics, Inc. Beacon proximity detection system for a vehicle
US5165064A (en) 1991-03-22 1992-11-17 Cyberotics, Inc. Mobile robot guidance and navigation system
US5502638A (en) 1992-02-10 1996-03-26 Honda Giken Kogyo Kabushiki Kaisha System for obstacle avoidance path planning for multiple-degree-of-freedom mechanism
US5319611A (en) * 1993-03-31 1994-06-07 National Research Council Of Canada Method of determining range data in a time-of-flight ranging system
SE502834C2 (sv) * 1994-03-29 1996-01-29 Electrolux Ab Förfarande och anordning för avkänning av hinder vid självgående anordning
KR970000582B1 (ko) * 1994-03-31 1997-01-14 삼성전자 주식회사 로보트청소기의 주행제어방법
US5935179A (en) * 1996-04-30 1999-08-10 Aktiebolaget Electrolux System and device for a self orienting device
US5995884A (en) 1997-03-07 1999-11-30 Allen; Timothy P. Computer peripheral floor cleaning system and navigation method
EP1049964B1 (fr) 1997-11-27 2002-03-13 Solar & Robotics Ameliorations a des robots mobiles et a leur systeme de commande
US6532404B2 (en) 1997-11-27 2003-03-11 Colens Andre Mobile robots and their control system
US6173233B1 (en) * 1998-12-11 2001-01-09 Eaton Corporation Back-up proximity sensor for a vehicle employing dual sonic transducers
GB9827779D0 (en) 1998-12-18 1999-02-10 Notetry Ltd Improvements in or relating to appliances
US6099661A (en) 1999-06-01 2000-08-08 Fantom Technologies Inc. Method and apparatus for increasing the air flow into a vacuum cleaner head
ATE268196T1 (de) 1999-06-17 2004-06-15 Solar & Robotics S A Automatische vorrichtung zum sammeln von gegenständen
GB9917232D0 (en) 1999-07-23 1999-09-22 Notetry Ltd Method of operating a floor cleaning device
US7155308B2 (en) 2000-01-24 2006-12-26 Irobot Corporation Robot obstacle detection system
US6594844B2 (en) 2000-01-24 2003-07-22 Irobot Corporation Robot obstacle detection system
US6870792B2 (en) 2000-04-04 2005-03-22 Irobot Corporation Sonar Scanner
AUPR154400A0 (en) 2000-11-17 2000-12-14 Duplex Cleaning Machines Pty. Limited Robot machine
US6606278B2 (en) 2000-12-20 2003-08-12 Exxonmobil Upstream Research Company Method for multiple suppression based on phase arrays
US6883201B2 (en) 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US20040187457A1 (en) 2001-05-28 2004-09-30 Andre Colens Robotic lawnmower
US7429843B2 (en) 2001-06-12 2008-09-30 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
ES2712859T3 (es) 2001-06-12 2019-05-16 Irobot Corp Cobertura multimodal para un robot autónomo
EP1441632B1 (en) 2001-09-26 2013-05-01 F. Robotics Acquisitions Ltd. Robotic vacuum cleaner
IL145680A0 (en) 2001-09-26 2002-06-30 Friendly Robotics Ltd Robotic vacuum cleaner
US7103457B2 (en) 2002-03-28 2006-09-05 Dean Technologies, Inc. Programmable lawn mower
US6836701B2 (en) 2002-05-10 2004-12-28 Royal Appliance Mfg. Co. Autonomous multi-platform robotic system
WO2004025947A2 (en) 2002-09-13 2004-03-25 Irobot Corporation A navigational control system for a robotic device
EP1548532A4 (en) 2002-10-01 2007-08-08 Fujitsu Ltd ROBOT
KR100492577B1 (ko) 2002-10-22 2005-06-03 엘지전자 주식회사 로봇 청소기의 흡입헤드
KR100459465B1 (ko) 2002-10-22 2004-12-03 엘지전자 주식회사 로봇 청소기의 먼지흡입구조
KR100486737B1 (ko) * 2003-04-08 2005-05-03 삼성전자주식회사 청소로봇의 청소궤적 생성·추종방법 및 장치
US7133746B2 (en) 2003-07-11 2006-11-07 F Robotics Acquistions, Ltd. Autonomous machine for docking with a docking station and method for docking
AU2004202834B2 (en) 2003-07-24 2006-02-23 Samsung Gwangju Electronics Co., Ltd. Robot Cleaner
US20070061041A1 (en) 2003-09-02 2007-03-15 Zweig Stephen E Mobile robot with wireless location sensing apparatus
US7424766B2 (en) 2003-09-19 2008-09-16 Royal Appliance Mfg. Co. Sensors and associated methods for controlling a vacuum cleaner
US7047132B2 (en) * 2004-01-12 2006-05-16 Steven Jacobs Mobile vehicle sensor array
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
JP2005211368A (ja) 2004-01-30 2005-08-11 Funai Electric Co Ltd 自走式掃除機
KR100571834B1 (ko) 2004-02-27 2006-04-17 삼성전자주식회사 청소 로봇의 바닥 먼지 검출 방법 및 장치
JP2007530978A (ja) 2004-03-29 2007-11-01 エヴォリューション ロボティクス インコーポレイテッド 反射光源を使用する位置推定方法および装置
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
JP2006020936A (ja) 2004-07-09 2006-01-26 Funai Electric Co Ltd 自走式掃除機及びサスペンション構造
JP2006026028A (ja) 2004-07-14 2006-02-02 Sanyo Electric Co Ltd 掃除機
CA2578525A1 (en) 2004-08-27 2006-03-09 Sharper Image Corporation Robot cleaner with improved vacuum unit
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US7389156B2 (en) 2005-02-18 2008-06-17 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
TWI278731B (en) 2005-05-09 2007-04-11 Infinite Electronics Inc Self-propelled apparatus for virtual wall system
US7578020B2 (en) 2005-06-28 2009-08-25 S.C. Johnson & Son, Inc. Surface treating device with top load cartridge-based cleaning system
US7835537B2 (en) 2005-10-13 2010-11-16 Cheney Brian E Loudspeaker including slotted waveguide for enhanced directivity and associated methods
ES2623920T3 (es) 2005-12-02 2017-07-12 Irobot Corporation Sistema de robot.
KR101300493B1 (ko) 2005-12-02 2013-09-02 아이로보트 코퍼레이션 커버리지 로봇 이동성
US7568259B2 (en) 2005-12-13 2009-08-04 Jason Yan Robotic floor cleaner
KR101345528B1 (ko) 2007-05-09 2013-12-27 아이로보트 코퍼레이션 자동 로봇
EP3479748B1 (en) 2008-03-17 2020-06-03 Electrolux Home Care Products, Inc. A rotary cleaner with cleaning features
KR20100132891A (ko) 2009-06-10 2010-12-20 삼성광주전자 주식회사 청소장치 및 이를 이용한 먼지 포집 방법
US8670293B2 (en) 2011-03-25 2014-03-11 Woods Hole Oceanographic Institution Broadband sound source for long distance underwater sound propagation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006268498A (ja) * 2005-03-24 2006-10-05 Funai Electric Co Ltd 自走式掃除機
JP2013146587A (ja) * 2005-12-02 2013-08-01 Irobot Corp 自律型カバレッジロボット
US20100286825A1 (en) * 2007-07-18 2010-11-11 Ho-Seon Rew Mobile robot and controlling method thereof
JP2009104444A (ja) * 2007-10-24 2009-05-14 Panasonic Corp 自律走行装置およびプログラム
WO2013036284A1 (en) * 2011-09-07 2013-03-14 Irobot Corporation Sonar system for remote vehicle
JP2013106820A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp 自走式掃除機
JP2014527841A (ja) * 2012-03-15 2014-10-23 アイロボット コーポレイション ロボット用の柔軟な固体バンパー
US20130263889A1 (en) * 2012-04-06 2013-10-10 Samsung Electronics Co., Ltd. Robot cleaner and method of controlling the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140350A (ja) * 2016-02-05 2017-08-17 パナソニックIpマネジメント株式会社 自律走行型掃除機、その補助ブラシ、および、自律走行型掃除機を備える掃除機システム
US11144064B2 (en) 2017-04-11 2021-10-12 Amicro Semiconductor Co., Ltd. Method for controlling motion of robot based on map prediction
KR102260529B1 (ko) * 2017-04-11 2021-06-03 아미크로 세미컨덕터 씨오., 엘티디. 지도 예측에 기반한 로봇 운동 제어 방법
KR20190134714A (ko) * 2017-04-11 2019-12-04 아미크로 세미컨덕터 씨오., 엘티디. 지도 예측에 기반한 로봇 운동 제어 방법
JP2020532018A (ja) * 2017-09-01 2020-11-05 ロブアート ゲーエムベーハーROBART GmbH 自律移動ロボットの移動計画
CN111433697A (zh) * 2017-09-01 2020-07-17 罗博艾特有限责任公司 用于自主移动机器人的运动规划
KR102070282B1 (ko) 2018-04-30 2020-01-28 엘지전자 주식회사 청소기 및 그 제어방법
WO2019212173A1 (ko) * 2018-04-30 2019-11-07 엘지전자 주식회사 청소기 및 그 제어방법
KR102122237B1 (ko) 2018-04-30 2020-06-15 엘지전자 주식회사 청소기 및 그 제어방법
KR20190134871A (ko) * 2018-04-30 2019-12-05 엘지전자 주식회사 청소기 및 그 제어방법
US11969136B2 (en) 2018-04-30 2024-04-30 Lg Electronics Inc. Vacuum cleaner and control method therefor
KR20190134870A (ko) * 2018-04-30 2019-12-05 엘지전자 주식회사 청소기 및 그 제어방법
WO2019212172A1 (ko) * 2018-04-30 2019-11-07 엘지전자 주식회사 청소기 및 그 제어방법
US11832782B2 (en) 2018-04-30 2023-12-05 Lg Electronics Inc. Vacuum cleaner and method for controlling same
JP7206171B2 (ja) 2018-09-04 2023-01-17 アイロボット・コーポレーション 自律移動ロボットのナビゲーション
JP2020038665A (ja) * 2018-09-04 2020-03-12 アイロボット・コーポレーション 自律移動ロボットのナビゲーション
JP7487283B2 (ja) 2018-09-04 2024-05-20 アイロボット・コーポレーション 自律移動ロボットのナビゲーション
US11607094B2 (en) 2018-09-04 2023-03-21 Irobot Corporation Navigation of autonomous mobile robots
JP7280719B2 (ja) 2019-03-05 2023-05-24 東芝ライフスタイル株式会社 自律型掃除機
JP2020141797A (ja) * 2019-03-05 2020-09-10 東芝ライフスタイル株式会社 自律型掃除機
JP2022525543A (ja) * 2019-03-21 2022-05-17 シャークニンジャ オペレーティング エルエルシー アダプティブセンサーアレイシステムおよび方法
JP7375038B2 (ja) 2019-03-21 2023-11-07 シャークニンジャ オペレーティング エルエルシー アダプティブセンサーアレイシステムおよび方法
JP7328913B2 (ja) 2020-02-04 2023-08-17 東芝ライフスタイル株式会社 自律型掃除機
JP2021122448A (ja) * 2020-02-04 2021-08-30 東芝ライフスタイル株式会社 自律型掃除機

Also Published As

Publication number Publication date
EP3082543A4 (en) 2017-08-16
EP3082543A1 (en) 2016-10-26
CN206950128U (zh) 2018-02-02
WO2015094553A1 (en) 2015-06-25
US20150166060A1 (en) 2015-06-18
EP3082543B1 (en) 2019-01-09
US9278690B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP2017503267A (ja) 自律移動ロボット
US10124490B2 (en) Autonomous mobile robot
JP7374547B2 (ja) 探測方法、装置、移動ロボット及び記憶媒体
US10296007B2 (en) Mobile robot area cleaning
US10429851B2 (en) Proximity sensing on mobile robots
US9844876B2 (en) Robot cleaner and control method thereof
US20210321854A1 (en) Mobile robot
KR102099495B1 (ko) 로봇 청소 장치가 장애물에 올라가는 것의 감지
US9400501B2 (en) Simultaneous localization and mapping for a mobile robot
EP3797665A1 (en) Vacuum cleaner and method for controlling same
CN209678392U (zh) 一种移动机器人
KR102127931B1 (ko) 로봇 청소기 및 그것의 제어방법
JP4962255B2 (ja) 自走式装置
JP4910972B2 (ja) 自走式装置およびプログラム
WO2020017239A1 (ja) 自走式掃除機及び自走式掃除機の制御方法
AU2016225774A1 (en) Proximity sensing on mobile robots
AU2015201973A1 (en) Proximity sensing on mobile robots

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204