JP2017220592A - 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板 - Google Patents

電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板 Download PDF

Info

Publication number
JP2017220592A
JP2017220592A JP2016114719A JP2016114719A JP2017220592A JP 2017220592 A JP2017220592 A JP 2017220592A JP 2016114719 A JP2016114719 A JP 2016114719A JP 2016114719 A JP2016114719 A JP 2016114719A JP 2017220592 A JP2017220592 A JP 2017220592A
Authority
JP
Japan
Prior art keywords
film
layer
electromagnetic wave
conductive adhesive
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016114719A
Other languages
English (en)
Other versions
JP6694763B2 (ja
Inventor
吉田 一義
Kazuyoshi Yoshida
一義 吉田
稔 久保田
Minoru Kubota
稔 久保田
努 佐賀
Tsutomu Saga
努 佐賀
航 片桐
Wataru Katagiri
航 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2016114719A priority Critical patent/JP6694763B2/ja
Priority to CN201710421861.0A priority patent/CN107484324B/zh
Priority to CN201720653312.1U priority patent/CN207124801U/zh
Publication of JP2017220592A publication Critical patent/JP2017220592A/ja
Application granted granted Critical
Publication of JP6694763B2 publication Critical patent/JP6694763B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0723Shielding provided by an inner layer of PCB

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

【課題】プリント配線板の表面に設けられた絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に確実に電気的に接続できる電磁波シールドフィルムを提供する。【解決手段】絶縁樹脂層10と;絶縁樹脂層10に隣接する金属薄膜層22と;金属薄膜層22の絶縁樹脂層10とは反対側に隣接する異方導電性接着剤層24と;絶縁樹脂層10の金属薄膜層22とは反対側に隣接する第1の離型フィルム30とを有し;金属薄膜層22の厚さが、150nm以上400nm以下である、電磁波シールドフィルム。【選択図】図1

Description

本発明は、電磁波シールドフィルムおよび電磁波シールドフィルムが設けられたプリント配線板に関する。
フレキシブルプリント配線板から発生する電磁波ノイズや外部からの電磁波ノイズを遮蔽するために、絶縁樹脂層と、絶縁樹脂層に隣接する、金属薄膜層および導電性接着剤層から構成される導電層とからなる電磁波シールドフィルムを、フレキシブルプリント配線板の表面に設けることがある(例えば、特許文献1、2参照)。
図6は、従来の電磁波シールドフィルム付きフレキシブルプリント配線板の製造工程の一例を示す断面図である。
電磁波シールドフィルム付きフレキシブルプリント配線板101は、フレキシブルプリント配線板130と、絶縁フィルム140と、第1の離型フィルム118を剥離した電磁波シールドフィルム110とを備える。
フレキシブルプリント配線板130は、ベースフィルム132の片面にプリント回路134が設けられたものである。
絶縁フィルム140は、フレキシブルプリント配線板130のプリント回路134が設けられた側の表面に設けられる。
電磁波シールドフィルム110は、絶縁樹脂層112と、絶縁樹脂層112に隣接する金属薄膜層114と、金属薄膜層114の絶縁樹脂層112とは反対側に隣接する導電性接着剤層116と、絶縁樹脂層112の金属薄膜層114とは反対側に隣接する第1の離型フィルム118(キャリアフィルム)とを有する。
電磁波シールドフィルム110の導電性接着剤層116は、絶縁フィルム140の表面に接着され、かつ硬化されている。また、導電性接着剤層116は、絶縁フィルム140に形成された貫通孔142を通ってプリント回路134に電気的に接続されている。
電磁波シールドフィルム付きフレキシブルプリント配線板101は、例えば、図6に示すように、下記の工程を経て製造される。
工程(i):フレキシブルプリント配線板130のプリント回路134が設けられた側の表面に、プリント回路134のグランドに対応する位置に貫通孔142が形成された絶縁フィルム140を設ける工程。
工程(ii):電磁波シールドフィルム110を、絶縁フィルム140の表面に、電磁波シールドフィルム110の導電性接着剤層116が接触するように重ね、これらを熱プレスすることによって、絶縁フィルム140の表面に導電性接着剤層116を接着し、かつ導電性接着剤層116を、貫通孔142を通ってプリント回路134のグランドに電気的に接続する工程。
工程(iii):熱プレス後、キャリアフィルムとしての役割を終えた第1の離型フィルム118を、絶縁樹脂層112から剥離し、取り除くことによって、電磁波シールドフィルム付きフレキシブルプリント配線板101を得る工程。
特開2000−269632号公報 特開2015−109404号公報
しかし、絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に電磁波シールドフィルムの導電性接着剤層を接着した場合、グランドと導電性接着剤層との接着が不十分となりやすい。そのため、絶縁樹脂層から第1の離型フィルムを剥離する際や、電磁波シールドフィルム付きフレキシブルプリント配線板を高温で加熱して導電性接着剤層を本硬化させる際に、グランドと導電性接着剤層との間で剥離が生じやすい。そのため、グランドと導電性接着剤層との間の接続抵抗が高くなり、電気的な接続を確実に行えないことがある。
本発明は、プリント配線板の表面に設けられた絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に確実に電気的に接続できる電磁波シールドフィルム、およびプリント配線板の表面に設けられた絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に電磁波シールドフィルムの導電性接着剤層が確実に電気的に接続された電磁波シールドフィルム付きプリント配線板を提供する。
本発明は、以下の態様を有する。
<1>絶縁樹脂層と;前記絶縁樹脂層に隣接する金属薄膜層と;前記金属薄膜層の前記絶縁樹脂層とは反対側に隣接する導電性接着剤層と;前記絶縁樹脂層の前記金属薄膜層とは反対側に隣接する第1の離型フィルムとを有し;前記金属薄膜層の厚さが、150nm以上400nm以下である、電磁波シールドフィルム。
<2>前記金属薄膜層のナノインデンテーション法による硬さが、0.3GPa以上2.0GPa以下である、前記<1>の電磁波シールドフィルム。
<3>前記導電性接着剤層が導電性粒子を含み;前記導電性粒子の10%圧縮強度が、30MPa以上200MPa以下である、前記<1>または<2>の電磁波シールドフィルム。
<4>前記導電性接着剤層が導電性粒子として金属粒子を含み;前記金属薄膜層を構成する金属および前記金属粒子を構成する金属が、銅である、前記<1>〜<3>のいずれかの電磁波シールドフィルム。
<5>前記金属薄膜層が、蒸着膜である、<1>〜<4>のいずれかの電磁波シールドフィルム。
<6>前記導電性接着剤層の180℃における貯蔵弾性率が、1×10Pa以上5×10Pa以下である、前記<1>〜<5>のいずれかの電磁波シールドフィルム。
<7>前記第1の離型フィルムの180℃における貯蔵弾性率が、8×10Pa以上5×10Pa以下である、前記<1>〜<6>のいずれかの電磁波シールドフィルム。
<8>前記絶縁樹脂層の180℃における貯蔵弾性率が、5×10Pa以上5×109Pa以下である、前記<1>〜<7>のいずれかの電磁波シールドフィルム。
<9>前記導電性接着剤層の前記金属薄膜とは反対側に隣接する第2の離型フィルムをさらに有する、前記<1>〜<8>のいずれかの電磁波シールドフィルム。
<10>基板の少なくとも片面にプリント回路が設けられたプリント配線板と;前記プリント配線板の前記プリント回路が設けられた側の表面に隣接する絶縁フィルムと;前記導電性接着剤層が前記絶縁フィルムに隣接し、かつ前記導電性接着剤層が前記絶縁フィルムに形成された貫通孔を通って前記プリント回路に電気的に接続された前記<1>〜<8>のいずれかの電磁波シールドフィルムとを有する、電磁波シールドフィルム付きプリント配線板。
本発明の電磁波シールドフィルムは、プリント配線板の表面に設けられた絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に確実に電気的に接続できる。
本発明の電磁波シールドフィルム付きプリント配線板においては、プリント配線板の表面に設けられた絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に電磁波シールドフィルムの導電性接着剤層が確実に電気的に接続される。
本発明の電磁波シールドフィルムの一実施形態を示す断面図である。 本発明の電磁波シールドフィルムの他の実施形態を示す断面図である。 図1の電磁波シールドフィルムの製造工程を示す断面図である。 本発明の電磁波シールドフィルム付きプリント配線板の一実施形態を示す断面図である。 図4の電磁波シールドフィルム付きプリント配線板の製造工程を示す断面図である。 従来の電磁波シールドフィルム付きフレキシブルプリント配線板の製造工程の一例を示す断面図である。
以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「等方導電性接着剤層」とは、厚さ方向および面方向に導電性を有する導電性接着剤層を意味する。
「異方導電性接着剤層」とは、厚さ方向に導電性を有し、面方向に導電性を有しない導電性接着剤層を意味する。
「面方向に導電性を有しない導電性接着剤層」とは、表面抵抗が1×10Ω以上である導電性接着剤層を意味する。
導電性粒子の平均粒子径は、導電性粒子の顕微鏡像から30個の導電性粒子を無作為に選び、それぞれの導電性粒子について、最小径および最大径を測定し、最小径と最大径との中央値を一粒子の粒子径とし、測定した30個の導電性粒子の粒子径を算術平均して得た値である。
フィルム(離型フィルム、絶縁フィルム等)、塗膜(絶縁樹脂層、導電性接着剤層等)、金属薄膜層等の厚さは、顕微鏡を用いて測定対象の断面を観察し、5箇所の厚さを測定し、平均した値である。
貯蔵弾性率は、測定対象に与えた応力と検出した歪から算出され、温度または時間の関数として出力する動的粘弾性測定装置を用いて、粘弾性特性の一つとして測定される。
表面抵抗は、石英ガラス上に金を蒸着して形成した、2本の薄膜金属電極(長さ10mm、幅5mm、電極間距離10mm)を用い、この電極上に被測定物を置き、被測定物上から、被測定物の10mm×20mmの領域を0.049Nの荷重で押し付け、1mA以下の測定電流で測定される電極間の抵抗である。
金属薄膜層のナノインデンション法による硬さは、超微小硬度計を用い、圧子としてダイヤモンド製三角錐圧子を用いて下記のナノインデンテーション法(連続剛性測定法)による測定を行い、測定結果から下記の算出法によって求める。
金属薄膜層に対し、三角錐圧子(Berkovich圧子)を用いて押し込み負荷/除荷試験を行い、荷重−押しこみ深さ線図を取得する。
最大荷重時の硬さHは、荷重Pと、押し込み後に弾性変形分が回復し、残存する圧痕の投影面積Aを用いて下記式(1)のように定義される。
H=P/A (1)
圧痕の投影面積Aは、下記式(2)から求められる。
A=ηkh (2)
ただし、ηは圧子先端形状の補正係数であり、kは圧子の幾何学形状から求まる定数であり、Berkovich圧子ではk=24.56であり、hは有効接触深さであり、下記式(3)で表される。
=h−ε{c/(dP/dh)} (3)
ただし、hは測定される全変位であり、dP/dhは得られた荷重−押しこみ深さ線図における除荷時の初期勾配であり、εは圧子の幾何学形状から求まる定数であり、Berkovich圧子では0.75となる。
式(1)、式(2)および式(3)から、最大荷重Pmaxにおける硬さが下記式(4)から算出される。
H=Pmax/(ηkh ) (4)
なお、式(3)におけるdP/dhは、下記のナノインデンテーション法(連続剛性測定法)によって算出される。
連続剛性測定法とは、押しこみ試験中に圧子を微小振動させ、振動に対する応答振幅、位相差を時間の関数として取得し、押しこみ深さの連続的変化に対応して、dP/dhを連続的に算出する方法である。以下にその原理を示す。
金属薄膜層に圧子が侵入する方向の力の総和(検出荷重成分)F(t)は、下記式(5)で表される。
F(t)=m(dh/dt)+D(dh/dt)+Kh (5)
ただし、式(5)の第1項は圧子軸由来の力(m:圧子軸の質量)であり、式(5)の第2項は金属薄膜層および圧子系の粘性的成分由来の力(D:損失定数)であり、式(5)の第3項は金属薄膜層、荷重系枠(ロードフレーム)のコンプライアンス、圧子軸を支える板ばねの剛性が複合された力(K:複合剛性)であり、tは時間である。式(5)のDおよびKは下記式(6)、式(7)で表される。
K={(dh/dP)+C−1+K (6)
D=D+D (7)
ただし、Cはロードフレームのコンプライアンスであり、Kは圧子軸を支える板ばねの剛性であり、Dは圧子系の損失定数であり、Dは金属薄膜層の損失定数である。また、式(5)のF(t)は、時間に依存することから下記式(8)のように表される。
F(t)=Fexp(iωt) (8)
ただし、Fは定数であり、ωは角振動数である。(8)式を(5)式に代入し、常微分方程式の特別解である下記式(9)式を代入して方程式を解くと、下記式(10)のようにdP/dhが計算される。
h=hexp{i(ωt−φ)} (9)
dP/dh=[1/{(F/h)cosφ−(K−mω)}−C−1 (10)
ただし、φは位相差である。式(10)式において、C、m、Kは測定時に既知であることから、金属薄膜層について測定している時に、変位の振動振幅(h)、位相差(φ)と励起振動振幅(F)を計測することによって、式(10)から押しこみ深さの連続的変化に対応して、dP/dhを連続的に算出できる。したがって、計算で得た値を式(3)に代入することによって、金属薄膜層の硬さを算出できる。
導電性粒子の10%圧縮強度は、微小圧縮試験機を用いた測定結果から、前記式(11)によって求める。
C(x)=2.48P/πd (11)
ただし、C(x)は10%圧縮強度(MPa)であり、Pは粒子径の10%変位時の試験力(N)であり、dは粒子径(mm)である。
<電磁波シールドフィルム>
図1は、本発明の電磁波シールドフィルムの第1の実施形態を示す断面図であり、図2は、本発明の電磁波シールドフィルムの第2の実施形態を示す断面図である。
第1の実施形態および第2の実施形態の電磁波シールドフィルム1は、絶縁樹脂層10と;絶縁樹脂層10に隣接する導電層20と;絶縁樹脂層10の導電層20とは反対側に隣接する第1の離型フィルム30と;導電層20の絶縁樹脂層10とは反対側に隣接する第2の離型フィルム40とを有する。
第1の実施形態の電磁波シールドフィルム1は、導電層20が、絶縁樹脂層10に隣接する金属薄膜層22と、第2の離型フィルム40に隣接する異方導電性接着剤層24とを有する例である。
第2の実施形態の電磁波シールドフィルム1は、導電層20が、絶縁樹脂層10に隣接する金属薄膜層22と、第2の離型フィルム40に隣接する等方導電性接着剤層26とを有する例である。
(絶縁樹脂層)
絶縁樹脂層10は、金属薄膜層22を形成する際のベース(下地)となり、電磁波シールドフィルム1を、フレキシブルプリント配線板の表面に設けられた絶縁フィルムの表面に貼着した後には、金属薄膜層22の保護層となる。
絶縁樹脂層10としては、リフロー方式のハンダ付け等の際の耐熱性の点から、熱硬化性樹脂と硬化剤とを含む塗料を塗布し、半硬化または硬化させて形成された塗膜が好ましい。
熱硬化性樹脂としては、アミド樹脂、エポキシ樹脂、フェノール樹脂、アミノ樹脂、アルキッド樹脂、ウレタン樹脂、合成ゴム、紫外線硬化アクリレート樹脂等が挙げられる。熱硬化性樹脂としては、耐熱性に優れる点から、アミド樹脂、エポキシ樹脂が好ましい。
硬化剤としては、熱硬化性樹脂の種類に応じた公知の硬化剤が挙げられる。
熱プレス前における絶縁樹脂層10の180℃における貯蔵弾性率は、5×10Pa以上5×10Pa以下が好ましく、1×10Pa以上1×10Pa以下がより好ましい。絶縁樹脂層10の180℃における貯蔵弾性率が前記範囲の下限値以上であれば、絶縁樹脂層10がさらに適度の硬さを有するようになり、熱プレスの際の絶縁樹脂層10における圧力損失をさらに低減できる。その結果、導電性接着剤層とプリント配線板のプリント回路とがさらに十分に接着され、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路により確実に電気的に接続される。絶縁樹脂層10の180℃における貯蔵弾性率が前記範囲の上限値以下であれば、電磁波シールドフィルム1の可とう性がさらによくなる。その結果、電磁波シールドフィルム1が絶縁フィルムの貫通孔内にさらに沈み込みやすくなり、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路により確実に電気的に接続される。
絶縁樹脂層10は、電磁波シールドフィルム付きプリント配線板に意匠性を付与するために、着色されていてもよい。
絶縁樹脂層10の表面には、絶縁樹脂層10の表面の傷等を目立たなくするために、エンボス加工やブラスト加工が施された第1の離型フィルム30の凹凸が転写されていてもよい。
絶縁樹脂層10は、他の成分(難燃剤等)を含んでいてもよい。
絶縁樹脂層10の表面抵抗は、電気的絶縁性の点から、1×10Ω以上が好ましい。絶縁樹脂層10の表面抵抗は、実用上の点から、1×1019Ω以下が好ましい。
絶縁樹脂層10の厚さは、0.1μm以上30μm以下が好ましく、0.5μm以上20μm以下がより好ましい。絶縁樹脂層10の厚さが前記範囲の下限値以上であれば、絶縁樹脂層10が保護層としての機能を十分に発揮できる。絶縁樹脂層10の厚さが前記範囲の上限値以下であれば、電磁波シールドフィルム1を薄くできる。
(導電層)
導電層20としては、絶縁樹脂層10に隣接する金属薄膜層22と、導電層20において絶縁樹脂層10とは反対側の最表層となる導電性接着剤層(異方導電性接着剤層24または等方導電性接着剤層26)とを有する導電層(I);または等方導電性接着剤層26のみからなる導電層(II)が挙げられる。本発明においては、導電層20としては、電磁波シールド層として十分に機能できる点から、導電層(I)が採用される。
(金属薄膜層)
金属薄膜層22は、金属の薄膜からなる層である。金属薄膜層22は、面方向に広がるように形成されていることから、面方向に導電性を有し、電磁波シールド層等として機能する。
金属薄膜層22としては、物理蒸着(真空蒸着、スパッタリング、イオンビーム蒸着、電子ビーム蒸着等)またはCVDによって形成された蒸着膜、めっきによって形成されためっき膜、金属箔等が挙げられる。面方向の導電性に優れる点から、蒸着膜、めっき膜が好ましく、厚さを薄くでき、かつ厚さが薄くても面方向の導電性に優れ、ドライプロセスにて簡便に形成できる点から、蒸着膜がより好ましく、物理蒸着による蒸着膜がさらに好ましい。
金属薄膜層22を構成する金属としては、アルミニウム、銀、銅、金、導電性セラミックス等が挙げられる。電気伝導度の点、および金属薄膜層22が適度の硬さを有するようになり、熱プレスの際の金属薄膜層22における圧力損失を低減できる点からは、銅が好ましい。
金属薄膜層22のナノインデンテーション法による硬さは、0.3GPa以上2.0GPa以下が好ましく、0.4GPa以上1.5GPa以下がより好ましく、0.5GPa以上1.0GPa以下がさらに好ましい。金属薄膜層22のナノインデンテーション法による硬さが前記範囲の下限値以上であれば、金属薄膜層22がさらに適度の硬さを有するようになり、熱プレスの際の金属薄膜層22における圧力損失をさらに低減できる。その結果、導電性接着剤層とプリント配線板のプリント回路とがさらに十分に接着され、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路により確実に電気的に接続される。金属薄膜層22のナノインデンテーション法による硬さが前記範囲の上限値以下であれば、電磁波シールドフィルム1の可とう性がさらによくなる。その結果、電磁波シールドフィルム1が絶縁フィルムの貫通孔内にさらに沈み込みやすくなり、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路により確実に電気的に接続される。
金属薄膜層22の表面抵抗は、0.001Ω以上1Ω以下が好ましく、0.001Ω以上0.1Ω以下がより好ましい。金属薄膜層22の表面抵抗が前記範囲の下限値以上であれば、金属薄膜層22を十分に薄くできる。金属薄膜層22の表面抵抗が前記範囲の上限値以下であれば、電磁波シールド層として十分に機能できる。
金属薄膜層22の厚さは、150nm以上400nm以下であり、200nm以上350nm以下が好ましく、250nm以上300nm以下がより好ましい。金属薄膜層22の厚さが前記範囲の下限値以上であれば、金属薄膜層22が適度の硬さを有するようになり、熱プレスの際の金属薄膜層22における圧力損失を低減できる。その結果、導電性接着剤層とプリント配線板のプリント回路とが十分に接着され、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に確実に電気的に接続される。金属薄膜層22の厚さが前記範囲の上限値以下であれば、電磁波シールドフィルム1の可とう性がよくなる。その結果、電磁波シールドフィルム1が絶縁フィルムの貫通孔内に沈み込みやすくなり、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に確実に電気的に接続される。
(導電性接着剤層)
導電性接着剤層は、少なくとも厚さ方向に導電性を有し、かつ接着性を有する。
導電性接着剤層としては、厚さ方向に導電性を有し、面方向には導電性を有さない異方導電性接着剤層24、または厚さ方向および面方向に導電性を有する等方導電性接着剤層26が挙げられる。導電層(I)における導電性接着剤層としては、下記の点からは、異方導電性接着剤層24が好ましい。
・導電性接着剤層がさらに適度の硬さを有するようになり、熱プレスの際の導電性接着剤層における圧力損失をさらに低減できる。
・導電性接着剤層を薄くでき、導電性粒子の量が少なくなり、その結果、電磁波シールドフィルム1を薄くでき、電磁波シールドフィルム1の可とう性がよくなる。
導電層(I)における導電性接着剤層としては、電磁波シールド層として十分に機能できる点からは、等方導電性接着剤層26が好ましい。
導電性接着剤層としては、硬化後に耐熱性を発揮できる点から、熱硬化性の導電性接着剤層が好ましい。熱硬化性の導電性接着剤層は、未硬化の状態であってもよく、Bステージ化された状態であってもよい。
熱硬化性の異方導電性接着剤層24は、例えば、熱硬化性接着剤24aと導電性粒子24bとを含む。熱硬化性の異方導電性接着剤層24は、必要に応じて難燃剤を含んでいてもよい。
熱硬化性の等方導電性接着剤層26は、例えば、熱硬化性接着剤26aと導電性粒子26bとを含む。熱硬化性の等方導電性接着剤層26は、必要に応じて難燃剤を含んでいてもよい。
熱硬化性接着剤としては、エポキシ樹脂、フェノール樹脂、アミノ樹脂、アルキッド樹脂、ウレタン樹脂、合成ゴム、紫外線硬化アクリレート樹脂等が挙げられる。耐熱性に優れる点から、エポキシ樹脂が好ましい。エポキシ樹脂は、可とう性付与のためのゴム成分(カルボキシ変性ニトリルゴム、アクリルゴム等)、粘着付与剤等を含んでいてもよい。
熱硬化性接着剤は、導電性接着剤層の強度を高め、打ち抜き特性を向上させるために、セルロース樹脂、ミクロフィブリル(ガラス繊維等)を含んでいてもよい。
導電性粒子としては、金属(銀、白金、金、銅、ニッケル、パラジウム、アルミニウム、ハンダ等)の粒子、黒鉛粉、焼成カーボン粒子、めっきされた焼成カーボン粒子等が挙げられる。導電性粒子としては、導電性接着剤層がさらに適度の硬さを有するようになり、熱プレスの際の導電性接着剤層における圧力損失をさらに低減できる点からは、金属粒子が好ましく、銅粒子がより好ましい。
導電性粒子の10%圧縮強度は、30MPa以上200MPa以下が好ましく、50MPa以上150MPa以下がより好ましく、70MPa以上100MPa以下がさらに好ましい。導電性粒子の10%圧縮強度が前記範囲の下限値以上であれば、熱プレスの際に金属薄膜層22にかけられた圧力を大きく損失することなく、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路により確実に電気的に接続される。導電性粒子の10%圧縮強度が前記範囲の上限値以下であれば、金属薄膜層22との接触がよくなり、電気的接続が確実になる。
異方導電性接着剤層24における導電性粒子24bの平均粒子径は、2μm以上26μm以下が好ましく、4μm以上16μm以下がより好ましい。導電性粒子24bの平均粒子径が前記範囲の下限値以上であれば、異方導電性接着剤層24の厚さを確保することができ、十分な接着強度を得ることができる。導電性粒子24bの平均粒子径が前記範囲の上限値以下であれば、異方導電性接着剤層24の流動性(絶縁フィルムの貫通孔の形状への追随性)を確保でき、絶縁フィルムの貫通孔内を導電性接着剤で十分に埋めることができる。
等方導電性接着剤層26における導電性粒子26bの平均粒子径は、0.1μm以上10μm以下が好ましく、0.2μm以上1μm以下がより好ましい。導電性粒子26bの平均粒子径が前記範囲の下限値以上であれば、導電性粒子26bの接触点数が増えることになり、3次元方向の導通性を安定的に高めることができる。導電性粒子26bの平均粒子径が前記範囲の上限値以下であれば、等方導電性接着剤層26の流動性(絶縁フィルムの貫通孔の形状への追随性)を確保でき、絶縁フィルムの貫通孔内を導電性接着剤で十分に埋めることができる。
異方導電性接着剤層24における導電性粒子24bの割合は、異方導電性接着剤層24の100体積%のうち、1体積%以上30体積%以下が好ましく、2体積%以上10体積%以下がより好ましい。導電性粒子24bの割合が前記範囲の下限値以上であれば、異方導電性接着剤層24の導電性が良好になる。導電性粒子24bの割合が前記範囲の上限値以下であれば、異方導電性接着剤層24の接着性、流動性(絶縁フィルムの貫通孔の形状への追随性)が良好になる。また、電磁波シールドフィルム1の可とう性がよくなる。
等方導電性接着剤層26における導電性粒子26bの割合は、等方導電性接着剤層26の100体積%のうち、50体積%以上80体積%以下が好ましく、60体積%以上70体積%以下がより好ましい。導電性粒子26bの割合が前記範囲の下限値以上であれば、等方導電性接着剤層26の導電性が良好になる。導電性粒子26bの割合が前記範囲の上限値以下であれば、等方導電性接着剤層26の接着性、流動性(絶縁フィルムの貫通孔の形状への追随性)が良好になる。また、電磁波シールドフィルム1の可とう性がよくなる。
異方導電性接着剤層24の表面抵抗は、1×10Ω以上1×1016Ω以下が好ましく、1×10Ω以上1×1014Ω以下がより好ましい。異方導電性接着剤層24の表面抵抗が前記範囲の下限値以上であれば、導電性粒子24bの含有量が低く抑えられる。異方導電性接着剤層24の表面抵抗が前記範囲の上限値以下であれば、実用上、異方性に問題がない。
等方導電性接着剤層26の表面抵抗は、0.05Ω以上2.0Ω以下が好ましく、0.1Ω以上1.0Ω以下がより好ましい。等方導電性接着剤層26の表面抵抗が前記範囲の下限値以上であれば、導電性粒子26bの含有量が低く抑えられ、導電性接着剤の粘度が高くなりすぎず、塗布性がさらに良好となる。また、等方導電性接着剤層26の流動性(絶縁フィルムの貫通孔の形状への追随性)をさらに確保できる。等方導電性接着剤層26の表面抵抗が前記範囲の上限値以下であれば、等方導電性接着剤層26の全面が均一な導電性を有するものとなる。
導電性接着剤層の180℃における貯蔵弾性率は、1×10Pa以上5×10Pa以下が好ましく、5×10Pa以上1×10Pa以下がより好ましい。導電性接着剤層の180℃における貯蔵弾性率が前記範囲の下限値以上であれば、導電性接着剤層がさらに適度の硬さを有するようになり、熱プレスの際の導電性接着剤層における圧力損失をさらに低減できる。その結果、導電性接着剤層とプリント配線板のプリント回路とがさらに十分に接着され、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路により確実に電気的に接続される。導電性接着剤層の180℃における貯蔵弾性率が前記範囲の上限値以下であれば、電磁波シールドフィルム1の可とう性がさらによくなる。その結果、電磁波シールドフィルム1が絶縁フィルムの貫通孔内にさらに沈み込みやすくなり、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路により確実に電気的に接続される。
異方導電性接着剤層24の厚さは、3μm以上25μm以下が好ましく、5μm以上15μm以下がより好ましい。異方導電性接着剤層24の厚さが前記範囲の下限値以上であれば、異方導電性接着剤層24の流動性(絶縁フィルムの貫通孔の形状への追随性)を確保でき、絶縁フィルムの貫通孔内を導電性接着剤で十分に埋めることができる。異方導電性接着剤層24の厚さが前記範囲の上限値以下であれば、電磁波シールドフィルム1を薄くできる。また、電磁波シールドフィルム1の可とう性がよくなる。
等方導電性接着剤層26の厚さは、5μm以上20μm以下が好ましく、7μm以上17μm以下がより好ましい。等方導電性接着剤層26の厚さが前記範囲の下限値以上であれば、等方導電性接着剤層26の導電性が良好になり、電磁波シールド層として十分に機能できる。また、等方導電性接着剤層26の流動性(絶縁フィルムの貫通孔の形状への追随性)を確保でき、絶縁フィルムの貫通孔内を導電性接着剤で十分に埋めることができ、耐折性も確保でき繰り返し折り曲げても等方導電性接着剤層26が断裂することはない。等方導電性接着剤層26の厚さが前記範囲の上限値以下であれば、電磁波シールドフィルム1を薄くできる。また、電磁波シールドフィルム1の可とう性がよくなる。
(第1の離型フィルム)
第1の離型フィルム30は、絶縁樹脂層10や導電層20を形成する際のキャリアフィルムとなるものであり、電磁波シールドフィルム1のハンドリング性を良好にする。第1の離型フィルム30は、電磁波シールドフィルム1をプリント配線板等に貼り付けた後には、絶縁樹脂層10から剥離される。
第1の離型フィルム30は、例えば、離型フィルム本体32と、離型フィルム本体32の絶縁樹脂層10側の表面に設けられた離型剤層34とを有する。
離型フィルム本体32の樹脂材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム、液晶ポリマー等が挙げられ、電磁波シールドフィルム1を製造する際の耐熱性(寸法安定性)およびコストの点から、ポリエチレンテレフタレートが好ましい。
離型フィルム本体32の180℃における貯蔵弾性率は、8×10Pa以上5×10Paが好ましく、1×10Pa以上8×10Paがより好ましい。離型フィルム本体32の180℃における貯蔵弾性率が前記範囲の下限値以上であれば、第1の離型フィルム30がさらに適度の硬さを有するようになり、熱プレスの際の第1の離型フィルム30における圧力損失をさらに低減できる。その結果、導電性接着剤層とプリント配線板のプリント回路とがさらに十分に接着され、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路により確実に電気的に接続される。離型フィルム本体32の180℃における貯蔵弾性率が前記範囲の上限値以下であれば、電磁波シールドフィルム1の可とう性がさらによくなる。その結果、電磁波シールドフィルム1が絶縁フィルムの貫通孔内にさらに沈み込みやすくなり、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路により確実に電気的に接続される。
離型フィルム本体32の厚さは、5μm以上500μm以下が好ましく、10μm以上150μm以下がより好ましく、25μm以上100μm以下がさらに好ましい。離型フィルム本体32の厚さが前記範囲の下限値以上であれば、電磁波シールドフィルム1のハンドリング性が良好となる。離型フィルム本体32の厚さが前記範囲の上限値以下であれば、絶縁フィルムの表面に電磁波シールドフィルム1の導電性接着剤層を熱プレスする際に導電性接着剤層に熱が伝わりやすい。
離型剤層34は、離型フィルム本体32の表面に、離型剤による離型処理を施して形成されたものである。第1の離型フィルム30が離型剤層34を有することによって、第1の離型フィルム30を絶縁樹脂層10から剥離する際に、第1の離型フィルム30を剥離しやすく、絶縁樹脂層10や硬化後の導電性接着剤層が破断しにくくなる。
離型剤としては、公知の離型剤を用いればよい。
離型剤層34の厚さは、0.05μm以上2.0μm以下が好ましく、0.1μm以上1.5μm以下がより好ましい。離型剤層34の厚さが前記範囲内であれば、第1の離型フィルム30をさらに剥離しやすくなる。
(第2の離型フィルム)
第2の離型フィルム40は、導電性接着剤層を保護するものであり、電磁波シールドフィルム1のハンドリング性を良好にする。第2の離型フィルム40は、電磁波シールドフィルム1をプリント配線板等に貼り付ける前に、導電性接着剤層から剥離される。
第2の離型フィルム40は、例えば、離型フィルム本体42と、離型フィルム本体42の導電性接着剤層側の表面に設けられた離型剤層44とを有する。
離型フィルム本体42の樹脂材料としては、離型フィルム本体32の樹脂材料と同様なものが挙げられる。
離型フィルム本体42の厚さは、5μm以上500μm以下が好ましく、10μm以上150μm以下がより好ましく、25μm以上100μm以下がさらに好ましい。
離型剤層44は、離型フィルム本体42の表面に、離型剤による離型処理が施して形成されたものである。第2の離型フィルム40が離型剤層44を有することによって、第2の離型フィルム40を導電性接着剤層から剥離する際に、第2の離型フィルム40を剥離しやすく、導電性接着剤層が破断しにくくなる。
離型剤としては、公知の離型剤を用いればよい。
離型剤層34の厚さは、0.05μm以上2.0μm以下が好ましく、0.1μm以上1.5μm以下がより好ましい。離型剤層34の厚さが前記範囲内であれば、第2の離型フィルム40をさらに剥離しやすくなる。
(電磁波シールドフィルムの厚さ)
電磁波シールドフィルム1の厚さ(離型フィルムを除く)は、10μm以上45μm以下が好ましく、10μm以上30μm以下がより好ましい。電磁波シールドフィルム1の厚さ(離型フィルムを除く)が前記範囲の下限値以上であれば、第1の離型フィルム30を剥離する際に破断しにくい。電磁波シールドフィルム1の厚さ(離型フィルムを除く)が前記範囲の上限値以下であれば、電磁波シールドフィルム付きプリント配線板を薄くできる。
(電磁波シールドフィルムの製造方法)
本発明の電磁波シールドフィルムは、例えば、下記の工程(a)〜(c)を有する方法(α)によって製造できる。
工程(a):第1の離型フィルムの片面に絶縁樹脂層を形成する工程。
工程(b):工程(a)の後、絶縁樹脂層の表面に導電層を形成する工程。
工程(c):工程(b)の後、導電層の表面に第2の離型フィルムを貼り付ける工程。
また、本発明の電磁波シールドフィルムは、例えば、下記の工程(a’)、(b’1)、(b’2)、(c’)を有する方法(β)によって製造できる。
工程(a’):第1の離型フィルムの片面に絶縁樹脂層を形成する工程。
工程(b’1):絶縁樹脂層の表面に金属薄膜層を形成することによって、第1の離型フィルムと、絶縁樹脂層と、金属薄膜層とを順に備えた第1の積層体を得る工程。
工程(b’2):第2の離型フィルムの片面に導電性接着剤層を形成することによって、第2の離型フィルムと、導電性接着剤層とを順に備えた第2の積層体を得る工程。
工程(c’):第1の積層体と第2の積層体とを、金属薄膜層と導電性接着剤層とが接触するように貼り合わせる工程。
以下、図1に示す電磁波シールドフィルム1を方法(α)によって製造する方法について、図3を参照しながら説明する。
工程(a):
図3に示すように、第1の離型フィルム30の片面に絶縁樹脂層10を形成する。
絶縁樹脂層10の形成方法としては、リフロー方式のハンダ付け等の際の耐熱性の点から、熱硬化性樹脂と硬化剤とを含む塗料を塗布し、半硬化または硬化させる方法が好ましい。
熱硬化性樹脂と硬化剤とを含む塗料は、必要に応じて溶剤、他の成分(難燃剤等)を含んでいてもよい。
絶縁樹脂層10の貯蔵弾性率の制御は、熱硬化性樹脂、硬化剤等の種類や組成の選択、熱硬化性樹脂を半硬化または硬化させる際の温度、時間等の硬化条件の調整、熱硬化性を有さない成分として熱可塑性エラストマー等の熱可塑性樹脂等の添加によって行うことができる。
工程(b):
図3に示すように、絶縁樹脂層10の表面に金属薄膜層22を形成し(工程(b1))、金属薄膜層22の表面に異方導電性接着剤層24を形成する(工程(b2))。
金属薄膜層22の形成方法としては、物理蒸着、CVDによって形成された蒸着膜を形成する方法、めっきによってめっき膜を形成する方法、金属箔を貼り付ける方法等が挙げられる。面方向の導電性に優れる金属薄膜層22を形成できる点から、物理蒸着、CVDによって蒸着膜を形成する方法、またはめっきによってめっき膜を形成する方法が好ましく、金属薄膜層22の厚さを薄くでき、かつ厚さが薄くても面方向の導電性に優れる金属薄膜層22を形成でき、ドライプロセスにて簡便に金属薄膜層22を形成できる点から、物理蒸着、CVDによって蒸着膜を形成する方法がより好ましく、物理蒸着によって蒸着膜を形成する方法がさらに好ましい。
異方導電性接着剤層24の形成方法としては、金属薄膜層22の表面に熱硬化性導電性接着剤組成物を塗布する方法が挙げられる。
熱硬化性導電性接着剤組成物としては、熱硬化性接着剤24aと導電性粒子24bとを含むものを用いる。
異方導電性接着剤層24の貯蔵弾性率の制御は、絶縁樹脂層10の貯蔵弾性率の制御と同様に行うことができる。
工程(c):
図3に示すように、異方導電性接着剤層24の表面に第2の離型フィルム40を貼り付けて、電磁波シールドフィルム1を得る。
(作用効果)
以上説明した電磁波シールドフィルム1にあっては、金属薄膜層22の厚さが150nm以上であるため、金属薄膜層22が適度の硬さを有するようになり、熱プレスの際の金属薄膜層22における圧力損失を低減できる。その結果、導電性接着剤層とプリント配線板のプリント回路とが十分に接着され、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に確実に電気的に接続される。また、金属薄膜層22の厚さが400nm以下であるため、電磁波シールドフィルム1の可とう性がよくなる。その結果、電磁波シールドフィルム1が絶縁フィルムの貫通孔内に沈み込みやすくなり、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に確実に電気的に接続される。
(他の実施形態)
本発明の電磁波シールドフィルムは、第1の離型フィルムと絶縁樹脂層と金属薄膜層と導電性接着剤層とを順に有する電磁波シールドフィルムであって、金属薄膜層の厚さが、150nm以上400nm以下であるものであればよく、図示例の実施形態に限定はされない。
例えば、絶縁樹脂層は、2層以上であってもよい。
導電性接着剤層の表面のタック性が少ない場合は、第2の離型フィルム40を省略しても構わない。
離型フィルムは、離型フィルム本体のみで十分な離型性を有する場合は、離型剤層を有しなくてもよい。
離型フィルムは、離型剤層の代わりに粘着剤層を有していてもよい。
<電磁波シールドフィルム付きプリント配線板>
図4は、本発明の電磁波シールドフィルム付きプリント配線板の一実施形態を示す断面図である。
電磁波シールドフィルム付きフレキシブルプリント配線板2は、フレキシブルプリント配線板50と、絶縁フィルム60と、第1の実施形態の電磁波シールドフィルム1とを備える。
フレキシブルプリント配線板50は、ベースフィルム52の少なくとも片面にプリント回路54が設けられたものである。
絶縁フィルム60は、フレキシブルプリント配線板50のプリント回路54が設けられた側の表面に設けられる。
電磁波シールドフィルム1の異方導電性接着剤層24は、絶縁フィルム60の表面に接着され、かつ硬化されている。また、異方導電性接着剤層24は、絶縁フィルム60に形成された貫通孔(図示略)を通ってプリント回路54に電気的に接続されている。
電磁波シールドフィルム付きフレキシブルプリント配線板2においては、第2の離型フィルム40は、異方導電性接着剤層24から剥離されている。
電磁波シールドフィルム付きフレキシブルプリント配線板2において第1の離型フィルム30が不要になった際には、第1の離型フィルム30は、絶縁樹脂層10から剥離される。
貫通孔のある部分を除くプリント回路54(信号回路、グランド回路、グランド層等)の近傍には、電磁波シールドフィルム1の金属薄膜層22が、絶縁フィルム60および異方導電性接着剤層24を介して離間して対向配置される。
貫通孔のある部分を除くプリント回路54と金属薄膜層22との離間距離は、絶縁フィルム60の厚さと異方導電性接着剤層24の厚さの総和とほぼ等しい。離間距離は、30μm以上200μm以下が好ましく、60μm以上200μm以下がより好ましい。離間距離が30μmより小さいと、信号回路のインピーダンスが低くなるため、100Ω等の特性インピーダンスを有するためには、信号回路の線幅を小さくしなければならず、線幅のバラツキが特性インピーダンスのバラツキとなって、インピーダンスのミスマッチによる反射共鳴ノイズが電気信号に乗りやすくなる。離間距離が200μmより大きいと、電磁波シールドフィルム付きフレキシブルプリント配線板2が厚くなり、可とう性が不足する。
(フレキシブルプリント配線板)
フレキシブルプリント配線板50は、銅張積層板の銅箔を公知のエッチング法により所望のパターンに加工してプリント回路(電源回路、グランド回路、グランド層等)としたものである。
銅張積層板としては、ベースフィルム52の片面または両面に接着剤層(図示略)を介して銅箔を貼り付けたもの;銅箔の表面にベースフィルム52を形成する樹脂溶液等をキャストしたもの等が挙げられる。
接着剤層の材料としては、エポキシ樹脂、ポリエステル、ポリイミド、ポリアミドイミド、ポリアミド、フェノール樹脂、ポリウレタン、アクリル樹脂、メラミン樹脂等が挙げられる。
接着剤層の厚さは、0.5μm以上30μm以下が好ましい。
(ベースフィルム)
ベースフィルム52としては、耐熱性を有するフィルムが好ましく、ポリイミドフィルム、液晶ポリマーフィルムがより好ましく、ポリイミドフィルムがさらに好ましい。
ベースフィルム52の表面抵抗は、電気的絶縁性の点から、1×10Ω以上が好ましい。ベースフィルム52の表面抵抗は、実用上の点から、1×1019Ω以下が好ましい。
ベースフィルム52の厚さは、5μm以上200μm以下が好ましく、屈曲性の点から、6μm以上25μm以下がより好ましく、10μm以上25μm以下がより好ましい。
(プリント回路)
プリント回路54(信号回路、グランド回路、グランド層等)を構成する銅箔としては、圧延銅箔、電解銅箔等が挙げられ、屈曲性の点から、圧延銅箔が好ましい。
銅箔の厚さは、1μm以上50μm以下が好ましく、18μm以上35μm以下がより好ましい。
プリント回路54の長さ方向の端部(端子)は、ハンダ接続、コネクター接続、部品搭載等のため、絶縁フィルム60や電磁波シールドフィルム1に覆われていない。
(絶縁フィルム)
絶縁フィルム60は、基材フィルム(図示略)の片面に、接着剤の塗布、接着剤シートの貼り付け等によって接着剤層(図示略)を形成したものである。
基材フィルムの表面抵抗は、電気的絶縁性の点から、1×10Ω以上が好ましい。基材フィルムの表面抵抗は、実用上の点から、1×1019Ω以下が好ましい。
基材フィルムとしては、耐熱性を有するフィルムが好ましく、ポリイミドフィルム、液晶ポリマーフィルムがより好ましく、ポリイミドフィルムがさらに好ましい。
基材フィルムの厚さは、1μm以上100μm以下が好ましく、可とう性の点から、3μm以上25μm以下がより好ましい。
接着剤層の材料としては、エポキシ樹脂、ポリエステル、ポリイミド、ポリアミドイミド、ポリアミド、フェノール樹脂、ポリウレタン、アクリル樹脂、メラミン樹脂、ポリスチレン、ポリオレフィン等が挙げられる。エポキシ樹脂は、可とう性付与のためのゴム成分(カルボキシル変性ニトリルゴム等)を含んでいてもよい。
接着剤層の厚さは、1μm以上100μm以下が好ましく、1.5μm以上60μm以下がより好ましい。
貫通孔の開口部の形状は、特に限定されない。貫通孔62の開口部の形状としては、例えば、円形、楕円形、四角形等が挙げられる。
(電磁波シールドフィルム付きプリント配線板の製造方法)
本発明の電磁波シールドフィルム付きプリント配線板は、例えば、下記の工程(d)〜(g)を有する方法によって製造できる。
工程(d):プリント配線板のプリント回路が設けられた側の表面に、プリント回路に対応する位置に貫通孔が形成された絶縁フィルムを設け、絶縁フィルム付きプリント配線板を得る工程。
工程(e):工程(d)の後、絶縁フィルム付きプリント配線板と、第2の離型フィルムを剥離した本発明の電磁波シールドフィルムとを、絶縁フィルムの表面に導電性接着剤層が接触するように重ね、これらを熱プレスすることによって、絶縁フィルムの表面に導電性接着剤層を接着し、かつ導電性接着剤層を、貫通孔を通ってプリント回路に電気的に接続し、電磁波シールドフィルム付きプリント配線板を得る工程。
工程(f):工程(e)の後、第1の離型フィルムが不要になった際に第1の離型フィルムを剥離する工程。
工程(g):必要に応じて、工程(e)と工程(f)との間、または工程(f)の後に異方導電性接着剤層を本硬化させる工程。
以下、電磁波シールドフィルム付きフレキシブルプリント配線板を製造する方法について、図5を参照しながら説明する。
(工程(d))
図5に示すように、フレキシブルプリント配線板50に、プリント回路54に対応する位置に貫通孔62が形成された絶縁フィルム60を重ね、フレキシブルプリント配線板50の表面に絶縁フィルム60の接着剤層(図示略)を接着し、接着剤層を硬化させることによって、絶縁フィルム付きフレキシブルプリント配線板3を得る。フレキシブルプリント配線板50の表面に絶縁フィルム60の接着剤層を仮接着し、工程(g)にて接着剤層を本硬化させてもよい。
接着剤層の接着および硬化は、例えば、プレス機(図示略)等による熱プレスによって行う。
(工程(e))
図5に示すように、絶縁フィルム付きフレキシブルプリント配線板3に、第2の離型フィルム40を剥離した電磁波シールドフィルム1を重ね、熱プレスすることによって、絶縁フィルム60の表面に異方導電性接着剤層24が接着され、かつ異方導電性接着剤層24が、貫通孔62を通ってプリント回路54に電気的に接続された電磁波シールドフィルム付きフレキシブルプリント配線板2を得る。
異方導電性接着剤層24の接着および硬化は、例えば、プレス機(図示略)等による熱プレスによって行う。
熱プレスの時間は、20秒以上60分以下であり、30秒以上30分以下がさらに好ましい。熱プレスの時間が前記範囲の下限値以上であれば、絶縁フィルム60の表面に異方導電性接着剤層24が接着される。熱プレスの時間が前記範囲の上限値以下であれば、電磁波シールドフィルム付きフレキシブルプリント配線板2の製造時間を短縮できる。
熱プレスの温度(プレス機の熱盤の温度)は、140℃以上190℃以下が好ましく、150℃以上175℃以下がより好ましい。熱プレスの温度が前記範囲の下限値以上であれば、絶縁フィルム60の表面に異方導電性接着剤層24が接着される。また、熱プレスの時間を短縮できる。熱プレスの温度が前記範囲の上限値以下であれば、電磁波シールドフィルム1、フレキシブルプリント配線板50等の劣化等を抑えることができる。
熱プレスの圧力は、0.5MPa以上20MPa以下が好ましく、1MPa以上16MPa以下がより好ましい。熱プレスの圧力が前記範囲の下限値以上であれば、絶縁フィルム60の表面に異方導電性接着剤層24が接着される。また、熱プレスの時間を短縮できる。熱プレスの圧力が前記範囲の上限値以下であれば、電磁波シールドフィルム1、フレキシブルプリント配線板50等の破損等を抑えることができる。
(工程(f))
図5に示すように、第1の離型フィルムが不要になった際に、絶縁樹脂層10から第1の離型フィルム30を剥離する。
(工程(g))
工程(e)における熱プレスの時間が20秒以上10分以下の短時間である場合、工程(e)と工程(f)との間、または工程(f)の後に異方導電性接着剤層24の本硬化を行うことが好ましい。
異方導電性接着剤層24の本硬化は、例えば、オーブン等の加熱装置を用いて行う。
加熱時間は、15分以上120分以下であり、30分以上60分以下が好ましい。加熱時間が前記範囲の下限値以上であれば、異方導電性接着剤層24を十分に硬化できる。加熱時間が前記範囲の上限値以下であれば、電磁波シールドフィルム付きフレキシブルプリント配線板2の製造時間を短縮できる。
加熱温度(オーブン中の雰囲気温度)は、120℃以上180℃以下が好ましく、120℃以上150℃以下が好ましい。加熱温度が前記範囲の下限値以上であれば、加熱時間を短縮できる。加熱温度が前記範囲の上限値以下であれば、電磁波シールドフィルム1、フレキシブルプリント配線板50等の劣化等を抑えることができる。
加熱は、特殊な装置を使用しなくてもよい点から、無加圧で行うことが好ましい。
(作用効果)
以上説明した電磁波シールドフィルム付きフレキシブルプリント配線板2にあっては、電磁波シールドフィルム1を用いているため、フレキシブルプリント配線板50の表面に設けられた絶縁フィルム60の貫通孔62を通ってフレキシブルプリント配線板50のプリント回路54に電磁波シールドフィルム1の導電性接着剤層が確実に電気的に接続される。
(他の実施形態)
なお、本発明の電磁波シールドフィルム付きプリント配線板は、プリント配線板と、プリント配線板のプリント回路が設けられた側の表面に隣接する絶縁フィルムと、導電層が絶縁フィルムに隣接し、かつ導電層が絶縁フィルムに形成された貫通孔を通ってプリント回路に電気的に接続された電磁波シールドフィルムを有するものであればよく、図示例の実施形態に限定はされない。
例えば、フレキシブルプリント配線板は、裏面側にグランド層を有するものであってもよい。また、フレキシブルプリント配線板は、両面にプリント回路を有し、両面に絶縁フィルムおよび電磁波シールドフィルムが貼り付けられたものであってもよい。
フレキシブルプリント配線板の代わりに、柔軟性のないリジッドプリント基板を用いてもよい。
第1の実施形態の電磁波シールドフィルム1の代わりに、第2の実施形態の電磁波シールドフィルム1等を用いてもよい。
以下、実施例を示す。なお、本発明は実施例に限定されるものではない。
(金属薄膜層のナノインデンテーション法による硬さ)
金属薄膜層のナノインデンション法による硬さは、超微小硬度計(MTS systems社製、Nano Indenter XP)を用い、圧子としてダイヤモンド製三角錐圧子を用いて上述したナノインデンテーション法(連続剛性測定法)による測定を行い、測定結果から上述した算出法によって求めた。
(導電性粒子の10%圧縮強度)
導電性粒子の10%圧縮強度は、微小圧縮試験機(島津製作所社製、MCT−510)を用いた測定結果から、前記式(11)によって求めた。
(貯蔵弾性率)
貯蔵弾性率は、動的粘弾性測定装置(Rheometric Scientific,Inc.製、RSAII)を用い、温度:180℃、周波数:1Hz、昇温速度:10℃/分の条件で測定した。
(電気的接続)
後述する工程(f)により、貫通孔62が形成された位置に対応するプリント回路54のグランドと、電磁波シールドフィルム1の金属薄膜層22との間の接続抵抗を測定し、下記基準にて評価した。
◎(優) :接続抵抗が0.5Ω未満である。
〇(良) :接続抵抗が0.5Ω以上1Ω未満である。
×(不良):接続抵抗が1Ω以上である。
(実施例1)
第1の離型フィルム30および第2の離型フィルム40として、非シリコーン系離型剤にて片面が離型処理されたポリエチレンテレフタレートフィルム(リンテック社製、T157、厚さ:50μm、180℃における貯蔵弾性率:5×10Pa)を用意した。
塗料として、ビスフェノールA型エポキシ樹脂(三菱化学社製、jER(登録商標)828)の100質量部および硬化剤(N−アミノピペラジン)の15質量部、カーボンブラックの5質量部を溶剤(メチルエチルケトン)の200質量部に溶解した塗料を用意した。
熱硬化性導電性接着剤組成物として、熱硬化性接着剤24a(エポキシ樹脂(DIC社製、EXA−4816)の100質量部と硬化剤(味の素ファインテクノ社製、PN−23)の15質量部とを混合してなる潜在硬化性エポキシ樹脂)、および導電性粒子24b(銅粒子、平均粒子径:8μm、10%圧縮強度:85.1MPa)の40質量部を、溶剤(メチルエチルケトン)の200質量部に溶解または分散させたものを用意した。
工程(a):
第1の離型フィルム30の離型剤層34の表面に塗料を塗布し、60℃で2分間加熱し、半硬化させて、絶縁樹脂層10(厚さ:10μm、180℃における貯蔵弾性率:1.9×10Pa)を形成した。
工程(b1):
絶縁樹脂層10の表面に、電子ビーム蒸着法にて銅を物理的に蒸着させ、金属薄膜層22(蒸着膜、厚さ:300nm、表面抵抗:0.07Ω、ナノインデンテーション法による硬さ:0.66GPa)を形成した。
工程(b2):
金属薄膜層22の表面に熱硬化性導電性接着剤組成物を、ダイコーターを用いて塗布し、溶剤を揮発させてBステージ化することによって、異方導電性接着剤層24(厚さ:7μm、銅粒子:4.5体積%、180℃における貯蔵弾性率:2×10Pa)を形成した。
工程(c):
異方導電性接着剤層24の表面に第2の離型フィルム40を貼り付けて、電磁波シールドフィルム1を得た。
工程(d):
厚さ12μmのポリイミドフィルム(表面抵抗:1×1017Ω)(基材フィルム)の表面に、ニトリルゴム変性エポキシ樹脂からなる絶縁性接着剤組成物を、乾燥膜厚が12μmになるように塗布し、接着剤層を形成し、絶縁フィルム60(厚さ:25μm)を得た。プリント回路54のグランドに対応する位置に貫通孔62(孔径:2mm)を形成した。
厚さ12μmのポリイミドフィルム(表面抵抗:1×1017Ω)(ベースフィルム52)の表面に、プリント回路54が形成されたフレキシブルプリント配線板50を用意した。
フレキシブルプリント配線板50に絶縁フィルム60を熱プレスにより貼り付けて、絶縁フィルム付きフレキシブルプリント配線板3を得た。
工程(e):
絶縁フィルム付きフレキシブルプリント配線板3に、第2の離型フィルム40を剥離した電磁波シールドフィルム1を重ね、ホットプレス装置(折原製作所社製、G−12)を用い、熱盤温度:170℃、圧力:2MPaで60秒間熱プレスし、絶縁フィルム60の表面に異方導電性接着剤層24を仮接着して、電磁波シールドフィルム付きフレキシブルプリント配線板2を得た。
工程(f):
電磁波シールドフィルム付きフレキシブルプリント配線板2を、高温恒温器(楠本化成社製、HT210)を用い、温度:160℃で1時間加熱することによって、異方導電性接着剤層24を本硬化させた。絶縁樹脂層10から第1の離型フィルム30を剥離した。
貫通孔62が形成された位置に対応するプリント回路54のグランドと、電磁波シールドフィルム1の金属薄膜層22との間の接続抵抗を測定した。結果を表1に示す。
(実施例2〜5、比較例1〜2)
金属薄膜層22を構成する金属の種類、金属薄膜層22の厚さ、導電性粒子24bの種類、導電性粒子24bの平均粒子径を表1に示すように変更した以外は、実施例1と同様にして電磁波シールドフィルム1を得た。また、電磁波シールドフィルム1を変更した以外は、実施例1と同様にして電磁波シールドフィルム付きフレキシブルプリント配線板2を得た。貫通孔62が形成された位置に対応するプリント回路54のグランドと、電磁波シールドフィルム1の金属薄膜層22との間の接続抵抗を測定した。結果を表1に示す。
Figure 2017220592
金属薄膜層22の厚さが150nm以上400nm以下の範囲内である実施例1〜5は、プリント回路54のグランドと電磁波シールドフィルム1の金属薄膜層22との間の接続抵抗は低く、導電性接着剤層が絶縁フィルムの貫通孔を通ってプリント配線板のプリント回路に確実に電気的に接続されていた。
金属薄膜層22を構成する金属および導電性粒子24bを構成する金属の両方として銀を用いた実施例5は、接続抵抗がやや高くなった。
本発明の電磁波シールドフィルムは、スマートフォン、携帯電話、光モジュール、デジタルカメラ、ゲーム機、ノートパソコン、医療器具等の電子機器用のフレキシブルプリント配線板における、電磁波シールド用部材として有用である。
1 電磁波シールドフィルム
2 電磁波シールドフィルム付きフレキシブルプリント配線板
3 絶縁フィルム付きフレキシブルプリント配線板
10 絶縁樹脂層
20 導電層
22 金属薄膜層
24 異方導電性接着剤層
24a 熱硬化性接着剤
24b 導電性粒子
26 等方導電性接着剤層
26a 熱硬化性接着剤
26b 導電性粒子
30 第1の離型フィルム
32 離型フィルム本体
34 離型剤層
40 第2の離型フィルム
42 離型フィルム本体
44 離型剤層
50 フレキシブルプリント配線板
52 ベースフィルム
54 プリント回路
60 絶縁フィルム
62 貫通孔
101 電磁波シールドフィルム付きフレキシブルプリント配線板
110 電磁波シールドフィルム
112 絶縁樹脂層
114 金属薄膜層
116 導電性接着剤層
118 第1の離型フィルム
130 フレキシブルプリント配線板
132 ベースフィルム
134 プリント回路
140 絶縁フィルム
142 貫通孔

Claims (10)

  1. 絶縁樹脂層と、
    前記絶縁樹脂層に隣接する金属薄膜層と、
    前記金属薄膜層の前記絶縁樹脂層とは反対側に隣接する導電性接着剤層と、
    前記絶縁樹脂層の前記金属薄膜層とは反対側に隣接する第1の離型フィルムとを有し、
    前記金属薄膜層の厚さが、150nm以上400nm以下である、電磁波シールドフィルム。
  2. 前記金属薄膜層のナノインデンテーション法による硬さが、0.3GPa以上2.0GPa以下である、請求項1に記載の電磁波シールドフィルム。
  3. 前記導電性接着剤層が導電性粒子を含み、
    前記導電性粒子の10%圧縮強度が、30MPa以上200MPa以下である、請求項1または2に記載の電磁波シールドフィルム。
  4. 前記導電性接着剤層が導電性粒子として金属粒子を含み、
    前記金属薄膜層を構成する金属および前記金属粒子を構成する金属が、銅である、請求項1〜3のいずれか一項に記載の電磁波シールドフィルム。
  5. 前記金属薄膜層が、蒸着膜である、請求項1〜4のいずれか一項に記載の電磁波シールドフィルム。
  6. 前記導電性接着剤層の180℃における貯蔵弾性率が、1×10Pa以上5×10Pa以下である、請求項1〜5のいずれか一項に記載の電磁波シールドフィルム。
  7. 前記第1の離型フィルムの180℃における貯蔵弾性率が、8×10Pa以上5×10Pa以下である、請求項1〜6のいずれか一項に記載の電磁波シールドフィルム。
  8. 前記絶縁樹脂層の180℃における貯蔵弾性率が、5×10Pa以上5×109Pa以下である、請求項1〜7のいずれか一項に記載の電磁波シールドフィルム。
  9. 前記導電性接着剤層の前記金属薄膜とは反対側に隣接する第2の離型フィルムをさらに有する、請求項1〜8のいずれか一項に記載の電磁波シールドフィルム。
  10. 基板の少なくとも片面にプリント回路が設けられたプリント配線板と、
    前記プリント配線板の前記プリント回路が設けられた側の表面に隣接する絶縁フィルムと、
    前記導電性接着剤層が前記絶縁フィルムに隣接し、かつ前記導電性接着剤層が前記絶縁フィルムに形成された貫通孔を通って前記プリント回路に電気的に接続された請求項1〜8のいずれか一項に記載の電磁波シールドフィルムと
    を有する、電磁波シールドフィルム付きプリント配線板。
JP2016114719A 2016-06-08 2016-06-08 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板 Active JP6694763B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016114719A JP6694763B2 (ja) 2016-06-08 2016-06-08 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
CN201710421861.0A CN107484324B (zh) 2016-06-08 2017-06-06 电磁波屏蔽膜和带电磁波屏蔽膜的印刷配线板
CN201720653312.1U CN207124801U (zh) 2016-06-08 2017-06-06 电磁波屏蔽膜和带电磁波屏蔽膜的印刷配线板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016114719A JP6694763B2 (ja) 2016-06-08 2016-06-08 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板

Publications (2)

Publication Number Publication Date
JP2017220592A true JP2017220592A (ja) 2017-12-14
JP6694763B2 JP6694763B2 (ja) 2020-05-20

Family

ID=60594743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016114719A Active JP6694763B2 (ja) 2016-06-08 2016-06-08 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板

Country Status (2)

Country Link
JP (1) JP6694763B2 (ja)
CN (2) CN207124801U (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407395B1 (ja) * 2017-12-01 2018-10-17 タツタ電線株式会社 電磁波シールドフィルム
JP2019161101A (ja) * 2018-03-15 2019-09-19 タツタ電線株式会社 電磁波シールドフィルム及びシールドプリント配線板
JP2019216234A (ja) * 2019-03-01 2019-12-19 東洋インキScホールディングス株式会社 電磁波シールドシート、部品搭載基板、および電子機器
JP2019216156A (ja) * 2018-06-12 2019-12-19 東洋インキScホールディングス株式会社 電磁波シールドシート、部品搭載基板、および電子機器
JP2020007464A (ja) * 2018-07-09 2020-01-16 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法
JP2020024977A (ja) * 2018-08-06 2020-02-13 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法
JP2020061487A (ja) * 2018-10-11 2020-04-16 信越ポリマー株式会社 電磁波シールドフィルム、電磁波シールドフィルム付きプリント配線板およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107775A (ja) * 2018-12-28 2020-07-09 信越ポリマー株式会社 電磁波シールドフィルム付きプリント配線板の製造方法
CN111312078B (zh) * 2020-03-05 2022-03-08 武汉华星光电半导体显示技术有限公司 显示面板及其侧面邦定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273577A (ja) * 2003-03-06 2004-09-30 Sumitomo Electric Printed Circuit Inc シールドフィルムおよびその製造方法
JP2013065675A (ja) * 2011-09-16 2013-04-11 Fujimori Kogyo Co Ltd Fpc用電磁波シールド材
JP2014096532A (ja) * 2012-11-12 2014-05-22 Dexerials Corp 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
JP2016086120A (ja) * 2014-10-28 2016-05-19 信越ポリマー株式会社 電磁波シールドフィルム、電磁波シールドフィルム付きフレキシブルプリント配線板、およびそれらの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971460B2 (ja) * 2008-03-10 2012-07-11 イビデン株式会社 フレキシブル配線板及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273577A (ja) * 2003-03-06 2004-09-30 Sumitomo Electric Printed Circuit Inc シールドフィルムおよびその製造方法
JP2013065675A (ja) * 2011-09-16 2013-04-11 Fujimori Kogyo Co Ltd Fpc用電磁波シールド材
JP2014096532A (ja) * 2012-11-12 2014-05-22 Dexerials Corp 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
JP2016086120A (ja) * 2014-10-28 2016-05-19 信越ポリマー株式会社 電磁波シールドフィルム、電磁波シールドフィルム付きフレキシブルプリント配線板、およびそれらの製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407395B1 (ja) * 2017-12-01 2018-10-17 タツタ電線株式会社 電磁波シールドフィルム
JP2019102628A (ja) * 2017-12-01 2019-06-24 タツタ電線株式会社 電磁波シールドフィルム
JP2019161101A (ja) * 2018-03-15 2019-09-19 タツタ電線株式会社 電磁波シールドフィルム及びシールドプリント配線板
JP2019216156A (ja) * 2018-06-12 2019-12-19 東洋インキScホールディングス株式会社 電磁波シールドシート、部品搭載基板、および電子機器
JP2020007464A (ja) * 2018-07-09 2020-01-16 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法
JP2020024977A (ja) * 2018-08-06 2020-02-13 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法
JP2020061487A (ja) * 2018-10-11 2020-04-16 信越ポリマー株式会社 電磁波シールドフィルム、電磁波シールドフィルム付きプリント配線板およびその製造方法
JP7424745B2 (ja) 2018-10-11 2024-01-30 信越ポリマー株式会社 電磁波シールドフィルム、電磁波シールドフィルム付きプリント配線板およびその製造方法
JP2019216234A (ja) * 2019-03-01 2019-12-19 東洋インキScホールディングス株式会社 電磁波シールドシート、部品搭載基板、および電子機器
JP7099365B2 (ja) 2019-03-01 2022-07-12 東洋インキScホールディングス株式会社 電磁波シールドシート、部品搭載基板、および電子機器

Also Published As

Publication number Publication date
CN107484324B (zh) 2021-08-17
JP6694763B2 (ja) 2020-05-20
CN107484324A (zh) 2017-12-15
CN207124801U (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6694763B2 (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
JP6467701B2 (ja) 電磁波シールドフィルム、電磁波シールドフィルム付きフレキシブルプリント配線板、およびそれらの製造方法
JP6709669B2 (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
JP6184025B2 (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法
JP6435540B2 (ja) 電磁波シールドフィルム、電磁波シールドフィルム付きフレキシブルプリント配線板、およびそれら製造方法
JP6774921B2 (ja) 電磁波シールドフィルム
JP6898127B2 (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
JP6715150B2 (ja) 電磁波シールドフィルム、電磁波シールドフィルムの製造方法および電磁波シールドフィルム付きプリント配線板の製造方法
JP2015015304A (ja) 電磁波シールドフィルム、電磁波シールドフィルム付きフレキシブルプリント配線板、電子機器およびそれらの製造方法
JP5798980B2 (ja) 導電性粘着シート、その製造方法およびプリント配線板
JP2018166166A (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
JP2017092417A (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
JP6935187B2 (ja) 電磁波シールドフィルムおよびその製造方法、ならびに電磁波シールドフィルム付きプリント配線板
TWI771595B (zh) 電磁波屏蔽膜、屏蔽印刷配線板之製造方法、及屏蔽印刷配線板
JP6706655B2 (ja) 電磁波シールドフィルム、電磁波シールドフィルム付きフレキシブルプリント配線板、およびそれらの製造方法
JP6706654B2 (ja) 電磁波シールドフィルム、電磁波シールドフィルム付きフレキシブルプリント配線板、およびそれらの製造方法
JP7265968B2 (ja) 電磁波シールドフィルムの製造方法、電磁波シールドフィルム及び回路基板
JP7228330B2 (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
JP7424745B2 (ja) 電磁波シールドフィルム、電磁波シールドフィルム付きプリント配線板およびその製造方法
JP2020064927A (ja) 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板
JP2017092416A (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
JP2018166181A (ja) 電磁波シールドフィルムおよび電磁波シールドフィルム付きプリント配線板
JP2018056424A (ja) 電磁波シールドフィルムの製造方法および電磁波シールドフィルム付きプリント配線板の製造方法
JP2018056423A (ja) 電磁波シールドフィルムの製造方法および電磁波シールドフィルム付きプリント配線板の製造方法
JP2021082658A (ja) 電磁波シールドフィルム、電磁波シールドフィルム付きプリント配線板及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6694763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250