JP2017217680A - 銅−鉄クラッド線材の製造方法 - Google Patents

銅−鉄クラッド線材の製造方法 Download PDF

Info

Publication number
JP2017217680A
JP2017217680A JP2016115486A JP2016115486A JP2017217680A JP 2017217680 A JP2017217680 A JP 2017217680A JP 2016115486 A JP2016115486 A JP 2016115486A JP 2016115486 A JP2016115486 A JP 2016115486A JP 2017217680 A JP2017217680 A JP 2017217680A
Authority
JP
Japan
Prior art keywords
copper
mass
wire
iron
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016115486A
Other languages
English (en)
Inventor
匠 赤田
Takumi Akada
匠 赤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016115486A priority Critical patent/JP2017217680A/ja
Publication of JP2017217680A publication Critical patent/JP2017217680A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)
  • Continuous Casting (AREA)

Abstract

【課題】伸線を容易とするとともに生産効率を向上させることが可能な銅−鉄クラッド線材の製造方法を提供する。
【解決手段】銅−鉄クラッド線材1の製造方法は、0.001質量%以上0.01質量%以下のC、0.01質量%以上0.1質量%以下のMg、0.001質量%以上1.0質量%以下のCr、0.001質量%以上1.0質量%以下のNi、0.01質量%以上0.5質量%以下のSおよび0.01質量%以上0.5質量%以下のPからなる群から選択される一種以上の元素と、50質量%以上90質量%以下のFeと、を含有し、残部がCuおよび不可避的不純物からなる溶融金属51を準備する工程と、溶融金属51を連続鋳造することにより、鉄相および銅相の一方が芯部31であり、他方が芯部31を取り囲む周囲層32となるように、径方向に鉄相と銅相とが分離した複合金属線30を得る工程と、を備える。
【選択図】図2

Description

本発明は、銅−鉄クラッド線材の製造方法に関するものである。
異なる2種類の金属のうち、第1の金属からなる芯部の外周が第2の金属からなる周囲層により覆われた構造を有する線材であるクラッド線材が知られている。このようなクラッド線材の製造方法として、鋼からなる芯線の外周に銅からなる帯状材を巻き付けた後、これを伸線する方法や、銅からなる管の内部に鋼からなる芯線を挿入した後、これを伸線する銅−鉄クラッド線材の方法が知られている(たとえば、特許文献1参照)。
特開2012−248495号公報
しかし、上述のような方法では、生産効率が低いという問題がある。また、上述のような方法では、伸線前の芯部と周囲層との結合が十分ではないため、伸線が難しいという問題がある。そこで、伸線を容易とするとともに生産効率を向上させることが可能な銅−鉄クラッド線材の製造方法を提供することを目的の1つとする。
本発明に従った銅−鉄クラッド線材の製造方法は、0.001質量%以上0.01質量%以下の炭素(C)、0.01質量%以上0.1質量%以下のマグネシウム(Mg)、0.001質量%以上1.0質量%以下のクロム(Cr)、0.001質量%以上1.0質量%以下のニッケル(Ni)、0.01質量%以上0.5質量%以下の硫黄(S)および0.01質量%以上0.5質量%以下のリン(P)からなる群から選択される一種以上の元素と、50質量%以上90質量%以下の鉄(Fe)と、を含有し、残部が銅(Cu)および不可避的不純物からなる溶融金属を準備する工程と、溶融金属を連続鋳造することにより、鉄相および銅相の一方が芯部であり、他方が芯部を取り囲む周囲層となるように、径方向に鉄相と銅相とが分離した複合金属線を得る工程と、を備える。
上記銅−鉄クラッド線材の製造方法によれば、伸線を容易とするとともに生産効率を向上させることが可能な銅−鉄クラッド線材の製造方法を提供することができる。
銅−鉄クラッド線材の製造方法の概略を示すフローチャートである。 連続鋳造設備の構成を示す概略断面図である。 銅−鉄クラッド線材の構造を示す概略図である。
[本願発明の実施形態の説明]
最初に本願発明の実施態様を列記して説明する。本願の銅−鉄クラッド線材の製造方法は、0.001質量%以上0.01質量%以下の炭素、0.01質量%以上0.1質量%以下のマグネシウム、0.001質量%以上1.0質量%以下のクロム、0.001質量%以上1.0質量%以下のニッケル、0.01質量%以上0.5質量%以下の硫黄および0.01質量%以上0.5質量%以下のリンからなる群から選択される一種以上の元素と、50質量%以上90質量%以下の鉄と、を含有し、残部が銅および不可避的不純物からなる溶融金属を準備する工程と、溶融金属を連続鋳造することにより、鉄相および銅相の一方が芯部であり、他方が芯部を取り囲む周囲層となるように、径方向に鉄相と銅相とが分離した複合金属線を得る工程と、を備える。
本発明者は、伸線を容易とするとともに生産効率を向上させることが可能とする銅−鉄クラッド線材の製造方法について検討を行った。その結果、50質量%以上90質量%以下という多量の鉄を含む銅と鉄との混合溶融金属に、銅相と鉄相との相分離を促進する元素を添加し、当該溶融金属を連続鋳造することにより、銅相および鉄相の一方が芯部、他方が周囲層となるように分離しつつ凝固することを見出した。
本願の銅−鉄クラッド線材の製造方法においては、50質量%以上90質量%以下の鉄と銅とを含む溶融金属に、銅相と鉄相との相分離を促進する元素である炭素、マグネシウム、クロム、ニッケル、硫黄およびリンからなる群から選択される一種以上の元素が添加された溶融金属が準備される。そして、この溶融金属が連続鋳造されることにより、鉄相および銅相の一方が芯部であり、他方が芯部を取り囲む周囲層となるように、径方向に鉄相と銅相とが分離した複合金属線が得られる。このようにして得られた銅−鉄クラッド線材である複合金属線は、芯部と周囲層とが密着している。そのため、伸線が容易となる。また、芯線の外周に帯状材を巻き付けたり、管の内部に芯線を挿入したりする場合に比べて、効率よく銅−鉄クラッド線材である複合金属線を得ることができる。そのため、生産効率を向上させることができる。このように、本願の銅−鉄クラッド線材の製造方法によれば、伸線を容易とするとともに生産効率を向上させることが可能な銅−鉄クラッド線材の製造方法を提供することができる。
溶融金属に含まれる炭素、マグネシウム、クロム、ニッケル、硫黄およびリンの量が上記下限値未満の場合、相分離を促進する効果が不十分となる。一方、炭素、マグネシウム、クロム、ニッケル、硫黄およびリンの量が上記上限値を超える場合、銅−鉄クラッド線材に意図しない性質が付与されるおそれがある。そのため、溶融金属に含まれる炭素、マグネシウム、クロム、ニッケル、硫黄およびリンの量は、上記範囲に設定する。
上記銅−鉄クラッド線材の製造方法において、複合金属線を得る工程では、1500℃以上1700℃以下の溶融金属が連続鋳造されてもよい。このようにすることにより、複合金属線を得る工程において銅相と鉄相とを径方向に分離しつつ連続鋳造を実施することが容易となる。鋳造設備の耐火物の耐久性を考慮して、複合金属線を得る工程では、1600℃以下の溶融金属が連続鋳造されることが好ましい。
上記銅−鉄クラッド線材の製造方法において、複合金属線を得る工程では、溶融金属が鋳型に接触しつつ連続鋳造されてもよい。鋳型の熱伝導率は30W/m・K以上150W/m・K以下であってもよい。このような熱伝導率の範囲の鋳型に接触しつつ溶融金属が連続鋳造されることにより、複合金属線を得る工程において銅相と鉄相とを径方向に分離しつつ連続鋳造を実施することが容易となる。
上記銅−鉄クラッド線材の製造方法において、複合金属線を得る工程では、溶融金属が10mm/min以上1000mm/min以下の引抜速度で連続鋳造されてもよい。引抜速度を1000mm/min以下とすることにより、複合金属線を得る工程において銅相と鉄相とを径方向に分離しつつ連続鋳造を実施することが容易となる。引抜速度を10mm/min以上とすることにより、生産効率の低下を抑制することができる。上記引抜速度は、溶融金属の鋳型への溶着を抑制する観点から、50mm/min以下とすることが好ましい。
上記銅−鉄クラッド線材の製造方法において、複合金属線を得る工程では、線径が5mm以上50mm以下の複合金属線が得られるように溶融金属が連続鋳造されてもよい。連続鋳造によって得る複合金属線の線径としては、このような範囲が特に適している。上記線径は、後工程での伸線加工による材料強度の調整を考慮して、15mm以上とすることが好ましい。
上記銅−鉄クラッド線材の製造方法は、複合金属線を伸線加工する工程をさらに備えていてもよい。このようにすることにより、種々の線径の銅−鉄クラッド線材を得ることができる。
上記銅−鉄クラッド線材の製造方法は、複合金属線を伸線加工する工程の前に、複合金属線の表面を含む領域を除去する工程をさらに備えていてもよい。このようにすることにより、表面付近に存在する酸化層等を除去したうえで伸線加工を実施することができる。
[本願発明の実施形態の詳細]
次に、本発明にかかる銅−鉄クラッド線材の製造方法の実施の形態を、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
図1を参照して、本実施の形態における銅−鉄クラッド線材の製造方法では、まず工程(S10)として溶融金属準備工程が実施される。この工程(S10)では、0.001質量%以上0.01質量%以下の炭素、0.01質量%以上0.1質量%以下のマグネシウム、0.001質量%以上1.0質量%以下のクロム、0.001質量%以上1.0質量%以下のニッケル、0.01質量%以上0.5質量%以下の硫黄および0.01質量%以上0.5質量%以下のリンからなる群から選択される一種以上の元素と、50質量%以上90質量%以下の鉄と、を含有し、残部が銅および不可避的不純物からなる溶融金属を準備される。
ここで、工程(S10)および(S20)を実施するための、連続鋳造設備について説明する。図2を参照して、連続鋳造設備10は、溶融金属保持部11と、鋳型12と、冷却部13とを備える。溶融金属保持部11は、溶融金属51を保持する容器である。鋳型12は、筒状の形状を有し、溶融金属保持部11に保持される溶融金属51に一方の端部12A側が浸漬されるように配置される。鋳型12の内周面12Cは、連続鋳造において溶融金属を冷却して凝固させる冷却面である。冷却部13は、鋳型12の外周面12Dに接触するように配置され、鋳型12を冷却する。冷却部13は、たとえば内部を冷却水が通過することにより鋳型12を冷却する水冷装置である。
図1および図2を参照して、工程(S10)では、溶融金属51を構成する原料が融点以上に加熱されて溶融金属保持部11内に保持される。溶融金属保持部11には、たとえば加熱装置(図示しない)が設置されており、溶融金属51が保温される。その結果、溶融金属51が液体状態に維持される。
次に、工程(S20)として連続鋳造工程が実施される。この工程(S20)では、溶融金属51を連続鋳造することにより、鉄相および銅相の一方が芯部であり、他方が芯部を取り囲む周囲層となるように、径方向に鉄相と銅相とが分離した複合金属線が得られる。具体的には、工程(S10)において準備され、たとえば1500℃以上1700℃以下の温度域に保持された溶融金属51が連続鋳造される。鋳型12の一方の端部12A側から鋳型12の内部に進入した溶融金属51が、鋳型12の内周面12Cに接触しつつ引き上げられる。鋳型12は、外周面12Dに接触して配置された冷却部13により冷却されている。その結果、鋳型12の内部に進入した溶融金属51は、鋳型12によって冷却され、外周面(鋳型12の内周面12Cに接触する領域)から冷却され、鋳型12内を上昇しつつ凝固する。このような状態が維持されることにより、鋳型12の内部に進入した溶融金属51が順次凝固し、連続鋳造が進行する。
ここで、工程(S10)においては、50質量%以上90質量%以下の鉄と銅とを含む溶融金属に、銅相と鉄相との相分離を促進する元素である炭素、マグネシウム、クロム、ニッケル、硫黄およびリンからなる群から選択される一種以上の元素が添加された溶融金属51が準備される。そして、溶融金属51が工程(S20)において連続鋳造される。その結果、鉄相および銅相の一方が芯部31であり、他方が芯部31を取り囲む周囲層32となるように、径方向に鉄相と銅相とが分離した複合金属線30が矢印αに沿って鋳型12の他方の端部12B側から引き出される。このようにして、複合金属線30が得られる。工程(S20)において得られる複合金属線30の線径は、たとえば5mm以上50mm以下である。
次に、工程(S30)として表層部除去工程が実施される。この工程(S30)では、工程(S20)において得られた複合金属線30の表面を含む領域である表層部が除去される。表層部の除去は、たとえば切削加工により実施することができる。これにより、複合金属線30の表面付近に存在する酸化層等が除去される。表層部の除去は、複合金属線30の周囲層32が残存するように実施される。つまり、除去される表層部の厚みは、周囲層32の厚みよりも小さい。
次に、工程(S40)として伸線工程が実施される。この工程(S40)では、工程(S30)において表層部が除去された複合金属線30が伸線加工される。これにより、図3を参照して、本実施の形態の銅−鉄クラッド線材1が得られる。銅−鉄クラッド線材1は、長手方向に垂直な断面が円形であり、外周面1Aが円筒面形状を有する線材である。銅−鉄クラッド線材1は、芯部2と、芯部2の外周を覆う周囲層3とを備える。芯部2および周囲層3の一方は銅相から構成され、他方は鉄相から構成される。本実施の形態において、芯部2は銅相からなり、周囲層3は鉄相からなる。このような銅−鉄クラッド線材1は、たとえば電磁コイル用鉄被覆銅線として使用することができる。
上記本実施の形態の銅−鉄クラッド線材1の製造方法では、工程(S20)において鉄相および銅相の一方が芯部31であり、他方が芯部31を取り囲む周囲層32となるように、径方向に鉄相と銅相とが分離した複合金属線30が得られる。このようにして得られた銅−鉄クラッド線材である複合金属線30は、芯部31と周囲層32とが密着している。そのため、工程(S40)における伸線が容易となる。また、芯線の外周に帯状材を巻き付けたり、管の内部に芯線を挿入したりする場合に比べて、効率よく銅−鉄クラッド線材である複合金属線30を得ることができる。そのため、生産効率を向上させることができる。このように、本実施の形態の銅−鉄クラッド線材の製造方法は、伸線を容易とするとともに生産効率を向上させることが可能な銅−鉄クラッド線材の製造方法となっている。
なお、工程(S20)においては、鉄相および銅相のうち、相分率が小さい方の相が芯部31を構成し、相分率が大きい方の相が周囲層32を構成する複合金属線30が得られる。そのため、工程(S10)において準備される溶融金属51に含まれる鉄と銅との比率を調整することにより、銅相および鉄相のうち、どちらの相を芯部31を構成する相とし、どちらの相を周囲層32とするかを決定することができる。
また、本実施の形態においては、複合金属線30に対して伸線加工を実施して銅−鉄クラッド線材1を得る方法について説明したが、複合金属線30をそのまま(伸線加工することなく)銅−鉄クラッド線材として用いてもよい。
鋳型12の熱伝導率は30W/m・K以上150W/m・K以下とすることが好ましい。これにより、工程(S20)において銅相と鉄相とを径方向に分離しつつ連続鋳造を実施することが容易となる。
また、工程(S20)では、溶融金属51が10mm/min以上1000mm/min以下の引抜速度で連続鋳造されることが好ましい。これにより、工程(S20)において、生産効率の低下を抑制しつつ、銅相と鉄相とを径方向に分離することが容易となる。
今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって規定され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本願の銅−鉄クラッド線材の製造方法は、生産効率の向上が求められる銅−鉄クラッド線材の製造方法に、特に有利に適用され得る。
1 銅−鉄クラッド線材
1A 外周面
2 芯部
3 周囲層
10 連続鋳造設備
11 溶融金属保持部
12 鋳型
12A,12B 端部
12C 内周面
12D 外周面
13 冷却部

Claims (7)

  1. 0.001質量%以上0.01質量%以下の炭素、0.01質量%以上0.1質量%以下のマグネシウム、0.001質量%以上1.0質量%以下のクロム、0.001質量%以上1.0質量%以下のニッケル、0.01質量%以上0.5質量%以下の硫黄および0.01質量%以上0.5質量%以下のリンからなる群から選択される一種以上の元素と、50質量%以上90質量%以下の鉄と、を含有し、残部が銅および不可避的不純物からなる溶融金属を準備する工程と、
    前記溶融金属を連続鋳造することにより、鉄相および銅相の一方が芯部であり、他方が前記芯部を取り囲む周囲層となるように、径方向に鉄相と銅相とが分離した複合金属線を得る工程と、を備える、銅−鉄クラッド線材の製造方法。
  2. 前記複合金属線を得る工程では、1500℃以上1700℃以下の前記溶融金属が連続鋳造される、請求項1に記載の銅−鉄クラッド線材の製造方法。
  3. 前記複合金属線を得る工程では、前記溶融金属が鋳型に接触しつつ連続鋳造され、
    前記鋳型の熱伝導率は30W/m・K以上150W/m・K以下である、請求項1または2に記載の銅−鉄クラッド線材の製造方法。
  4. 前記複合金属線を得る工程では、前記溶融金属が10mm/min以上1000mm/min以下の引抜速度で連続鋳造される、請求項1〜3のいずれか1項に記載の銅−鉄クラッド線材の製造方法。
  5. 前記複合金属線を得る工程では、線径が5mm以上50mm以下の前記複合金属線が得られるように前記溶融金属が連続鋳造される、請求項1〜4のいずれか1項に記載の銅−鉄クラッド線材の製造方法。
  6. 前記複合金属線を伸線加工する工程をさらに備える、請求項1〜5のいずれか1項に記載の銅−鉄クラッド線材の製造方法。
  7. 前記複合金属線を伸線加工する工程の前に、前記複合金属線の表面を含む領域を除去する工程をさらに備える、請求項6に記載の銅−鉄クラッド線材の製造方法。
JP2016115486A 2016-06-09 2016-06-09 銅−鉄クラッド線材の製造方法 Pending JP2017217680A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016115486A JP2017217680A (ja) 2016-06-09 2016-06-09 銅−鉄クラッド線材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016115486A JP2017217680A (ja) 2016-06-09 2016-06-09 銅−鉄クラッド線材の製造方法

Publications (1)

Publication Number Publication Date
JP2017217680A true JP2017217680A (ja) 2017-12-14

Family

ID=60657163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115486A Pending JP2017217680A (ja) 2016-06-09 2016-06-09 銅−鉄クラッド線材の製造方法

Country Status (1)

Country Link
JP (1) JP2017217680A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823511A (zh) * 2018-08-30 2018-11-16 本钢板材股份有限公司 一种超低电阻导线用热轧盘条b-ulr1t及其生产工艺
WO2022232598A1 (en) * 2021-04-29 2022-11-03 Georgia Tech Research Corporation Lightweight cryogenic conductors and methods of making and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823511A (zh) * 2018-08-30 2018-11-16 本钢板材股份有限公司 一种超低电阻导线用热轧盘条b-ulr1t及其生产工艺
WO2022232598A1 (en) * 2021-04-29 2022-11-03 Georgia Tech Research Corporation Lightweight cryogenic conductors and methods of making and use thereof

Similar Documents

Publication Publication Date Title
JP2014015640A (ja) 銅合金線の製造方法
JP6209986B2 (ja) Cu−Fe合金
JP2017217680A (ja) 銅−鉄クラッド線材の製造方法
JP6001420B2 (ja) Cu−Mg合金体、Cu−Mg合金体の製造方法および伸線材の製造方法
US8925182B2 (en) Cast rotor and method
JP5561738B2 (ja) エレクトロスラグ再溶解用消耗電極およびその製造方法
JP6452037B2 (ja) 鋳造方法および鋳造装置
JP2011162826A (ja) アルミニウム合金線
JP2010162588A (ja) マグネシウム合金の連続鋳造方法
CN104981040A (zh) 一种包含难熔金属芯棒的钛电极制备方法
JP2013071155A (ja) 銅合金鋳塊、銅合金板及び銅合金鋳塊の製造方法
JP5444109B2 (ja) 長尺鋳塊の溶解製造方法
JP5770156B2 (ja) チタンまたはチタン合金からなる鋳塊の連続鋳造方法
JP6070080B2 (ja) Cu−Zn−Si系合金の連続鋳造方法
JP5261216B2 (ja) 長尺鋳塊の溶解製造方法
JP4505811B2 (ja) 合金溶湯の鋳造方法
JP6354391B2 (ja) Cu−Zn−Sn系合金の連続鋳造方法
JP2016043377A (ja) Cu−Ga合金の連続鋳造方法
JP5356974B2 (ja) 鋳造材、その製造方法及びこれを用いたマグネットワイヤ用銅線並びにマグネットワイヤ及びその製造方法
JP2019126840A (ja) Cu−Zn−Si系合金の連続鋳造方法
JP6153360B2 (ja) スキッドボタン
JP7347321B2 (ja) Cu-Zn-Si系合金の上方引上連続鋳造線材
JP6819427B2 (ja) Fe系非晶質合金及びFe系非晶質合金薄帯
JP6822889B2 (ja) 銅合金材、銅合金材の製造方法およびかご型回転子
JP6102501B2 (ja) 高Cr鋼の連続鋳造方法