JP2017214833A - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP2017214833A
JP2017214833A JP2016107290A JP2016107290A JP2017214833A JP 2017214833 A JP2017214833 A JP 2017214833A JP 2016107290 A JP2016107290 A JP 2016107290A JP 2016107290 A JP2016107290 A JP 2016107290A JP 2017214833 A JP2017214833 A JP 2017214833A
Authority
JP
Japan
Prior art keywords
water vapor
egr
water
gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016107290A
Other languages
English (en)
Other versions
JP6327290B2 (ja
Inventor
和希 菊地
Kazuki Kikuchi
和希 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016107290A priority Critical patent/JP6327290B2/ja
Priority to US15/591,865 priority patent/US10359012B2/en
Publication of JP2017214833A publication Critical patent/JP2017214833A/ja
Application granted granted Critical
Publication of JP6327290B2 publication Critical patent/JP6327290B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/08Air cleaners with means for removing dust, particles or liquids from cleaners; with means for indicating clogging; with by-pass means; Regeneration of cleaners
    • F02M35/088Water, snow or ice proofing; Separation or drainage of water, snow or ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0481Intake air cooling by means others than heat exchangers, e.g. by rotating drum regenerators, cooling by expansion or by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • F02M25/03Adding water into the cylinder or the pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】EGRクーラでのEGRガスの冷却に伴う凝縮水の発生を抑えつつ、内燃機関の吸気を冷やすための水を確保することのできる新たな技術を提供する。
【解決手段】内燃機関1は、LPL−EGRシステムに加え、新気用とEGRガス用の2つの水蒸気分離膜モジュール34,36を備えている。モジュール34は吸引通路38を介して減圧ポンプ40と接続され、モジュール36は吸引通路42を介して減圧ポンプ44に接続されている。吸引通路38には、吸引通路38を流れる水蒸気を凝縮するコンデンサ54が設けられている。コンデンサ54よりも下流側には、コンデンサ54から排出された凝縮水を一時的に貯留する水タンク56が設けられている。水タンク56は、各気筒の吸気ポートまたは各気筒内に、水タンク56からの水を噴射するインジェクタ60に接続されている。
【選択図】図1

Description

この発明は内燃機関に関し、より詳しくは、排気通路を流れる排気を吸気通路に還流させるEGRシステムを備える内燃機関に関する。
従来、EGR通路を介して排気通路から吸気通路に排気を導入するEGRシステムを備える内燃機関が公知である。EGRシステムを備える内燃機関に関し、例えば特開2011−111897号公報には、EGR通路上に設けられたEGRクーラと、当該EGRクーラの凝縮水を回収する水タンクと、当該水タンク内の凝縮水を吸気ダクト内に添加する添加装置と、を備える内燃機関が開示されている。EGRクーラの凝縮水は、EGR通路を流れる排気(EGRガス)中の水蒸気がEGRクーラにおいて冷やされることで発生する。EGRクーラの凝縮水を水タンクに回収して吸気ダクト内に添加すれば、凝縮水の気化潜熱によって吸気ダクト内の吸気を冷やすことができる。
特開2011−111897号公報
しかし、EGRガスにはSOxやNOx由来の酸性成分が含まれているので、上記公報の内燃機関においてEGRガスの酸性成分がEGRクーラの凝縮水に取り込まれた場合には、EGRクーラの凝縮水が酸性化する。酸性化したEGRクーラの凝縮水は、EGRクーラから水タンクまでの経路、水タンクから添加装置までの経路や、添加装置内の経路を腐食する原因となる。故に、吸気ダクト内の吸気を冷やすための水とはいえ、EGRクーラにおいて積極的に凝縮水を発生させるのは望ましいことではない。そのため、EGRクーラにおいて凝縮水が発生するのを抑えつつ、吸気ダクト内の吸気を冷やすための水を確保することのできる新たな技術の開発が望まれている。
本発明は、上述した課題に鑑みてなされたものであり、その目的は、EGRクーラでのEGRガスの冷却に伴う凝縮水の発生を抑えつつ、内燃機関の吸気を冷やすための水を確保することのできる新たな技術を提供することにある。
本発明に係る内燃機関は、ガス通路と、冷却部と、水蒸気分離部と、減圧部と、水蒸気凝縮部と、水噴射部と、を備えている。前記冷却部は、前記ガス通路に設けられて前記筒内に流入するガスを冷却する。前記水蒸気分離部は、前記冷却部よりもガス流れ方向の上流側において前記ガス通路の一部を構成するものであり、水蒸気分圧の異なる2つの空間を隔てるように設置された場合に水蒸気分圧が高い空間から水蒸気分圧の低い空間に向かって水蒸気を透過させる水蒸気透過膜を備えている。前記減圧部は、前記ガス通路から前記水蒸気分離部に流入したガスが流れる前記水蒸気透過膜の内側の空間と、前記水蒸気透過膜によって前記内側の空間と隔てられた外側の空間との間に水蒸気分圧の差が生じるように、前記外側の空間の水蒸気分圧を減圧する。前記水蒸気凝縮部は、前記減圧部に接続されて前記内側の空間から前記外側の空間に移動した水蒸気を凝縮する。前記水噴射部は、前記水蒸気凝縮部に接続されて前記水蒸気凝縮部で生じた凝縮水を前記筒内または吸気ポートに噴射する。
前記水蒸気透過膜の内側の空間と、前記水蒸気透過膜によって前記内側の空間と隔てられた外側の空間との間に水蒸気分圧の差が生じるように、前記外側の空間の水蒸気分圧を減圧することで、筒内に流入するガスに含まれる水蒸気が前記内側の空間から前記外側の空間に向かって移動する。つまり、前記冷却部での冷却に先駆けて、筒内に流入するガスから水蒸気を取り除かれる。また、前記内側の空間から前記外側の空間に移動した水蒸気を凝縮すれば、凝縮水が生じる。そして、生じた凝縮水を前記筒内または吸気ポートに噴射すれば、凝縮水の気化潜熱によって前記筒内または吸気ポート内のガスが冷やされる。
本発明に係る内燃機関は、減圧量調整部を更に備えていてもよい。前記減圧量調整部は、前記ガス通路の前記冷却部よりもガス流れ方向の下流側における水蒸気分圧が飽和水蒸気圧を下回るように、前記減圧部によって減圧する前記外側の空間の水蒸気分圧の減圧量を調整する。
前記ガス通路の前記冷却部よりもガス流れ方向の下流側における水蒸気分圧が飽和水蒸気圧を下回るように、前記減圧部によって減圧する前記外側の空間の水蒸気分圧の減圧量を調整すれば、前記冷却部でのガスの冷却に伴う凝縮水の発生が抑えられる。
本発明に係る内燃機関は、凝縮水貯留部を更に備えていてもよい。前記凝縮水貯留部は、前記水蒸気凝縮部と前記水噴射部の間に設けられて前記水蒸気凝縮部で生じた凝縮水を貯留する。この場合、前記減圧量調整部が、前記内側の空間から前記外側の空間に移動させる水蒸気量の目標値に基づいて前記減圧量の目標値を算出し、前記水噴射部によって前記筒内または前記吸気ポートに噴射する水量の目標値が前記水蒸気量の目標値よりも多い場合は例外的に、前記水量の目標値に基づいて前記減圧量の目標値を算出してもよい。
前記内側の空間から前記外側の空間に移動させる水蒸気量の目標値に基づいて前記減圧量の目標値を算出すれば、前記冷却部でのガスの冷却に伴う凝縮水の発生が抑えられる。また、前記水噴射部によって前記筒内または前記吸気ポートに噴射する水量の目標値が前記水蒸気量の目標値よりも多い場合は例外的に、前記水量の目標値に基づいて前記減圧量の目標値を算出すれば、前記水噴射部による水噴射によって前記凝縮水貯留部内の凝縮水量が減少し続ける状況が回避される。
本発明に係る内燃機関において、前記ガス通路は、吸気通路と排気通路を接続するEGR通路であってもよい。この場合、前記冷却部は、前記EGR通路内を流れるEGRガスを冷却するEGRクーラであり、前記水蒸気分離部は、前記EGR通路のうちの前記EGRクーラよりもガス流れ方向の上流側において前記EGR通路の一部を構成する。
本発明に係る内燃機関において、前記ガス通路は、過給機のコンプレッサが設けられた吸気通路であってもよい。この場合、前記冷却部は、前記コンプレッサで圧縮されたガスを冷却するインタークーラであり、前記水蒸気分離部は、前記吸気通路のうちの前記コンプレッサよりもガス流れ方向の上流側において前記吸気通路の一部を構成する。
本発明に係る内燃機関によれば、EGRクーラやインタークーラといった冷却部でのガスの冷却に伴う凝縮水の発生を抑えつつ、筒内に流入するガスを冷やすための水を確保することができる。
本発明の実施の形態1に係る内燃機関の全体構成を示す概略図である。 モジュール34,36の構成を示す概略図である。 モジュール34,36に流入したガスの流れを説明する図である。 管状膜48における水蒸気の透過原理を説明する図である。 凝縮水の発生原理を示した図である。 本発明の実施の形態1に係る内燃機関の構成による効果を説明する図である。 本発明の実施の形態1に係る内燃機関の構成による効果を説明する図である。 本発明の実施の形態1に係る内燃機関の構成による効果を説明する図である。 本発明の実施の形態1に係る内燃機関の構成による効果を説明する図である。 外壁面48bを囲む空間の水蒸気分圧を相対的に低くする他の手段を説明する図である。 本発明の実施の形態2に係る内燃機関の全体構成を示す概略図である。 新気やEGRガスの湿度が高い場合において、減圧ポンプ40,44よりも下流側の吸引通路38,42に送り出すガス量を固定したときの問題点を説明する図である。 本発明の実施の形態2におけるバルブ制御を説明する図である。 本発明の実施の形態2において、ECU80により実行される処理の一例を示すフローチャートである。 本発明の実施の形態2において、ECU80により実行される処理の一例を示すフローチャートである。 本発明の実施の形態2において、ECU80により実行される処理の一例を示すフローチャートである。 分離限界値cを使用してモジュール34,36での水蒸気の目標分離量を算出する場合において、ECU80により実行される処理の一例を示すフローチャートである。
以下、図面に基づいて本発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。
実施の形態1.
先ず、図1乃至図10を参照して、本発明の実施の形態1について説明する。
[実施の形態1に係る内燃機関の構成の説明]
図1は、本発明の実施の形態1に係る内燃機関の全体構成を示す概略図である。図1に示す内燃機関1は、車両動力源としての直列4気筒型のエンジン本体10を備えている。但し、エンジン本体10の気筒数および気筒配列はこれに限定されない。エンジン本体10の各気筒には、吸気通路12および排気通路14が接続されている。吸気通路12の入口近傍には、エアクリーナ16が取り付けられている。エアクリーナ16の下流には、過給機18のコンプレッサ18aが設置されている。コンプレッサ18aは、排気通路14に配置されたタービン18bの回転により駆動される。コンプレッサ18aよりも下流側の吸気通路12には、電子制御式のスロットルバルブ20が設けられている。スロットルバルブ20よりも下流側の吸気通路12は、各気筒の吸気ポート(図示省略)に接続されるサージタンク22が設けられている。コンプレッサ18aとスロットルバルブ20の間の吸気通路12には、吸気通路12を流れるガスを冷却するインタークーラ24が設けられている。
排気通路14のタービン18bよりも下流側には、エンジン本体10の各気筒からの排気を浄化する触媒(一例として三元触媒)26が備えられている。触媒26よりも下流側の排気通路14には、EGR通路28の一端が接続されている。EGR通路28の他端は、コンプレッサ18aよりも上流側の吸気通路12と接続されている。EGR通路28の途中には、EGRバルブ30が設けられている。EGRバルブ30が開かれることで、排気通路14を流れる排気の一部がEGRガスとして吸気通路12に流入する。EGRバルブ30よりも上流側(EGRガスの流れ方向の上流側)のEGR通路28には、EGR通路28を流れるEGRガスを冷却するEGRクーラ32が設けられている。
過給機18、インタークーラ24、EGR通路28、EGRバルブ30およびEGRクーラ32は、EGR通路28を介してタービン18bよりも下流側の排気通路14に流す排気の一部を、コンプレッサ18aよりも上流側の吸気通路12に還流させるEGRシステム(所謂LPL−EGRシステム)を構成する。図1に示す内燃機関1は、このようなLPL−EGRシステムに加え、新気用とEGRガス用の2つの水蒸気分離膜モジュールを備えている。新気用のモジュール34は、EGR通路28の接続部とエアクリーナ16の間の吸気通路12に設けられている。一方、EGRガス用のモジュール36は、EGRクーラ32よりも上流側のEGR通路28に設けられている。モジュール34とモジュール36の基本的な構成は共通しており、モジュール34は吸引通路38を介して減圧ポンプ40と接続され、モジュール36は吸引通路42を介して減圧ポンプ44に接続されている。
[水蒸気分離膜モジュールの構成の説明]
図2は、モジュール34,36の構成を示す概略図である。図2に示すように、モジュール34,36は、円管状のハウジング46と、ハウジング46内に充填された多数の管状膜48と、を備えている。ハウジング46は、例えば樹脂から構成され、その側面には、図1に示した吸引通路38,42の一端に接続される排出口50が形成されている。モジュール34のハウジング46の側面は吸気通路12の外壁面と連続し、モジュール36のハウジング46の側面はEGR通路28の外壁面と連続している。つまり、モジュール34のハウジング46の側面は、吸気通路12の外壁面の一部を構成し、モジュール36のハウジング46の側面は、EGR通路28の外壁面の一部を構成している。管状膜48は、例えば親水性高分子、ゼオライト等から構成された中空糸膜であり、内壁面48aと外壁面48bとを備えている。管状膜48のそれぞれは、ハウジング46の開口方向(図2中に示す矢印の方向)に沿って互いに平行かつ密に集合すると共に、ハウジング46に対して一体的に固定されている。
ハウジング46の一端からモジュール34に流入した新気、または、ハウジング46の一端からモジュール36に流入したEGRガスは、ハウジング46の他端から排出される。図3は、モジュール34,36に流入したガスの流れを説明する図であり、この図には図2に示した多数の管状膜48のうちの1本が描かれている。この図に太い矢印で示すように、管状膜48に流入したガスは、内壁面48aの内側を流れて下流に向かう。また、膜厚方向に細い矢印で示すように、内壁面48aの内側を流れるガスに含まれる水蒸気の一部は、内壁面48aから外壁面48bに向かって管状膜48の内部を移動する。
管状膜48の膜厚方向に水蒸気の一部が移動する理由は、管状膜48を隔てた2つの空間の水蒸気分圧に差が生じているからである。図4は、管状膜48における水蒸気の透過原理を説明する図であり、この図には図3に示した管状膜48の一部が模式的に描かれている。図4に示す管状膜48の左方空間の水蒸気分圧pが右方空間の水蒸気分圧pより高い場合、左方空間との界面を形成する管状膜48の表面に水蒸気が溶解することで膜内に濃度勾配が生じ、この濃度勾配を駆動力として、左方空間側から右方空間側に水蒸気(より正確には水分子)が移動する。この水蒸気の移動は、2つの空間の水蒸気分圧差Δp(=p−p)が無くなるまで続く。なお、管状膜48は、水蒸気以外のガスが内部移動し難い構成とされており、故に、基本的には水蒸気のみが管状膜48を隔てた2つの空間を移動する。
図1に戻り、本実施の形態に係る内燃機関の構成の説明を続ける。減圧ポンプ44よりも下流側(水蒸気の流れ方向の下流側)の吸引通路42は、減圧ポンプ40よりも下流側(水蒸気の流れ方向の下流側)の吸引通路38と合流している。吸引通路42との合流部よりも下流側の吸引通路38には、吸引通路38を流れる水蒸気を凝縮するコンデンサ54が設けられている。コンデンサ54よりも下流側の吸引通路38には、コンデンサ54から排出された凝縮水を一時的に貯留する水タンク56が設けられている。水タンク56は供給通路58を介して、各気筒の吸気ポートまたは各気筒内に水タンク56からの水を噴射するインジェクタ60に接続されている。水タンク56とインジェクタ60の間には、水タンク56内の水をインジェクタ60に送り出す送液ポンプ62が設けられている。
また、吸引通路42との合流部よりも下流側、かつ、コンデンサ54よりも上流側の吸引通路38には、排水通路64が接続されている。排水通路64には常閉(ノーマル・クローズ)のリリーフバルブ66が設けられている。図示省略するが水タンク56には、水タンク56内の水量を検出する水量検出手段(一例としてフロート)が取り付けられており、水タンク56内の水量が所定量を超えたときにリリーフバルブ66が開かれる。リリーフバルブ66が開かれると、吸引通路38を流れる水蒸気がコンデンサ54に向かう途中で排水通路64に流入し、ここから内燃機関1の外部に排出される。
図1に示す内燃機関1は更に、制御装置としてのECU(Electronic Control Unit)80を備えている。ECU80は、例えばRAM(Random Access Memory)、ROM(Read Only Memory)、CPU(Central Processing Unit)を備えている。ECU80は、車両に搭載された各種センサの信号を取り込んで処理する。ECU80が信号を取り込む各種センサには、上述した水量検出手段が少なくとも含まれている。ECU80は、取り込んだ各センサの信号を処理して所定の制御プログラムに従って各種アクチュエータを操作する。ECU80によって操作されるアクチュエータには、上述したスロットルバルブ20、EGRバルブ30、減圧ポンプ40,44、インジェクタ60、送液ポンプ62およびリリーフバルブ66が少なくとも含まれている。
[実施の形態1における水蒸気分離]
本実施の形態に係る内燃機関では、図1に示した減圧ポンプ40,44がECU80によって駆動されており、減圧ポンプ40,44よりも下流側の吸引通路38,42に送り出されるガス量が所定量に保たれている。そのため、減圧ポンプ40,44の駆動中は、図3に示した内壁面48aによって囲まれる空間よりも、外壁面48bを囲む空間の方が水蒸気分圧において低くなる。従って、内壁面48aの内側から吸引通路38(または吸引通路42)に流入した水蒸気は、吸引通路38(または吸引通路42)の減圧ポンプ40(または減圧ポンプ44)よりも下流側に送り出されてコンデンサ54に向かう。一方、吸引通路38に流入しなかった水蒸気、つまり、モジュール34の内壁面48aから外壁面48bに向かって移動しなかった水蒸気は、新気と共に内壁面48aの内側を流れ、モジュール34の下流に位置するコンプレッサ18aに向かう。同様に、吸引通路42に流入しなかった水蒸気、つまり、モジュール36の内壁面48aから外壁面48bに向かって移動しなかった水蒸気は、EGRガスと共に内壁面48aの内側を流れ、モジュール36の下流に位置するEGRクーラ32に向かう。
図5は、凝縮水の発生原理を示した図である。この図に「冷却前」として示す相対湿度が100%未満のガスを等圧条件のもとで冷却した場合において、当該ガスの水蒸気分圧が低下して飽和水蒸気圧を上回ったときに凝縮水が発生する。この原理に従えば、図1に示したインタークーラ24での冷却に伴い、ガス(新気または新気とEGRガスの混合ガスをいう。以下、新気とEGRガスの混合ガスを単に「混合ガス」と称す。また、新気または混合ガスを「ガス(新気または混合ガス)」と称す。)中の水蒸気分圧が飽和水蒸気圧を上回ったときに凝縮水が発生することになる。EGRクーラ32での冷却に伴いEGRガス中の水蒸気分圧が飽和水蒸気圧を上回ったときにも凝縮水が発生することになる。
この点、図2乃至図3で説明した管状膜48は水蒸気以外のガスが透過し難い構成とされているので、ECU80によって減圧ポンプ40,44を駆動することで、インタークーラ24に流入する前のガス(新気または混合ガス)や、EGRクーラ32に流入する前のEGRガスから、水蒸気を選択的に取り除くことができる。図6は、本発明の実施の形態1に係る内燃機関の構成による効果を説明する図である。図5と図6を比較すると分かるように、本実施の形態に係る内燃機関によれば、冷却後に凝縮水が発生しそうな状態にある「冷却前」のガス中の水蒸気分圧を予め下げておくことが可能となる。従って、図1に示したインタークーラ24での冷却や、EGRクーラ32での冷却に伴う凝縮水の発生を抑えることができる。
[実施の形態1における吸気冷却]
また、本実施の形態に係る内燃機関では、図1に示したインジェクタ60と送液ポンプ62がECU80によって駆動されている。そのため、インジェクタ60から噴射された水の気化潜熱によって、各気筒の吸気ポート内のガス(新気または混合ガス)、または、各気筒内のガス(新気または混合ガス)が冷却される。つまり、燃焼前のガス(新気または混合ガス)が冷却される。燃焼前のガス(新気または混合ガス)が冷却されれば、体積効率が上がるので出力が向上する。また、体積効率が上がり、排気温度が下がるので燃費が向上する。また、燃焼温度が下がるのでNOxの排出量が減り、ノッキングの発生が抑制される。
ここで、インジェクタ60と送液ポンプ62の駆動は、上述した減圧ポンプ40,44の駆動と並行して行われる。減圧ポンプ40,44が駆動されず、インジェクタ60と送液ポンプ62だけが駆動されれば、水タンク56内の水量が徐々に減っていく。しかし、インジェクタ60と送液ポンプ62の駆動と並行して減圧ポンプ40,44が駆動されれば、新気から取り除いた水蒸気、および、EGRガスから取り除いた水蒸気がコンデンサ54で凝縮され、水タンク56に新たな水(凝縮水)が補充されることになる。従って、水タンク56内の水量が減少し続けるような状況が回避される。
図7乃至図9は、本発明の実施の形態1に係る内燃機関の構成による効果を説明する図である。図7には、図1に示した内燃機関1からモジュール34,36、吸引通路38,42、減圧ポンプ40,44といった除湿装置や、コンデンサ54を除いた機関構成(以下「第1比較構成」ともいう。)においてインジェクタ60と送液ポンプ62を駆動させた場合における、水蒸気分離と吸気冷却に関連した物理量の推移が描かれている。図8には、図1に示した内燃機関1からモジュール34,36、吸引通路38,42、減圧ポンプ40,44といった除湿装置や、コンデンサ54を除き、その代わりに、EGRクーラ32で発生した凝縮水を水タンク56で回収する機関構成(以下「第2比較構成」ともいう。)においてインジェクタ60と送液ポンプ62を駆動させた場合における同物理量の推移が描かれている。図9には、図1に示した機関構成においてインジェクタ60と送液ポンプ62を駆動させた場合における同物理量の推移が描かれている。
図7に示すように、第1比較構成では、内燃機関の始動時点(時刻t)から、この内燃機関の冷却水温が暖機完了温度(一例として60℃)に到達する時点(時刻t)までの間、EGR率が略ゼロに近い値となる。この理由は、内燃機関の始動直後から当該内燃機関にEGRガスを導入すると、EGRクーラでのEGRガスの冷却に伴って凝縮水が発生してしまうからである。因みに、EGRクーラで凝縮水を発生させないようにEGR率を略ゼロに近い値にしているので、当然ながら、EGRクーラで発生する凝縮水量(凝縮水量(EGR/C))は略ゼロに近い値となる。また、図7に示すように、第1比較構成では、インジェクタの水噴射量を時刻tからその目標値(一例として0.5g/s)に設定すると、水タンク内の水の残量が時間の経過に伴い減ることになる。そして、ある時刻tの時点で水タンク内の水が全て無くなってしまうと、その後はインジェクタから水噴射を行うことができず、燃料消費率もその目標値(一例として250g/kWh)を大きく下回ることになる。
第1比較構成とは異なり、第2比較構成は、EGRクーラで凝縮水を積極的に発生させる機関構成とされている。図8に示すように、第2比較構成では、時刻tの時点からEGR率をその目標値(一例として20%)に設定することができる。また、EGRクーラからの新たな水(凝縮水)の補充が期待できるので、インジェクタの水噴射量を時刻tからその目標値(一例として0.5g/s)に設定することもできる。しかし、内燃機関の冷却水温の上昇に伴いEGRクーラの冷却水温も上昇するので、EGRクーラで発生する凝縮水量は徐々に少なくなる。そして、暖機完了温度(一例として60℃)に到達する時点(時刻t)以降は、EGRクーラで発生する凝縮水量が殆ど無くなるので、インジェクタの水噴射量をその目標値に保とうとすると、水タンク内の水の残量が徐々に減ることになる。そして、ある時刻tの時点で水タンク内の水が全て無くなってしまうと、その後はインジェクタから水噴射を行うことができず、燃料消費率もその目標値を大きく下回ることになる。
上述した2つの比較構成とは異なり、図1に示した内燃機関1は、EGRクーラに流入する前のEGRガスから水蒸気を取り除く機関構成とされている。図9に示すように、図1に示した内燃機関1では、時刻t以降もEGRクーラで発生する凝縮水量を略ゼロに近い値にすることができ、故に、時刻tの時点からEGR率をその目標値(一例として20%)に設定することができる。また、図1に示した内燃機関1は、EGRガスから取り除いた水蒸気をコンデンサで凝縮して水タンクに補充する構成とされている。図9に示すように、図1に示した内燃機関1では、インジェクタの水噴射量を時刻tからその目標値(一例として0.5g/s)に設定したとしても、水タンクの残量をその目標値に保つことができ、暖機完了温度(一例として60℃)に到達する時点(時刻t)以降も同様に、インジェクタの水噴射量をその目標値に設定できる。よって、時刻tから時刻tまでの間は勿論のこと、時刻t以降においても燃料消費率をその目標値に保つことができる。
なお、上記実施の形態1においては、図1に示した吸気通路12およびEGR通路28が本発明の「ガス通路」に、図1に示したインタークーラ24およびEGRクーラ32が本発明の「冷却部」に、図2乃至図3に示した管状膜48が本発明の「水蒸気透過膜」に、図2に示したモジュール34,36が本発明の「水蒸気分離部」に、図1に示した吸引通路38,42およびECU80によって駆動される減圧ポンプ40,44が本発明の「減圧部」に、コンデンサ54が本発明の「水蒸気凝縮部」に、水タンク56、供給通路58、および、ECU80によって駆動されるインジェクタ60と送液ポンプ62が本発明の「水噴射部」に、それぞれ相当している。
[減圧部の他の構成例]
ところで、上記実施の形態1では、モジュール34,36と組み合わせた減圧ポンプ40,44の駆動によって、内壁面48aで囲まれる空間よりも外壁面48bを囲む空間の水蒸気分圧を低くした。しかし、減圧ポンプ40,44とは異なる手段によって外壁面48bを囲む空間の水蒸気分圧を相対的に低くしてもよい。図10は、外壁面48bを囲む空間の水蒸気分圧を相対的に低くする他の手段を説明する図である。この図に示すハウジング68は、図2に示したハウジング46の代わりにモジュール34,36に備え付けることのできるものであり、その側面には、供給口70と排出口72が形成されている。供給口70は乾燥ガス(パージガス)を送り出すガス供給装置(図示しない)に接続されており、排出口72は大気開放されている。モジュール34,36が備える管状膜48の構成については、図3の説明の際に述べたとおりである。
図4の説明の際に述べたように、管状膜48は水蒸気以外のガスが内部移動し難い膜構成とされていることから、ガス供給装置の駆動によって供給口70からハウジング68の内部に流入した乾燥ガスは、管状膜48の内部を移動することなく外壁面48bに沿って流れ、排出口72に向かう。乾燥ガスが外壁面48bに沿って流れることで、外壁面48bを囲む空間の水蒸気分圧が内壁面48aによって囲まれる空間の水蒸気分圧よりも低くなるので、図4で説明した水蒸気の移動が起こることになる。このように、モジュール34,36と組み合わせたガス供給装置の駆動によっても、外壁面48bを囲む空間の水蒸気分圧を相対的に低くできる。
[モジュールの他の構成例]
また、上記実施の形態1では、モジュール34が多数の管状膜48を備える中空糸タイプであることを前提として説明した。しかし、中空糸タイプのモジュール構造に代えて、ハニカムモノリスタイプのモジュール構造、平膜タイプのモジュール構造、または、シェルアンドチューブタイプのモジュール構造を採用することができる。中空糸タイプのモジュール構造と同様に、新気やEGRガスから水蒸気のみを分離できる機能を有する限りにおいて、モジュール構造は各種の変形が可能である。
[内燃機関の他の構成例]
また、上記実施の形態1では、LPL−EGRシステムを前提として説明した。しかし本発明は、LPL−EGRシステムから図1に示したEGR通路28、EGRクーラ32等を除いた非EGR−過給システムにも適用することができ、また、LPL−EGRシステムから図1に示した過給機18やインタークーラ24等を除いた非過給−EGRシステムにも適用することができる。
具体的に、非EGR−過給システムを前提とする場合は、モジュール36の無いモジュール34のみを備える機関構成となる。この場合は、モジュール34と組み合わせた減圧ポンプ40の駆動によって、図1に示したコンプレッサ18aでの圧縮やインタークーラ24での冷却に伴う凝縮水の発生を抑えつつ、インジェクタ60と送液ポンプ62の駆動によって各気筒の吸気ポート内のガス(新気または混合ガス)、または、各気筒内のガス(新気または混合ガス)を冷却して上述した各種の効果を得ることができる。
一方、非過給−EGRシステムを前提とする場合には、上記実施の形態1に係る内燃機関と同様にモジュール34,36を備える機関構成、または、モジュール36のみを備える機関構成となる。
モジュール34,36を備える機関構成の場合は、上記実施の形態1に係る内燃機関と同様に、両モジュールと組み合わせた減圧ポンプ40,44の駆動によってEGRクーラ32での冷却に伴う凝縮水の発生を抑えつつ、インジェクタ60と送液ポンプ62の駆動によって各気筒の吸気ポート内のガス(新気または混合ガス)、または、各気筒内のガス(新気または混合ガス)を冷却して上述した各種の効果を得ることができる。
モジュール36のみを備える機関構成の場合は、モジュール36と組み合わせた減圧ポンプ44の駆動によって、EGRクーラ32での冷却に伴う凝縮水の発生を抑えつつ、インジェクタ60と送液ポンプ62の駆動によって各気筒の吸気ポート内のガス(新気または混合ガス)、または、各気筒内のガス(新気または混合ガス)を冷却して上述した各種の効果を得ることができる。
実施の形態2.
次に、図11乃至図17を参照して、本発明の実施の形態2について説明する。
[実施の形態2に係る内燃機関の構成の説明]
図11は、本発明の実施の形態2に係る内燃機関の全体構成を示す概略図である。図11に示す内燃機関2は、LPL−EGRシステムと、新気用とEGRガス用の2つの水蒸気分離膜モジュール(つまり、モジュール34,36)を備える構成において図1に示した内燃機関1と共通する。従って、これらの構成の説明については省略する。
図11に示す内燃機関2は、制御バルブ74,76を備えている。制御バルブ74は減圧ポンプ40よりも上流側の吸引通路38に設けられており、制御バルブ76は減圧ポンプ44よりも上流側の吸引通路42に設けられている。制御バルブ74,76は何れも電子制御式のバルブであり、ECU80の出力側に接続されている。
図11に示す内燃機関2は、図11に示したECU80の入力側に接続された各種センサを備えている。各種センサには、エアクリーナ16の近傍に取り付けられて新気流量Gaを検出するエアフローメータ81、大気温度Tを検出する温度センサ82、大気圧力Pを検出する圧力センサ83、大気湿度RHを検出する湿度センサ84、エンジン回転速度Neを検出するクランク角センサ85、車両の運転者によるアクセルペダルの踏み込み量Acを検出するアクセル開度センサ86、エンジン冷却水温Twを検出する温度センサ87が含まれる。また、各種センサには、エンジン本体10の気筒に流入するガス(新気または混合ガス)の温度と圧力をそれぞれ検出する複数の温度センサと複数の圧力センサが更に含まれる。
これらのセンサは具体的に次のとおりである。すなわち、コンプレッサ18aよりも下流側かつインタークーラ24の上流側のガスの温度(以下「I/C前温度」と称す。)TI/Cinを検出する温度センサ88、コンプレッサ18aよりも下流側かつインタークーラ24の上流側のガスの圧力(以下「I/C前圧力」と称す。)PI/Cinを検出する圧力センサ89、インタークーラ24よりも下流側のガスの温度(以下「I/C後温度」と称す。)TI/Coutを検出する温度センサ90、EGRクーラ32よりも上流側のガスの温度(以下「EGR/C前温度」と称す。)TEGR/Cinを検出する温度センサ91、EGRクーラ32よりも上流側のガスの圧力(以下「EGR/C前圧力」と称す。)PEGR/Cinを検出する圧力センサ92、および、EGRクーラ32よりも下流側のガスの温度(以下「EGR/C後温度」と称す。)TEGR/Coutを検出する温度センサ93である。
[実施の形態2における水蒸気分離および吸気冷却]
本実施の形態に係る内燃機関では、上記実施の形態1に係る内燃機関と同様に、図11に示した減圧ポンプ40,44がECU80によって駆動される。また、制御バルブ74,76は基本的に、ECU80によって開状態に制御される。従って、減圧ポンプ40,44よりも下流側の吸引通路38,42に送り出されるガス量は通常、上記実施の形態1に係る内燃機関と同様に、所定量に保たれる。また、本実施の形態に係る内燃機関では、上記実施の形態1に係る内燃機関と同様に、インジェクタ60と送液ポンプ62が図1に示したECU80によって駆動される。また、インジェクタ60と送液ポンプ62の駆動は、上述した減圧ポンプ40,44の駆動と並行して行われる。
但し、上記実施の形態1に係る内燃機関とは異なり、本実施の形態に係る内燃機関では、減圧ポンプ40,44よりも下流側の吸引通路38,42に送り出されるガス量の値(つまり、上記所定量の値)が、インジェクタ60から噴射する水量の目標値(以下「水噴射量要求値」ともいう。)に基づいて設定される。水噴射量要求値は、エンジン本体10の運転状態(例えば、エンジン回転速度Ne、エンジン負荷、EGR率、大気湿度RH、エンジン冷却水温Tw)に基づいて算出されるものである。本実施の形態では、水噴射量要求値が、事前のシミュレーション等によって作成され、ECU80のROMに記憶されたマップに基づいて算出されるものとする。
[実施の形態2に係る内燃機関の問題点]
図12は、新気やEGRガスの湿度が高い場合において、減圧ポンプ40,44よりも下流側の吸引通路38,42に送り出すガス量を固定したときの問題点を説明する図である。この図には、図11に示した機関構成においてインジェクタ60と送液ポンプ62を駆動させた場合における、水蒸気分離と吸気冷却に関連した物理量の推移が描かれている。なお、図9と図12を比較すると分かるように、図12には、水蒸気分離量が追加されている。この水蒸気分離量は、減圧ポンプ40,44よりも下流側の吸引通路38,42に送り出す水蒸気量の目標値(以下「水噴射制約目標値」ともいう。)であり、水噴射量要求値に基づいて設定される。本実施の形態では、水タンク56内の水量を一定に保つため、水噴射制約目標値が水噴射量要求値と等しい値(一例として0.5g/s)に設定されている。
図9と図12の凝縮水量を比較すると分かるように、図12では、時刻tから時刻tまでの間にEGRクーラで凝縮水が発生する。この理由は、新気およびEGRガスの湿度がそれほど高くない図9ではモジュール34,36での水蒸気分離が問題なく行われるのに対し、新気およびEGRガスの湿度が高い図12では、各モジュールでの水蒸気分離が不十分となるからである。
このような事態を避けるため、本実施の形態では、インタークーラ24またはEGRクーラ32での凝縮水の発生を回避可能な水蒸気量の目標値(以下「凝縮水制約目標値」ともいう。)と、水噴射制約目標値とを比較して、より多い方の目標値に水蒸気分離量を合わせるように制御バルブ74,76の開度を調整する。図13には、水噴射制約目標値と凝縮水制約目標値のうちの多い方に水蒸気分離量を合わせた場合における、水蒸気分離と吸気冷却に関連した物理量の推移が描かれている。図13に示すように、水蒸気分離量を、時刻tから時刻tまでの間は凝縮水制約目標値に合わせ、時刻t以降は水噴射制約目標値に合わせれば、インタークーラやEGRクーラで発生する凝縮水量を略ゼロに近い値にすることができる。因みに、水タンク56内の残量が目標値に保たれている理由は、時刻tから時刻tまでの間は、時刻t以降よりも多い水蒸気が分離されることになるが、水タンク56内の水量が所定量を超えることで図11に示したリリーフバルブ66が開かれるためである。
ここで、凝縮水制約目標値は、インタークーラ24の下流におけるガス(新気または混合ガス)中の水蒸気分圧と、EGRクーラ32の下流におけるEGRガス中の水蒸気分圧とに基づいて設定される。インタークーラ24で凝縮水が発生するのは、インタークーラ24の下流におけるガス(新気または混合ガス)中の水蒸気分圧が、インタークーラ24の下流における飽和水蒸気圧よりも高くなる場合である。また、EGRクーラ32で凝縮水が発生するのは、EGRクーラ32の下流におけるEGRガス中の水蒸気分圧が、EGRクーラ32の下流における飽和水蒸気圧よりも高くなる場合である。よって本実施の形態では、インタークーラ24の下流におけるガス(新気または混合ガス)中の水蒸気分圧がインタークーラ24の下流における飽和水蒸気圧よりも低くなり、尚且つ、EGRクーラ32の下流におけるEGRガス中の水蒸気分圧がEGRクーラ32の下流における飽和水蒸気圧よりも低くなるような凝縮水制約目標値が設定される。
[具体的処理]
制御バルブ74,76の開度を調整するバルブ制御の具体例について、図14乃至図16を参照して説明する。図14乃至図16は、本発明の実施の形態2において、ECU80により実行される処理の一例を示すフローチャートである。なお、この図に示すルーチンは、所定の制御周期毎に繰り返し実行されるものとする。
図14乃至図15に示すルーチンでは、先ず、外気条件が検出される(ステップS100)。本ステップにおいてECU80は、温度センサ82、圧力センサ83および湿度センサ84を用いて、大気温度T、大気圧力Pおよび大気湿度RHを検出する。
続いて、エンジン運転状態が検出される(ステップS102)。本ステップにおいてECU80は、水噴射制約目標値および凝縮水制約目標値の算出に必要な情報を検出する。具体的に、ECU80は、エンジン回転速度Ne、アクセルペダルの踏み込み量Ac、エンジン冷却水温Tw、新気流量Ga、I/C前温度TI/Cin、I/C前圧力PI/Cin、I/C後温度TI/Cout、EGR/C前温度TEGR/Cin、EGR/C前圧力PEGR/CinおよびEGR/C後温度TEGR/Coutを検出する。これらのパラメータは、上述した各種センサから取得される。また、ECU80は、EGR通路28から吸気通路12に流入するEGRガス流量GEGRと、筒内に噴射される燃料流量GFを検出する。また、ECU80は、アクセルペダルの踏み込み量Acからエンジン負荷を算出すると共に、EGRガス流量GEGRと新気流量Gaとを用いてEGR率を算出する。
続いて、水噴射量要求値が算出される(ステップS104)。本ステップにおいてECU80は、ステップS100またはステップS102での検出値または算出値と、上述したマップとに基づいて、水噴射量要求値(つまり、水噴射制約目標値)を算出する。
続いて、新気中の水蒸気流量GH20,airが算出される(ステップS106)。水蒸気流量GH20,airはモジュール34よりも上流側の吸気通路12を流れる新気に含まれる水蒸気の流量である。本ステップにおいてECU80は、ステップS100またはステップS102での検出値と次式(1)とに基づいて、水蒸気流量GH20,airを算出する。
水蒸気流量GH20,air[g/s]
=新気流量Ga[g/s]×(大気の飽和水蒸気圧[kPa]×大気湿度RH/大気圧力P)×(HO分子量[g/mol]/新気分子量[g/mol]) ・・・(1)
なお、式(1)中の新気分子量とHO分子量は設定値であり、大気の飽和水蒸気圧はステップS100で検出した大気温度Tに基づいて別途算出されるものとする。
続いて、EGRガスが導入中であるか否かが判定される(ステップS108)。本ステップにおいてECU80は、ステップS100またはステップS102での検出値または算出値(例えばエンジン回転速度Neとエンジン負荷、または、EGR率)に基づいて、EGR通路28から吸気通路12にEGRガスが導入されているか否かを判定する。その結果、EGRガスが導入されていると判定された場合(“YES”の場合)にはステップS110に進み、そうでないと判定された場合(“NO”の場合)にはステップS118に進む。
ステップS110では、EGRガス中の水蒸気流量GH20,EGRが算出される。水蒸気流量GH20,EGRはモジュール36よりも上流側のEGR通路28を流れるEGRガスに含まれる水蒸気の流量である。本ステップにおいてECU80は、ステップS100またはステップS102での検出値と次式(2)〜(4)とに基づいて、水蒸気流量GH20,EGRを算出する。
水蒸気流量GH20,EGR[g/s]
=EGRガス流量GEGR[g/s]×EGRガス中の水蒸気の割合×(HO分子量[g/mol]/排気分子量[g/mol]) ・・・(2)
EGRガス中の水蒸気の割合
=排気中の水蒸気の割合
=燃焼ガスの水蒸気流量GH20,CG[g/s]/(新気流量Ga[g/s]+インジェクタ60からの水噴射量[g/s]+燃料流量GF[g/s]) ・・・(3)
燃焼ガスの水蒸気流量GH20,CG[g/s]
=水蒸気流量GH20,air[g/s]+インジェクタ60からの水噴射量[g/s]+燃料流量GF[g/s]×(8×HO分子量[g/mol]/燃料分子量[g/mol]) ・・・(4)
なお、式(2)中の排気分子量や式(4)中の燃料分子量は、使用燃料がヘプタンであると仮定したときの下記の反応式(5)に基づいて別途計算される設定値であり、式(4)中のHO分子量の係数もこの反応式(5)に基づいている。使用燃料に応じて式(2)中の排気分子量や式(4)中の燃料分子量が変わることは言うまでもない。
16+11O→7CO+8HO ・・・(5)
続いて、飽和水蒸気流量GH20max,I/Cと飽和水蒸気流量GH20max,EGR/Cが算出される(ステップS112,S114)。これらのステップにおいてECU80は、ステップS100またはステップS102での検出値を次式(6),(7)に代入して飽和水蒸気流量GH20max,I/Cと飽和水蒸気流量GH20max,EGR/Cを算出する。
飽和水蒸気流量GH20max,I/C
混合ガスの流量[g/s]×(混合ガスの飽和水蒸気圧[kPa]/I/C前圧力PI/Cin[kPa])×(HO分子量[g/mol]/混合ガスの分子量[g/mol]) ・・・(6)
飽和水蒸気流量GH20max,EGR/C
EGRガスの流量[g/s]×(EGRガスの飽和水蒸気圧[kPa]/EGR/C前圧力PEGR/Cin[kPa])×(HO分子量[g/mol]/混合ガスの分子量[g/mol]) ・・・(7)
なお、式(6),(7)中の混合ガスの分子量は、新気分子量や式(2)中の排気分子量とから算出される設定値である。また、式(6)中の混合ガスの飽和水蒸気圧は、I/C後温度TI/Coutに基づいて別途算出されるものとする。同様に、式(7)中のEGRガスの飽和水蒸気圧は、EGR/C後温度TEGR/Coutに基づいて別途算出されるものとする。
続いて、各モジュールでの水蒸気の目標分離量が算出される(ステップS116)。本ステップの処理の詳細について、図16を参照して説明する。この図に示すルーチンでは、先ず、インタークーラ24での冷却に伴い発生する凝縮水の予測値aが算出される(ステップS140)。本ステップにおいてECU80は、図14のステップS106で算出された水蒸気流量GH20,air、ステップS110で算出された水蒸気流量GH20,EGR、および、ステップS112で算出された飽和水蒸気流量GH20max,I/Cを次式(8)に代入することで予測値aを算出する。
予測値a[g/s]
=(水蒸気流量GH20,air[g/s]+水蒸気流量GH20,EGR[g/s])−飽和水蒸気流量GH20max,I/C[g/s] ・・・(8)
続いて、EGRクーラ32での冷却に伴い発生する凝縮水の予測値bが算出される(ステップS142)。本ステップにおいてECU80は、図14のステップS110で算出された水蒸気流量GH20,EGR、および、ステップS114で算出された飽和水蒸気流量GH20max,EGR/Cを次式(9)に代入することで予測値bを算出する。
予測値b[g/s]
=水蒸気流量GH20,EGR[g/s]−飽和水蒸気流量GH20max,EGR/C[g/s] ・・・(9)
続いて、ステップS140で算出した予測値aについて、a>0が成立するか否かが判定される(ステップS144)。その結果、a>0が成立すると判定された場合(“YES”の場合)は、モジュール34で除湿をしないとインタークーラ24での冷却に伴い凝縮水が発生すると予測できるので、ステップS146に進む。そうでないと判定された場合(“NO”の場合)は、モジュール34で除湿をしなくてもインタークーラ24での冷却に伴い凝縮水は発生しないと予測できるので、ステップS148に進む。
ステップS146では、ステップS140で算出した予測値aについて、a>dが成立するか否かが判定される。本ステップにおいて予測値aと比較されるのは、モジュール36の分離限界値dであり、具体的には次式(10)に基づいて設定されている。
分離限界値d[g/s]
=透過係数PH20,EGR[g/(s・m・kPa)]×膜面積AEGR[m]×水蒸気分圧の最大差圧ΔPH20max,EGR[kPa]/膜厚δEGR[m] ・・・(10)
なお、式(10)における透過係数PH20,EGRは、図2で説明した管状膜48に固有の係数である。また、膜面積AEGRおよび膜厚δEGRは、管状膜48の膜面積と膜厚にそれぞれ相当している。また、最大差圧ΔPH20max,EGRは、減圧ポンプ44から送り出すガス量を最大としたときに、管状膜48で隔てられた2つの空間に生じる水蒸気分圧差に相当している。
ステップS146においてa>dが成立すると判定された場合(“YES”の場合)は、モジュール34,36の両方で除湿が必要と予測できるので、ステップS150に進み、モジュール36での水蒸気の目標分離量を分離限界値dと等しい値に設定し、モジュール34での水蒸気の目標分離量を予測値aと分離限界値dの差に等しい値に設定する。そうでないと判定された場合(“NO”の場合)は、モジュール36で除湿してしまえば、モジュール34で除湿をしなくてもインタークーラ24での除湿に伴い凝縮水は発生しないと予測できるので、ステップS152に進む。
ステップS152では、ステップS140で算出した予測値aとステップS142で算出した予測値bについて、a>bが成立するか否かが判定される。その結果、a>bが成立すると判定された場合(“YES”の場合)は、モジュール36で予め多めに除湿しておけばインタークーラ24での除湿に伴い凝縮水は発生しないと予測できるので、ステップS154に進み、モジュール36での水蒸気の目標分離量を予測値aと等しい値に設定すると共に、モジュール34での水蒸気の目標分離量をゼロに設定する。そうでないと判定された場合(“NO”の場合)は、ステップS156に進み、モジュール36での水蒸気の目標分離量を予測値bと等しい値に設定すると共に、モジュール34での水蒸気の目標分離量をゼロに設定する。
ステップS148では、ステップS142で算出した予測値bについて、b>0が成立するか否かが判定される。その結果、b>0が成立すると判定された場合(“YES”の場合)は、モジュール36で除湿をしないとEGRクーラ32での冷却に伴い凝縮水が発生すると予測できるので、ステップS158に進み、モジュール36での水蒸気の目標分離量を予測値bと等しい値に設定すると共に、モジュール34での水蒸気の目標分離量をゼロに設定する。そうでないと判定された場合(“NO”の場合)は、モジュール36で除湿をしなくてもEGRクーラ32での冷却に伴い凝縮水は発生しないと予測できるので、ステップS160に進み、モジュール34,36の両方での水蒸気の目標分離量をゼロに設定する。
図14に戻り、ステップS118〜S122では、吸気通路12にEGRガスの導入がない場合の各モジュールでの水蒸気の目標分離量が算出される。具体的に、ステップS118では、EGRガス用のモジュール、つまり、モジュール36での水蒸気の目標分離量がゼロに設定される。この理由は単純で、EGRガスの導入がないからである。続いて、ステップS120では、飽和水蒸気流量GH20max,I/Cが算出される。本ステップの処理はステップS112の処理と同じである。続いて、ステップS122では、新気用のモジュール、つまり、モジュール34での水蒸気の目標分離量が、ステップS106で算出された水蒸気流量GH20,I/C、および、ステップS120で算出された飽和水蒸気流量GH20max,I/Cを次式(11)に代入することで算出される。
モジュール34での水蒸気の目標分離量
=GH20,I/C[g/s]−GH20max,I/C[g/s] ・・・(11)
ステップS116またはステップS122に続いて、水噴射量要求値が各モジュールでの水蒸気の目標分離量の和よりも多いか否かが判定される(ステップS124)。本ステップにおいてECU80は、ステップS104で算出された水噴射量要求値と、ステップS116で算出されたモジュール34,36での水蒸気の目標分離量の和とを比較する。または、ECU80は、ステップS104で算出された水噴射量要求値と、ステップS122で算出されたモジュール34での水蒸気の目標分離量とを比較する。
ここで、ステップS104で算出された水噴射量要求値は、水噴射制約目標値と等しいことは既に述べたとおりである。また、ステップS116で算出されたモジュール34,36での水蒸気の目標分離量の和、または、ステップS122で算出されたモジュール34での水蒸気の目標分離量は、凝縮水制約目標値に相当する。つまり、ステップS124においては、水噴射制約目標値と凝縮水制約目標値が比較される。ステップS124において両者を比較した結果、水噴射制約目標値が凝縮水制約目標値よりも多いと判定された場合(“YES”の場合)にはステップS126に進み、そうでないと判定された場合(“NO”の場合)にはステップS126をスキップしてS128に進む。
ステップS126では、EGRガスの導入の有無に応じ、次式(12)または(13)に従って各モジュールでの水蒸気の目標分離量が変更される。本ステップにおいてECU80は、EGRガスの導入がある場合は次式(12)に従ってモジュール36での水蒸気の目標分離量を変更し、EGRガスの導入がない場合は次式(13)に従ってモジュール34での水蒸気の目標分離量を変更する。
モジュール36での水蒸気の目標分離量
=水噴射量要求値−モジュール34での水蒸気の目標分離量・・・(12)
モジュール34での水蒸気の目標分離量
=水噴射量要求値 ・・・(13)
続いて、各モジュールでの目標水蒸気分圧差が算出される(ステップS128)。本ステップにおいてECU80は、EGRガスの導入がある場合はステップS116で算出された目標分離量(またはステップS126で変更された目標分離量)を次式(14),(15)に代入して、各モジュールでの目標水蒸気分圧差を算出する。EGRガスの導入がない場合、ECU80は、ステップS122で算出された目標分離量(またはステップS126で変更された目標分離量)を次式(16)に代入して、モジュール34での目標水蒸気分圧差を算出する。
モジュール34での目標水蒸気分圧差[kPa]
=モジュール34での水蒸気の目標分離量[g/s]×膜厚δair[m]/透過係数PH20,air[g/(s・m・kPa)]/膜面積Aair[m] ・・・(14)
モジュール36での目標水蒸気分圧差[kPa]
=モジュール36での水蒸気の目標分離量[g/s]×膜厚δEGR[m]/透過係数PH20,EGR[g/(s・m・kPa)]/膜面積AEGR[m] ・・・(15)
なお、式(14)における透過係数PH20,airは式(15)における透過係数PH20,EGRと同一の値である。また、式(14)における膜厚δairおよび膜面積Aairは、式(15)における膜面積AEGRおよび膜厚δEGRとそれぞれ同一の値である。
続いて、各モジュールでの目標減圧量が算出される(ステップS130)。本ステップにおいてECU80は、ステップS128で算出された各モジュールでの目標水蒸気分圧差などを次式(17),(18)に代入して、各モジュールでの目標減圧量を算出する。
モジュール34での目標減圧量[kPa]
=モジュール34での目標水蒸気分圧差[kPa]−大気圧力P[kPa]×大気湿度RH ・・・(17)
モジュール36での目標減圧量[kPa]
=モジュール36での目標水蒸気分圧差[kPa]−EGR/C前圧力PEGR/Cin[kPa]×EGRガス中の水蒸気の割合 ・・・(18)
なお、式(18)中のEGRガス中の水蒸気の割合は、式(3)から算出される。
続いて、各制御バルブの開度が調整される(ステップS132)。本ステップにおいてECU80は、ステップS130で算出された各モジュールでの目標減圧量に到達するまで、制御バルブ74,76の開度をフィードバック制御によって調整する。
続いて、水タンク56が所定量以上か否かが判定される(ステップS134)。本ステップにおいてECU80は、水量検出手段からの検出値に基づいて水タンク56内の水量が所定量以上であるか否かを判定する。その結果、水タンク56内の所定量以上であると判定された場合(“YES”の場合)には、水タンク56の空き容量が少ないと判断して、リリーフバルブ66を開放する(ステップS136)。これにより、吸引通路38を流れる水蒸気がコンデンサ54に向かう途中で排水通路64に流入し、内燃機関1の外部に排出される。
以上、図14乃至図16に示したルーチンによれば、インタークーラ24の下流におけるガス(新気または混合ガス)中の水蒸気分圧が、I/C前温度TI/Cinでの飽和水蒸気圧よりも高い場合に、当該ガス(新気または混合ガス)中の水蒸気分圧を、I/C前温度TI/Cinでの飽和水蒸気圧と等しくすることができる。I/C後温度TI/CoutはI/C前温度TI/Cinよりも低いので、I/C後温度TI/Coutでの飽和水蒸気圧はI/C前温度TI/Cinでの飽和水蒸気圧よりも低くなる。従って、インタークーラ24の下流におけるガス(新気または混合ガス)中の水蒸気分圧をI/C前温度TI/Cinでの飽和水蒸気圧と等しくした場合には、当該水蒸気分圧は、I/C後温度TI/Coutでの飽和水蒸気圧よりも低くなる。以上のことから、図14乃至図16に示したルーチンによれば、インタークーラ24の下流におけるガス(新気または混合ガス)中の水蒸気分圧が、I/C後温度TI/Coutでの飽和水蒸気圧よりも高い場合に、当該ガス(新気または混合ガス)中の水蒸気分圧を、I/C後温度TI/Coutでの飽和水蒸気圧よりも低くすることができる。従って、インタークーラ24での冷却に伴う凝縮水の発生を抑えることができる。
また、図14乃至図16に示したルーチンによれば、EGRクーラ32の下流におけるEGRガス中の水蒸気分圧がEGR/C前温度TEGR/Cinでの飽和水蒸気圧よりも高い場合に、当該EGRガス中の水蒸気分圧を、EGR/C前温度TEGR/Cinでの飽和水蒸気圧と等しくすることができる。EGR/C後温度TEGR/CoutはEGR/C前温度TEGR/Cinよりも低いので、EGR/C後温度TEGR/Coutでの飽和水蒸気圧はEGR/C前温度TEGR/Cinでの飽和水蒸気圧よりも低くなる。従って、EGRクーラ32の下流におけるEGRガス中の水蒸気分圧をEGR/C前温度TEGR/Cinでの飽和水蒸気圧と等しくした場合には、当該水蒸気分圧は、EGR/C後温度TEGR/Coutでの飽和水蒸気圧よりも低くなる。以上のことから、図14乃至図16に示したルーチンによれば、EGRクーラ32の下流におけるEGRガス中の水蒸気分圧がEGR/C後温度TEGR/Coutでの飽和水蒸気圧よりも高い場合に、当該EGRガス中の水蒸気分圧を、EGR/C後温度TEGR/Coutでの飽和水蒸気圧よりも低くすることができる。従って、EGRクーラ32での冷却に伴う凝縮水の発生を抑えることもできる。
また、図14乃至図16に示したルーチンによれば、水噴射制約目標値が凝縮水制約目標値よりも多いと判定された場合には、各モジュールでの水蒸気の目標分離量が変更される。水噴射制約目標値が凝縮水制約目標値よりも多くなると、水タンク56内の水量は徐々に減少する。この点、図14乃至図16に示したルーチンによれば、各モジュールでの水蒸気の目標分離量を変更することができるので、水タンク56の残量をその目標値に保つこともできる。
なお、上記実施の形態2においては、図11に示した水タンク56が本発明の「凝縮水貯留部」に相当している。また、ECU80が図14乃至図16のルーチンの処理を実行することにより、本発明の「減圧量調整部」が実現されている。
[各モジュールでの水蒸気の目標分離量の他の算出例]
ところで、上記実施の形態2では、図16に示したルーチンにおいて、予測値a,bにモジュール36の分離限界値dを組み合わせてモジュール34,36での水蒸気の目標分離量を算出した。しかし、分離限界値dの代わりにモジュール34の分離限界値cを使用してモジュール34,36での水蒸気の目標分離量を算出してもよい。図17は、分離限界値cを使用してモジュール34,36での水蒸気の目標分離量を算出する場合において、ECU80により実行される処理の一例を示すフローチャートである。
図17に示すステップS162〜S166およびステップS170,S174〜S182の処理は、図16に示したステップS140〜S144およびステップS148,S152〜S160の処理と同じである。図16と図17の処理における第1の違いは、ステップS168において予測値aと比較されるのが分離限界値cである点である。分離限界値cは具体的には次式(19)に基づいて設定されている。
分離限界値c[g/s]
=透過係数PH20,air[g/(s・m・kPa)]×膜面積Aair[m]×水蒸気分圧の最大差圧ΔPH20max,air[kPa]/膜厚δair[m] ・・・(19)
なお、式(19)における最大差圧ΔPH20max,airは、減圧ポンプ40から送り出すガス量を最大としたときに、管状膜48で隔てられた2つの空間に生じる水蒸気分圧差に相当している。
図16と図17の処理における第2の違いは、ステップS168においてa>cが成立すると判定された場合(“YES”の場合)に、モジュール34での水蒸気の目標分離量を分離限界値cと等しい値に設定し、モジュール36での水蒸気の目標分離量を予測値aと分離限界値cの差に等しい値に設定する点である。
以上説明したように、分離限界値dの代わりに、予測値a,bにモジュール36の分離限界値cを組み合わせてモジュール34,36での水蒸気の目標分離量を算出することもできる。図16に示したルーチンによれば、モジュール36で最大限除湿しつつモジュール34で不足分を補うことができる。図17に示したルーチンによれば、モジュール34で最大限除湿しつつモジュール36で不足分を補うことができる。
更に言うと、分離限界値c,dを組み合わせてモジュール34,36での水蒸気の目標分離量を算出することもできる。図16(または図17)に示したルーチンに従って処理した場合には、モジュール36(またはモジュール34)において最大限の除湿を行うケースが発生する(図16のステップS150または図17のステップS172参照)。水蒸気分離は減圧ポンプ40,44の駆動を伴うことから、モジュール36(またはモジュール34)において最大限の除湿を行うことは、消費エネルギの増大に繋がり望ましくない。この点、モジュール34,36の構成は同一であることから、分離限界値c,dを組み合わせ、図16のステップS140で算出した予測値aと、ステップS142で算出した予測値bとを足し合わせた予測値a+bを、モジュール34,36で均等に分担するように目標分離量を算出すれば、減圧ポンプ40,44の駆動エネルギの総和を最小とした除湿を行うことが可能となる。
[内燃機関の他の構成例を適用した場合におけるモジュールでの水蒸気の目標分離量の算出例]
上記実施の形態2で説明したバルブ制御を上記実施の形態1で述べた非EGR−過給システムに適用する場合には、図11に示した機関構成からEGR通路28、EGRクーラ32、モジュール36、温度センサ91,93、圧力センサ92等を除いた上で、吸気通路12にEGRガスの導入がない場合と同様の処理をすればよい。具体的には、図14のステップS108の処理をスキップして、ステップS100〜S106の処理と、ステップS120,S122の処理とを行って、モジュール34での水蒸気の目標分離量を算出すればよい。
上記実施の形態2で説明したバルブ制御を上記実施の形態1で述べた非過給−EGRシステムに適用する場合には、機関構成に応じてモジュールでの水蒸気の目標分離量を算出すればよい。
具体的に、モジュール34,36を備える機関構成の場合は、図11に示した機関構成から過給機18、インタークーラ24、温度センサ88,90、圧力センサ89等を除いた上で、図14乃至図16の処理において、インタークーラ24での冷却に関する処理をスキップ等すればよい。具体的には、図14のステップS112,S120,S122、および、図16のステップS140,148,S158をスキップし、尚且つ、図16のステップS144,S146,S150の処理において予測値aを予測値bに置き換えた処理を行えばよい。また、予測値aを予測値bに置換した後にステップS146において、b<dが成立すると判定された場合(“NO”の場合)に、モジュール36での水蒸気の目標分離量を分離限界値dと等しい値に設定すると共に、モジュール34での水蒸気の目標分離量をゼロに設定すればよい。
一方、モジュール36のみを備える機関構成の場合は、図11に示した機関構成から過給機18、インタークーラ24、モジュール34、温度センサ88,90、圧力センサ89等を除いた上で、図14乃至図16の処理において、インタークーラ24での冷却に関する処理と、モジュール34の目標分離量の算出に関する処理とをスキップ等すればよい。具体的には、図14のステップS112,S120,S122をキャンセルすると共に、図16のステップS142以外の処理をキャンセルし、吸気通路12にEGRガスの導入がある場合(ステップS108の判定が“YES”の場合)には、図16のステップS142で算出した予測値bをモジュール36での水蒸気の目標分離量として設定し、そうでない場合(ステップS108の判定が“NO”の場合)には、モジュール36での水蒸気の目標分離量をゼロに設定すればよい。
1,2 内燃機関
10 エンジン本体
12 吸気通路
14 排気通路
18 過給機
18a コンプレッサ
18b タービン
24 インタークーラ
28 EGR通路
30 EGRバルブ
32 EGRクーラ
34,36 水蒸気分離膜モジュール
38,42 吸引通路
40,44 減圧ポンプ
46,68 ハウジング
48 管状膜
48a 内壁面
48b 外壁面
50,72 排出口
54 コンデンサ
56 水タンク
58 供給通路
60 インジェクタ
62 送液ポンプ
74,76 制御バルブ
80 ECU
81 エアフローメータ
82,87,88,90,91,93 温度センサ
83,89,92 圧力センサ
84 湿度センサ
85 クランク角センサ
86 アクセル開度センサ
ステップS146においてa>dが成立すると判定された場合(“YES”の場合)は、モジュール34,36の両方で除湿が必要と予測できるので、ステップS150に進み、モジュール36での水蒸気の目標分離量を分離限界値dと等しい値に設定し、モジュール34での水蒸気の目標分離量を予測値aと分離限界値dの差に等しい値に設定する。そうでないと判定された場合(“NO”の場合)は、モジュール36で除湿してしまえば、モジュール34で除湿をしなくてもインタークーラ24での冷却に伴い凝縮水は発生しないと予測できるので、ステップS152に進む。
ステップS152では、ステップS140で算出した予測値aとステップS142で算出した予測値bについて、a>bが成立するか否かが判定される。その結果、a>bが成立すると判定された場合(“YES”の場合)は、モジュール36で予め多めに除湿しておけばインタークーラ24での冷却に伴い凝縮水は発生しないと予測できるので、ステップS154に進み、モジュール36での水蒸気の目標分離量を予測値aと等しい値に設定すると共に、モジュール34での水蒸気の目標分離量をゼロに設定する。そうでないと判定された場合(“NO”の場合)は、ステップS156に進み、モジュール36での水蒸気の目標分離量を予測値bと等しい値に設定すると共に、モジュール34での水蒸気の目標分離量をゼロに設定する。

Claims (5)

  1. 筒内に流入するガスが流れるガス通路と、
    前記ガス通路に設けられて前記筒内に流入するガスを冷却する冷却部と、
    前記冷却部よりもガス流れ方向の上流側において前記ガス通路の一部を構成する水蒸気分離部であって、水蒸気分圧の異なる2つの空間を隔てるように設置された場合に水蒸気分圧が高い空間から水蒸気分圧の低い空間に向かって水蒸気を透過させる水蒸気透過膜を備える水蒸気分離部と、
    前記ガス通路から前記水蒸気分離部に流入したガスが流れる前記水蒸気透過膜の内側の空間と、前記水蒸気透過膜によって前記内側の空間と隔てられた外側の空間との間に水蒸気分圧の差が生じるように、前記外側の空間の水蒸気分圧を減圧する減圧部と、
    前記減圧部に接続されて前記内側の空間から前記外側の空間に移動した水蒸気を凝縮する水蒸気凝縮部と、
    前記水蒸気凝縮部に接続されて前記水蒸気凝縮部で生じた凝縮水を前記筒内または吸気ポートに噴射する水噴射部と、
    を備えることを特徴とする内燃機関。
  2. 前記ガス通路の前記冷却部よりもガス流れ方向の下流側における水蒸気分圧が飽和水蒸気圧を下回るように、前記減圧部によって減圧する前記外側の空間の水蒸気分圧の減圧量を調整する減圧量調整部を更に備えることを特徴とする請求項1に記載の内燃機関。
  3. 前記水蒸気凝縮部と前記水噴射部の間に設けられて前記水蒸気凝縮部で生じた凝縮水を貯留する凝縮水貯留部を更に備え、
    前記減圧量調整部は、前記内側の空間から前記外側の空間に移動させる水蒸気量の目標値に基づいて前記減圧量の目標値を算出し、前記水噴射部によって前記筒内または前記吸気ポートに噴射する水量の目標値が前記水蒸気量の目標値よりも多い場合は例外的に、前記水量の目標値に基づいて前記減圧量の目標値を算出することを特徴とする請求項2に記載の内燃機関。
  4. 前記ガス通路は、吸気通路と排気通路を接続するEGR通路であり、
    前記冷却部は、前記EGR通路内を流れるEGRガスを冷却するEGRクーラであり、
    前記水蒸気分離部が、前記EGR通路のうちの前記EGRクーラよりもガス流れ方向の上流側において前記EGR通路の一部を構成することを特徴とする請求項1乃至3何れか1項に記載の内燃機関。
  5. 前記ガス通路は、過給機のコンプレッサが設けられた吸気通路であり、
    前記冷却部は、前記コンプレッサで圧縮されたガスを冷却するインタークーラであり、
    前記水蒸気分離部が、前記吸気通路のうちの前記コンプレッサよりもガス流れ方向の上流側において前記吸気通路の一部を構成することを特徴とする請求項1乃至4何れか1項に記載の内燃機関。
JP2016107290A 2016-05-30 2016-05-30 内燃機関 Active JP6327290B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016107290A JP6327290B2 (ja) 2016-05-30 2016-05-30 内燃機関
US15/591,865 US10359012B2 (en) 2016-05-30 2017-05-10 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016107290A JP6327290B2 (ja) 2016-05-30 2016-05-30 内燃機関

Publications (2)

Publication Number Publication Date
JP2017214833A true JP2017214833A (ja) 2017-12-07
JP6327290B2 JP6327290B2 (ja) 2018-05-23

Family

ID=60421023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016107290A Active JP6327290B2 (ja) 2016-05-30 2016-05-30 内燃機関

Country Status (2)

Country Link
US (1) US10359012B2 (ja)
JP (1) JP6327290B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190291666A1 (en) * 2018-03-26 2019-09-26 Ford Global Technologies, Llc Method and system for water collection and usage on-board a vehicle
CN110410240A (zh) * 2018-04-27 2019-11-05 丰田自动车株式会社 内燃机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306847B6 (cs) * 2015-08-25 2017-08-09 Halla Visteon Climate Control Corporation Termoregulační systém, zejména pro automobily
US10323607B2 (en) * 2016-07-14 2019-06-18 Ge Global Sourcing Llc Method and systems for draining fluid from an engine
US10337370B2 (en) * 2017-07-13 2019-07-02 Tenneco Automotive Operating Company Inc. Water separation device for engine exhaust gas
DE102017218971B4 (de) * 2017-10-24 2021-12-23 Hanon Systems Abgasrückführsystem
US10501337B2 (en) 2018-04-10 2019-12-10 Tenneco Automotive Operating Company Inc. System for neutralizing the pH of exhaust condensate
JP7058565B2 (ja) * 2018-06-26 2022-04-22 三菱化工機株式会社 固形成分分離装置の制御装置、固形成分分離装置、舶用排気ガススクラバーシステム、および舶用ディーゼルエンジン
US11339731B2 (en) * 2018-08-23 2022-05-24 Volvo Truck Corporation Method for operating an internal combustion engine system
US11346309B2 (en) * 2018-08-23 2022-05-31 Volvo Truck Corporation Method for operating an internal combustion engine system
US10561989B1 (en) * 2018-09-10 2020-02-18 Tenneco Automotive Operating Company Inc. Water separation device for engine exhaust gas
CN112377300A (zh) * 2020-12-01 2021-02-19 广西玉柴机器股份有限公司 一种抑制天然气发动机爆震燃烧的方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013728A (ja) * 1973-06-08 1975-02-13
JPH0361658A (ja) * 1989-07-28 1991-03-18 Suzuki Motor Corp エンジン
JPH06207560A (ja) * 1993-01-11 1994-07-26 Nippon Sekiyu Seisei Kk 内燃機関の排気ガス再循環装置
JP2000087811A (ja) * 1998-09-11 2000-03-28 Kubota Corp エンジンの排気再循環装置
JP2006226149A (ja) * 2005-02-15 2006-08-31 Denso Corp 吸気成分制御装置
JP2008175078A (ja) * 2007-01-16 2008-07-31 Nissan Motor Co Ltd エンジンの水噴射制御方法及び水噴射制御装置
JP2010071135A (ja) * 2008-09-17 2010-04-02 Nissan Motor Co Ltd 内燃機関の排気循環装置
JP2012236123A (ja) * 2011-05-10 2012-12-06 Hitachi Zosen Corp ゼオライト膜による排ガス中の二酸化炭素分離回収システム
JP2014077371A (ja) * 2012-10-09 2014-05-01 Hino Motors Ltd 排ガス浄化装置
JP2015209782A (ja) * 2014-04-24 2015-11-24 トヨタ自動車株式会社 内燃機関

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725359A (en) * 1985-02-25 1988-02-16 Bend Research, Inc. Potable water from internal combustion engines
DE202007005986U1 (de) * 2007-04-24 2008-09-04 Mann+Hummel Gmbh Verbrennungsluft- und Abgasanordnung eines Verbrennungsmotors
JP5461154B2 (ja) 2009-11-24 2014-04-02 日野自動車株式会社 予混合圧縮着火システムの燃焼温度制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013728A (ja) * 1973-06-08 1975-02-13
JPH0361658A (ja) * 1989-07-28 1991-03-18 Suzuki Motor Corp エンジン
JPH06207560A (ja) * 1993-01-11 1994-07-26 Nippon Sekiyu Seisei Kk 内燃機関の排気ガス再循環装置
JP2000087811A (ja) * 1998-09-11 2000-03-28 Kubota Corp エンジンの排気再循環装置
JP2006226149A (ja) * 2005-02-15 2006-08-31 Denso Corp 吸気成分制御装置
JP2008175078A (ja) * 2007-01-16 2008-07-31 Nissan Motor Co Ltd エンジンの水噴射制御方法及び水噴射制御装置
JP2010071135A (ja) * 2008-09-17 2010-04-02 Nissan Motor Co Ltd 内燃機関の排気循環装置
JP2012236123A (ja) * 2011-05-10 2012-12-06 Hitachi Zosen Corp ゼオライト膜による排ガス中の二酸化炭素分離回収システム
JP2014077371A (ja) * 2012-10-09 2014-05-01 Hino Motors Ltd 排ガス浄化装置
JP2015209782A (ja) * 2014-04-24 2015-11-24 トヨタ自動車株式会社 内燃機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190291666A1 (en) * 2018-03-26 2019-09-26 Ford Global Technologies, Llc Method and system for water collection and usage on-board a vehicle
US10844774B2 (en) * 2018-03-26 2020-11-24 Ford Global Technologies, Llc Method and system for water collection and usage on-board a vehicle
CN110410240A (zh) * 2018-04-27 2019-11-05 丰田自动车株式会社 内燃机

Also Published As

Publication number Publication date
US20170342949A1 (en) 2017-11-30
JP6327290B2 (ja) 2018-05-23
US10359012B2 (en) 2019-07-23

Similar Documents

Publication Publication Date Title
JP6327290B2 (ja) 内燃機関
US10132275B2 (en) Internal combustion engine
KR101905565B1 (ko) 연료 증기 퍼지 시스템 및 리크 진단 방법
US9027343B2 (en) Approach for supplying vacuum via a supercharger
US7454897B2 (en) Exhaust purifier for diesel engine
US9133757B2 (en) Engine control system and method
JP6141746B2 (ja) 内燃機関の制御装置
JP5440799B2 (ja) エンジンの制御装置
US20160061100A1 (en) Charge air cooler condensate reservoir
CN107850016A (zh) 内燃机的低水温冷却装置
JP4730366B2 (ja) 内燃機関の排気還流装置
CN103485943A (zh) 冷凝水排水控制机构
JP2016089667A (ja) 制御装置
CN106255819B (zh) 排气再循环控制装置及排气再循环控制方法
US9771858B2 (en) Engine system control apparatus and vehicle
JP6119976B2 (ja) 凝縮水排出装置
JP2008163794A (ja) 内燃機関の排気再循環装置
JP2014015876A (ja) 過給機付き内燃機関の制御装置
US9488135B2 (en) Flow rate controller of internal combustion engine
JP2010236516A (ja) 排気還流装置の異常診断装置
JP2019027296A (ja) エンジンシステム
JP6115347B2 (ja) 凝縮水処理機構
JP2017194012A (ja) 異常診断装置
KR102452681B1 (ko) 엔진의 소기 제어 시의 배기 가스 저감 방법
JP2015021456A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R151 Written notification of patent or utility model registration

Ref document number: 6327290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151