JP2017191861A - 積層セラミックコンデンサ及びその製造方法 - Google Patents

積層セラミックコンデンサ及びその製造方法 Download PDF

Info

Publication number
JP2017191861A
JP2017191861A JP2016080787A JP2016080787A JP2017191861A JP 2017191861 A JP2017191861 A JP 2017191861A JP 2016080787 A JP2016080787 A JP 2016080787A JP 2016080787 A JP2016080787 A JP 2016080787A JP 2017191861 A JP2017191861 A JP 2017191861A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
multilayer ceramic
element body
manufacturing
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016080787A
Other languages
English (en)
Other versions
JP6496271B2 (ja
Inventor
亮 大野
Akira Ono
亮 大野
哲彦 福岡
Tetsuhiko Fukuoka
哲彦 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2016080787A priority Critical patent/JP6496271B2/ja
Priority to US15/488,102 priority patent/US10141114B2/en
Publication of JP2017191861A publication Critical patent/JP2017191861A/ja
Application granted granted Critical
Publication of JP6496271B2 publication Critical patent/JP6496271B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/006Apparatus or processes for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/242Terminals the capacitive element surrounding the terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes

Abstract

【課題】外部電極の素体に対する高い接続強度が得られる積層セラミックコンデンサを提供する。
【解決手段】積層セラミックコンデンサは、素体と、第1外部電極と、第2外部電極と、を具備する。上記素体は、相互に対向する第1及び第2端面と、上記第1及び第2端面の間に延びる側面と、上記第1端面と上記側面との第1稜部に沿って延びる第1凹部と、上記第2端面と上記側面との第2稜部に沿って延びる第2凹部と、上記第1端面及び上記第1凹部に引き出された第1内部電極と、上記第1内部電極に対向し、上記第2端面及び上記第2凹部に引き出された第2内部電極と、を有する。上記第1外部電極は、上記第1端面側から上記素体を覆う。上記第2外部電極は、上記第2端面側から上記素体を覆う。
【選択図】図4

Description

本発明は、積層セラミックコンデンサ及びその製造方法に関する。
近年、電子機器の小型化及び高性能化に伴い、電子機器に用いられる積層セラミックコンデンサに対する小型化及び大容量化の要望がますます強くなってきている。この要望に応えるためには、積層セラミックコンデンサの内部電極を拡大することが有効である。内部電極を拡大するためには、内部電極の周囲の絶縁性を確保するためのサイドマージン部を薄くする必要がある。
この一方で、一般的な積層セラミックコンデンサの製造方法では、各工程(例えば、内部電極のパターニング、積層シートの切断など)の精度により、均一な厚さのサイドマージン部を形成することが難しい。したがって、このような積層セラミックコンデンサの製造方法では、サイドマージン部を薄くするほど、内部電極の周囲の絶縁性を確保することが難しくなる。
特許文献1,2には、サイドマージン部を後付けする技術が開示されている。つまり、これらの技術では、積層シートを切断することにより、側面に内部電極が露出した積層チップが作製される。そして、この積層チップの側面にサイドマージン部を設けることにより、素体が作製される。
これにより、特許文献1,2に記載の技術では、均一な厚さのサイドマージン部を有する素体が得られる。したがって、これらの技術に係る積層セラミックコンデンサでは、サイドマージン部を薄くして内部電極を拡大する場合にも、内部電極の周囲の絶縁性を確保することができる。
また、積層セラミックコンデンサには、特許文献1,2に記載の技術とは別に、外部電極の素体に対する接続強度を向上させる技術が求められる。このような技術により、外部電極が素体から剥離することを防止することができるため、積層セラミックコンデンサにおいて高い信頼性が得られる。
特許文献3には、素体に対する外部電極の接続強度を向上可能な技術が開示されている。この技術では、素体における外部電極が設けられる領域に、内部電極に接続されていないダミー電極を露出させる。この技術では、金属で形成されたダミー電極に対して外部電極が良好な接続性を有するため、素体に対する外部電極の接続強度が向上する。
特開2012−209539号公報 特開2012−191164号公報 特開2013−84871号公報
しかしながら、特許文献1,2に記載のサイドマージン部を後付けする技術では、特許文献3に記載のダミー電極をサイドマージン部に配置することが困難である。したがって、サイドマージン部を後付けする構成においても、素体に対する外部電極の接続強度を向上可能な技術が求められる。
以上のような事情に鑑み、本発明の目的は、外部電極の素体に対する高い接続強度が得られる積層セラミックコンデンサ及びその製造方法を提供することにある。
上記目的を達成するため、本発明の一形態に係る積層セラミックコンデンサは、素体と、第1外部電極と、第2外部電極と、を具備する。
上記素体は、相互に対向する第1及び第2端面と、上記第1及び第2端面の間に延びる側面と、上記第1端面と上記側面との第1稜部に沿って延びる第1凹部と、上記第2端面と上記側面との第2稜部に沿って延びる第2凹部と、上記第1端面及び上記第1凹部に引き出された第1内部電極と、上記第1内部電極に対向し、上記第2端面及び上記第2凹部に引き出された第2内部電極と、を有する。
上記第1外部電極は、上記第1端面側から上記素体を覆う。
上記第2外部電極は、上記第2端面側から上記素体を覆う。
この構成では、第1及び第2内部電極が露出した第1及び第2凹部が設けられる。これにより、第1及び第2外部電極が、第1及び第2端面のみならず、第1及び第2凹部においても第1及び第2内部電極と接続される。つまり、この構成では、第1及び第2外部電極と第1及び第2内部電極とが接続する領域を広く確保することができる。これにより、第1及び第2外部電極の素体に対する高い接続強度が得られる。
上記素体は、上記第1及び第2端面との間にそれぞれ上記第1及び第2凹部を形成するように上記側面に沿って配置されたサイドマージン部を更に有してもよい。
この構成では、サイドマージン部を後付けすることにより、第1及び第2凹部を容易に形成可能となる。
上記第1及び第2外部電極が上記側面まで延出していてもよい。
この構成では、第1及び第2端面、並びに第1及び第2凹部に露出する第1及び第2内部電極の全体が第1及び第2外部電極に覆われる。これにより、第1及び第2外部電極と第1及び第2内部電極とが接続する領域を更に広く確保することができる。
上記第1凹部の上記第1端部からの深さが上記第1端面と上記第2内部電極との間隔の30%以下であり、かつ上記第2凹部の上記第2端部からの深さが上記第2端面と上記第1内部電極との間隔の30%以下であってもよい。
この構成では、第1外部電極と第2内部電極との絶縁性、及び第2外部電極と第1内部電極との絶縁性がより確実に得られる。これにより、積層セラミックコンデンサでは、耐湿性が向上するため、高い信頼性が得られる。
本発明の一形態に係る積層セラミックコンデンサの製造方法では、相互に対向する第1及び第2端面と、上記第1及び第2端面の間に延びる側面と、上記第1端面と上記側面との第1稜部に沿って延びる第1凹部と、上記第2端面と上記側面との第2稜部に沿って延びる第2凹部と、上記第1端面及び上記第1凹部に引き出された第1内部電極と、上記第1内部電極に対向し、上記第2端面及び上記第2凹部に引き出された第2内部電極と、を有する素体が作製される。
上記第1端面側から上記素体を覆う第1外部電極が形成される。
上記第2端面側から上記素体を覆う第2外部電極が形成される。
複数のセラミックシートを圧着することにより、上記第1及び第2内部電極が配置された積層チップが作製されてもよい。
上記積層チップに、上記側面に沿って延びるサイドマージン部を形成することにより未焼成の上記素体が作製されてもよい。
この構成では、サイドマージン部を後付けすることにより、第1及び第2凹部を容易に形成可能となる。
上記積層チップに形成されたサイドマージン部を乾燥させて収縮させることにより上記第1及び第2凹部が形成されてもよい。
未焼成の上記素体に加工を施すことにより上記第1及び第2凹部が形成されてもよい。
上記加工はバレル研磨であってもよい。
上記サイドマージン部が、上記積層チップよりも焼成時の収縮率が大きい材料で構成された未焼成の上記素体が作製されてもよい。
未焼成の上記素体を焼成することにより上記第1及び第2凹部が形成されてもよい。
上記サイドマージン部が、上記積層チップよりも焼成時に液相を生じやすい材料で構成されてもよい。
上記サイドマージン部が、上記積層チップよりも原料粉末の割合が少ない材料で構成されてもよい。
上記サイドマージン部が、上記積層チップよりも原料粉末の平均粒径が小さい材料で構成されてもよい。
これらの構成では、サイドマージン部を後付けする構成において、素体に容易に凹部を形成することができる。
外部電極の素体に対する高い接続強度が得られる積層セラミックコンデンサ及びその製造方法を提供することができる。
本発明の一実施形態に係る積層セラミックコンデンサの斜視図である。 上記積層セラミックコンデンサのA−A'線に沿った断面図である。 上記積層セラミックコンデンサのB−B'線に沿った断面図である。 上記積層セラミックコンデンサの素体の斜視図である。 上記積層セラミックコンデンサの素体の平面図である。 上記積層セラミックコンデンサの素体の側面図である。 上記積層セラミックコンデンサの製造方法を示すフローチャートである。 上記製造方法のステップS01で準備される積層シートの平面図である。 上記製造方法のステップS02を示す積層シートの斜視図である。 上記製造方法のステップS03を示す積層シートの平面図である。 上記製造方法のステップS03の後の積層チップの斜視図である。 上記製造方法のステップS04の後の素体の斜視図である。 上記製造方法のステップS05の後の素体の斜視図である。 上記製造方法の変形例を示す素体の斜視図である。
以下、図面を参照しながら、本発明の実施形態を説明する。
図面には、適宜相互に直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は全図において共通である。
[積層セラミックコンデンサ10の全体構成]
図1〜3は、本発明の第1の実施形態に係る積層セラミックコンデンサ10を示す図である。図1は、積層セラミックコンデンサ10の斜視図である。図2は、積層セラミックコンデンサ10の図1のA−A'線に沿った断面図である。図3は、積層セラミックコンデンサ10の図1のB−B'線に沿った断面図である。
積層セラミックコンデンサ10は、素体11と、第1外部電極14と、第2外部電極15と、を具備する。外部電極14,15は、相互に離間し、素体11を挟んでX軸方向に対向している。
素体11は、X軸方向を向いた2つの端面T1,T2と、Y軸方向を向いた2つの側面S1,S2と、Z軸方向を向いた2つの主面M1,M2と、を有する。素体11の側面S1,S2と主面M1,M2とを接続する4つの稜部は面取りされている。また、素体11の端面T1,T2と側面S1,S2とを接続する4つの稜部には凹部22,23(図4〜6参照)が設けられている。凹部22,23の詳細な構成については後述する。
素体11の寸法は、任意に決定可能である。例えば、素体11では、X軸方向の寸法を1.0mmとし、Y軸及びZ軸方向の寸法を0.5mmとすることができる。
なお、素体11の形状はこのような形状に限定されない。例えば、素体11の各面は曲面であってもよく、素体11は全体として丸みを帯びた形状であってもよい。
第1外部電極14は、素体11を第1端面T1から覆い、第1端面T1に接続する側面S1,S2及び主面M1,M2に延出している。また、第2外部電極15は、素体11を第2端面T2から覆い、第2端面T2に接続する側面S1,S2及び主面M1,M2に延出している。これにより、外部電極14,15のいずれにおいても、X−Z平面に平行な断面及びX−Y軸に平行な断面の形状がU字状となっている。
外部電極14,15はそれぞれ、良導体により形成され、積層セラミックコンデンサ10の端子として機能する。外部電極14,15を形成する良導体としては、例えば、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)などを主成分とする金属や合金を用いることができる。
外部電極14,15は、単層構造であっても複層構造であってもよい。
複層構造の外部電極14,15は、例えば、下地膜と表面膜との2層構造や、下地膜と中間膜と表面膜との3層構造として構成されていてもよい。
下地膜は、例えば、ニッケル、銅、パラジウム、白金、銀、金などを主成分とする金属や合金の焼き付け膜とすることができる。
中間膜は、例えば、白金、パラジウム、金、銅、ニッケルなどを主成分とする金属や合金のメッキ膜とすることができる。
表面膜は、例えば、銅、錫、パラジウム、金、亜鉛などを主成分とする金属や合金のメッキ膜とすることができる。
素体11は、積層チップ16と、サイドマージン部17と、を有する。
積層チップ16は、容量形成部18と、カバー部19と、エンドマージン部20,21と、第1内部電極12と、第2内部電極13と、を有する。
サイドマージン部17は、X−Z平面に沿って延びる平板状であり、積層チップ16のY軸方向を向いた両側面P1,P2をそれぞれ覆っている。
容量形成部18は、素体11の中央部に設けられ、積層セラミックコンデンサ10における電荷を蓄える機能を果たす機能部として構成される。
エンドマージン部20,21は、容量形成部18のX軸方向両側に設けられている。つまり、第1エンドマージン部20は容量形成部18と第2外部電極15との間に配置され、
第2エンドマージン部21は容量形成部18と第1外部電極14との間に配置されている。
カバー部19は、X−Y平面に沿って延びる平板状であり、容量形成部18及びエンドマージン部20,21のZ軸方向を向いた両主面をそれぞれ覆っている。
サイドマージン部17及びカバー部19は、主に、容量形成部18及びエンドマージン部20,21を保護するとともに、容量形成部18及びエンドマージン部20,21の周囲の絶縁性を確保する機能を有する。
内部電極12,13は、いずれもX−Y平面に沿って延びるシート状であり、Z軸方向に交互に配置されている。第1内部電極12は、容量形成部18及び第2エンドマージン部21にわたって配置され、第1外部電極14に接続されている。第2内部電極13は、容量形成部18及び第1エンドマージン部20にわたって配置され、第2外部電極15に接続されている。
したがって、内部電極12,13は、容量形成部18において交差し、相互に対向している。また、第1内部電極12は、第1エンドマージン部20によって第2外部電極15から隔てられることにより、第2外部電極15から絶縁されている。更に、第2内部電極13は、第2エンドマージン部21によって第1外部電極14から隔てられることにより、第1外部電極14から絶縁されている。
内部電極12,13はそれぞれ、良導体により形成され、積層セラミックコンデンサ10の内部電極として機能する。内部電極12,13を形成する良導体としては、例えばニッケル(Ni)、銅(Cu)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)、又はこれらの合金を含む金属材料が用いられる。
容量形成部18及びエンドマージン部20,21は、誘電体セラミックスによって形成されている。積層セラミックコンデンサ10では、内部電極12,13間の各誘電体セラミック層の容量を大きくするため、容量形成部18及びエンドマージン部20,21を形成する材料として高誘電率の誘電体セラミックスが用いられる。高誘電率の誘電体セラミックスとしては、例えば、チタン酸バリウム(BaTiO)に代表される、バリウム(Ba)及びチタン(Ti)を含むペロブスカイト構造の材料が挙げられる。
また、容量形成部18及びエンドマージン部20,21を構成する誘電体セラミックスは、チタン酸バリウム系以外にも、チタン酸ストロンチウム(SrTiO)系、チタン酸カルシウム(CaTiO)系、チタン酸マグネシウム(MgTiO)系、ジルコン酸カルシウム(CaZrO)系、チタン酸ジルコン酸カルシウム(PCZT)系、ジルコン酸バリウム(BaZrO)系、酸化チタン(TiO)系などであってもよい。
サイドマージン部17及びカバー部19も、誘電体セラミックスによって形成されている。サイドマージン部17及びカバー部19を形成する材料は、絶縁性セラミックスであればよいが、容量形成部18及びエンドマージン部20,21と同様の組成系の材料を用いることより、製造効率が向上するとともに、素体11における内部応力が抑制される。
上記の構成により、積層セラミックコンデンサ10では、第1外部電極14と第2外部電極15との間に電圧が印加されると、容量形成部18において第1内部電極12と第2内部電極13との間の複数の誘電体セラミック層に電圧が加わる。これにより、積層セラミックコンデンサ10では、第1外部電極14と第2外部電極15との間の電圧に応じた電荷が蓄えられる。
なお、積層セラミックコンデンサ10の構成は、特定の構成に限定されず、積層セラミックコンデンサ10に求められるサイズや性能などに応じて、公知の構成を適宜採用可能である。例えば、容量形成部18における各内部電極12,13の枚数は、適宜決定可能である。
[凹部22,23の詳細な構成]
図4〜6は、積層セラミックコンデンサ10の外部電極14,15を透視して素体11を示す図である。図4は、素体11の斜視図である。図5は、素体11の平面図である。図6は、素体11の側面図である。図4〜6では、外部電極14,15の概形を破線で示している。
素体11には、第1端面T1と側面S1,S2との第1稜部に沿ってZ軸方向に延びる第1凹部22が設けられている。また、素体11には、第2端面T2と側面S1,S2との第2稜部に沿ってZ軸方向に延びる第2凹部23が設けられている。凹部22,23は、素体11のZ軸方向の全幅にわたって設けられ、端面T1,T2及び側面S1,S2から窪む溝を形成している。
凹部22,23は、サイドマージン部17のX軸方向の両側に設けられている。つまり、サイドマージン部17は、積層チップ16よりもX軸方向の寸法が小さく、積層チップ16の端面T1,T2から間隔をあけて配置されている。これにより、第1凹部22には第2エンドマージン部21の側面P1,P2が露出し、第2凹部23には第1エンドマージン部20の側面P1,P2が露出している。
外部電極14,15は、それぞれ凹部22,23を覆っている。このため、第1外部電極14は、第1端面T1のみならず第1凹部22においても第1内部電極12に接続される。また、第2外部電極15は、第2端面T2のみならず第2凹部23においても第2内部電極13に接続される。このように、積層セラミックコンデンサ10では、素体11に凹部22,23を設けることにより、外部電極14,15と内部電極12,13とが接続する領域を広く確保することができる。
外部電極14,15は、誘電体セラミックスよりも、金属材料で形成された内部電極12,13の方が、より強固に接続可能である。このため、積層セラミックコンデンサ10では、外部電極14,15の素体11に対する高い接続強度が得られる。したがって、積層セラミックコンデンサ10では、外部電極14,15が素体11から剥離することを防止することができるため、高い信頼性が得られる。
また、積層セラミックコンデンサ10では、外部電極14,15と内部電極12,13との接触面積が大きくなるため、外部電極14,15と内部電極12,13との接触抵抗が低減される。このため、積層セラミックコンデンサ10では、等価直列抵抗(ESR:Equivalent Series Resistance)を低減することが可能である。
図6には、第1凹部22の第1端面T1からの深さD22、第2凹部23の第2端面T2からの深さD23、第1エンドマージン部20のX軸方向の寸法D20、及び第2エンドマージン部21のX軸方向の寸法D21が示されている。
第1凹部22の深さD22は、第2エンドマージン部21の寸法D21よりも小さい。これにより第1外部電極14が第1凹部22内において第2内部電極13とショートすることを防止することができる。
同様に、第2凹部23の深さD23は、第1エンドマージン部20の寸法D20よりも小さい。これにより第2外部電極15が第2凹部23内において第1内部電極12とショートすることを防止することができる。
凹部22,23の深さD22,D23が大きいほど、外部電極14,15と内部電極12,13とが接続する領域を大きく確保することができる。より詳細に、凹部22,23の深さD22,D23を大きくするにつれて、素体11と外部電極14,15との接続強度が直線的に増大する。このため、素体11と外部電極14,15との接続強度を向上させる観点からは、凹部22,23の深さD22,D23が大きいことが好ましい。
この一方で、第1凹部22の深さD22が大きいほど、第1凹部22内の第1外部電極14が第2内部電極13に近接する。また、第2凹部23の深さD23が大きいほど、第2凹部23内の第2外部電極15が第1内部電極12に近接する。このため、凹部22,23の深さD22,D23が大きいほど、積層セラミックコンデンサ10の使用時などに大気中の水分により絶縁不良が発生しやすくなる。
このため、素体11では、第1凹部22の深さD22を第2エンドマージン部21の寸法D21の30%以下に留め、かつ第2凹部23の深さD23を第1エンドマージン部20の寸法D20の30%以下に留めることが好ましい。これにより、積層セラミックコンデンサ10では、耐湿性による絶縁不良が発生することを効果的に防止することができるため、高い信頼性が得られる。
[積層セラミックコンデンサ10の製造方法]
図7は、積層セラミックコンデンサ10の製造方法を示すフローチャートである。図8〜13は、積層セラミックコンデンサ10の製造過程を示す図である。以下、積層セラミックコンデンサ10の製造方法について、図7に沿って、図8〜13を適宜参照しながら説明する。
(ステップS01:セラミックシート準備)
ステップS01では、容量形成部18及びエンドマージン部20,21を形成するための第1セラミックシート101及び第2セラミックシート102と、カバー部19を形成するための第3セラミックシート103と、を準備する。
図8はセラミックシート101,102,103の平面図である。図8(A)はセラミックシート101を示し、図8(B)はセラミックシート102を示し、図8(C)はセラミックシート103を示している。セラミックシート101,102,103は、未焼成の誘電体グリーンシートとして構成され、例えば、ロールコーターやドクターブレードを用いてシート状に成形される。
ステップS01の段階では、セラミックシート101,102,103は各積層セラミックコンデンサ10ごとに切り分けられていない。図8には、各積層セラミックコンデンサ10ごとに切り分ける際の切断線Lx,Lyが示されている。切断線LxはX軸に平行であり、切断線LyはY軸に平行である。
図8に示すように、第1セラミックシート101には第1内部電極12に対応する未焼成の第1内部電極112が形成され、第2セラミックシート102には第2内部電極13に対応する未焼成の第2内部電極113が形成されている。なお、カバー部19に対応する第3セラミックシート103には内部電極が形成されていない。
内部電極112,113は、任意の導電性ペーストを用いて形成することができる。導電性ペーストによる内部電極112,113の形成には、例えば、スクリーン印刷法やグラビア印刷法を用いることができる。
内部電極112,113は、切断線Lyによって仕切られたX軸方向に隣接する2つの領域にわたって配置され、Y軸方向に帯状に延びている。第1内部電極112と第2内部電極113とでは、切断線Lyによって仕切られた領域1列ずつX軸方向にずらされている。つまり、第1内部電極112の中央を通る切断線Lyが第2内部電極113の間の領域を通り、第2内部電極113の中央を通る切断線Lyが第1内部電極112の間の領域を通っている。
(ステップS02:積層)
ステップS02では、ステップS01で準備したセラミックシート101,102,103を積層することにより積層シート104を作製する。
図9は、ステップS02で得られる積層シート104の斜視図である。図9では、説明の便宜上、セラミックシート101,102,103を分解して示している。しかし、実際の積層シート104では、セラミックシート101,102,103が静水圧加圧や一軸加圧などにより圧着されて一体化される。これにより、高密度の積層シート104が得られる。
積層シート104では、容量形成部18及びエンドマージン部20,21に対応する第1セラミックシート101及び第2セラミックシート102がZ軸方向に交互に積層されている。
また、積層シート104では、交互に積層されたセラミックシート101,102のZ軸方向最上面及び最下面にそれぞれカバー部19に対応する第3セラミックシート103が積層される。なお、図9に示す例では、第3セラミックシート103がそれぞれ3枚ずつ積層されているが、第3セラミックシート103の枚数は適宜変更可能である。
(ステップS03:切断)
ステップS03では、ステップS02で得られた積層シート104を切断することにより未焼成の積層チップ116を作製する。
図10は、ステップS03の後の積層シート104の平面図である。積層シート104は、保持部材としてのテープTpに貼り付けられた状態で、切断線Lx,Lyに沿って切断される。
これにより、積層シート104が個片化され、図11に示す積層チップ116が得られる。積層チップ116には、内部電極112,113が露出した切断面である側面P1,P2が形成されている。
積層シート104の切断方法は、特定の方法に限定されない。例えば、積層シート104の切断には、各種ブレードを利用した技術を用いることができる。積層シート104の切断に利用可能なブレードの一例としては、押し切り刃や回転刃(ダイシングブレードなど)が挙げられる。更に、積層シート104の切断には、各種ブレードを利用した技術以外にも、例えばレーザ切断やウォータージェット切断を用いることができる。
必要に応じ、切断後の積層チップ116を洗浄し、側面P1,P2などに付着した切断屑などを除去する。
(ステップS04:サイドマージン部形成)
ステップS04では、ステップS03で得られた積層チップ116の側面P1,P2に、未焼成のサイドマージン部117を形成する。
サイドマージン部117は、例えば、セラミックシートを積層チップ116の側面P1,P2で打ち抜くことや、セラミックスラリーを積層チップ116の側面P1,P2に塗布することにより形成することができる。セラミックスラリーを積層チップ116の側面P1,P2に塗布する方法としては、例えば、ディップ法を用いることができる。
以上により、図12に示す未焼成の素体111が得られる。
未焼成の素体111の形状は、焼成後の素体11の形状に応じて決定可能である。例えば、1.0mm×0.5mm×0.5mmの素体11を得るために、1.2mm×0.6mm×0.6mmの未焼成の素体111を作製することができる。
(ステップS05:凹部形成)
ステップS05では、ステップS04で得られた図12に示す未焼成の素体111に凹部122,123を形成することにより、図13に示す未焼成の素体111を作製する。ステップS05は、様々な手法で実行可能であり、その一例を以下に例示する。
例えば、図12に示す未焼成の素体111のサイドマージン部117を乾燥させてX軸方向に収縮させることにより、図13に示す未焼成の素体111の凹部122,123を形成することができる。サイドマージン部117を乾燥時に収縮しやすくするために、ステップS04(サイドマージン部形成)ではセラミックスラリーの塗布によりサイドマージン部117を形成することが好ましい。
また、図12に示す未焼成の素体111に凹部122,123を形成するための加工を施すことにより、図13に示す未焼成の素体111を作製することができる。未焼成の素体111に凹部122,123を形成するための加工方法としては、バレル研磨やレーザ照射やサンドブラストなどを用いることができる。更に、サイドマージン部117を押圧して変形させることにより、凹部122,123を形成してもよい。
一例として、図12に示す未焼成の素体111にバレル研磨を施すことにより凹部122,123を形成する方法について説明する。バレル研磨は、例えば、複数の未焼成の素体111と研磨媒体と液体とをバレル容器に封入し、バレル容器に回転運動や振動を与えることにより実行可能である。
上記のとおり、積層チップ116は、ステップS03で切断される前のステップS02において静水圧加圧や一軸加圧などにより高密度化されている。この一方で、ステップS04では、積層チップ116の各層の剥離を防止するため、積層チップ116に形成されたサイドマージン部117に大きい圧力を加えず、サイドマージン部117が高密度化されない。
したがって、図12に示す未焼成の素体111では、サイドマージン部117の密度が、積層チップ116の密度よりも低くなる。このため、図12に示す未焼成の素体111にバレル研磨を施すと、低密度のサイドマージン部117が高密度の積層チップ116よりも多く摩耗する。これにより、図13に示すバレル研磨後の未焼成の素体111には、サイドマージン部117のX軸方向両端部が多く摩耗することにより、凹部122,123が形成される。
なお、図13に示すバレル研磨後の未焼成の素体111では、サイドマージン部117のX軸方向両端部のみならず、サイドマージン部117のZ軸方向両端部も多く摩耗していてもよい。これにより、サイドマージン部117のZ軸方向両側に、X軸方向に延びる凹部が形成されていても差し支えない。
(ステップS06:焼成)
ステップS06では、ステップS05で得られた図13に示す未焼成の素体111を焼成することにより、図1〜6に示す積層セラミックコンデンサ10の素体11を作製する。焼成は、例えば、還元雰囲気下、又は低酸素分圧雰囲気下において行うことができる。
(ステップS07:外部電極形成)
ステップS07では、ステップS06で得られた素体11に外部電極14,15を形成することにより、図1〜6に示す積層セラミックコンデンサ10を作製する。
ステップS07では、まず、端面T1,T2のうちの一方から素体11を覆うように未焼成の電極材料を塗布し、端面T1,T2のうちの他方から素体11を覆うように未焼成の電極材料を塗布する。これにより、端面T1,T2のそれぞれから素体11が未焼成の電極材料によって覆われる。
未焼成の電極材料の塗布方法は、未焼成の電極材料を素体11の凹部22,23内に充填可能であればよく、特定の方法に限定されない。未焼成の電極材料の塗布方法としては、例えば、ディップ法が挙げられる。
次に、素体11に塗布された未焼成の電極材料に、例えば、還元雰囲気下、又は低酸素分圧雰囲気下において焼き付け処理を行って、素体11に下地膜を形成する。そして、素体11に焼き付けられた下地膜の上に、中間膜及び表面膜を電解メッキなどのメッキ処理で形成して、外部電極14,15が完成する。
なお、上記のステップS07における処理の一部を、ステップS06の前に行ってもよい。例えば、ステップS06の前に未焼成の素体111に端面T1,T2から未焼成の電極材料を塗布し、ステップS06において、未焼成の素体111を焼成すると同時に、未焼成の電極材料を焼き付けて外部電極14,15の下地層を形成してもよい。
(変形例)
積層セラミックコンデンサ10の製造方法においてステップS05(凹部形成)は必須ではない。つまり、ステップS04(サイドマージン部形成)において図14に示す予め凹部122,123が形成された未焼成の素体111が得られれば、事後的に凹部122,123を形成する必要がなくなる。
例えば、積層チップ116の側面P1,P2に、X軸方向に短いサイドマージン部117を配置することにより、図14に示す未焼成の素体111が得られる。また、積層チップ116の側面P1,P2によるセラミックシートの打ち抜き条件を、サイドマージン部117がX軸方向に短くなるように調整することによっても、図14に示す未焼成の素体111が得られる。
また、焼成前の素体111においてサイドマージン部117を積層チップ116よりも焼成時の収縮率が大きい材料で構成することにより、焼成前の素体111に凹部122,123を形成する必要がなくなる。この場合、焼成時にサイドマージン部117が積層チップ116よりも大きく収縮することにより、焼成後の素体11に凹部22,23が形成される。
このためには、例えば、サイドマージン部117を積層チップ116よりも焼成時に液相を生じやすい材料で構成することができる。この場合、サイドマージン部117には、ガラス成分を構成するケイ素酸化物やホウ素窒化物などを積層チップ116よりも多く含ませることが可能である。
また、サイドマージン部117において、焼成後に固形成分となる原料粉末の割合を積層チップ116よりも少なくすることも有効である。
更に、サイドマージン部117において、原料粉末の平均粒径を積層チップ116よりも小さくすることも有効である。
[その他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
例えば、上記実施形態では凹部22,23が素体11のZ軸方向の全幅にわたって形成されているが、凹部22,23は内部電極12,13の少なくとも1つを露出させていればよい。例えば、凹部22,23は、素体11のエンドマージン部20,21に対応する領域のみに設けられ、カバー部19に対応する領域に設けられていなくてもよい。
また、積層セラミックコンデンサ10では、上記実施形態のように凹部22,23が素体11の端面T1,T2と側面S1,S2との4つの稜部のいずれにも設けられることが好ましいが、この構成は必須ではない。つまり、積層セラミックコンデンサ10では、凹部22,23が素体11の4つの稜部のうち少なくとも1つに設けられていれば、上記実施形態の効果を得ることができる。
更に、積層セラミックコンデンサ10では、上記実施形態のように外部電極14,15が凹部22,23を超えて素体11の側面S1,S2まで延出していることが好ましいが、この構成は必須ではない。つまり、外部電極14,15が、凹部22,23の少なくとも一部を覆い、凹部22,23内において内部電極12,13に接続されていれば、上記実施形態の効果を得ることができる。
10…積層セラミックコンデンサ
11…素体
12,13…内部電極
14,15…外部電極
16…積層チップ
17…サイドマージン部
18…容量形成部
19…カバー部
20,21…エンドマージン部
22,23…凹部

Claims (13)

  1. 相互に対向する第1及び第2端面と、前記第1及び第2端面の間に延びる側面と、前記第1端面と前記側面との第1稜部に沿って延びる第1凹部と、前記第2端面と前記側面との第2稜部に沿って延びる第2凹部と、前記第1端面及び前記第1凹部に引き出された第1内部電極と、前記第1内部電極に対向し、前記第2端面及び前記第2凹部に引き出された第2内部電極と、を有する素体と、
    前記第1端面側から前記素体を覆う第1外部電極と、
    前記第2端面側から前記素体を覆う第2外部電極と、
    を具備する積層セラミックコンデンサ。
  2. 請求項1に記載の積層セラミックコンデンサであって、
    前記素体は、前記第1及び第2端面との間にそれぞれ前記第1及び第2凹部を形成するように前記側面に沿って配置されたサイドマージン部を更に有する
    積層セラミックコンデンサ。
  3. 請求項1又は2に記載の積層セラミックコンデンサであって、
    前記第1及び第2外部電極が前記側面まで延出する
    積層セラミックコンデンサ。
  4. 請求項1から3のいずれか1項に記載の積層セラミックコンデンサであって、
    前記第1凹部の前記第1端部からの深さが前記第1端面と前記第2内部電極との間隔の30%以下であり、かつ前記第2凹部の前記第2端部からの深さが前記第2端面と前記第1内部電極との間隔の30%以下である
    積層セラミックコンデンサ。
  5. 相互に対向する第1及び第2端面と、前記第1及び第2端面の間に延びる側面と、前記第1端面と前記側面との第1稜部に沿って延びる第1凹部と、前記第2端面と前記側面との第2稜部に沿って延びる第2凹部と、前記第1端面及び前記第1凹部に引き出された第1内部電極と、前記第1内部電極に対向し、前記第2端面及び前記第2凹部に引き出された第2内部電極と、を有する素体を作製し、
    前記第1端面側から前記素体を覆う第1外部電極を形成し、
    前記第2端面側から前記素体を覆う第2外部電極を形成する
    積層セラミックコンデンサの製造方法。
  6. 請求項5に記載の積層セラミックコンデンサの製造方法であって、
    複数のセラミックシートを圧着することにより、前記第1及び第2内部電極が配置された積層チップを作製し、
    前記積層チップに、前記側面に沿って延びるサイドマージン部を形成することにより未焼成の前記素体を作製する
    積層セラミックコンデンサの製造方法。
  7. 請求項6に記載の積層セラミックコンデンサの製造方法であって、
    前記積層チップに形成されたサイドマージン部を乾燥させて収縮させることにより前記第1及び第2凹部を形成する
    積層セラミックコンデンサの製造方法。
  8. 請求項6に記載の積層セラミックコンデンサの製造方法であって、
    未焼成の前記素体に加工を施すことにより前記第1及び第2凹部を形成する
    積層セラミックコンデンサの製造方法。
  9. 請求項8に記載の積層セラミックコンデンサの製造方法であって、
    前記加工はバレル研磨である
    積層セラミックコンデンサの製造方法。
  10. 請求項6に記載の積層セラミックコンデンサの製造方法であって、
    前記サイドマージン部が、前記積層チップよりも焼成時の収縮率が大きい材料で構成された未焼成の前記素体を作製し、
    未焼成の前記素体を焼成することにより前記第1及び第2凹部を形成する
    積層セラミックコンデンサの製造方法。
  11. 請求項10に記載の積層セラミックコンデンサの製造方法であって、
    前記サイドマージン部が、前記積層チップよりも焼成時に液相を生じやすい材料で構成される
    積層セラミックコンデンサの製造方法。
  12. 請求項10又は11に記載の積層セラミックコンデンサの製造方法であって、
    前記サイドマージン部が、前記積層チップよりも原料粉末の割合が少ない材料で構成される
    積層セラミックコンデンサの製造方法。
  13. 請求項10から12のいずれか1項に記載の積層セラミックコンデンサの製造方法であって、
    前記サイドマージン部が、前記積層チップよりも原料粉末の平均粒径が小さい材料で構成される
    積層セラミックコンデンサの製造方法。
JP2016080787A 2016-04-14 2016-04-14 積層セラミックコンデンサ及びその製造方法 Active JP6496271B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016080787A JP6496271B2 (ja) 2016-04-14 2016-04-14 積層セラミックコンデンサ及びその製造方法
US15/488,102 US10141114B2 (en) 2016-04-14 2017-04-14 Multi-layer ceramic capacitor and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016080787A JP6496271B2 (ja) 2016-04-14 2016-04-14 積層セラミックコンデンサ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2017191861A true JP2017191861A (ja) 2017-10-19
JP6496271B2 JP6496271B2 (ja) 2019-04-03

Family

ID=60038419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016080787A Active JP6496271B2 (ja) 2016-04-14 2016-04-14 積層セラミックコンデンサ及びその製造方法

Country Status (2)

Country Link
US (1) US10141114B2 (ja)
JP (1) JP6496271B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102479A (ja) * 2018-12-20 2020-07-02 太陽誘電株式会社 積層セラミック電子部品及びその製造方法
US11410814B2 (en) * 2020-09-04 2022-08-09 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444346B2 (ja) * 2017-12-07 2024-03-06 サムソン エレクトロ-メカニックス カンパニーリミテッド. 積層セラミックキャパシタ
US10971308B2 (en) * 2018-07-20 2021-04-06 Samsung Electro-Mechanics Co., Ltd Multilayer capacitor
US11094462B2 (en) * 2018-10-22 2021-08-17 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
JP7024756B2 (ja) * 2019-03-28 2022-02-24 株式会社村田製作所 積層セラミックコンデンサ
JP2021166219A (ja) * 2020-04-06 2021-10-14 株式会社村田製作所 積層セラミックコンデンサおよび半導体装置
JP2022034315A (ja) * 2020-08-18 2022-03-03 株式会社村田製作所 積層セラミック電子部品の製造方法及び積層セラミック電子部品
KR20220050485A (ko) * 2020-10-16 2022-04-25 삼성전기주식회사 적층형 커패시터
TWI775280B (zh) * 2021-01-20 2022-08-21 力晶積成電子製造股份有限公司 電容集成結構、電容單元及其製造方法
JP2022133831A (ja) * 2021-03-02 2022-09-14 Tdk株式会社 積層コンデンサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189974A (en) * 1962-04-12 1965-06-22 Sprague Electric Co Process for capacitor
JPH06140277A (ja) * 1992-10-23 1994-05-20 Tokin Corp 積層セラミックコンデンサ
JPH09266133A (ja) * 1996-03-27 1997-10-07 Taiyo Yuden Co Ltd 積層電子部品
JP2015046494A (ja) * 2013-08-28 2015-03-12 京セラ株式会社 チップ型電子部品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018701A1 (fr) * 1998-09-30 2000-04-06 Tdk Corporation Matiere ceramique dielectrique non reduite, procede de production de ladite matiere et condensateur ceramique a couches
KR101141457B1 (ko) * 2010-12-08 2012-05-04 삼성전기주식회사 적층 세라믹 콘덴서 및 그 제조방법
KR101187939B1 (ko) 2011-03-09 2012-10-08 삼성전기주식회사 적층 세라믹 커패시터 및 그 제조방법
JP5780169B2 (ja) 2011-03-14 2015-09-16 株式会社村田製作所 積層セラミック電子部品の製造方法
KR101141361B1 (ko) * 2011-03-14 2012-05-03 삼성전기주식회사 적층형 세라믹 콘덴서 및 그 제조방법
JP5271377B2 (ja) * 2011-04-18 2013-08-21 太陽誘電株式会社 積層セラミックコンデンサ
KR20130039400A (ko) 2011-10-12 2013-04-22 삼성전기주식회사 적층 세라믹 전자 부품 및 그 제조 방법
KR101681358B1 (ko) * 2013-04-08 2016-11-30 삼성전기주식회사 적층 세라믹 커패시터 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189974A (en) * 1962-04-12 1965-06-22 Sprague Electric Co Process for capacitor
JPH06140277A (ja) * 1992-10-23 1994-05-20 Tokin Corp 積層セラミックコンデンサ
JPH09266133A (ja) * 1996-03-27 1997-10-07 Taiyo Yuden Co Ltd 積層電子部品
JP2015046494A (ja) * 2013-08-28 2015-03-12 京セラ株式会社 チップ型電子部品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102479A (ja) * 2018-12-20 2020-07-02 太陽誘電株式会社 積層セラミック電子部品及びその製造方法
JP7280037B2 (ja) 2018-12-20 2023-05-23 太陽誘電株式会社 積層セラミック電子部品及びその製造方法
US11410814B2 (en) * 2020-09-04 2022-08-09 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component

Also Published As

Publication number Publication date
JP6496271B2 (ja) 2019-04-03
US10141114B2 (en) 2018-11-27
US20170301471A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6496271B2 (ja) 積層セラミックコンデンサ及びその製造方法
JP6496270B2 (ja) セラミック電子部品及びその製造方法
JP7122818B2 (ja) 積層セラミック電子部品及びその製造方法
JP7019781B2 (ja) 積層セラミックコンデンサ及びその製造方法
JP7167227B2 (ja) 積層セラミックコンデンサ
JP6835561B2 (ja) 積層セラミックコンデンサ及びその製造方法
JP2018067566A (ja) 積層セラミックコンデンサ及びその製造方法
US11049660B2 (en) Multi-layer ceramic electronic component and method of producing the same
KR20200099084A (ko) 적층 세라믹 콘덴서 및 그 제조 방법
CN109712812B (zh) 层叠陶瓷电容器和层叠陶瓷电容器的制造方法
US20170287642A1 (en) Multi-layer ceramic electronic component and method of producing the same
JP6329978B2 (ja) 積層セラミック電子部品の製造方法
CN112242245A (zh) 层叠陶瓷电子部件和层叠陶瓷电子部件的制造方法
JP6851174B2 (ja) 積層セラミックコンデンサ
JP2019117817A (ja) 積層セラミック電子部品の製造方法
JP7385374B2 (ja) 積層セラミック電子部品
JP7058987B2 (ja) 積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法
JP2021064637A (ja) 積層セラミック電子部品の製造方法
JP7322240B2 (ja) 積層セラミック電子部品及びその製造方法
JP7459812B2 (ja) 積層セラミックコンデンサおよび積層セラミックコンデンサの製造方法
JP2022020865A (ja) 積層セラミック電子部品
JP2021093552A (ja) 積層セラミックコンデンサ
JP2021019186A (ja) 積層セラミック電子部品及び積層セラミック電子部品の製造方法
JP2021027087A (ja) 積層セラミック電子部品及び部品実装基板
JP2021086893A (ja) 積層セラミック電子部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190308

R150 Certificate of patent or registration of utility model

Ref document number: 6496271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250