以下、本発明をさらに詳細に説明するために実施例を示すが、本発明は実施例に限定されるものではない。
実施例1 Fc結合性タンパク質FcR5aへの変異導入およびライブラリーの作製
特開2015−086216号公報に記載の方法で作製したFc結合性タンパク質FcR5a(配列番号6)をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として特開2015−086216号公報に記載の方法で作製した発現ベクターpET−FcR5a(当該発現ベクターのうちFcR5aをコードするポリヌクレオチドの配列を配列番号7に示す)を用いてエラープローンPCRを行なった。エラープローンPCRは、表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、60℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
実施例2 熱安定化Fc結合性タンパク質のスクリーニング
(1)実施例1で作製したランダム変異ライブラリー(形質転換体)を、50μg/mLのカナマイシンを含む2YT液体培地(ペプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)200μLに接種し、96穴ディープウェルプレートを用いて、30℃で一晩振とう培養した。
(2)培養後、5μLの培養液を500μLの0.05mMのIPTG(isopropyl−β−D−thiogalactopyranoside)、0.3%のグリシンおよび50μg/mLのカナマイシンを含む2YT液体培地に植え継ぎ、96穴ディープウェルプレートを用いて、さらに20℃で一晩振とう培養した。
(3)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて20倍に希釈し、更に0.1Mの炭酸ナトリウム緩衝液(pH10.0)で20倍に希釈した。その後、希釈した溶液を40℃で15分間熱処理を行ない、1Mのトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(4)(3)の熱処理を行なったときのFc結合性タンパク質の抗体結合活性と、(3)の熱処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、それぞれ下記に示すELISA法にて測定し、熱処理を行なった時のFc結合性タンパク質の抗体結合活性を、熱処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4−1)ヒト抗体であるガンマグロブリン製剤(化学及血清療法研究所製)を、96穴マイクロプレートのウェルに1μg/wellで固定化し(4℃で18時間)、固定化終了後、2%(w/v)のSKIM MILK(BD製)および150mMの塩化ナトリウムを含んだ20mMのトリス塩酸緩衝液(pH7.4)によりブロッキングした。
(4−2)洗浄緩衝液(0.05%[w/v]のTween 20、150mMのNaClを含む20mM Tris−HCl緩衝液(pH7.4))で洗浄後、抗体結合活性を評価するFc結合性タンパク質を含む溶液を添加し、Fc結合性タンパク質と固定化ガンマグロブリンとを反応させた(30℃で1時間)。
(4−3)反応終了後、前記洗浄緩衝液で洗浄し、100ng/mLに希釈したAnti−6His抗体(Bethyl Laboratories製)を100μL/wellで添加した。
(4−4)30℃で1時間反応させ、前記洗浄緩衝液で洗浄した後、TMB Peroxidase Substrate(KPL製)を50μL/wellで添加した。1Mのリン酸を50μL/wellで添加することで発色を止め、マイクロプレートリーダー(テカン製)にて450nmの吸光度を測定した。
(5)(4)の方法で約2700株の形質転換体を評価し、その中からFcR5aと比較して熱安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(6)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を、チェーンターミネータ法に基づくBig Dye Terminator Cycle Sequencing FS read Reaction kit(ライフサイエンス製)を用いてサイクルシークエンス反応に供し、全自動DNAシークエンサーABI Prism 3700 DNA analyzer(ライフサイエンス製)にてヌクレオチド配列を解析した。なお当該解析の際、配列番号2(5’−TAATACGACTCACTATAGGG−3’)または配列番号3(5’−TATGCTAGTTATTGCTCAG−3’)に記載の配列からなるオリゴヌクレオチドをシークエンス用プライマーとして使用した。
(5)で選択した形質転換体が発現するFc結合性タンパク質の、FcR5aに対するアミノ酸置換位置および熱処理後の残存活性(%)をまとめたものを表2に示す。配列番号6に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を含み、但し当該33番目から208番目までのアミノ酸残基において、Phe29Ile(この表記は、配列番号1の29番目(配列番号6では45番目)のフェニルアラニンがイソロイシンに置換されていることを表す、以下同様)、Phe29Leu、Glu39Gly、Gln48Arg、Tyr51Ser、Phe61Tyr、Asp77Gly、Asp82Glu、Gln90Arg、Gln112Leu、Val117Glu、Lys119Asn、Lys119Glu、Thr140Ile、Leu142Gln、Phe171Ser、Leu175Arg、Asn180SerおよびIle188Valのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR5aと比較し熱安定性が向上しているといえる。
表2に示した、FcR5aからアミノ酸置換されたFc結合性タンパク質のうち、Phe29IleおよびVal117Gluのアミノ酸置換が生じたFc結合性タンパク質をFcR7aと命名し、FcR7aをコードするポリヌクレオチドを含む発現ベクターをpET−FcR7aと命名した。FcR7aのアミノ酸配列を配列番号8に、FcR7aをコードするポリヌクレオチドの配列を配列番号9に示す。なお配列番号8において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR7aのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号8において、Phe29Ileのイソロイシンは45番目、Val117Gluのグルタミン酸は133番目の位置にそれぞれ存在する。
実施例3 改良Fc結合性タンパク質の作製
実施例2で判明した、Fc結合性タンパク質の熱安定性向上に関与するアミノ酸置換をFcR7aに集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)から(d)に示す4種類の改良Fc結合性タンパク質を作製した。
(a)FcR7aに対し、さらにPhe171Serのアミノ酸置換を行なったFcR8
(b)FcR8に対し、さらにGln48Argのアミノ酸置換を行なったFcR9
(a)FcR8
実施例2で明らかとなった、熱安定性向上に関与するアミノ酸置換の中から、Phe29Ile、Val117GluおよびPhe171Serを選択し、それらの置換をFcR5a(特開2015−086216号公報)に集積したFcR8を作製した。具体的には、FcR7aをコードするポリヌクレオチドに対して、Phe171Serを生じさせる変異導入を行なうことにより、FcR8を作製した。
(a−1)実施例2で取得した、pET−FcR7aを鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号2および配列番号10(5’−ACCAGCCCACGGCAGGAATAGCTGCCGCTG−3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm8Fとした。
(a−2)実施例2で取得した、pET−FcR7aを鋳型とし、配列番号11(5’−GACAGCGGCAGCTATTCCTGCCGTGGGCTG−3’)および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a−1)と同様に行なった。精製したPCR産物をm8Rとした。
(a−3)(a−1)および(a−2)で得られた2種類のPCR産物(m8F、m8R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m8Fとm8Rを連結したPCR産物m8pを得た。
(a−4)(a−3)で得られたPCR産物m8pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR7aに1箇所アミノ酸置換を導入したFcR8をコードするポリヌクレオチドを作製した。
(a−5)(a−4)で得られたポリヌクレオチドを制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR5aに対して3箇所(野生型Fc結合性タンパク質に対して8箇所)アミノ酸置換したポリペプチドである、FcR8をコードするポリヌクレオチドを含むプラスミドpET−FcR8を得た。
(a−7)pET−FcR8のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR8のアミノ酸配列を配列番号12に、前記FcR8をコードするポリヌクレオチドの配列を配列番号13に示す。なお配列番号12において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR8のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号12において、Phe29Ileのイソロイシンは45番目、Val117Gluのグルタミン酸は133番目、Phe171Serのセリンは187番目の位置にそれぞれ存在する。
(b)FcR9
実施例2で明らかとなった、熱安定性向上に関与するアミノ酸置換の中から、Phe29Ile、Gln48Arg、Val117GluおよびPhe171Serを選択し、それらの置換をFcR5a(特開2015−086216号公報)に集積したFcR9を作製した。具体的には、FcR8をコードするポリヌクレオチドに対して、Gln48Argを生じさせる変異導入を行なうことにより、FcR9を作製した。
(b−1)(a)で作製した、pET−FcR8を鋳型とし、配列番号3および配列番号14(5’−GTGACCCTTAAATGCCGGGGCGCGTATAGC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a−1)と同様の方法でPCRを行なった。精製したPCR産物をm9Fとした。
(b−2)(a)で作製したpET−FcR8を鋳型とし、配列番号2および配列番号15(5’−CCGGGCTATACGCGCCCCGGCATTTAAGGG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a−1)と同様の方法でPCRを行なった。精製したPCR産物をm9Rとした。
(b−3)(b−1)および(b−2)で得られた2種類のPCR産物(m9F、m9R)を混合後、(a−3)と同様の方法にてPCRを行ない、m9Fとm9Rを連結した。得られたPCR産物をm9pとした。
(b−4)(b−3)で得られたPCR産物m9pを鋳型とし、配列番号16(5’―TAGCCATGGGCATGCGTACCGAAGATCTGCCGAAAGC―3’)および配列番号17(5’―CCCAAGCTTAATGATGATGATGATGATGGCCCCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC―3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、(a−4)と同様の方法でPCRを行なった。これによりFcR9をコードするポリヌクレオチドを作製した。
(b−5)(b−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR5aに対して4箇所(野生型Fc結合性タンパク質に対して9箇所)アミノ酸置換したポリペプチドである、FcR9をコードするポリヌクレオチドを含むプラスミドpET−FcR9を得た。
(b−7)pET−FcR9のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR9のアミノ酸配列を配列番号18に、前記FcR9をコードするポリヌクレオチドの配列を配列番号19に示す。なお、配列番号18において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR9のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号18において、Phe29Ileのイソロイシンは45番目、Gln48Argのアルギニンは64番目、Val117Gluのグルタミン酸は133番目、Phe171Serのセリンは187番目の位置にそれぞれ存在する。
実施例4 Fc結合性タンパク質の酸安定性評価
(1)特開2015−086216号公報に記載の方法で作製した野生型Fc結合性タンパク質(配列番号4)、実施例2で選択したFc結合性タンパク質(FcR7a)、および実施例3で作製したFc結合性タンパク質(FcR8、FcR9)を発現する形質転換体を、それぞれ50μg/mLのカナマイシンを含む3mLの2YT液体培地に接種し、37℃で一晩、好気的に振とう培養することで前培養を行なった。
(2)50μg/mLのカナマイシンを添加した20mLの2YT液体培地(ペプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)に前培養液を200μL接種し、37℃で好気的に振とう培養を行なった。
(3)培養開始1.5時間後、培養温度を20℃に変更して30分間振とう培養した。その後、終濃度0.01mMとなるようIPTGを添加し、引き続き20℃で一晩、好気的に振とう培養した。
(4)培養終了後、遠心分離により集菌し、BugBuster Protein extraction kit(タカラバイオ製)を用いてタンパク質抽出液を調製した。
(5)(4)で調製したタンパク質抽出液中の野生型Fc結合性タンパク質、FcR7a、FcR8およびFcR9の抗体結合活性を、実施例2(4)に記載のELISA法を用いて測定した。この時、市販のFcγRIIIaの細胞外領域(R&Dテクノロジーズ製:4325−FC−050)を用いて検量線を作製し、濃度測定を行なった。
(6)各Fc結合性タンパク質の濃度が30μg/mLになるよう純水で希釈後、前記希釈した溶液100μLと0.1Mのグリシン塩酸緩衝液(pH3.0)200μLとを混合し、30℃で2時間静置した。
(7)グリシン塩酸緩衝液(pH3.0)による酸処理を行なった後のタンパク質の抗体結合活性と、前記酸処理を行なわなかったときのタンパク質の抗体結合活性を、実施例2(4)に記載のELISA法によって測定した。その後、酸処理を行なった場合の抗体結合活性を、酸処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出した。
結果を表6に示す。今回評価したFc結合性タンパク質(FcR7a、FcR8、FcR9)は、野生型Fc結合性タンパク質と比較し残存活性が高かった。このことから、当該改良Fc結合性タンパク質の酸安定性が野生型に比べて向上していることが確認された。
実施例5 システインタグを付加したFcR5a(FcR5aCys)の作製
(1)特開2015−086216号公報に記載の方法で作製したpET−FcR5aを鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号16および配列番号20(5’−CCCAAGCTTATCCGCAGGTATCGTTGCGGCACCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC−3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことで実施した。
(2)(1)で得られたポリヌクレオチドを精製し、制限酵素NcoIとHindIIIで消化後、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、当該ライゲーション産物を用いて大腸菌BL21(DE3)株を形質転換した。
(3)得られた形質転換体を50μg/mLのカナマイシンを含むLB培地にて培養後、QIAprep Spin Miniprep kit(キアゲン製)を用いて、発現ベクターpET−FcR5aCysを抽出した。
(4)pET−FcR5aCysのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。発現ベクターpET−FcR5aCysで発現されるポリペプチドのアミノ酸配列を配列番号21に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号22にそれぞれ示す。なお配列番号21において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR5aのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目のグリシン(Gly)から216番目のグリシン(Gly)までがシステインタグ配列である。
実施例6 システインタグを付加したFcR9(FcR9Cys)の作製
(1)実施例2(b)で作製したpET−FcR9を鋳型とし、配列番号16および配列番号20に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、実施例5(1)と同様の方法でPCRを行なった。
(2)実施例5(2)と同様な方法で大腸菌BL21(DE3)株を形質転換した。
(3)得られた形質転換体を実施例5(3)と同様な方法で培養後、QIAprep Spin Miniprep kit(キアゲン製)を用いて、発現ベクターpET−FcR9Cysを抽出した。
(4)pET−FcR9Cysのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
発現ベクターpET−FcR9Cysで発現されるポリペプチドのアミノ酸配列を配列番号23に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号24に、それぞれ示す。なお配列番号23において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR9のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目のグリシン(Gly)から216番目のグリシン(Gly)までがシステインタグ配列である。
実施例7 FcR5aCysの調製
(1)実施例5で作製したFcR5aCysを発現する形質転換体を2Lのバッフルフラスコに入った50μg/mLのカナマイシンを含む400mLの2YT液体培地(ペプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)に接種し、37℃で一晩、好気的に振とう培養することで前培養を行なった。
(2)グルコース10g/L、酵母エキス20g/L、リン酸三ナトリウム十二水和物3g/L、リン酸水素二ナトリウム十二水和物9g/L、塩化アンモニウム1g/Lおよび硫酸カナマイシン50mg/Lを含む液体培地1.8Lに、(1)の培養液180mLを接種し、3L発酵槽(バイオット製)を用いて本培養を行なった。温度30℃、pH6.9から7.1、通気量1VVM、溶存酸素濃度30%飽和濃度の条件に設定し、本培養を開始した。pHの制御には酸として50%リン酸、アルカリとして14%アンモニア水をそれぞれ使用し、溶存酸素の制御は撹拌速度を変化させることで制御し、撹拌回転数は下限500rpm、上限1000rpmに設定した。培養開始後、グルコース濃度が測定できなくなった時点で、流加培地(グルコース248.9g/L、酵母エキス83.3g/L、硫酸マグネシウム七水和物7.2g/L)を溶存酸素(DO)により制御しながら加えた。
(3)菌体量の目安として600nmの吸光度(OD600nm)が約150に達したところで培養温度を25℃に下げ、設定温度に到達したことを確認した後、終濃度が0.5mMになるようIPTGを添加し、引き続き25℃で培養を継続した。
(4)培養開始から約48時間後に培養を停止し、培養液を4℃で8000rpm、20分間の遠心分離により菌体を回収した。
(5)回収した菌体を20mMのトリス塩酸緩衝液(pH7.0)に5mL/1g(菌体)となるように懸濁し、超音波発生装置(インソネーター201M(商品名)、久保田商事製)を用いて、4℃で約10分間、約150Wの出力で菌体を破砕した。菌体破砕液は4℃で20分間、8000rpmの遠心分離を2回行ない、上清を回収した。
(6)(5)で得られた上清を、あらかじめ20mMのトリス塩酸緩衝液(pH7.0)で平衡化した140mLのTOYOPEARL CM−650M(東ソー製)を充填したVL32×250カラム(メルクミリポア製)に流速5mL/分でアプライした。平衡化に用いた緩衝液で洗浄後、0.5Mの塩化ナトリウムを含む20mMのトリス塩酸緩衝液(pH7.0)で溶出した。
(7)(6)で得られた溶出液を、あらかじめ150mMの塩化ナトリウムを含む20mMのトリス塩酸緩衝液(pH7.4)で平衡化したIgGセファロース(GEヘルスケア製)90mLを充填したXK26/20カラムカラム(GEヘルスケア製)にアプライした。平衡化に用いた緩衝液で洗浄後、0.1Mのグリシン塩酸緩衝液(pH3.0)で溶出した。なお溶出液は、溶出液量の1/4量の1Mトリス塩酸緩衝液(pH8.0)を加えることでpHを中性付近に戻した。
前記精製により、高純度のFcR5aCysを約20mg得た。
実施例8 FcR5a固定化ゲルの作製と抗体分離
(1)2mLの分離剤用親水性ビニルポリマー(東ソー製:トヨパール)の表面の水酸基をヨードアセチル基で活性化後、実施例7で調製したFcR5aCysを4mg反応させることにより、FcR5a固定化ゲルを得た。
(2)(1)で調製したFcR5a固定化ゲル0.5mLをφ4.6mm×75mmのステンレスカラムに充填した。
(3)FcR5a固定化ゲルを充填したカラムをAKTA Explorer(GEヘルスケア製)につなげ、20mMの酢酸緩衝液(pH4.6)で平衡化した。
(4)20mMの酢酸緩衝液(pH4.6)で0.5mg/mLに希釈したモノクローナル抗体(リツキサン、全薬工業製)を流速0.2mL/minにて0.4mLアプライした。
(5)流速0.2mL/minのまま平衡化緩衝液で25分洗浄後、20mMのグリシン塩酸緩衝液(pH3.0)によるpHグラジエント(25分で20mMのグリシン塩酸緩衝液(pH3.0)が100%となるグラジエント)で吸着したモノクローナル抗体を溶出した。
結果(溶出パターン)を図2に示す。モノクローナル抗体はFcR5aと相互作用するため、ゲルろ過クロマトグラフイーのような単一のピークではなく、複数のピークに分離された。
実施例9 FcR5a固定化ゲルで分離した抗体のADCC(抗体依存性細胞傷害作用)活性測定
(1)実施例8に記載の溶出条件でモノクローナル抗体を分離し、図2に記載の溶出パターン中のフラクションA(FrA)およびフラクションB(FrB)の部分を分取した。
(2)分取したFrAおよびFrBを限外ろ過膜(メルクミリポア社)で濃縮しながら、PBS(Phosphate Buffered Saline)(pH7.4)に緩衝液を交換した。
(3)濃縮、緩衝液交換したFrAおよびFrBに含まれる抗体、ならびに分離前のモノクローナル抗体の濃度を280nmの吸光度で測定した。
(4)以下に示す方法で、FrAおよびFrBに含まれる抗体が有するADCC活性を測定した。
(4−1)1.4mLのLow IgG Serumと33.6mLのRPMI1640培地とを混合して調製したADCC Assay Bufferを用いて、FrAおよびFrBに含まれる抗体ならびに分離前のモノクローナル抗体を3μg/mLから1/3希釈で8段階の希釈系列を調製した。
(4−2)Raji細胞をADCC Assay Bufferにて約5×105cells/mLに調製し、96wellプレート(3917:コーニング社)に25μL/wellで加えた。
(4−3)Raji細胞を加えたwellに(4−1)で調製したフラクションA、フラクションB、分離前のモノクローナル抗体、ブランク(ADCC Assay Bufferのみ)を25μL/well加えた。
(4−4)Effector細胞(プロメガ製)をADCC Assay Bufferにて約3.0×105cells/mLに調製し、Raji細胞および抗体を加えたwellに25μL/wellで加えた。その後、CO2インキュベーター(5%CO2、37℃)にて6時間静置した。
(4−5)96wellプレートを室温で5分から30分静置した後、Luciferase Assay Reagent(プロメガ製)を75μL/wellで加えた。室温で30分反応させたのち、GloMax Multi Detection System(プロメガ製)で発光を測定した。
実施例8に記載の溶出条件で分取したFrAおよびFrBならびに分離前のモノクローナル抗体の発光強度を比較した結果を図3に示す。なお図3の結果は、測定した発光強度からブランクの発光強度を引いた値を示しており、発光強度が高いほど、ADCC活性が高いことを意味している。
FrAは分離前のモノクローナル抗体とほぼ同程度の発光強度であることからADCC活性はほぼ同等といえる。一方、FrBは分離前のモノクローナル抗体と比べて約3.2倍、FrAに比べても2.5倍に向上していた。つまり、FrBは分離前のモノクローナル抗体およびFrAと比べてADCC活性が高いことが分かる。
実施例10 FcR5a固定化ゲルで分離した抗体の糖鎖解析
(1)実施例9(1)で分取したFrAおよびFrB、ならびに分離前のモノクローナル抗体を100℃、10分の熱処理により変性後、グリコアミダーゼA/ペプシンおよびプロナーゼで順次処理し、ゲルろ過法による精製操作を経て糖鎖画分を取得した。
(2)(1)で得られた糖鎖をエバポレーターにて濃縮・乾燥後、酢酸溶媒下、2−アミノピリジン、次いでジメチルアミンボランを順次作用させて蛍光ラベル化糖鎖とし、ゲルろ過法により精製した。
(3)(2)で得られた蛍光ラベル化糖鎖を陰イオン交換カラム(TSKgel DEAE−5PW、φ7.5mm×7.5cm:東ソー製)にて、中性糖鎖画分とモノシアリル化糖鎖画分に分離した。
(4)(3)で得られた中性糖鎖画分とモノシアリル化糖鎖画分をODSカラムを用いて、個々の糖鎖に単離した。MALDI−TOF−MS分析により単離した糖鎖の分子量情報を取得後、ODSカラムクロマトグラフのリテンションタイムと照らし合わせて糖鎖構造を帰属した。
帰属した糖鎖構造(N1からN6、M1、M2およびD1)を図4に、中性糖鎖の組成比を表8に、モノシアリル化およびジシアリル化糖鎖の組成比を表9にそれぞれ示す。糖鎖構造N4+N4’およびN6を有した抗体は、分離前およびFrAと比較してFrBで増加していた。一方、N1、N2+N3’、N3およびN5を有した抗体は、分離前およびFrAと比較してFrBで減少していた。すなわちN4+N4’およびN6糖鎖を持つ抗体はFcR5aと強く結合し、N1、N2+N3’、N3およびN5を有した抗体はFcR5aとの結合が弱いことがわかる。またM1、M2およびD1を有した抗体は、分離前およびFrAと比較してFrBで増加していた。すなわちM1、M2およびD1糖鎖を持つ抗体はFcR5aと強く結合することがわかる。
前記結果と実施例9の結果とを合わせると、分離前およびFrAと比較してFrBで増加した糖鎖構造を有する抗体はADCC活性が高いことがわかる。すなわち、FcR5a固定化ゲルは、抗体が有する糖鎖構造の違いを識別でき、かつ前記識別に基づきADCC活性の高い抗体を分離することができることがわかる。
実施例11 FcR9固定化ゲルの作製と抗体分離
(1)実施例6で作製したFcR9Cysを発現する形質転換体を用いて、実施例7(1)から(4)と同様な方法で培養を行なった。
(2)実施例7と同様な方法で精製し、高純度のFcR9Cysを約10mg得た。
(3)実施例8(1)と同様な方法でFcR9Cys固定化ゲルを得た後、当該ゲル0.5mLをφ4.0mm×40mmのステンレスカラムに充填した。
(4)FcR9固定化ゲルを充填したカラムを高速液体クロマトグラフィー装置(東ソー製)につなげ、20mMの酢酸緩衝液(pH4.5)で平衡化した。
(5)PBS(Phosphate Buffered Saline)(pH7.4)で4.0mg/mLに希釈したモノクローナル抗体(リツキサン、全薬工業製)を流速0.3mL/minにて0.15mLアプライした。
(6)流速0.3mL/minのまま平衡化緩衝液で2分洗浄後、10mMのグリシン塩酸緩衝液(pH3.0)によるpHグラジエント(38分で10mMのグリシン塩酸緩衝液(pH3.0)が100%となるグラジエント)で吸着したモノクローナル抗体を溶出した。
結果(溶出パターン)を図5に示す。モノクローナル抗体はFcR9と相互作用するため、ゲルろ過クロマトグラフィーのような単一のピークではなく、複数のピークに分離された。
実施例12 FcR9固定化ゲルで分離した抗体のADCC活性測定
(1)実施例11の溶出条件でモノクローナル抗体を分離し、図5に記載の溶出パターン中のフラクションA(FrA)、フラクションB(FrB)およびフラクションC(FrC)の部分を分取した。
(2)FrA、FrBおよびFrCに含まれる抗体、ならびに分離前のモノクローナル抗体の濃度を280nmの吸光度で測定し、実施例9(4)と同様な方法でADCC活性を測定した。
結果を図6に示す。なお図6の結果は、測定した発光強度からブランクの発光強度を引いた値を示しており、発光強度が高いほど、ADCC活性が高いことを意味している。
FrAおよびFrBは分離前のモノクローナル抗体よりADCC活性がやや低いといえる。一方、FrCは分離前のモノクローナル抗体と比べてADCC活性が約1.6倍に向上していた。つまり溶出の遅いFrCは溶出の早いFrAおよびFrBならびに分離前のモノクローナル抗体と比べてADCC活性が高いことがわかる。また実施例10より、本発明のFc結合性タンパク質を固定化したゲルは、抗体が有する糖鎖構造の違いを識別できることから、FrCに含まれるFcR9と強く結合する抗体は、高いADCC活性を有した糖鎖構造を有する抗体であることが示唆される。
実施例13 FcR9への変異導入およびライブラリーの作製
実施例3(b)で作製したFcR9をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例3(b)で作製した発現ベクターpET−FcR9を用いてエラープローンPCRを行なった。エラープローンPCRは、pET−FcR9を鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをプライマーとした他は表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
実施例14 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例13で作製したランダム変異ライブラリーを実施例2(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて10倍に希釈し、等量の60mMの水酸化ナトリウム溶液と混合し、30℃で1.5時間静置することでアルカリ処理した。その後、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法にてそれぞれ測定し、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR9と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例2(5)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
(4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR9に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表10に示す。配列番号18に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を含み、但し当該33番目から208番目までのアミノ酸残基において、Met18Ile(この表記は、配列番号1の18番目(配列番号18では34番目)のメチオニンがイソロイシンに置換されていることを表す、以下同様)、Glu21Lys、Glu21Gly、Leu23Met、Gln33Pro、Lys46Glu、Phe61Tyr、Glu64Gly、Ser65Arg、Ser68Pro、Asp77Val、Asp77Glu、Val81Met、Asp82Ala、Gln101Leu、Glu103Val、His105Arg、Glu120Val、Ser178ArgおよびAsn180Lysのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR9と比較しアルカリ安定性が向上しているといえる。
実施例15 改良Fc結合性タンパク質の作製
実施例14で判明した、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換をFcR9に集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)および(b)に示す2種類の改良Fc結合性タンパク質を作製した。
(a)FcR9に対し、さらにGlu21Gly、Leu23Met、Gln33ProおよびSer178Argのアミノ酸置換を行なったFcR12
(b)FcR9に対し、さらにGlu21Gly、Leu23Met、Gln33Pro、Ser68ProおよびSer178Argのアミノ酸置換を行なったFcR13
以下、各改良Fc結合性タンパク質の作製方法を詳細に説明する。
(a)FcR12
実施例14で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中からGlu21Gly、Leu23MetおよびSer178Argを選択し、それらの置換をFcR9(実施例3(b))に集積したFcR12を作製した。具体的には、実施例14で得られたGln33ProおよびSer178Argの変異を含んだポリヌクレオチドに対して、Glu21GlyおよびLeu23Metを生じさせる変異導入を行なうことにより、FcR12を作製した。
(a−1)実施例14で取得した、FcR9にGln33ProおよびSer178Argの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号3および配列番号25(5’−CTAGCCATGGGCATGCGTACCGGAGATATGCCGAAAGCGGAG−3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、鋳型とプライマー以外は表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm12pとした。
(a−2)(a−1)で得られたm12pを制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a−3)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR9に対して4箇所(野生型Fc結合性タンパク質に対して13箇所)アミノ酸置換したポリペプチドである、FcR12をコードするポリヌクレオチドを含むプラスミドpET−FcR12を得た。
(a−4)pET−FcR12のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR12のアミノ酸配列を配列番号26に、前記FcR12をコードするポリヌクレオチドの配列を配列番号27に示す。なお配列番号26において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR12のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号26において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。
(b)FcR13
実施例14で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Glu21Gly、Leu23Met、Gln33Pro、Ser68ProおよびSer178Argを選択し、それらの置換をFcR9(実施例3(b))に集積したFcR13を作製した。具体的には、FcR12をコードするポリヌクレオチドに対して、Ser68Proを生じさせる変異導入を行なうことにより、FcR13を作製した。
(b−1)(a)で作製した、pET−FcR12を鋳型とし、配列番号3および配列番号28(5’−CACAATGAAAGCCTGATTCCCAGCCAGGCG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm13Fとした。
(b−2)(a)で作製したpET−FcR12を鋳型とし、配列番号2および配列番号29(5’−GTAGCTGCTCGCCTGGCTGGGAATCAGGCT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(b−1)と同様の方法でPCRを行なった。精製したPCR産物をm13Rとした。
(b−3)(b−1)および(b−2)で得られた2種類のPCR産物(m13F、m13R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行ない、最後に72℃で5分間熱処理するPCRを行ない、m13Fとm13Rを連結した。得られたPCR産物をm13pとした。
(b−4)(b−3)で得られたPCR産物m13pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、PCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR12に2箇所アミノ酸置換を導入したFcR13をコードするポリヌクレオチドを作製した。
(b−5)(b−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR9に対して5箇所(野生型Fc結合性タンパク質に対して14箇所)アミノ酸置換したポリペプチドである、FcR13をコードするポリヌクレオチドを含むプラスミドpET−FcR13を得た。
(b−7)pET−FcR13のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR13のアミノ酸配列を配列番号30に、前記FcR13をコードするポリヌクレオチドの配列を配列番号31に示す。なお、配列番号30において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR13のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号30において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。
実施例16 Fc結合性タンパク質のアルカリ安定性評価
(1)特開2015−086216号公報に記載の方法で作製したFc結合性タンパク質(FcR5a)、実施例3(b)で作製したFc結合性タンパク質(FcR9)、および実施例15で作製したFc結合性タンパク質(FcR12、FcR13)を発現する形質転換体を、実施例4の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR5a、FcR9、FcR12およびFcR13を調製した。
(2)(1)で調製したタンパク質抽出液中のFcR5a、FcR9、FcR12およびFcR13の抗体結合活性を、実施例2(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR9を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が30μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと40mMの水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
結果を表11に示す。実施例15で作製したFcR12、FcR13はFcR5a、FcR9と比較し残存活性が高いことから、FcR12およびFcR13のアルカリ安定性がFcR5a、FcR9に比べて向上していることが確認された。
実施例17 FcR13への変異導入およびライブラリーの作製
実施例15(b)で作製したFcR13をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例15(b)で作製した発現ベクターpET−FcR13を用いてエラープローンPCRを行なった。エラープローンPCRは、pET−FcR13を鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをプライマーとした他は表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
実施例18 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例17で作製したランダム変異ライブラリーを実施例2(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を以下に示す(i)または(ii)の方法でアルカリ処理した。なおアルカリ処理後は、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(i)純水にて5倍に希釈し、等量の80mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置
(ii)純水にて20倍に希釈し、等量の60mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法にてそれぞれ測定した。その後、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR13と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例2(6)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
(4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR13に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表12(アルカリ処理は(i)の条件)および表13(アルカリ処理は(ii)の条件)に示す。配列番号30に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基(配列番号1の17番目から192番目に該当)を含み、但し当該33番目から208番目までのアミノ酸残基において、Met18Lys(この表記は、配列番号1の18番目(配列番号30では34番目)のメチオニンがリジンに置換されていることを表す、以下同様)、Met18Thr、Leu(Met)23Arg(この表記は配列番号1番の23番目(配列番号30では39番目)のロイシンが一度メチオニンに置換されさらにアルギニンに置換されたことを表す、以下同様)、Lys46Ile、Gln(Arg)48Trp、Tyr51His、Tyr51Asn、Glu54Asp、Glu54Gly、Asn56Ser、Asn56Ile、Phe61Leu、Phe61Tyr、Glu64Gly、Ile67Leu、Ser69Asn、Ala71Thr、Tyr74Phe、Phe(Leu)75Arg、Ala78Glu、Val81Glu、Asp82Glu、Glu86Asp、Gln90Leu、Leu93Gln、Pro114Leu、Lys119Asn、Lys119Tyr、His125Gln、Ser130Thr、Lys138Arg、Gln143His、Gly147Val、Lys149Met、Phe151Tyr、His153Tyr、Tyr158Phe、Lys161Arg、Ser169Gly、Asn180Ser、Thr185Ala、Asn187Ile、Asn187LysおよびThr191Alaのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR13と比較しアルカリ安定性が向上しているといえる。
表12に示した、FcR13からアミノ酸置換されたFc結合性タンパク質のうち、Gly147Valのアミノ酸置換が生じたFc結合性タンパク質をFcR14と命名し、FcR14をコードするポリヌクレオチドを含む発現ベクターをpET−FcR14と命名した。FcR14のアミノ酸配列を配列番号32に、FcR14をコードするポリヌクレオチドの配列を配列番号33に示す。なお配列番号32において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR14のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号32において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Gly147Valのバリンは163番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。
実施例19 改良Fc結合性タンパク質の作製
実施例18で明らかとなった、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換の中から、Tyr51HisおよびGlu54Aspを選択し、それらの置換をFcR14に集積することで、改良Fc結合性タンパク質(FcR16)を作製した。以下、作製方法を詳細に説明する。
(1)実施例18で得られた、pET−FcR14を鋳型とし、配列番号3および配列番号34(5’−TGCCGGGGCGCGCATAGCCCGGATGATAAC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm16Fとした。
(2)実施例18で得られたpET−FcR14を鋳型とし、配列番号2および配列番号35(5’−GGTGCTGTTATCATCCGGGCTATGCGCGCC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(1)と同様の方法でPCRを行なった。精製したPCR産物をm16Rとした。
(3)(1)および(2)で得られた2種類のPCR産物(m16F、m16R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行ない最後に72℃で5分間熱処理するPCRを行ない、m16Fとm16Rを連結したPCR産物m16pを得た。
(4)(3)で得られたPCR産物m16pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、PCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない最後に72℃で5分間熱処理するPCRを行なった。これによりFcR14に2箇所アミノ酸置換を導入したFcR16をコードするポリヌクレオチドを作製した。
(5)(4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR14に対して2箇所(野生型Fc結合性タンパク質に対して17箇所)アミノ酸置換したポリペプチドである、FcR16をコードするポリヌクレオチドを含むプラスミドpET−FcR16を得た。
(7)pET−FcR16のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR16のアミノ酸配列を配列番号36に、前記FcR16をコードするポリヌクレオチドの配列を配列番号37に示す。なお、配列番号36において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR13のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号36において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Gly147Valのバリンは163番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。
実施例20 Fc結合性タンパク質のアルカリ安定性評価
(1)実施例15(b)で作製したFc結合性タンパク質(FcR13)、実施例18で取得したFc結合性タンパク質(FcR14)、および実施例19で作製したFc結合性タンパク質(FcR16)を発現する形質転換体を、実施例4の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR13、FcR14およびFcR16を調製した。
(2)(1)で調製したタンパク質抽出液中のFcR13、FcR14およびFcR16の抗体結合活性を、実施例2(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR9を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと60mMの水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
結果を表14に示す。実施例18で作製したFcR14、FcR16はFcR13と比較し残存活性が高いことから、FcR13に比べてアルカリ安定性が向上していることが確認された。
実施例21 FcR16への変異導入およびライブラリーの作製
実施例19で作製したFcR16をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例19で作製した発現ベクターpET−FcR16を用いてエラープローンPCRを行なった。エラープローンPCRは、pET−FcR16を鋳型とし、配列番号2および3に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
実施例22 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例21で作製したランダム変異ライブラリーを実施例2(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて20倍に希釈し、等量の80mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置することでアルカリ処理した。アルカリ処理後は、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法にてそれぞれ測定した。その後、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR16と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例2(6)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
(4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR16に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表15に示す。配列番号36に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基(配列番号1の17番目から192番目に該当)を含み、但し当該33番目から208番目までのアミノ酸残基において、Ala78Ser(この表記は、配列番号1の78番目(配列番号36では94番目)のアラニンがセリンに置換されていることを表す、以下同様)、Asp82Glu、Gln101Leu、Gln101Arg、Thr140Ile、Gln143His、Tyr158His、Lys161Arg、Lys165Glu、Thr185Ala、Asn187Asp、Asn187Tyrのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR16と比較しアルカリ安定性が向上しているといえる。
実施例23 改良Fc結合性タンパク質の作製
実施例22で判明した、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換をFcR16に集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)から(c)に示す3種類の改良Fc結合性タンパク質を作製した。
(a)FcR16に対し、さらにThr140Ile、Tyr158HisおよびLys165Gluのアミノ酸置換を行なったFcR19
(b)FcR16に対し、さらにAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluのアミノ酸置換を行なったFcR21
(c)FcR16に対し、さらにAla78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158His、Lys165Glu、Thr185AlaおよびAsn187Aspのアミノ酸置換を行なったFcR24
以下、各改良Fc結合性タンパク質の作製方法を詳細に説明する。
(a)FcR19
実施例22で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Thr140Ile、Tyr158HisおよびLys165Gluを選択し、それらの置換をFcR16(実施例19)に集積したFcR19を作製した。具体的には、実施例22で得られたThr140IleおよびTyr158Hisの変異を含んだポリヌクレオチドに対して、Lys165Gluを生じさせる変異導入を行なうことにより、FcR19を作製した。
(a−1)実施例22で取得した、FcR16にThr140IleおよびTyr158Hisの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型とし、配列番号3および配列番号38(5’−ATTCCCAAAGCGACGCTGGAGGACAGCGGC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm19Fとした。
(a−2)実施例22で取得した、FcR16にThr140IleおよびTyr158Hisの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型とし、配列番号2および配列番号39(5’−ATAGCTGCCGCTGTCCTCCAGCGTCGCTTT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a−1)と同様の方法でPCRを行なった。精製したPCR産物をm19Rとした。
(a−3)(a−1)および(a−2)で得られた2種類のPCR産物(m19F、m19R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m19Fとm19Rを連結したPCR産物m19pを得た。
(a−4)(a−3)で得られたPCR産物m19pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16に3箇所アミノ酸置換を導入したFcR19をコードするポリヌクレオチドを作製した。
(a−5)(a−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR16に対して3箇所(野生型Fc結合性タンパク質に対して20箇所)アミノ酸置換したポリペプチドである、FcR19をコードするポリヌクレオチドを含むプラスミドpET−FcR19を得た。
(a−7)pET−FcR19のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR19のアミノ酸配列を配列番号40に、前記FcR19をコードするポリヌクレオチドの配列を配列番号41に示す。なお、配列番号40において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR19のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号40において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Thr140Ileのイソロイシンは156番目、Gly147Valのバリンは163番目、Tyr158Hisのヒスチジンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。
(b)FcR21
実施例22で得られたAsp82Glu、Gln101LeuおよびAsn187Aspの変異を含んだポリヌクレオチドに対して、Thr140Ile、Tyr158HisおよびLys165Gluを生じさせる変異導入を行ない、改良Fc結合性タンパク質を得た。なお前記変異のうちAsn187Aspは後述の(b−9)の操作で欠失したため、本実験で実際に得られた改良Fc結合性タンパク質はAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluの置換をFcR16(実施例19)に集積したFc結合性タンパク質(FcR21)である。
(b−1)実施例22で取得した、FcR16にAsp82Glu、Gln101LeuおよびAsn187Aspの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型とし、配列番号3および配列番号42(5’−ACCGCCCTGCATAAAGTGATCTACCTGCAA−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キ
アゲン製)を用いて精製した。精製したPCR産物をm21−2Fとした。
(b−2)実施例22で取得した、FcR16にAsp82Glu、Gln101LeuおよびAsn187Aspの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型とし、配列番号2および配列番号43(5’−TTGCAGGTAGATCACTTTATGCAGGGCGGT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(b−1)と同様の方法でPCRを行なった。精製したPCR産物をm21−2Rとした。
(b−3)(b−1)および(b−2)で得られた2種類のPCR産物(m21−2F、m21−2R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m21−2Fとm21−2Rを連結したPCR産物m21−2pを得た。
(b−4)(b−3)で得られたPCR産物m21−2pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16にAsp82Glu、Gln101Leu、Thr140IleおよびAsn187Aspの変異を含んだFcR21−2をコードするポリヌクレオチドを作製した。
(b−5)(b−4)で取得した、FcR16にAsp82Glu、Gln101Leu、Thr140IleおよびAsn187Aspの変異を含んだFcR21−2をコードするポリヌクレオチドを鋳型とし、配列番号3および配列番号44(5’−CACCACAACTCCGACTTCCATATTCCCAAA−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm21−1Fとした。
(b−6)(b−4)で取得した、FcR16にAsp82Glu、Gln101Leu、Thr140IleおよびAsn187Aspの変異を含んだFcR21−2をコードするポリヌクレオチドを鋳型とし、配列番号2および配列番号45(5’−CAGCGTCGCTTTGGGAATATGGAAGTCGGA−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(b−5)と同様の方法でPCRを行なった。精製したPCR産物をm21−1Rとした。
(b−7)(b−5)および(b−6)で得られた2種類のPCR産物(m21−1F、m21−1R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m21−1Fとm21−1Rを連結したPCR産物m21−1pを得た。
(b−8)(b−7)で得られたPCR産物m21−1pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16にAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびAsn187Aspの変異を含んだFcR21−1をコードするポリヌクレオチドを作製した。
(b−9)(b−8)で取得した、FcR16にAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびAsn187Aspの変異を含んだFcR21−1をコードするポリヌクレオチドを鋳型とし、配列番号17および配列番号38に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm21Fとした(本操作によりAsn187Aspの変異が欠失している)。
(b−10)(b−8)で取得した、FcR16にAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびAsn187Aspの変異を含んだFcR21−1をコードするポリヌクレオチドを鋳型とし、配列番号25および配列番号39に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(b−9)と同様の方法でPCRを行なった。精製したPCR産物をm21Rとした。
(b−11)(b−9)および(b−10)で得られた2種類のPCR産物(m21F、m21R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m21Fとm21Rを連結したPCR産物m21pを得た。
(b−12)(b−11)で得られたPCR産物m21pを鋳型とし、配列番号25および配列番号17に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16に5箇所(Asp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Glu)(野生型Fc結合性タンパク質に対して22箇所)アミノ酸置換を導入したFcR21をコードするポリヌクレオチドを作製した。
(b−13)(b−12)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b−14)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR16に対して5箇所アミノ酸置換したポリペプチドである、FcR21をコードするポリヌクレオチドを含むプラスミドpET−FcR21を得た。
(b−15)pET−FcR21のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR21のアミノ酸配列を配列番号46に、前記FcR21をコードするポリヌクレオチドの配列を配列番号47に示す。なお、配列番号46において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR21のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号46において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目
、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Thr140Ileのイソロイシンは156番目、Gly147Valのバリンは163番目、Tyr158Hisのヒスチジンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。
(c)FcR24
実施例22で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Ala78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158His、Lys165Glu、Thr185AlaおよびAsn187Aspを選択し、それらの置換をFcR16(実施例19)に集積したFcR24を作製した。具体的には、FcR21をコードするポリヌクレオチドに対して、Ala78Ser、Thr185AlaおよびAsn187Aspを生じさせる変異導入を行なうことにより、FcR24を作製した。
(c−1)(b)で作製した、pET−FcR21を鋳型とし、配列番号3および配列番号48(5’−AGCAGCTACCTTATTGATTCGGCGACGGTG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm24−2Fとした。
(c−2)(b)で作製した、pET−FcR21を鋳型とし、配列番号2および配列番号49(5’−GCTATCTTCCACCGTCGCCGAATCAATAAG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(c−1)と同様の方法でPCRを行なった。精製したPCR産物をm24−2Rとした。
(c−3)(c−1)および(c−2)で得られた2種類のPCR産物(m24−2F、m24−2R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m21−2Fとm21−2Rを連結したPCR産物m24−2pを得た。
(c−4)(c−3)で得られたPCR産物m24−2pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16にAla78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluの変異を含んだFcR24−2をコードするポリヌクレオチドを作製した。
(c−5)(c−4)で取得した、FcR16にAla78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluの変異を含んだFcR24−2をコードするポリヌクレオチドを鋳型とし、配列番号3および配列番号50(5’−AAAAATGTGAGCAGCGAGGCCGTGGATATT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm24Fとした。
(c−6)(c−4)で取得した、FcR16にAla78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluの変異を含んだFcR24−2をコードするポリヌクレオチドを鋳型とし、配列番号25および配列番号51(5’−GGTAATGGTAATATCCACGGCCTCGCTGCT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(c−5)と同様の方法でPCRを行なった。精製したPCR産物をm24Rとした。
(c−7)(c−5)および(c−6)で得られた2種類のPCR産物(m24F、m24R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m24Fとm24Rを連結したPCR産物m24pを得た。
(c−8)(c−7)で得られたPCR産物m24pを鋳型とし、配列番号25および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16に8箇所(野生型Fc結合性タンパク質に対して24箇所)アミノ酸置換を導入したFcR24をコードするポリヌクレオチドを作製した。
(c−9)(c−8)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(c−10)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR16に対して8箇所アミノ酸置換したポリペプチドである、FcR24をコードするポリヌクレオチドを含むプラスミドpET−FcR24を得た。
(c−11)pET−FcR24のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR24のアミノ酸配列を配列番号52に、前記FcR24をコードするポリヌクレオチドの配列を配列番号53に示す。なお、配列番号52において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR24のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号52において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Thr140Ileのイソロイシンは156番目、Gly147Valのバリンは163番目、Tyr158Hisのヒスチジンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目およびAsn187Aspのアスパラギン酸は203番目の位置にそれぞれ存在する。
実施例24 Fc結合性タンパク質のアルカリ安定性評価
(1)実施例19で作製したFc結合性タンパク質(FcR16)、ならびに実施例23で取得したFc結合性タンパク質(FcR19、FcR21およびFcR24)を発現する形質転換体を、実施例4の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR16、FcR19、FcR21およびFcR24を調製した。
(2)(1)で調製したタンパク質抽出液中のFcR16、FcR19、FcR21およびFcR24の抗体結合活性を、実施例2(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR13を用いて検量線を作製し、濃度測定を行なった。(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと80mMの水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
結果を表16に示す。実施例23で作製したFcR19、FcR21およびFcR24はFcR16と比較し残存活性が高いことから、FcR16に比べてアルカリ安定性が向上していることが確認された。
実施例25 FcR24への変異導入およびライブラリーの作製
実施例23(c)で作製したFcR24をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例23(c)で作製した発現ベクターpET−FcR24を用いてエラープローンPCRを行なった。エラープローンPCRは、pET−FcR24を鋳型とし、配列番号2および3に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
実施例26 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例25で作製したランダム変異ライブラリーを実施例3(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて20倍に希釈し、等量の300mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置することでアルカリ処理した。アルカリ処理後は、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法にてそれぞれ測定した。その後、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR24と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例2(6)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
(4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR24に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表17に示す。配列番号52に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基(配列番号1の17番目から192番目に該当)を含み、但し当該33番目から208番目までのアミノ酸残基において、Lys40Gln(この表記は、配列番号1の40番目(配列番号52では56番目)のリジンがグルタミンに置換されていることを表す、以下同様)、Lys46Asn、Ala50Thr、Asn56Tyr、His62Leu、Ser65Gly、Tyr74His、Asp77Val、Gln90Leu、Lys119Thr、Lys119Glu、Asp122Glu、His137Gln、Thr(Ile)140Met(この表記は、配列番号1の140番目(配列番号6では156番目)のスレオニンが一度イソロイシンに置換されさらにメチオニンに置換されたことを示す、以下同様)、Tyr141Phe、Tyr(His)158Leu、Leu175Arg、Asn180Lys、Asn180Ser、Ile190Val、Thr191Ileのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR24と比較しアルカリ安定性が向上しているといえる。
実施例27 Thr140またはTyr158アミノ酸置換体の作製
実施例22で明らかになったFc結合性タンパク質のアルカリ安定性向上に寄与するアミノ酸置換のうち、配列番号1の140番目(配列番号52では156番目)のスレオニン(Thr140)がイソロイシン(Ile)に、158番目(配列番号52では174番目)のチロシン(Tyr158)がヒスチジンにそれぞれ置換されることでアルカリ安定性が特に向上した。そこで、Thr140およびTyr158の他のアミノ酸への置換の有用性を確認するため、実施例22(c)で作製したFcR24(配列番号52)のうちThr140(配列番号52では156番目)またはTyr158(配列番号52では174番目)を他のアミノ酸に置換したFc結合性タンパク質を作製した。
(a)Thr140アミノ酸置換体の作製
(a−1)実施例22(c)で作製した、pET−FcR24を鋳型とし、配列番号3および配列番号54(5’−CCTGCATAAAGTGNNKTACCTGCAAAACGG−3’)に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。得られたPCR産物をT140p1とした。
(a−2)実施例22(c)で作製した、pET−FcR24を鋳型とし、配列番号2および配列番号55(5’−CCGTTTTGCAGGTAMNNCACTTTATGCAGG−3’)に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。得られたPCR産物をT140p2とした。
(a−3)(a−1)および(a−2)で得られた2種類のPCR産物(T140p1、T140p2)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、T140p1とT140p2を連結したPCR産物T140pを得た。
(a−4)(a−3)で得られたPCR産物T140pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFc結合性タンパク質(FcR24)の140番目のアミノ酸が任意のアミノ酸に置換されたFc結合性タンパク質をコードするポリヌクレオチドを得た。得られたポリヌクレオチドをT140p3とした。
(a−5)(a−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。
回収した菌体(形質転換体)からプラスミドを抽出し、ポリヌクレオチド領域の配列を実施例1(5)に記載の方法によりヌクレオチド配列を解析したところ、Fc結合性タンパク質FcR24のThr140(配列番号52では156番目のイソロイシン)がAla、Arg、Gly、Leu、Lys、Phe、Thr、SerまたはValに置換されたFc結合性タンパク質を発現する形質転換体を得た。
(b)Tyr158アミノ酸置換体の作製
(b−1)実施例22(c)で作製した、pET−FcR24を鋳型とし、配列番号3および配列番号56(5’−CAACTCCGACTTCNNKATTCCCAAAGCGAC−3’)に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。得られたPCR産物をY158p1とした。
(b−2)実施例22(c)で作製した、pET−FcR24を鋳型とし、配列番号2および配列番号57(5’−GTCGCTTTGGGAATMNNGAAGTCGGAGTTG−3’)に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。得られたPCR産物をY158p2とした。
(b−3)(b−1)および(b−2)で得られた2種類のPCR産物(Y158p1、Y158p2)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、Y140p1とY140p2を連結したPCR産物Y140pを得た。
(b−4)(b−3)で得られたPCR産物Y140pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFc結合性タンパク質(FcR24)の158番目のアミノ酸が任意のアミノ酸に置換されたFc結合性タンパク質をコードするポリヌクレオチドを得た。得られたポリヌクレオチドをY158p3とした。
(b−5)(b−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。
回収した菌体(形質転換体)からプラスミドを抽出し、ポリヌクレオチド領域の配列を実施例2(6)に記載の方法によりヌクレオチド配列を解析したところ、Fc結合性タンパク質FcR24のTyr158(配列番号52では174番目のヒスチジン)がAla、Arg、Asn、Cys、Gln、Glu、Gly、Ile、Lys、Met、Phe、Pro、Ser、Thr、Trp、TyrまたはValに置換されたFc結合性タンパク質を発現する形質転換体を得た。
実施例28 Thr140またはTyr158アミノ酸置換体の評価
(1)実施例27で作製したFc結合性タンパク質を発現する形質転換体を、実施例4の(1)から(4)に記載の方法で培養し、タンパク質を抽出した。
(2)(1)で調製したタンパク質抽出液中のFc結合タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR24を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと、300mM(Thr140アミノ酸置換体の場合)または350mM(Tyr158アミノ酸置換体の場合)の水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
得られた結果を表18(Thr140アミノ酸置換体の結果)および表19(Tyr158アミノ酸置換体の結果)に示す。なお表18中のIleの結果、および表19中のHisの結果は、FcR24に相当する。Thr140の場合(表18)は、Ala、Arg、Ile、Leu、Lys、Phe、SerまたはValに置換することで、Tyr158の場合(表19)は、Cys、His、Ile、Lys、Phe、TrpまたはValに置換することで、それぞれアルカリ安定性が向上することを確認した。
表19に示した、Fc結合性タンパク質FcR24のTyr158アミノ酸置換体のうち、Tyr158Valのアミノ酸置換が生じたFc結合性タンパク質をFcR24bと命名し、FcR24bをコードするポリヌクレオチドを含む発現ベクターをpET−FcR24bと命名した。FcR24bのアミノ酸配列を配列番号58に、FcR24bをコードするポリヌクレオチドの配列を配列番号59に示す。なお配列番号58において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR24bのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号58において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Thr140Ileのイソロイシンは156番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目およびAsn187Aspのアスパラギン酸は203番目の位置にそれぞれ存在する。
実施例29 改良Fc結合性タンパク質の作製
実施例26で判明した、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換をFcR24bに集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)から(e)に示す4種類の改良Fc結合性タンパク質を作製した。
(a)FcR24bに対し、さらにThr(Ile)140Met(この表記は、配列番号1の140番目(配列番号52では156番目)のスレオニンが一度イソロイシンに置換されさらにメチオニンに置換されたことを示す、以下同様)およびIle190Valのアミノ酸置換を行なったFcR25
(b)FcR24bに対し、さらにAsp122Glu、Thr(Ile)140MetおよびIle190Valのアミノ酸置換を行なったFcR26
(c)FcR24bに対し、さらにLys40Gln、Asp122Glu、Thr(Ile)140MetおよびIle190Valのアミノ酸置換を行なったFcR27
(d)FcR24bに対し、さらにLys40Gln、Lys119Glu、Asp122Glu、Thr(Ile)140Met、Tyr141PheおよびIle190Valのアミノ酸置換を行なったFcR29
(e)FcR24bに対し、さらにLys40Gln、His62Leu、Tyr74His、Lys119Glu、Asp122Glu、Thr(Ile)140Met、Tyr141PheおよびIle190Valのアミノ酸置換を行ったFcR31
以下、各改良Fc結合性タンパク質の作製方法を詳細に説明する。
(a)FcR25
実施例26で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Thr(Ile)140MetおよびIle190Valを選択し、それらの置換をFcR24b(実施例28)に集積したFcR25を作製した。具体的には、実施例28で得られたFcR24bをコードするポリヌクレオチド(配列番号59)に対して、Thr(Ile)140MetおよびIle190Valを生じさせる変異導入を行なうことにより、FcR25を作製した。
(a−1)実施例26で取得した、FcR24にThr(Ile)140Metの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型とし、配列番号3および配列番号60(5’−CCCTGCATAAAGTGATGTACCTGCAAAACG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm24cFとした。
(a−2)実施例28で取得した、Fc結合性タンパク質FcR24bをコードするポリヌクレオチド(配列番号59)を鋳型とし、配列番号2および配列番号61(5’−CGTTTTGCAGGTACATCACTTTATGCAGGG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a−1)と同様の方法でPCRを行なった。精製したPCR産物をm24cRとした。
(a−3)(a−1)および(a−2)で得られた2種類のPCR産物(m24cF、m24cR)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m24cFとm24cRを連結したPCR産物m24cpを得た。
(a−4)(a−3)で得られたPCR産物m24cpを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR24cをコードするポリヌクレオチドを作製した。
(a−5)(a−4)で取得した、FcR24bにThr(Ile)140Metの変異を含んだFcR24cをコードするポリヌクレオチドを鋳型とし、配列番号25および配列番号62(5’−CCCAAGCTTAATGATGATGATGATGATGGCCCCCTTGGGTAACGGTAATATCCACGGC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。これによりFcR24bに2箇所(Thr(Ile)140MetおよびIle190Val)(野生型Fc結合性タンパク質に対して26箇所)アミノ酸置換を導入したFcR25をコードするポリヌクレオチドを作製した。
(a−6)(a−5)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a−7)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR24に対して2箇所アミノ酸置換したポリペプチドである、FcR25をコードするポリヌクレオチドを含むプラスミドpET−FcR25を得た。
(a−8)pET−FcR25のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR25のアミノ酸配列を配列番号63に、前記FcR25をコードするポリヌクレオチドの配列を配列番号64に示す。なお、配列番号63において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)
から208番目のアミノ酸までがFcR25のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目のアミノ酸から210番目までのグリシン(Gly)までがリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号63において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Thr140Metのメチオニンは156番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Aspのアスパラギン酸は203番目およびIle190Valのバリンは206番目の位置にそれぞれ存在する。
(b)FcR26
実施例26で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Asp122Glu、Thr(Ile)140MetおよびIle190Valを選択し、それらの置換をFcR24b(実施例28)に集積したFcR26を作製した。具体的には、FcR25をコードするポリヌクレオチド(配列番号64)に対して、Asp122Gluを生じさせる変異導入を行なうことにより、FcR26を作製した。
(b−1)(a)で作製した、pET−FcR25を鋳型とし、配列番号3および配列番号65(5’−GTTCAAAGAGGGGGAACCGATTCATCTGCG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm26Fとした。
(b−2)(a)で作製した、pET−FcR25を鋳型とし、配列番号2および配列番号66(5’−CGCAGATGAATCGGTTCCCCCTCTTTGAAC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm26Rとした。
(b−3)(b−1)および(b−2)で得られた2種類のPCR産物(m26F、m26R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m26Fとm26Rを連結したPCR産物m26pを得た。
(b−4)(b−3)で得られたPCR産物m26pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR26をコードするポリヌクレオチドを作製した。
(b−5)(b−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR24bに対して3箇所(野生型Fc結合性タンパク質に対して27箇所)アミノ酸置換したポリペプチドである、FcR26をコードするポリヌクレオチドを含むプラスミドpET−FcR26を得た。
(b−7)pET−FcR26のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR26のアミノ酸配列を配列番号67に、前記FcR26をコードするポリヌクレオチドの配列を配列番号68に示す。なお、配列番号67において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR26のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号67において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Thr140Metのメチオニンは156番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Aspのアスパラギン酸は203番目およびIle190Valのバリンは206番目の位置にそれぞれ存在する。
(c)FcR27
実施例26で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Lys40Gln、Asp122Glu、Thr(Ile)140MetおよびIle190Valを選択し、それらの置換をFcR24b(実施例28)に集積したFcR27を作製した。具体的には、FcR26をコードするポリヌクレオチド(配列番号68)に対して、Lys40Glnを生じさせる変異導入を行なうことにより、FcR27を作製した。
(c−1)(b)で作製した、pET−FcR26を鋳型とし、配列番号3および配列番号69(5’−TCGCGTGCTGGAGCAAGATTCAGTGACCCT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm27Fとした。
(c−2)(a)で作製した、pET−FcR26を鋳型とし、配列番号2および配列番号70(5’−AGGGTCACTGAATCTTGCTCCAGCACGCGA−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm27Rとした。
(c−3)(c−1)および(c−2)で得られた2種類のPCR産物(m27F、m27R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m27Fとm27Rを連結したPCR産物m27pを得た。
(c−4)(c−3)で得られたPCR産物m27pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR27をコードするポリヌクレオチドを作製した。
(c−5)(c−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(c−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR24bに対して4箇所(野生型Fc結合性タンパク質に対して28箇所)アミノ酸置換したポリペプチドである、FcR27をコードするポリヌクレオチドを含むプラスミドpET−FcR27を得た。
(c−7)pET−FcR27のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR27のアミノ酸配列を配列番号71に、前記FcR27をコードするポリヌクレオチドの配列を配列番号72に示す。なお、配列番号71において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR27のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号71において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Thr140Metのメチオニンは156番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Aspのアスパラギン酸は203番目およびIle190Valのバリンは206番目の位置にそれぞれ存在する。
(d)FcR29
実施例26で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Lys40Gln、Lys119Glu、Asp122Glu、Thr(Ile)140Met、Tyr141PheおよびIle190Valを選択し、それらの置換をFcR24b(実施例28)に集積したFcR29を作製した。具体的には、FcR27をコードするポリヌクレオチド(配列番号72)に対して、Lys119GluおよびTyr141Pheを生じさせる変異導入を行なうことにより、FcR29を作製した。
(d−1)(c)で作製した、pET−FcR27を鋳型とし、配列番号3および配列番号73(5’−ACGGTGGGAGTTCGAAGAGGGGGAACCGAT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm28Fとした。
(d−2)(c)で作製した、pET−FcR27を鋳型とし、配列番号2および配列番号74(5’−ATCGGTTCCCCCTCTTCGAACTCCCACCGT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm28Rとした。
(d−3)(d−1)および(d−2)で得られた2種類のPCR産物(m28F、m28R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m28Fとm28Rを連結したPCR産物m28pを得た。
(d−4)(d−3)で得られたPCR産物m28pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR24にLys40Gln、Lys119Glu、Asp122Glu、Thr(Ile)140MetおよびIle190Valの変異を含んだ、Fc結合性タンパク質FcR28をコードするポリヌクレオチドを作製した。
(d−5)(d−4)で取得した、FcR28をコードするポリヌクレオチドを鋳型とし、配列番号75(5’−CGCATCCTCGCATTATCCGCATTAACGACG−3’)および配列番号77(5’−CCGTTTTGCAGGAACATCACTTTATGCAGG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm29Fとした。
(d−6)(d−4)で取得した、FcR28をコードするポリヌクレオチドを鋳型とし、配列番号76(5’−GCTTCCTTTCGGGCTTTGTTAGCAGCCGGA−3’)および配列番号78(5’−CCTGCATAAAGTGATGTTCCTGCAAAACGG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(d−5)と同様の方法でPCRを行なった。精製したPCR産物をm29Rとした。
(d−7)(d−5)および(d−6)で得られた2種類のPCR産物(m29F、m29R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m29Fとm29Rを連結したPCR産物m29pを得た。
(d−8)(d−7)で得られたPCR産物m29pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR24bに6箇所(野生型Fc結合性タンパク質に対して30箇所)アミノ酸置換を導入したFcR29をコードするポリヌクレオチドを作製した。
(d−9)(d−8)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(d−10)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR24bに対して6箇所アミノ酸置換したポリペプチドである、FcR29をコードするポリヌクレオチドを含むプラスミドpET−FcR29を得た。
(d−11)pET−FcR29のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR29のアミノ酸配列を配列番号79に、前記FcR29をコードするポリヌクレオチドの配列を配列番号80に示す。なお、配列番号79において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR29のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号79において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Gluのグルタミン酸は135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Thr140Metのメチオニンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Aspのアスパラギン酸は203番目およびIle190Valのバリンは206番目の位置にそれぞれ存在する。
(e)FcR31
実施例26で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Lys40Gln、His62Leu、Tyr74His、Lys119Glu、Asp122Glu、Thr(Ile)140Met、Tyr141PheおよびIle190Valを選択し、それらの置換をFcR24b(実施例28)に集積したFcR31を作製した。具体的には、FcR29をコードするポリヌクレオチド(配列番号80)に対して、His62LeuおよびTyr74Hisを生じさせる変異導入を行なうことにより、FcR31を作製した。
(e−1)(d)で作製した、pET−FcR29を鋳型とし、配列番号3および配列番号81(5’−CCAGTGGTTCCTCAATGAAAGCCTGATTCCCAGCCAGGCGAGCAGCCACCTTATTGATT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm31Fとした。
(e−2)(d)で作製した、pET−FcR29を鋳型とし、配列番号2および配列番号82(5’−AATCAATAAGGTGGCTGCTCGCCTGGCTGGGAATCAGGCTTTCATTGAGGAACCACTGG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm31Rとした。
(e−3)(e−1)および(e−2)で得られた2種類のPCR産物(m31F、m31R)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m31Fとm31Rを連結したPCR産物m31pを得た。
(e−4)(e−3)で得られたPCR産物m31pを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR31をコードするポリヌクレオチドを作製した。
(e−5)(e−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(e−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR24bに対して8箇所(野生型Fc結合性タンパク質に対して32箇所)アミノ酸置換したポリペプチドである、FcR31をコードするポリヌクレオチドを含むプラスミドpET−FcR31を得た。
(e−7)pET−FcR31のヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR31のアミノ酸配列を配列番号83に、前記FcR31をコードするポリヌクレオチドの配列を配列番号84に示す。なお、配列番号83において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR31のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号83において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、His62Leuのロイシンは78番目、Ser68Proのプロリンは84番目、Tyr74Hisのヒスチジンは90番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Gluのグルタミン酸は135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Thr140Metのメチオニンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Aspのアスパラギン酸は203番目およびIle190Valのバリンは206番目の位置にそれぞれ存在する。
実施例30 Fc結合性タンパク質のアルカリ安定性評価
(1)実施例23(c)で作製したFc結合性タンパク質(FcR24)、ならびに実施例29で取得したFc結合性タンパク質(FcR25、FcR26、FcR27、FcR29およびFcR31)を発現する形質転換体を、実施例4の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR24、FcR25、FcR26、FcR27、FcR29およびFcR31を調製した。
(2)(1)で調製したタンパク質抽出液中のFcR24、FcR25、FcR26、FcR27、FcR29およびFcR31の抗体結合活性を、実施例2(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR24を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと400mMの水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
結果を表20に示す。実施例29で作製したFcR25、FcR26、FcR27、FcR29およびFcR31はFcR24と比較し残存活性が高いことから、FcR24に比べてアルカリ安定性が向上していることが確認された。
実施例31 FcR29への変異導入およびライブラリーの作製
実施例29(d)で作製したFcR29をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例29(d)で作製した発現ベクターpET−FcR29を用いてエラープローンPCRを行なった。エラープローンPCRは、pET−FcR29を鋳型とし、配列番号2および3に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
実施例32 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例31で作製したランダム変異ライブラリーを実施例2(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて20倍に希釈し、等量の550mMの水酸化ナトリウム溶液と混合した後、30℃で1.5時間静置することでアルカリ処理した。アルカリ処理後は、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法にてそれぞれ測定した。その後、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR29と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例2(6)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
(4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR29に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表21に示す。配列番号79に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基(配列番号1の17番目から192番目に該当)を含み、但し当該33番目から208番目までのアミノ酸残基において、Met18Ile(この表記
は、配列番号1の18番目(配列番号52では34番目)のメチオニンがイソロイシンに置換されていることを表す、以下同様)、Thr20Ser、Asp22Gly、Lys25Arg、Val(Glu)27Val(この表記は、配列番号1の27番目(配列番号52では43番目)のバリンが一度グルタミン酸に置換されさらにバリンに置換されたことを示す、以下同様)、Ala50Glu、Gln59Leu、Glu64Gly
、Ser65Asn、Ser65Arg、Phe(Leu)75Arg、Pro114Leu、Lys(Glu)119Val、Lys132Arg、Asn144Asp、Phe151Ser、Asn180Asp、Glu184Gly、Asn(Asp)187Gluのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR29と比較しアルカリ安定性が向上しているといえる。
実施例32 改良Fc結合性タンパク質の作製
実施例31で判明した、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換をFcR29に集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)から(b)に示す2種類の改良Fc結合性タンパク質を作製した。
(a)FcR29に対し、さらにLys132Arg(この表記は、配列番号1の132番目(配列番号52では148番目)のリジンがアルギニンに置換されたことを示す、以下同様)およびAsn(Asp)187Glu(この表記は、配列番号1の187番目(配列番号52では203番目)のアスパラギンが一度アスパラギン酸に置換されさらにグルタミン酸に置換されたことを示す、以下同様)のアミノ酸置換を行なったFcR30
(b)FcR29に対し、さらにGlu64Gly、Lys132ArgおよびAsn(Asp)187Gluのアミノ酸置換を行なったFcR31b
以下、各改良Fc結合性タンパク質の作製方法を詳細に説明する。
(a)FcR30
実施例31で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Lys132ArgおよびAsn(Asp)187Gluを選択し、それらの置換をFcR29(実施例30)に集積したFcR30を作製した。具体的には、実施例31で得られた、Fc結合性タンパク質FcR29のLys132がArgおよびAsn(Asp)187Gluに置換体を発現する菌体(形質転換体)からプラスミドを抽出した。これにより、FcR29に1箇所アミノ酸置換(野生型Fc結合性タンパク質に対して31箇所)アミノ酸置換を導入したFcR30をコードするポリヌクレオチドを含むプラスミドpET−FcR30を得た。シグナル配列およびポリヒスチジンタグを付加したFcR30のアミノ酸配列を配列番号85に、前記FcR30をコードするポリヌクレオチドの配列を配列番号86に示す。なお、配列番号85において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR29のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号85において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Gluのグルタミン酸は135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Lys132Argのアルギニンは148番目、Thr140Metのメチオニンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Gluのグルタミン酸は203番目およびIle190Valは206番目の位置にそれぞれ存在する。
(b)FcR31b
実施例31で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Glu64Gly、Lys132ArgおよびAsn(Asp)187Gluを選択し、それらの置換をFcR29(実施例29(d))に集積したFcR31bを作製した。具体的には、FcR30をコードするポリヌクレオチド(配列番号85)に対して、Glu64Glyを生じさせる変異導入を行なうことにより、FcR31bを作製した。
(b−1)(a)で作製した、pET−FcR30を鋳型とし、配列番号3および配列番号87(5’−GTGGTTCCACAATGGAAGCCTGATTCCCA−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm31bFとした。
(b−2)(a)で作製した、pET−FcR30を鋳型とし、配列番号2および配列番号88(5’−TGGGAATCAGGCTTCCATTGTGGAACCAC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm31bRとした。
(b−3)(b−1)および(b−2)で得られた2種類のPCR産物(m31bF、m31bR)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m31bFとm31bRを連結したPCR産物m31bpを得た。
(b−4)(b−3)で得られたPCR産物m31bpを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR31bをコードするポリヌクレオチドを作製した。
(b−5)(b−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR29に対して3箇所(野生型Fc結合性タンパク質に対して32箇所)アミノ酸置換したポリペプチドである、FcR31bをコードするポリヌクレオチドを含むプラスミドpET−FcR31bを得た。
(b−7)pET−FcR31bのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR31bのアミノ酸配列を配列番号89に、前記FcR31bをコードするポリヌクレオチドの配列を配列番号90に示す。なお、配列番号89において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR31bのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号89において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Glu64Glyのグリシンは80番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Gluのグルタミン酸は135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Lys132Argのアルギニンは148番目、Thr140Ileのイソロイシンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Aspのアスパラギン酸は203番目およびIle190Valのバリンは206番目の位置にそれぞれ存在する。
実施例33 Fc結合性タンパク質のアルカリ安定性評価
(1)実施例29で作製したFc結合性タンパク質(FcR29)、ならびに実施例32で取得したFc結合性タンパク質(FcR30およびFcR31b)を発現する形質転換体を、実施例4の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR29、FcR30およびFcR31bを調製した。
(2)(1)で調製したタンパク質抽出液中のFcR29、FcR30およびFcR31bの抗体結合活性を、実施例2(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR29を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと650mMの水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
結果を表22に示す。実施例32で作製したFcR30、FcR31bはFcR29と比較し残存活性が高いことから、FcR29に比べてアルカリ安定性が向上していることが確認された。
実施例34 FcR30への変異導入およびライブラリーの作製
実施例32(a)で作製したFcR30をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例32(a)で作製した発現ベクターpET−FcR30を用いてエラープローンPCRを行なった。エラープローンPCRは、pET−FcR30を鋳型とし、配列番号2および3に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
実施例35 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例34で作製したランダム変異ライブラリーを実施例2(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて25倍に希釈し、等量の800mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置することでアルカリ処理した。アルカリ処理後は、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法にてそれぞれ測定した。その後、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR30と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例2(6)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
(4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR30に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表23に示す。配列番号85に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基(配列番号1の17番目から192番目に該当)を含み、但し当該33番目から208番目までのアミノ酸残基において、Asp22Val(この表記は、配列番号1の22番目(配列番号52では38番目)のアスパラギン酸がバリンに置換されていることを表す、以下同様)、Phe(Ile)29Val(この表記は、配列番号1の29番目(配列番号52では45番目)のフェニルアラニンが一度イソロイシンに置換されさらにバリンに置換されたことを示す、以下同様)、Gln(Arg)48Gln、Asn56Asp、Asn56Tyr、Phe(Leu)75Ile、Asp98Glu、Gln192Proのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR30と比較しアルカリ安定性が向上しているといえる。
実施例36 改良Fc結合性タンパク質の作製
実施例35で判明した、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換をFcR30に集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)から(c)に示す3種類の改良Fc結合性タンパク質を作製した。
(a)FcR30に対し、さらにAsn56Asp(この表記は、配列番号1の56番目(配列番号52では72番目)のアスパラギンがアスパラギン酸に置換されたことを示す、以下同様)およびGln192Proのアミノ酸置換を行なったFcR32c
(b)FcR30に対し、さらにAsn56Asp、Phe(Leu)75Ile(この表記は、配列番号1の75番目(配列番号52では91番目)のフェニルアラニンが一度ロイシンに置換されさらにイソロイシンに置換されたことを示す、以下同様)およびGln192Proのアミノ酸置換を行なったFcR32d
(c)FcR30に対し、さらにAsn56Asp、Phe(Leu)75Ile、Asp98GluおよびGln192Proのアミノ酸置換を行なったFcR33
以下、各改良Fc結合性タンパク質の作製方法を詳細に説明する。
(a)FcR32c
実施例35で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Asn56AspおよびGln192Proを選択し、それらの置換をFcR30(実施例32(a))に集積したFcR32cを作製した。具体的には、実施例35で得られたFc結合性タンパク質FcR30のAsn56AspおよびGln192Pro置換体を発現する菌体(形質転換体)からプラスミドを抽出した。これにより、FcR30に2箇所アミノ酸置換(野生型Fc結合性タンパク質に対して32箇所)アミノ酸置換を導入したFcR32cをコードするポリヌクレオチドを含むプラスミドpET−FcR32cを得た。シグナル配列およびポリヒスチジンタグを付加したFcR32cのアミノ酸配列を配列番号91に、前記FcR32をコードするポリヌクレオチドの配列を配列番号92に示す。
なお、配列番号91において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のプロリン(Pro)までがFcR32cのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号91において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Asn56Aspのアスパラギン酸は72番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Gluのグルタミン酸は135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Lys132Argのアルギニンは148番目、Thr140Metのメチオニンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Gluのグルタミン酸は203番目およびIle190Valのバリンは206番目、Gln192Proのプロリンは208番目の位置にそれぞれ存在する。
(b)FcR32d
実施例35で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Asn56Asp、Phe(Leu)75IleおよびGln192Proを選択し、それらの置換をFcR30(実施例32(a))に集積したFcR32cを作製した。具体的には、FcR32cをコードするポリヌクレオチド(配列番号92)に対して、Phe(Leu)75Ileを生じさせる変異導入を行なうことにより、FcR32dを作製した。
(b−1)(a)で作製した、pET−FcR32cを鋳型とし、配列番号3および配列番号93(5’−GGCGAGCAGCTACATTATTGATTCGGCGAC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm32dFとした。
(b−2)(a)で作製した、pET−FcR32cを鋳型とし、配列番号2および配列番号94(5’−GTCGCCGAATCAATAATGTAGCTGCTCGCC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm32dRとした。
(b−3)(b−1)および(b−2)で得られた2種類のPCR産物(m32dF、m32dR)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m32dFとm32dRを連結したPCR産物m32dpを得た。
(b−4)(b−3)で得られたPCR産物m32dpを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR32dをコードするポリヌクレオチドを作製した。
(b−5)(b−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR30に対して3箇所(野生型Fc結合性タンパク質に対して33箇所)アミノ酸置換したポリペプチドである、FcR32dをコードするポリヌクレオチドを含むプラスミドpET−FcR32dを得た。
(b−7)pET−FcR32dのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR32dのアミノ酸配列を配列番号95に、前記FcR32dをコードするポリヌクレオチドの配列を配列番号96に示す。なお、配列番号95において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のプロリン(Pro)までがFcR32dのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号95において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Asn56Aspのアスパラギン酸は72番目、Ser68Proのプロリンは84番目、Phe75Ileのイソロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Gluのグルタミン酸は135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Lys132Argのアルギニンは148番目、Thr140Metのメチオニンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Gluのグルタミン酸は203番目およびIle190Valのバリンは206番目、Gln192Proのプロリンは208番目の位置にそれぞれ存在する。
(c)FcR33c
実施例35で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Asn56Asp、Phe(Leu)75Ile、Asp98GluおよびGln192Proを選択し、それらの置換をFcR30(実施例32(a))に集積したFcR33cを作製した。具体的には、FcR32dをコードするポリヌクレオチド(配列番号96)に対して、Asp98Gluを生じさせる変異導入を行なうことにより、FcR33cを作製した。
(c−1)(b)で作製した、pET−FcR32dを鋳型とし、配列番号3および配列番号97(5’−GAGCACCCTGAGCGAACCGGTGCTGCTGGA−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm33cFとした。
(c−2)(b)で作製した、pET−FcR32dを鋳型とし、配列番号2および配列番号98(5’−TCCAGCAGCACCGGTTCGCTCAGGGTGCTC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm33cRとした。
(c−3)(c−1)および(c−2)で得られた2種類のPCR産物(m33cF、m33cR)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m33cFとm33cRを連結したPCR産物m33cpを得た。
(c−4)(c−3)で得られたPCR産物m33cpを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR33cをコードするポリヌクレオチドを作製した。
(c−5)(c−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(c−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR30に対して4箇所(野生型Fc結合性タンパク質に対して34箇所)アミノ酸置換したポリペプチドである、FcR33cをコードするポリヌクレオチドを含むプラスミドpET−FcR33cを得た。
(c−7)pET−FcR33cのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR33cのアミノ酸配列を配列番号99に、前記FcR33cをコードするポリヌクレオチドの配列を配列番号100に示す。なお、配列番号99において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のプロリン(Pro)までがFcR33cのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号99において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Asn56Aspのアスパラギン酸は72番目、Ser68Proのプロリンは84番目、Phe75Ileのイソロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Asp98Gluのグルタミン酸は114番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Gluのグルタミン酸は135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Lys132Argのアルギニンは148番目、Thr140Metのメチオニンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Gluのグルタミン酸は203番目およびIle190Valのバリンは206番目、Gln192Proのプロリンは208番目の位置にそれぞれ存在する。
実施例37 Fc結合性タンパク質のアルカリ安定性評価
(1)実施例32(a)で作製したFc結合性タンパク質(FcR30)、ならびに実施例36で取得したFc結合性タンパク質(FcR32c、FcR32dおよびFcR33c)を発現する形質転換体を、実施例4の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR30、FcR32c、FcR32dおよびFcR33cを調製した。
(2)(1)で調製したタンパク質抽出液中のFcR30、FcR32c、FcR32dおよびFcR33cの抗体結合活性を、実施例2(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR30を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと900mMの水酸化ナトリウム溶液50μLとを混合し、30℃で1時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
結果を表24に示す。実施例36で作製したFcR32c、FcR32dおよびFcR33cはFcR30と比較し残存活性が高いことから、FcR30に比べてアルカリ安定性が向上していることが確認された。
実施例38 改良Fc結合性タンパク質の作製
FcR33cに対し、さらにThr(Met)140Thr(この表記は、配列番号1の140番目(配列番号52では156番目)のスレオニンが一度メチオニンに置換されさらにスレオニンに置換されたことを示す、以下同様)、Gly(Val)147GlyおよびSer(Arg)178Serのアミノ酸置換を行なったFcR30eを作製した。具体的には、FcR33cをコードするポリヌクレオチド(配列番号100)に対して、Thr(Met)140Thr、Gly(Val)147GlyおよびSer(Arg)178Serを生じさせる変異導入を行なうことにより、FcR30eを作製した。具体的な作製方法は以下に示した。
(1)実施例36(c)で作製した、pET−FcR33cを鋳型とし、配列番号3および配列番号101(5’−GCATAAAGTGACCTTCCTGCAAAACGGCAAGGGCCGCAAGTATT−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm31gFとした。
(2)実施例36(c)で作製した、pET−FcR33cを鋳型とし、配列番号2および配列番号102(5’−AATACTTGCGGCCCTTGCCGTTTTGCAGGAAGGTCACTTTATGC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm31gRとした。
(3)(1)および(2)で得られた2種類のPCR産物(m31gF、m31gR)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m31gFとm31gRを連結したPCR産物m31gpを得た。
(4)(3)で得られたPCR産物m31gpを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR31gをコードするポリヌクレオチドを作製した。
(5)(4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR33cに対して2箇所(野生型Fc結合性タンパク質に対して31箇所)アミノ酸置換したポリペプチドである、FcR31gをコードするポリヌクレオチドを含むプラスミドpET−FcR31gを得た。
(7)pET−FcR31gのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行ない、FcR31gをコードするポリヌクレオチドの配列に問題がないことを確認した。
(8)(6)で作製した、pET−FcR31gを鋳型とし、配列番号3および配列番号103(5’−CGTGGGCTGGTGGGCAGCAAAAATGTGAGC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm30eFとした。
(9)(7)で作製した、pET−FcR31gを鋳型とし、配列番号2および配列番号104(5’−GCTGCTCACATTTTTGCTGCCCACCAGCCC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm30eRとした。
(10)(8)および(9)で得られた2種類のPCR産物(m30eF、m30eR)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m30eFとm30eRを連結したPCR産物m30epを得た。
(11)(10)で得られたPCR産物m30epを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR30eをコードするポリヌクレオチドを作製した。
(12)(11)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(13)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR33cに対して3箇所アミノ酸置換したポリペプチドである、FcR30eをコードするポリヌクレオチドを含むプラスミドpET−FcR30eを得た。
(14)pET−FcR30eのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR30eのアミノ酸配列を配列番号105に、前記FcR30eをコードするポリヌクレオチドの配列を配列番号106に示す。なお、配列番号105において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のプロリン(Pro)までがFcR30eのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号105において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Asn56Aspのアスパラギン酸は72番目、Ser68Proのプロリンは84番目、Phe75Ileのイソロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Asp98Gluのグルタミン酸は114番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Gluのグルタミン酸は135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Lys132Argのアルギニンは148番目、Tyr141Pheのフェニルアラニンは157番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Thr185Alaのアラニンは201番目、Asn187Gluのグルタミン酸は203番目およびIle190Valのバリンは206番目、Gln192Proのプロリンは208番目の位置にそれぞれ存在する。
実施例39 FcR30eへの変異導入およびライブラリーの作製
実施例38で作製したFcR30eをコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例38で作製した発現ベクターpET−FcR30eを用いてエラープローンPCRを行なった。エラープローンPCRは、pET−FcR30eを鋳型とし、配列番号2および3に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
実施例40 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例39で作製したランダム変異ライブラリーを実施例2(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて25倍に希釈し、等量の400mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置することでアルカリ処理した。アルカリ処理後は、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法にてそれぞれ測定した。その後、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR30eと比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例2(6)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
(4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR30eに対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表25に示す。配列番号105に記載のアミノ酸配列のうち、33番目のグリシンから208番目のプロリンまでのアミノ酸残基(配列番号1の17番目から192番目に該当)を含み、但し当該33番目から208番目までのアミノ酸残基において、Ser65Arg(この表記は、配列番号1の65番目(配列番号52では81番目)のセリンがアルギニンに置換されていることを表す、以下同様)、Tyr74Phe、Ile76Val、Thr80Ser、Lys(Glu)119Val(この表記は、配列番号1の119番目(配列番号52では135番目)のリジンが一度グルタミン酸に置換されさらにバリンに置換されたことを示す)のいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR30eと比較しアルカリ安定性が向上しているといえる。
実施例41 改良Fc結合性タンパク質の作製
実施例40で判明した、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換をFcR33cに集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)から(c)に示す3種類の改良Fc結合性タンパク質を作製した。
(a)FcR33cに対し、さらにTyr74Phe(この表記は、配列番号1の74番目(配列番号52では90番目)のチロシンがフェニルアラニンに置換されたことを示す、以下同様)およびThr80Serのアミノ酸置換を行なったFcR35b
(b)FcR33cに対し、Tyr74Phe、Thr80SerおよびLys(Glu)119Val(この表記は、配列番号1の119番目(配列番号52では135番目)のリジンが一度グルタミン酸に置換されさらにバリンに置換されたことを示す、以下同様)のアミノ酸置換を行なったFcR35c
(c)FcR33cに対し、Ser65Arg、Tyr74Phe、Thr80SerおよびLys(Glu)119Valのアミノ酸置換を行なったFcR36b
以下、各改良Fc結合性タンパク質の作製方法を詳細に説明する。
(a)FcR35b
実施例40で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Tyr74PheおよびThr80Serを選択し、それらの置換をFcR33c(実施例36(c))に集積したFcR35bを作製した。具体的には、FcR33cをコードするポリヌクレオチド(配列番号100)に対して、Tyr74PheおよびThr80Serを生じさせる変異導入を行なうことにより、FcR35bを作製した。
(a−1)実施例36(c)で作製した、pET−FcR33cを鋳型とし、配列番号3および配列番号107(5’−CGAGCAGCTTCATTATTGATTCGGCGTCGGTGGAAGA−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm35bFとした。
(a−2)実施例36(c)で作製した、pET−FcR33cを鋳型とし、配列番号2および配列番号108(5’−TCTTCCACCGACGCCGAATCAATAATGAAGCTGCTCG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm35bRとした。
(a−3)(a−1)および(a−2)で得られた2種類のPCR産物(m35bF、m35bR)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m35bFとm35bRを連結したPCR産物m35bpを得た。
(a−4)(a−3)で得られたPCR産物m35bpを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR35bをコードするポリヌクレオチドを作製した。
(a−5)(a−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR33cに対して2箇所(野生型Fc結合性タンパク質に対して35箇所)アミノ酸置換したポリペプチドである、FcR35bをコードするポリヌクレオチドを含むプラスミドpET−FcR35bを得た。
(a−7)pET−FcR35bのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR35bのアミノ酸配列を配列番号109に、前記FcR35bをコードするポリヌクレオチドの配列を配列番号110に示す。なお、配列番号109において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のプロリン(Pro)までがFcR35bのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号109において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Asn56Aspのアスパラギン酸は72番目、Ser68Proのプロリンは84番目、Tyr74Pheのフェニルアラニンは90番目、Phe75Ileのイソロイシンは91番目、Ala78Serのセリンは94番目、Thr80Serのセリンは96番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Asp98Gluのグルタミン酸は114番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Gluのグルタミン酸は135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Lys132Argのアルギニンは148番目、Thr140Metのメチオニンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Gluのグルタミン酸は203番目およびIle190Valのバリンは206番目、Gln192Proのプロリンは208番目の位置にそれぞれ存在する。
(b)FcR35c
実施例40で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Tyr74Phe、Thr80SerおよびLys(Glu)119Valを選択し、それらの置換をFcR33c(実施例36(c))に集積したFcR35cを作製した。具体的には、FcR35bをコードするポリヌクレオチド(配列番号110)に対して、Lys(Glu)119Valを生じさせる変異導入を行なうことにより、FcR35cを作製した。
(b−1)(a)で作製した、pET−FcR35bを鋳型とし、配列番号3および配列番号111(5’−CACGGTGGGAGTTCGTAGAGGGGGAACCGA−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm35cFとした。
(b−2)(a)で作製した、pET−FcR35bを鋳型とし、配列番号2および配列番号112(5’−TCGGTTCCCCCTCTACGAACTCCCACCGTG−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm35cRとした。
(b−3)(b−1)および(b−2)で得られた2種類のPCR産物(m35cF、m35cR)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m35cFとm35cRを連結したPCR産物m35cpを得た。
(b−4)(b−3)で得られたPCR産物m35cpを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR35cをコードするポリヌクレオチドを作製した。
(b−5)(b−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR33cに対して3箇所(野生型Fc結合性タンパク質に対して36箇所)アミノ酸置換したポリペプチドである、FcR35cをコードするポリヌクレオチドを含むプラスミドpET−FcR35cを得た。
(b−7)pET−FcR35cのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR35cのアミノ酸配列を配列番号113に、前記FcR35cをコードするポリヌクレオチドの配列を配列番号114に示す。なお、配列番号113において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のプロリン(Pro)までがFcR35cのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号113において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Asn56Aspのアスパラギン酸は72番目、Ser68Proのプロリンは84番目、Tyr74Pheのフェニルアラニンは90番目、Phe75Ileのイソロイシンは91番目、Ala78Serのセリンは94番目、Thr80Serのセリンは96番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Asp98Gluのグルタミン酸は114番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Valのバリンは135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Lys132Argのアルギニンは148番目、Thr140Metのメチオニンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Gluのグルタミン酸は203番目およびIle190Valのバリンは206番目、Gln192Proのプロリンは208番目の位置にそれぞれ存在する。
(c)FcR36b
実施例40で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Ser65Arg、Tyr74Phe、Thr80SerおよびLys(Glu)119Valを選択し、それらの置換をFcR33c(実施例36(c))に集積したFcR36bを作製した。具体的には、FcR35cをコードするポリヌクレオチド(配列番号114)に対して、Ser65Argを生じさせる変異導入を行なうことにより、FcR36bを作製した。
(c−1)(b)で作製した、pET−FcR35cを鋳型とし、配列番号3および配列番号115(5’−GGTTCCACAATGAACGCCTGATTCCCAGCC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm36bFとした。
(c−2)(b)で作製した、pET−FcR35cを鋳型とし、配列番号2および配列番号116(5’−GGCTGGGAATCAGGCGTTCATTGTGGAACC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm36bRとした。
(c−3)(c−1)および(c−2)で得られた2種類のPCR産物(m36bF、m36bR)を混合し、表4に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m36bFとm36bRを連結したPCR産物m36bpを得た。
(c−4)(c−3)で得られたPCR産物m36bpを鋳型とし、配列番号2および配列番号3に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR36bをコードするポリヌクレオチドを作製した。
(c−5)(c−4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011−206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(c−6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR33cに対して4箇所(野生型Fc結合性タンパク質に対して37箇所)アミノ酸置換したポリペプチドである、FcR36bをコードするポリヌクレオチドを含むプラスミドpET−FcR36bを得た。
(c−7)pET−FcR36bのヌクレオチド配列の解析を、実施例2(6)と同様の方法で行なった。
シグナル配列およびポリヒスチジンタグを付加したFcR36bのアミノ酸配列を配列番号117に、前記FcR36bをコードするポリヌクレオチドの配列を配列番号118に示す。なお、配列番号117において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のプロリン(Pro)までがFcR36bのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。
また配列番号117において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Gln33Proのプロリンは49番目、Tyr35Asnのアスパラギンは51番目、Lys40Glnのグルタミンは56番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Asn56Aspのアスパラギン酸は72番目、Ser65Argのアルギニンは81番目、Ser68Proのプロリンは84番目、Tyr74Pheのフェニルアラニンは90番目、Phe75Ileのイソロイシンは91番目、Ala78Serのセリンは94番目、Thr80Serのセリンは96番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Asp98Gluのグルタミン酸は114番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Lys119Valのバリンは135番目、Glu121Glyのグリシンは137番目、Asp122Gluのグルタミン酸は138番目、Lys132Argのアルギニンは148番目、Thr140Metのメチオニンは156番目、Tyr141Pheのフェニルアラニンは157番目、Gly147Valのバリンは163番目、Tyr158Valのバリンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目、Asn187Gluのグルタミン酸は203番目およびIle190Valのバリンは206番目、Gln192Proのプロリンは208番目の位置にそれぞれ存在する。
実施例42 Fc結合性タンパク質のアルカリ安定性評価
(1)実施例36(c)で作製したFc結合性タンパク質(FcR33c)、ならびに実施例41で取得したFc結合性タンパク質(FcR35b、FcR35cおよびFcR36b)を発現する形質転換体を、実施例4の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR33c、FcR35b、FcR35cおよびFcR36bを調製した。
(2)(1)で調製したタンパク質抽出液中のFcR33c、FcR35b、FcR35cおよびFcR36bの抗体結合活性を、実施例2(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR33cを用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと950mMの水酸化ナトリウム溶液50μLとを混合し、30℃で1時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例2(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
結果を表26に示す。実施例41で作製したFcR35b、FcR35cおよびFcR36bはFcR33cと比較し残存活性が高いことから、FcR33cに比べてアルカリ安定性が向上していることが確認された。