JP2017061470A - 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類 - Google Patents

高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類 Download PDF

Info

Publication number
JP2017061470A
JP2017061470A JP2016203383A JP2016203383A JP2017061470A JP 2017061470 A JP2017061470 A JP 2017061470A JP 2016203383 A JP2016203383 A JP 2016203383A JP 2016203383 A JP2016203383 A JP 2016203383A JP 2017061470 A JP2017061470 A JP 2017061470A
Authority
JP
Japan
Prior art keywords
oligomer
grams
fluorinated
formula
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016203383A
Other languages
English (en)
Other versions
JP6279688B2 (ja
Inventor
エー.ゲラ ミゲル
A Guerra Miguel
エー.ゲラ ミゲル
ディー.ダールケ グレッグ
D Dahlke Gregg
ディー.ダールケ グレッグ
ドゥチェスン デニス
Duchesne Denis
ドゥチェスン デニス
フクシ タツオ
Tatsuo Fukushi
フクシ タツオ
エム.エー.グルータート ワーナー
Werner M A Grootaert
エム.エー.グルータート ワーナー
チウ ツァイ−ミン
Zai-Ming Qiu
チウ ツァイ−ミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2017061470A publication Critical patent/JP2017061470A/ja
Application granted granted Critical
Publication of JP6279688B2 publication Critical patent/JP6279688B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C313/00Sulfinic acids; Sulfenic acids; Halides, esters or anhydrides thereof; Amides of sulfinic or sulfenic acids, i.e. compounds having singly-bound oxygen atoms of sulfinic or sulfenic groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C313/02Sulfinic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/184Monomers containing fluorine with fluorinated vinyl ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】高度フッ素化スルフィナートオリゴマーを含むオリゴマーを提供すること。
【解決手段】高度フッ素化スルフィナートオリゴマーを含むオリゴマー。
【選択図】なし

Description

本開示は、高度フッ素化スルフィン酸オリゴマー及びコオリゴマー並びにその塩類に関する。本開示は、高度フッ素化スルフィン酸オリゴマー及びコオリゴマー並びにその塩類の製造方法に関する。
フッ素化スルフィナートは、フルオロポリマーと炭化水素の処理において有用である。フッ素化スルフィナートの合成方法及びその中間体としての使用は、文献で広く報告されている。例えば、高度フッ素化アルカンスルフィナートは、C.M.Hu,F.L.Quing,and W.Y.Huang,J Org Chem,1991,2801〜2804、及びW.Y.Huang,Journal of Fluorine Chemistry,58,1992,1〜8に報告されるように、脱ハロゲン化及びスルフィン化反応によって、対応するペルフルオロアルカンハライドから調製できる。この反応で用いるのに、亜硫酸塩+酸化剤、ヒドロキシメタンスルフィナート、二酸化チオ尿素、及び亜ジチオン酸ナトリウムなど、いくつかの試薬系が開発されている。脱ハロゲン及びスルフィン化試薬としての亜ジチオン酸ナトリウムの使用は、W.Y.Huang、B.N.Huang、及びW.Wangによって、Acta Chim.Sinica(Engl.Ed.),1986,178〜184、及びActa Chim.Sinica(Engl.Ed.),1986,68〜72にも報告されている。この後者の報告では、非水溶性臭化ペルフルオロアルキル(perfluoralkyl)を含む反応では、亜ジチオン酸ナトリウム水溶液との反応が非常に遅く、様々な反応物質の相互溶解性を改善し、30〜35時間以内での反応完了を可能にするには、共溶媒が必要であることが開示されている。記載される共溶媒として、アセトニトリル、グリコール、及びジエチレングリコールが挙げられる。
別の例では、F.H.Wu and B.N.Huang,Journal of Fluorine Chem,67,1994,233〜234では、DMF、アセトニトリル、又はアルコール類を共溶媒として用いる場合、ヨウ化ポリフルオロアルキル及び臭化ポリフルオロアルキルの両方が、二亜硫酸ナトリウムと中性水溶液中で反応し、良好な収率で対応するスルフィナートを生じると報告されている。同様に、CFCClは二亜硫酸ナトリウムと反応し、対応するスルフィン酸ナトリウムを生じる。対応するフッ素化ヨウ化物又は臭化物を出発材料とするフッ素化スルフィナート調製のデメリットは、得られる反応生成物が、大量の副生成物、特に、典型的にはスルフィナートから除去しなくてはならない無機塩を含有することである。
フッ化炭素スルフィナート調製の代替プロセスも、例えば、米国特許第3,420,877号に開示されている。この特定のプロセスは、ペルフルオロアルキルスルホニルフッ化物を、亜硫酸アルカリ金属又は亜硫酸アルカリ土類と、約10〜約50重量パーセントの、ジオキサン、ジメトキシエタン、ジ−n−ブチルエーテル、テトラヒドロフラン、及びジエチレングリコールジエチルエーテルからなる群から選択される、溶解した極性不活性有機溶媒を含有する水性媒体中で反応させる工程を含む。このプロセスは一般に、結果として得られた生成物から除去する必要がある大量の塩を生じないが、毒性がある場合があり、最終的にスルフィナートを用いるプロセス、例えばフリーラジカル重合反応に悪影響を及ぼし得る共溶媒の使用が必要である。対応するスルフィナートを製造するための、NHNHを用いるこれらフッ素化スルホニルフッ化物の還元も周知である。しかしながら、周知のプロセスはすべて、モノスルフィナート及びジスルフィナートの製造に限られている。
毒性溶媒の使用を要せず、好ましくは得られる反応混合物の更なる処理又は精製の必要がない、高度フッ素化スルフィン酸オリゴマー及びコオリゴマー並びにその塩類に対するプロセス、並びにその調製方法へのニーズが引き続き存在する。高度フッ素化スルフィン酸オリゴマー及びコオリゴマー並びにその塩類が、良好な収率を有することが更に望ましい。
一態様では、式(IV):
Figure 2017061470
の高度フッ素化スルフィナートオリゴマーを含み、
式中、X、X、及びXは、F、Cl、及びCFから独立して選択され、Rは、H、I、Br、直鎖又は分岐鎖アルキル、及びカテナリー(caternary)ヘテロ原子を任意に含む直鎖又は分岐鎖フルオロアルキル基から独立して選択され、R1は、直鎖又は分岐鎖ペルフルオロ化連結基であり、飽和又は不飽和、置換又は非置換であってよく、任意にカテナリーヘテロ原子を含み、Yはハライドであり、Mはカチオンであり、mは少なくとも2である、オリゴマーの調製方法が提供される。
別の態様では、式(II):
Figure 2017061470
の構造をもたらす高度フッ素化ビニルエーテルを更に含み、
式中、X、X、又はXは、H、F、Cl、及びCFから独立して選択され、R2は、直鎖又は分岐鎖フッ素化連結基であり、飽和又は不飽和及び置換又は非置換であってよく、任意にカテナリーヘテロ原子を含み、Gは、ペルフルオロアルキル、ペルフルオロアルコキシ、官能基、及びこれらの組み合わせから選択され、nは少なくとも1であり、ここで、式(II)の高度フッ素化ビニルエーテルが、式(I)の高度フッ素化オリゴマースルホニルハライドと異なるように、X、X、X、G及びR2が選択される、上記で開示される方法が提供される。
更に別の態様では、式(I)及び/又は式(II)の高度フッ素化ビニルエーテルと組み合わせて、式(III):
Figure 2017061470
の構造をもたらすエチレン性不飽和モノマーを更に含み、
式中、Zは、エチレン、プロピレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、フッ素化アルキルビニルエーテル、フッ素化アルコキシビニルエーテル、官能基を含むフッ素化ビニルエーテル、ペルフルオロ−1,3−ジオキソール、及びこれらの組み合わせから選択されるモノマー由来であり、更にpは少なくとも1である、上記で開示される方法が提供される。
上記の概要は、各実施形態を説明することを目的とするものではない。本発明の1つ以上の実施形態の詳細を以下の説明文においても記載する。他の特徴、目的、及び利点は、説明文及び「特許請求の範囲」から明らかとなるであろう。
本明細書では以下の用語を使用する。
「a」、「an」、及び「the」は、互換可能なものとして使用され、1つ以上を意味し、「及び/又は」は、一方又は両方の記述された事例が起こる場合があることを示すために使用され、例えば、A及び/又はBは、(A及びB)と(A又はB)とを含む。本明細書においては更に、端点によって表わされる範囲には、その範囲内に含まれるすべての数値が含まれる(例えば、1〜10には、1.4、1.9、2.33、5.75、9.98などが含まれる)。本明細書においては更に、「少なくとも1」の記載には、1以上のすべての数値が含まれる(例えば、少なくとも2、少なくとも4、少なくとも6、少なくとも8、少なくとも10、少なくとも25、少なくとも50、少なくとも100など)。
「オリゴマー」は、20,000g/モル未満、15,000g/モル未満、10,000g/モル未満、5,000g/モル未満、2,000g/モル未満、1,000g/モル未満、更に500g/モル未満を意味する。
「連結基」は、二価連結基を意味する。一実施形態では、連結基は、少なくとも1個の炭素原子(いくつかの実施形態では、少なくとも2、4、8、10、又は更に20個の炭素原子)を含む。連結基は、直鎖又は分岐鎖、環式又は非環式構造であってよく、飽和又は不飽和、置換又は非置換であってよく、任意に、イオウ、酸素、及び窒素からなる群から選択される1個以上のヘテロ原子を含有し、並びに/又は任意に、エステル、アミド、スルホンアミド、カルボニル、カーボネート、ウレタン、尿素、及びカルバメートからなる群から選択される1つ以上の官能基を含有する。
「高度フッ素化」は、部分フッ素化末端基でペルフルオロ化される繰返しモノマー単位を意味し、このモノマー由来のオリゴマー上に任意に塩素を含有してよい。例えば、ペルフルオロ化開始剤を用いると、ペルフルオロ化スルフィン酸オリゴマーが生成される。別の例では、有機開始剤を用いると、式(I)(上記)の「R」末端基に水素原子が含まるようになる。
「スルフィナート」は、スルフィン酸及びスルフィン酸塩の両方を示すために使用される。また、本明細書では「フルオロスルフィナート」及び「フッ素化スルフィナート」も互換可能なものとして使用され、少なくとも1つのフッ素原子を含有するスルフィン酸及びスルフィン酸塩を示す。
フルオロオレフィンは、フルオロポリマー製造のコモノマーとして有用である。フルオロスルフィナートは、ポリマーの加工に役立つ、効果的なイオン性末端部を含まないフルオロポリマーの製造に有用である。フルオロスルフィン酸反応性モノマーは、界面活性剤、開始剤、及び独特の分岐フルオロポリマーを生じる反応性モノマーとして使用できる。フルオロスルフィン酸基を含有するオリゴマーは、連鎖成長を開始し、例えば、くし型フルオロポリマー構造などの複雑なフルオロポリマー構造を提供できる。
本開示は、以下の式(IV)の高度フッ素化オリゴマースルフィン酸及びその塩類に関する。本開示は、高度フッ素化オリゴマースルフィン酸の調製方法に関する。いくつかの実施形態では、高度フッ素化オリゴマースルフィン酸の調製方法は、
(a)高度フッ素化ビニルスルホニルハライドを準備する工程と、
(b)高度フッ素化ビニルスルホニルハライドを開始剤によってオリゴマー形成し、式(I):
Figure 2017061470
の高度フッ素化オリゴマースルホニルハライドをもたらす工程と、
(c)高度フッ素化オリゴマースルホニルハライドを還元して、式(IV):
Figure 2017061470
の高度フッ素化スルフィナートオリゴマーにする工程と、を含み、
Yはハライドであり、Mはカチオンであり、mは少なくとも2である。
いくつかの実施形態では、X、X、及びXは、F、Cl、及びCFから独立して選択される。Rは、水素、ヨウ素、臭素、直鎖又は分岐鎖アルキル、及びカテナリーヘテロ原子を任意に含む直鎖又は分岐鎖フルオロアルキル基から独立して選択される。いくつかの実施形態では、アルキル基は最大20個の炭素原子を有する。いくつかの実施形態では、R1は、直鎖又は分岐鎖ペルフルオロ化連結基である。この連結基は、飽和又は不飽和、置換又は非置換であってよく、任意にカテナリーヘテロ原子を含む。
いくつかの実施形態では、Yはハライドである。本開示で有用なハライドとして、フッ素及び塩素が挙げられる。Mはカチオンである。本開示で有用な代表的なカチオンとして、H、NH 、PH 、H、Na、Li、Cs、Ca+2、K、Mg+2、Zn+2、及びCu+2、及び/又は、N(CH 、NH(CH 、N(CHCH 、NH(CHCH 、NH(CH 、((CHCHCHCH)Pなどが挙げられるがこれらに限定されない有機カチオン、並びにこれらの組み合わせが挙げられる。本開示に有用な方法において、mは、2以上の任意の数から選択される。
いくつかの実施形態では、高度フッ素化ビニルスルホニルハライドは、例えば、ペルフルオロビニルエーテルスルホニルフッ化物などのペルフルオロビニルスルホニルハライドである。本開示による代表的なペルフルオロビニルエーテルスルホニルフッ化物として、以下のものが挙げられるがこれらに限定されない。
CF=CF−O−CFCF−SO
CF=CF−O−CFCF−SOCl
CF=CF−O−CFCFCF−SO
CF=CF−O−CFCFCF−SOCl
Figure 2017061470
CF=CF−O−CFCFCFCF−SO
CF=CF−O−CFCFCFCF−SOCl
CF=CF−O−CFCFCFCFCF−SO
CF=CF−O−CFCFCFCFCF−SOCl
CF=CF−O−CFCFCFCFCFCF−SO
CF=CF−O−CFCFCFCFCFCF−SOCl
Figure 2017061470
CF=CF−O−[CFCF(CF)−O]−CFCF−SO
CF=CF−O−[CFCF(CF)−O]−CFCF−SOCl
Figure 2017061470
CF=CF−O−[CFCF(CF)−O]−CFCF−SO
CF=CF−O−[CFCF(CF)−O]−CFCF−SOCl
CF=CF−O−[CFCF(CF)−O]−CFCF−SO
CF=CF−O−[CFCF(CF)−O]−CFCF−SOCl
CF=CF−O−[CFCF(CF)−O]−CFCF−SO
CF=CF−O−[CFCF(CF)−O]−CFCF−SOCl
CF=CF−O−[CFCF(CF)−O]−CFCFCF−SO
CF=CF−O−[CFCF(CF)−O]−CFCFCF−SOCl
CF=CF−O−[CFCF(CF)−O]−CFCFCF−SO
CF=CF−O−[CFCF(CF)−O]−CFCFCF−SOCl
CF=CF−O−[CFCF(CF)−O]−CFCFCFCF−SO
CF=CF−O−[CFCF(CF)−O]−CFCFCFCF−SOCl
CF=CF−O−[CFCF(CF)−O]−CFCFCFCF−SO
CF=CF−O−[CFCF(CF)−O]−CFCFCFCF−SOCl
いくつかの実施形態では、高度フッ素化オリゴマースルフィン酸の調製方法は、工程(c)の高度フッ素化スルフィナートオリゴマーを酸性化し、そこから高度フッ素化スルフィン酸オリゴマーを抽出する工程(d)も含む。工程(d)では、任意の酸を使用してよい。代表的な酸として、硫酸、塩酸、及びその他強鉱酸など、並びにこれらの組み合わせが挙げられる。例えば、真空ストリッピング及び/又は、追加成分の添加を伴う、若しくは伴わない濾過の使用などの任意の周知の抽出手法を用いて、抽出を行ってよい。代表的な成分として、アルコール、エーテルなどが挙げられるがこれらに限定されない。いくつかの実施形態では、メタノールが好ましい。いくつかの実施形態では、メチル−t−ブチルエーテルが好ましい。
いくつかの実施形態では、高度フッ素化オリゴマースルフィン酸の調製方法は、工程(d)の高度フッ素化スルフィン酸オリゴマーを変換し、その塩を形成する工程(e)も含む。いくつかの実施形態では、工程(e)を、有機塩基を用いて実施する。いくつかの実施形態では、工程(e)を、無機塩基を用いて実施する。いくつかの実施形態では、水酸化アンモニウムが好ましい。いくつかの実施形態では、水酸化カリウムが好ましい。
いくつかの実施形態では、高度フッ素化オリゴマースルフィン酸の調製方法は、高度フッ素化オリゴマースルホニルハライドを部分的還元し、続いて、残存するスルホニルハライドをスルホネートに加水分解することにより生成されるスルホネートも含む。
いくつかの実施形態では、高度フッ素化スルフィン酸の調製方法は、式(I)の高度フッ素化オリゴマースルホニルハライドを高度フッ素化ビニルエーテルとコオリゴマー形成し、式(II):
Figure 2017061470
の構造をもたらす工程も含む。
いくつかの実施形態では、X、X、及びXは、H、F、Cl、及びCFから独立して選択される。いくつかの実施形態では、R2は、直鎖又は分岐鎖フッ素化連結基である。この連結基は、飽和又は不飽和、置換又は非置換であってよく、任意にカテナリーヘテロ原子を含む。
Gは、ペルフルオロアルキル、ペルフルオロアルコキシ、官能基、及びこれらの組み合わせから選択される。いくつかの実施形態では、ペルフルオロアルキル基は、最大30個の炭素原子を有する。いくつかの実施形態では、ペルフルオロアルコキシ基は、最大30個の炭素原子を有する。いくつかの実施形態では、Gが官能基であるとき、官能基は、カルボン酸及びその誘導体、ニトリル、スルホニルハライド、スルホネート、イミダート、アミジン、アルコール、メルカプタン、ヨウ素、臭素など、並びにこれらの組み合わせから選択される。
変数nは少なくとも1である。本開示に有用な方法では、X、X、X、G及びR2は、式(II)の高度フッ素化ビニルエーテルが、式(I)の高度フッ素化オリゴマースルホニルハライドと異なるように選択される。
いくつかの実施形態では、式(II)の高度フッ素化ビニルエーテルは、例えば工程(c)のように還元され、高度フッ素化ビニルエーテルのアルコール誘導体がもたらされる。例えば、式(II)中Gがカルボニル基として選択されるとき、式(II)の高度フッ素化ビニルエーテルは、工程(c)において還元され、そのアルコール誘導体がもたらされる。
式(I)中R1及び式(II)中R2は、直鎖又は分岐鎖フッ素化連結基である。いくつかの実施形態では、R1及びR2は、−(CF−、−O(CF−、−(CF−O−(CF−、−(CF−[O−(CF−、及び−[(CF−O−]−[(CF−O−]、−(CF−[O−(CF(CF)CF、並びにこれらの組み合わせから独立して選択され、式中、a、b、c、及びdは、独立して少なくとも1である。本開示のR1及びR2として有用な代表的な直鎖及び分岐鎖連結基として、−CFCF−、−CFCFCFCF−、−CFCF(CF)−O−CFCF−が挙げられるがこれらに限定されない。
いくつかの実施形態では、高度フッ素化スルフィン酸の調製方法は、上記工程(b)中で、式(I)の高度フッ素化ビニルスルホニルハライドをエチレン性不飽和モノマーとコオリゴマー形成し、式(III):
Figure 2017061470
の構造をもたらす工程も含んでよい。いくつかの実施形態では、Zは、エチレン、プロピレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、フッ素化アルキルビニルエーテル、フッ素化アルコキシビニルエーテル、官能基を含むフッ素化ビニルエーテル、ペルフルオロ−1,3−ジオキソールなど、及びこれらの組み合わせから選択されるモノマー由来である。変数pは少なくとも1である。
いくつかの実施形態では、式(III)のエチレン性不飽和モノマーは、式(I)の高度フッ素化ビニルスルホニルハライド及び式(II)の高度フッ素化ビニルエーテルとコオリゴマー形成できる。
いくつかの実施形態では、Zが官能基を含むエチレン性不飽和モノマーであるとき、官能基は、臭素及び/又はヨウ素から選択される。代表的な官能基を含むエチレン性不飽和モノマーは、1つ以上の式(V):
CX=CX(Z)
の化合物由来である。
いくつかの実施形態では、各Xは、水素又はフッ素から独立して選択される。いくつかの実施形態では、Zは、ヨウ素、臭素、又はR−Uから選択され、式中、Uは、ヨウ素又は臭素から選択され、Rは、任意に酸素原子を含むペルフルオロ化又は部分的ペルフルオロ化アルキレン基である。いくつかの実施形態では、非フッ素化ブロモ−又はヨードオレフィン、例えば、ヨウ化ビニル及びヨウ化アリルを用いることができる。官能基を含む代表的なエチレン性不飽和モノマーとして、以下のものが挙げられるがこれらに限定されない。
CH=CHI
CF=CHI
CF=CFI
CH=CHCH
CF=CFCF
CH=CHCFCF
CH=CHCFCFCHCH
CH=CH(CF
CH=CH(CFCHCH
CH=CH(CF
CH=CH(CFCHCH
CF=CFCHCH
CF=CFCFCF
CF=CFOCFCF
CF=CFOCFCFCHCH
CF=CFOCFCFCF
CF=CFOCFCFCFCF
CF=CFOCFCFCFCHCH
CF=CFOCFCFCH
CF=CFOCFCFCFCH
CF=CFCFOCHCH
CF=CFO(CFOCFCF
CH=CHBr
CF=CHBr
CF=CFBr
CH=CHCHBr
CF=CFCFBr
CH=CHCFCFBr
CF=CFOCFCFBr
CF=CFCl
CF=CFCFCl
からなる群から選択される。
いくつかの実施形態では、オリゴマー形成工程(b)は、溶媒がない状態で実施される。つまり、工程(b)でオリゴマー形成又はコオリゴマー形成されている混合物に、溶媒は添加されない。いくつかの実施形態では、オリゴマー形成工程(b)は、溶媒がある状態で実施される。本開示で有用な溶媒として、ペルフルオロカーボン、ペルフルオロエーテル、クロロフルオロエーテル、クロロカーボン、ハイドロフルオロエーテル、及び水など、並びにこれらの組み合わせが挙げられる。
溶媒は、反応中に、適切な攪拌と熱伝導を可能にするのに十分な量で存在しなくてはならない。いくつかの実施形態では、反応完了後に溶媒を除去してよい。
抽出、減圧下における蒸留、カラムクロマトグラフィー、及び任意のその他既知の分離方法などの任意の従来の方法を用いて、溶媒を除去してよい。
いくつかの実施形態では、開始剤を用いる。例えば、過硫酸塩、過酸化物(例えば、ジアシルペルオキシド、ペルオキシエステル、ジアルキルペルオキシド、ヒドロペルオキシド(hyrdoperoxides)等などの有機ペルオキシド)、光照射、γ線照射、アゾ化合物などといった、任意の従来の開始剤を用いてよい。いくつかの実施形態では、好ましい開始剤(iniator)は、過酸化化合物から選択される。過酸化水素、アシルペルオキシド、例えば、ジアセチルペルオキシド、ジプロピオニルペルオキシド、ジブチリルペルオキシド、ジベンゾイルペルオキシド、ベンゾイルアセチルペルオキシド、ジラウロイルペルオキシド、二コハク酸ペルオキシド、又は二グルタル酸ペルオキシドなどが本明細書で言及されるが、ただ単に例としてである。更に、過酢酸などの水溶性過酸、及びその水溶性塩(特に、アンモニウム、ナトリウム、又はカリウム塩)又はそのエステル、例えば、第三ブチルペルオキシアセテート及び第三ブチルペルオキシピバレートなどに言及してよい。また、その他過酸の水溶性塩、特に、アンモニウム、カリウム、及びナトリウム塩、例えばペルオキソモノ硫酸塩及びペルオキソジ硫酸塩、過リン酸塩、過ホウ酸塩、及び過炭酸塩を使用してもよい。更に、ペルフルオロアシルペルオキシド又はΩ−ヒドロペルフルオロアシルペルオキシドが好適である。本開示で有用なアゾ化合物として、アゾイソブチロニトリル及びアゾ−2−シアノ吉草酸などが挙げられる。いくつかの実施形態では、特定の水溶性アゾ化合物が好ましい。また、10℃〜50℃の温度、中でも低温範囲において十分な量でラジカルを発生する従来の活性酸化還元系も、開始剤として使用できる。代表的な酸化還元系として、水溶性過酸化化合物、好ましくはペルオキソ二硫酸塩と、亜硫酸水素塩若しくは二亜硫酸水素塩の組み合わせが挙げられ、又は、そのホルムアルデヒド、チオ硫酸、及びジイミン遊離化合物、例えば、ヒドラジン若しくはアゾジカルボキシアミドなどとの付加生成物にも言及されるが、ただ単に例としてである。言及される化合物の塩類、好ましくはアルカリ金属塩、及び特にアンモニウム塩も、酸化還元混合物中に存在する。オリゴマー形成が有機溶媒中で起こる場合、上記いずれの場合でも、対象とする溶媒中に十分に可溶性であるように触媒を選択しなくてはならない。
このプロセスにおいて、工程(b)のオリゴマー形成反応の最初に、開始剤の全量を添加してよい。しかしながら、比較的大きいバッチでは、工程(b)のオリゴマー形成工程中、継続的に開始剤を添加することが都合がよい場合もある。同様に、別の方法として、開始剤の一部の量を最初に加え、残りを1つ以上のバッチで後に加えてもよい。特に酸化還元系を開始剤として用いるとき、共活性剤、すなわち、例えば鉄及び銀の可溶性塩の添加が有利である場合もある。
本開示で有用な還元剤として、例えば以下に挙げるものなどの、還元剤として周知のものが挙げられる。代表的な還元剤として、MeLH(式中、Meはアルカリ金属であり、Lはアルミニウム又はホウ素のいずれかである)及びMeH(式中、Meはアルカリ金属又はアルカリ土類金属のいずれかであり、xは1又は2である)などの金属水素化物が挙げられる。この種の還元剤として、例えば、リチウムアルミニウム水素化物、水素化ホウ素リチウム、水素化ホウ素カリウム、水素化ホウ素ナトリウム、水素化ナトリウム、水素化リチウム、水素化カリウム、水素化バリウム、水素化カルシウムなどが挙げられる。いくつかの実施形態では、好ましい還元剤は、水素化ホウ素ナトリウムである。
いくつかの実施形態では、有用な還元剤として還元性無機酸が挙げられる。この種の還元剤として、例えば、ヨウ化水素酸、臭化水素酸、リン化水素酸、硫化水素酸、亜ヒ酸、亜リン酸、亜硫酸、亜硝酸、ギ酸、シュウ酸などが挙げられる。いくつかの実施形態では、有用な還元剤として金属と酸の混合物が挙げられる。この種の還元剤で有用な金属として、例えば、スズ、鉄、亜鉛、亜鉛のアマルガムなどが挙げられる。この種の還元剤で有用な酸として、例えば、塩酸、硫酸、酢酸、リン酸、ギ酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸、トリクロロ酢酸などが挙げられる。
いくつかの実施形態では、有用な還元剤として、例えば、ブチルリチウム、グリニャール試薬(例えば、1〜8個の炭素原子のアルキル)、アリールマグネシウムハライド、トリエチルアルミニウム、トリイソブチルアルミニウム、ナトリウム−ベンゼン、ナトリウム−ナフタレンなどといった有機金属化合物が挙げられる。いくつかの実施形態では、例えば、塩化第一スズ、硫酸第一鉄、三塩化チタン、塩化第一鉄、硫酸第一スズ、硫化第一鉄、硫化第一スズ、臭化第一鉄、臭化第一スズ、水酸化第一鉄などといった、低い価数の金属化合物が有用な還元剤である。いくつかの実施形態では、無機酸の還元性塩、及び同化合物が有用な還元剤である。この種の還元剤として、例えば、ヨウ化物、臭化物、硫化物、亜リン酸塩、亜硫酸塩、亜ヒ酸塩、亜ジチオン酸塩、亜硝酸塩、ギ酸塩などが挙げられる。本開示では、金属、水、水蒸気、アルコール、又はアルカリの混合物も還元剤として使用してよい。更に、例えば、トリエタノールアミン、アセトアルデヒド、ホルムアルデヒド、プロピルアルデヒドなどといった還元性有機化合物、及び、例えば、一酸化炭素、二酸化イオウ、ヨウ化水素、臭化水素、硫化水素などといった還元性ガスも、還元剤として有用である。いくつかの実施形態では、本開示で有用な還元剤は、水素化ホウ素ナトリウム、水素化ホウ素カリウム、リチウムアルミニウム水素化物、NHNH、KSO、NaSO、NaHSO、及びKHSOのうち少なくとも1つから選択される。
以下の実施形態は、本出願の主題を代表するものである。
実施形態1.式(IV):
Figure 2017061470
の高度フッ素化スルフィナートオリゴマーを含み、
式中、X、X、及びXは、F、Cl、及びCFから独立して選択され、Rは、H、I、Br、直鎖又は分岐鎖アルキル、及びカテナリーヘテロ原子を任意に含む直鎖又は分岐鎖フルオロアルキル基から独立して選択され、R1は、直鎖又は分岐鎖ペルフルオロ化連結基であり、飽和又は不飽和、置換又は非置換であってよく、任意にカテナリーヘテロ原子を含み、Yはハライドであり、Mはカチオンであり、mは少なくとも2である、オリゴマー。
実施形態2.式(IV)の高度フッ素化スルフィナートオリゴマー由来の塩類を更に含む、実施形態1に記載のオリゴマー。
実施形態3.式(II):
Figure 2017061470
の第2の単位を更に含み、
式中、X、X、又はXは、H、F、Cl、及びCFから独立して選択され、R2は、直鎖又は分岐鎖フッ素化連結基であり、飽和又は不飽和及び置換又は非置換であってよく、任意にカテナリーヘテロ原子を含み、Gは、ペルフルオロアルキル及び官能基から選択され、nは少なくとも1であり、ここで、式(II)によって得られる単位が、式(I)によって得られる単位と異なるように、X、X、X、G及びR2が選択される、実施形態1又は2に記載のオリゴマー。
実施形態4.官能基が、カルボン酸及びその誘導体、ニトリル、スルホニルハライド、スルホネート、イミダート、アミジン、メルカプタン、アルコール、ヨウ素、臭素、並びにこれらの組み合わせから選択される、実施形態3に記載のオリゴマー。
実施形態5.官能基がカルボニル基であるとき、該官能基が還元されてアルコール誘導体がもたらされる、式(II)の官能化ペルフルオロビニルエーテルである、実施形態3又は4に記載のオリゴマー。
実施形態6.式(III):
Figure 2017061470
の構造をもたらすエチレン性不飽和モノマーを更に含み、式中、Zは、エチレン、プロピレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、フッ素化アルキルビニルエーテル、フッ素化アルコキシビニルエーテル、官能基を含むフッ素化ビニル、ペルフルオロ−1,3−ジオキソール、及びこれらの組み合わせから選択されるモノマー由来であり、更にpは少なくとも1である、実施形態1に記載のオリゴマー。
実施形態7.式(III):
Figure 2017061470
の構造をもたらすエチレン性不飽和モノマーを更に含み、式中、Zは、エチレン、プロピレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、フッ素化アルキルビニルエーテル、フッ素化アルコキシビニルエーテル、官能基を含むフッ素化ビニル、ペルフルオロ−1,3−ジオキソール、及びこれらの組み合わせから選択されるモノマー由来であり、更にpは少なくとも1である、実施形態3に記載のオリゴマー。
実施形態8.R1及びR2が、−(CF−、−O(CF−、−(CF−O−(CF−、−(CF−[O−(CF−、−(CF−[O−(CF(CF)CF−、及び−[(CF−O−]−[(CF−O−]−、並びにこれらの組み合わせから独立して選択され、式中、a、b、c、及びdが、独立して少なくとも1である、実施形態1〜7のいずれか1つに記載のオリゴマー。
実施形態9.R1及びR2が、−CFCF−、−CFCFOCFCF−、−CFCF(CF)−O−CFCF−から独立して選択される、実施形態1〜8のいずれか1つに記載のオリゴマー。
実施形態10.オリゴマーが、20,000グラム/モル以下の数平均分子量を有する、実施形態1〜9のいずれか1つに記載のオリゴマー。
実施形態11.Mが、H、NH 、PH 、H、Na、Li、Cs、Ca+2、K、Mg+2、Zn+2、及びCu+2、及び/又は、N(CH 、NH(CH 、N(CHCH 、NH(CHCH 、NH(CH 、((CHCHCHCH)Pが挙げられるがこれらに限定されない有機カチオン、並びにこれらの組み合わせから選択される、実施形態1〜10のいずれか1つに記載の組成物。
実施形態12.オリゴマーが水溶性である、実施形態1〜11のいずれか1つに記載のオリゴマー。
実施形態13.実施形態1〜12のいずれか1つに記載のオリゴマーを含む水性エマルション。
実施形態14.実施形態13に記載の水性エマルション由来のフルオロポリマー。
以下の実施例は、あくまで説明を目的としたものであって、付属の特許請求の範囲をいかなる意味においても限定することを目的とするものではない。実施例における部、百分率、比等は全て、特に記載しない限り、重量基準である。本明細書で使用したすべての物質は、特に記載のない限り、Sigma−Aldrich Chemical Company(Milwaukee,Wisconsin)より入手した。
Figure 2017061470
(実施例1)
200グラム(0.53モル)のMV4Sと20グラム(0.09モル)の「LUPEROX 575」を真空にした600mL容反応器(例えばParr Instruments(Moline,IL)から商標表記「600ml SERIES 4520 PARR」(「600mL PARR反応器」)で市販されている反応器など)に装入した。混合物を攪拌し、65℃で20時間加熱した。わずかな圧力上昇が計測され、反応が20℃に達した後に排気した。217グラムの生成混合物を排出し、分画して、97グラムの未反応MV4Sと106グラムのオリゴマー化MV4S(o−MV4S)を、53%の収率で得た。38グラムのo−MV4Sサンプルを真空下で加熱して、145℃、4.6mmで沸騰する留分を除去した。28.4グラムのより高温で沸騰する生成物が容器中に残った。この28.4グラムの高沸騰物質を液体クロマトグラフィー質量分析(LCMS)にかけると、相対面積は、一般構造R−[CFCF(OCSOF)]−R(式中、nは2〜5に等しく、RはH、C、及び/又はC15であった)を示した。平均オリゴマー単位は2.9であり、平均分子量は1200グラム/モルであった。
(実施例2)
テトラヒドロフラン(tetrahydorfuran)(THF)100グラム中6.3グラム(0.17モル)の水素化ホウ素ナトリウムを、500mL容三口丸底フラスコに入れ、攪拌した。25グラム(0.06モル)の実施例1で調製したo−MV4S(平均2.9のオリゴマー単位を有する)を50グラムのTHFに溶解し、15分間かけて添加した。o−MV4S溶液の添加により、発熱反応がわずかに起こった。この混合物を65℃で2時間反応させた。溶媒を真空ストリッピングし、水200グラム中14グラムの濃硫酸を20℃で添加した。この混合物を真空ストリッピングし、得られる固体を100グラムのメタノールで抽出した。次に、抽出した混合物を濾過し、再度真空ストリッピングして、26.5グラムの粘着性固体生成物を得て、続いてこれを水で50グラムに希釈した。核磁気共鳴分光法(NMR)により、98%の収率で所望のo−MV4SO2Hが確認された。
(実施例3)
200グラム(0.53モル)のMV4S、27グラム(0.12モル)の「LUPEROX 575」、及び52グラムのCTFE二量体を真空にした600mL PARR反応器に入れ、この混合物を攪拌して65℃で20時間加熱した。わずかな圧力上昇が計測され、反応が20℃になった後に排気した。268グラムの生成混合物を排出し、分画して、15mm真空において225℃超の沸点を有する50グラムのo−MV4Sを得た。LCMSによる相対面積パーセントは、一般構造R−[CFCF(OCSOF)]n−R(式中、nは2〜5に等しく、Rは、H、C、及び/又はC15のうち1つであった)を有するオリゴマーを示した。この反応条件及び調製による平均オリゴマー単位は3.2であり、平均分子量は1320グラム/モルであった。
(実施例4)
1リットル容三口丸底フラスコにおいて、THF 100グラム中、40グラム(0.11モル)の実施例3によるo−MV4S生成物を、THF 100グラム中、9グラム(0.24モル)の水素化ホウ素ナトリウムを含む攪拌溶液に加えた。o−MV4S溶液の添加10分以内に、発熱反応がわずかに起こった。この反応を65℃で20時間進行させた。水200グラム中25グラムの濃硫酸を20℃で加えた。上部の生成物相の、THFを含む生成物135グラムを真空ストリッピングした。50グラムのメタノールを投入して生成物を溶解し、これを濾過して真空ストリッピングし、35グラムのo−MV4SO2Hを得た。NMRにより、所望のo−MV4SO2Hの存在が示された。
(実施例5)
35グラムの実施例4で調製したo−MV4SO2Hを、6.1グラム(0.1モル)のアンモニア(27%水酸化アンモニウムとして)に加えてアンモニウム塩を調製し、真空ストリッピングにより、粘着性固体として38グラムのo−MV4SO2NH4塩を得た。o−MV4SO2NH4について、融点は観察されず、209℃において分解開始されることが計測された。
(実施例6)
100mL容瓶に、26グラム(0.07モル)のMV4S、50グラムの蒸留水、1グラム(0.0004モル)の実施例5で調製したo−MV4SO2NH4の50%溶液、0.3グラム(0.001モル)の過硫酸ナトリウム、及び0.6グラム(0.003モル)のリン酸カリウムを装入した。溶液を窒素パージし、ラウンダーメータ、例えば、SDL Atlas(Rock Hill,South Caroline)より商標表記「Launder−Ometer M228AA」で市販されている装置に、80℃において20時間入れた。15グラムの未反応MV4Sが下相として回収された。残存する溶液を凍結溶解し、5グラムの粘稠で冷たい流動性ポリマーを沈殿させ、これをLCMSにかけると、本法では検出できないほど高い分子量を有することがわかった。19F NMRにより、一般構造R−[CFCF(OCSOF]n−R(式中、nは平均数25に等しく、Rは、COOH及びHであった)を有する所望のo−MV4Sの存在が示された。この反応条件及び調製による平均的オリゴマーは平均分子量9,600グラム/モルを有した。
(実施例7)
100グラム(0.26モル)のMV4S、17グラム(0.07モル)の「LUPEROX 575」、及び103グラムのCTFE二量体を真空にした600mL PARR反応器に装入した。混合物を攪拌し、17グラム(0.27モル)のフッ化ビニリデンを装入した。得られた混合物を65℃で20時間加熱した。わずかな圧力上昇が計測され、反応が20℃になった後に排気した。207グラムの生成混合物を排出し、分画して、15mm真空において75℃超の沸点を有し、投入モノマーに基づき収率50%のo−MV4S/VDFコオリゴマーを57グラム得た。LCMSによる相対面積パーセントは、一般構造R−[CFCF(OCSOF)]x−[CHCF]y−R(式中、x及びyは2〜5に等しく、Rは、H、C、及び/又はC15のうち1つであった)を有するコオリゴマーを示した。この反応条件及び調製による平均オリゴマー単位は3.1であり、平均分子量は1478グラム/モルであった。
(実施例8)
100グラム(0.26モル)のMV4S、15グラム(0.04モル)のCI、10グラム(0.04モル)の「LUPEROX 575」、及び25グラムのCTFE二量体を真空にした600mL PARR反応器に装入した。混合物を攪拌し、65℃で20時間加熱した。わずかな圧力上昇が計測され、反応が20℃に達した後に排気した。145グラムの生成混合物を排出し、分画して、15mm真空において180℃超の沸点を有する9グラムのo−MV4Sオリゴマーを得た。LCMSによる相対面積パーセントは、一般構造R−[CFCF(OCSOF)]n−R(式中、nは2〜5に等しく、Rは、C、I、H、C、及び/又はC15のうち1つであった)を有するオリゴマーを示した。この反応条件及び調製による平均オリゴマー単位は3.2であり、平均分子量は1350グラム/モルであった。
(実施例9)
6.1グラムのKF(0.1モル)、390グラムのジグリムを600mL PARR反応器に装入し、攪拌しながら−5℃まで冷却した。170グラムのペルフルオロフッ化アジポイル(0.87モル)(Exfluor Research(Austin,Texas)から入手可能)を反応器に投入し、続いて140グラム(0.85モル)のヘキサフルオロプロピレンオキシド(E.I.du Pont de Nemours and Company(Wilmington,Delaware)から入手可能)を入れ、1時間かけて反応を進行させた。この反応を25℃まで加熱し、250グラムの生成物であるFCOC10−O−CF(CF)COFを135℃で蒸留した。2リットル容三口丸底フラスコに、192グラム(1.8モル)のNaCO、390グラムのジグリムを装入して攪拌した。250グラム(0.69モル)のFCOC10−O−CF(CF)COFをゆっくりと加え、反応温度を最大71℃まで加熱した。スラリーを最大162℃まで加熱して、COがこれ以上発生しなくなるまでこのスラリーを脱炭酸した。この反応を25℃まで冷却し、水350グラム中215グラム(2.19モル)の濃HSOを加えた。上相540グラムを、水200グラム中64グラムの濃HSOで更に洗浄し、下相317グラムを粗生成物として得た。116グラム(3.63モル)のメタノールと92グラム(0.94モル)の濃HSOを用いて、82℃で20時間加熱することにより、下相生成物をエステル化した。この反応を25℃まで冷却し、200グラムの水を添加して、189グラムの下相生成物を粗生成物として単離した。真空蒸留により、132℃/15mmの沸点を有する129グラム(0.32モル)のCF=CF−O−C10−CO−CHが得られた。
100グラム(0.26モル)のMV4S、20グラム(0.05モル)のMV5CO2CH3、10グラム(0.04モル)の「LUPEROX 575」、及び25グラムのCTFE二量体を真空にした600mL PARR反応器に装入入した。混合物を攪拌し、65℃で20時間加熱した。わずかな圧力上昇が計測され、反応が20℃になった後に排気した。144グラムの生成混合物を排出し、分画して、15mm真空において225℃超の沸点を有する24グラムのo−MV4S/MV5CO2CH3コオリゴマーを得た。LCMSによる相対面積パーセントは、一般構造R−[CFCF(OCSOF)]x−[CFCF(OC10COCH)]y−R(式中、x及びyは2〜5に等しく、Rは、H、C、及び/又はC15のうち1つであった)を有するオリゴマーを示した。この反応条件及び調製による平均コオリゴマー単位は3.2であり、平均分子量は1320グラム/モルであった。
(実施例10)
250ミリリットル容三口丸底フラスコにおいて、THF 20グラム中、18グラム(0.02モル)の実施例9によるo−MV4S/MV5CO2CH3生成物を、THF 50グラム中、1.5グラム(0.04モル)の水素化ホウ素ナトリウムを含む攪拌溶液に加えた。o−MV4S/MV5CO2CH3溶液の添加10分以内に、その添加により発熱反応がわずかに起こった。この反応を65℃で1時間進行させた。水50グラム中10グラムの濃硫酸を20℃で加えた。50グラムのメチル−t−ブチルエーテルを装入して生成物を抽出し、真空ストリッピングを行って、17グラムのR−[CFCF(OCSOH)]x−[CFCF(OC10CHOH)]y−R(式中、x及びyは2〜5に等しく、Rは、H、C、及び/又はC15であった)を得た。核磁気共鳴分光法(NMR)により、フルオロスルフィン酸及びフルオロアルコール基を共に有する所望のコオリゴマーが94%の収率で示された。
(実施例11)
100グラム(0.26モル)のMV4S、14グラム(0.04モル)のMV31、10グラム(0.04モル)の「LUPEROX 575」、及び25グラムのCTFE二量体を真空にした600mL PARR反応器に装入した。混合物を攪拌し、65℃で20時間加熱した。わずかな圧力上昇が計測され、反応が20℃になった後に排気した。146グラムの生成混合物を排出し、分画して、15mm真空において225℃超の沸点を有する、23グラムのo−MV4S/MV31コオリゴマーを得た。LCMSによる相対面積パーセントは、一般構造R−[CFCF(OCSOF)]x−[CFCF(OCOCF]y−R(式中、x及びyは2〜5に等しく、Rは、H、C、及び/又はC15のうち1つであった)を有するオリゴマーを示した。この反応条件及び調製による平均コオリゴマー単位は3.4であり、平均分子量は1375グラム/モルであった。
(実施例12)
真空にした600mL PARR反応器に、50グラム(0.11モル)のMV3b2S、7グラム(0.03モル)の「LUPEROX 575」、及び196グラムのCTFE二量体を装入した。混合物を攪拌し、65℃で20時間加熱した。わずかな圧力上昇が計測され、反応が20℃になった後に排気した。248グラムの生成混合物を排出し、分画して、15mm真空において225℃超の沸点を有する8グラムのo−MV3b2Sを得た。LCMSによる相対面積パーセントは、一般構造R−[CFCF(OCFCF(CF)OCSOF)]n−R(式中、nは2〜5に等しく、Rは、H、C、及び/又はC15のうち1つであった)を有するオリゴマーを示した。この反応条件及び調製による平均オリゴマー単位は2.5であり、平均分子量は1250グラム/モルであった。
(実施例13)
250ミリリットル容三口丸底フラスコにおいて、THF 20グラム中、6グラム(0.01モル)の実施例12によるo−MV3b2S生成物を、THF 50グラム中、1.5グラム(0.03モル)の水素化ホウ素ナトリウムを含む攪拌溶液に加えた。o−MV3b2S溶液の添加10分以内に、その添加により発熱反応がわずかに起こった。この反応を65℃で1時間進行させた。水50グラム中10グラムの濃硫酸を20℃で加えた。50グラムのメチル−t−ブチルエーテルを装入して生成物を抽出し、その後真空ストリッピングを行って、5.3グラムのo−MV3b2SO2H(収率91%)を得た。核磁気共鳴分光法(NMR)により、所望のo−MV3b2SO2Hの存在が確認された。
(実施例14)
5グラムの実施例13で調製したo−MV3b2SO2Hを、6.1グラム(0.1モル)のアンモニア(27%水酸化アンモニウムとして)に加えてアンモニウム塩を調製し、真空ストリッピングにより、粘着性固体として5.2グラムのo−MV3b2SO2NH4塩を得た。融点は156℃であり、分解開始は183℃であった。
(実施例15)
280g(1.2モル)のCFOCCOF(米国特許第2,713,593号(Briceら)の実施例2に記載のように電解フッ素化により調製)を、1L容三口丸底フラスコ中で−20℃に冷却された過剰のメタノールに加えた。次にこれを水洗し、下相のフッ素化物として、295g(1.2モル)のCFOCCOCHを単離した。続いて、水150g中89g(1.35モル)のKOHの投入量を上記フッ素化物に加え、CFOCCOK塩を調製した。これを乾燥し、水150g中150gの濃HSOで酸性化し、真空蒸留して、314g(1.3モル)のCFOCCOHを単離した。50g(0.22モル)のCFOCCOH、4gのジメチルホルムアミド、及び30g(0.2.5モル)の塩化チオニルを、500mL容三口丸底フラスコ中、72℃で1時間反応させて蒸留し、46g(0.19モル)のCFOCCOClを得た。250mL容三口丸底フラスコに、4.7g(0.05モル)の35% HOOHを加え、続いて攪拌しながら0℃に冷却し、その後水90g中4g(0.1モル)のNaOHを添加した。この反応を、10℃で30分間維持し、その後、10℃において、「FC−72 FLUORINERT」(3M Company(St.Paul,MN)から市販)180g中20g(0.08モル)のCFOCCOClを加えた。この溶液を10℃で30分間攪拌し、「FC−72 FLUORINERT」中10重量%のCFOCCOOOCOCOCF(FNMR及びFTIRで確認)を含有する下相を除去した。120g(0.32モル)のMV4Sを、攪拌子を入れた500mL容三口丸底フラスコに加え、0℃に冷却した。その後、「FC−72 FLUORINERT」中10重量パーセント(0.02モル)のCFOCCOOOCOCOCF、100gを加え、10℃にて2時間攪拌した。この溶液を、20時間、25℃で更に反応させた。生成混合物を分画し、8mm真空において150℃超の沸点を有する11gのo−MV4Sを得た。FNMRにより、CFOCFCF末端基と、一般構造CFOCFCF−[CFCF(OCSOF)]n−CFCFOCF(式中、nは平均15であった)を有する所望のペルフルオロo−MV4Sが確認された。この反応条件及び調製によるオリゴマーは、平均分子量6050グラム/モルを有した。
(実施例16)
50グラムのMV4Sを、6.21グラムの「LUPEROX TAEC」を用いて、120℃、窒素下にて24時間かけてオリゴマー化した。低沸騰画分を、120℃真空下でストリッピングし、単離収率62%で31グラムの粘稠な液体を得た。FTIRでは、炭化水素開始剤由来のCHに対する2968cm−1のシグナルと、1463、1349、1212、1148、及び1072cm−1(C−F及び−SOF基に対応)の強いシグナルが示された。19F NMRでは、CF=CFO−基に対するシグナルはみられず、−81及び−87ppmに−CFO−に対する2つのシグナルが、+43ppmにSOFシグナルが、−110ppmに−CFSOFシグナルが、−123及び−128にCFCF−シグナルが示された。オリゴマー化ビニルシグナルである−(CFCF(O−)−が、−121及び−147ppmに、複雑な多重項を伴ってみられた。LCMS分析による、平均オリゴマー単位は3.2であり、平均分子量は1320グラム/モルであった。
THF溶媒37グラム中、25.6グラムの上記粘稠なオリゴマー液体(〜0.067当量の−SOF)を、0.5グラムのNaBH(0.0132モル)を用いて、−5〜10℃、窒素下にて20分間処理した後に、20℃で更に2時間反応させた。19F NMRにより、20%の−SOF(+43ppm)が反応し、対応する−SOMが得られ、−111ppmにおける−CFSOFに対応するシグナルが減少し、−CFSOMに対する新たなシグナルが−132ppmに現れたことが示された。0.28グラムのNaBH(合計0.78グラム、0.0206モル)を、−5〜10℃で20分間かけて添加し、その後20℃で2時間反応させた。変換率が36%に上昇した。NaBHの添加を3回繰り返すと、合計1.1グラムのNaBH(0.029モル)を添加したとき、変換率は50%に上昇した。19F NMRにより、−126、−128及び−132に化学シフトを有する−OCFCFCFCFSOM、並びに−123、−128及び−111ppmに化学シフトを有する−OCFCFCFCFSOFが示された。残存する−SOFのシグナルは+42ppmにみられた。
5グラムの水を、上記の部分的に還元されたTHF中オリゴマー溶液に攪拌しながら添加し、すべての未反応還元剤を破壊した。次に、この溶液を、10% KOH水溶液を用いて、pHが塩基性(9を超えるpH)になるまで、攪拌しながら20℃で処理した。この溶液を、20℃で更に30分間攪拌した。19F NMRにより、+42ppmの−SOFシグナルが完全に消失したことが示された。2N HSOを用いて溶液のpHを2未満に酸性化した後、混合物をメチル−t−ブチルエーテルで抽出した(3×50mL)。溶媒からストリッピングした後、32グラムの濡れた状態の生成物が得られた。この濡れた生成物を20グラムの水に溶解した。この溶液の19F NMR分析により、固形分重量%が約50であり、−CFSOH(−132ppm)と−CFSOH(−111ppm)のモル比が54:46であることが示された。
(実施例17)
実施例16における実施と同様に、50グラムのMV4Sを、2.81グラムのVAZO 67(5.6重量%)を用いて、窒素下、120℃で24時間、オリゴマー化した。固体除去のために25℃において濾過し、濾過溶液を100℃にて、完全真空下でストリッピングし、低沸点成分を除去した。9.7グラムの高粘稠(viscose)な液体オリゴマーが得られた(収率19%)。19F NMR分析は、CF=CFO−シグナルがないことを示した。LCMS分析による、平均オリゴマー単位は2.6であり、平均分子量は1071グラム/モルであった。
本明細書中に引用される特許、特許文献、及び刊行物の完全な開示内容を、恰もそれぞれが個々に援用されたのと同様にしてそれらの全容を援用するものである。本発明の範囲及び趣旨から逸脱しない本発明の様々な変更や改変は、当業者には明らかとなるであろう。本発明は、本明細書に記載した例示的な実施形態及び実施例によって過度に限定されるものではなく、かかる実施例及び実施形態は、一例として表されているだけであり、本発明の範囲は、以下のように本明細書に記載した請求項、及び本プロセスによって製造される多層物品によってのみ限定されることを意図するものと理解されるべきである。
の高度フッ素化スルフィナートオリゴマーを含み、
式中、X、X、及びXは、F、Cl、及びCFから独立して選択され、Rは、H、I、Br、直鎖又は分岐鎖アルキル、及びカテナリー(caternary)ヘテロ原子を任意に含む直鎖又は分岐鎖フルオロアルキル基から独立して選択され、R1は、直鎖又は分岐鎖ペルフルオロ化連結基であり、飽和又は不飽和、置換又は非置換であってよく、任意にカテナリーヘテロ原子を含み、Mはカチオンであり、mは少なくとも2である、オリゴマーの調製方法が提供される。
Figure 2017061470
の高度フッ素化スルフィナートオリゴマーを含み、
式中、X、X、及びXは、F、Cl、及びCFから独立して選択され、Rは、H、I、Br、直鎖又は分岐鎖アルキル、及びカテナリーヘテロ原子を任意に含む直鎖又は分岐鎖フルオロアルキル基から独立して選択され、R1は、直鎖又は分岐鎖ペルフルオロ化連結基であり、飽和又は不飽和、置換又は非置換であってよく、任意にカテナリーヘテロ原子を含み、Mはカチオンであり、mは少なくとも2である、オリゴマー。
本明細書中に引用される特許、特許文献、及び刊行物の完全な開示内容を、恰もそれぞれが個々に援用されたのと同様にしてそれらの全容を援用するものである。本発明の範囲及び趣旨から逸脱しない本発明の様々な変更や改変は、当業者には明らかとなるであろう。本発明は、本明細書に記載した例示的な実施形態及び実施例によって過度に限定されるものではなく、かかる実施例及び実施形態は、一例として表されているだけであり、本発明の範囲は、以下のように本明細書に記載した請求項、及び本プロセスによって製造される多層物品によってのみ限定されることを意図するものと理解されるべきである。本発明の実施態様の一部を以下の項目[1]−[14]に記載する。
[1]
式(IV):
Figure 2017061470
の高度フッ素化スルフィナートオリゴマーを含み、
式中、X 、X 、及びX は、F、Cl、及びCF から独立して選択され、Rは、H、I、Br、直鎖又は分枝鎖アルキル、及びヘテロ原子を任意に含む直鎖又は分枝鎖フルオロアルキル基から独立して選択され、R1は、直鎖又は分枝鎖ペルフルオロ化連結基であり、飽和又は不飽和、置換又は非置換であってもよく、任意にヘテロ原子を含み、Mはカチオンであり、mは少なくとも2である、オリゴマー。
[2]
式(IV)の高度フッ素化スルフィナートオリゴマーから誘導される塩類を更に含む、項目1に記載のオリゴマー。
[3]
式(II):
Figure 2017061470

の第2の単位を更に含み、式中、X 、X 、又はX は、H、F、Cl、及びCF から独立して選択され、R2は、直鎖又は分枝鎖フッ素化連結基であり、飽和又は不飽和及び置換又は非置換であってもよく、任意にヘテロ原子を含み、Gは、ペルフルオロアルキル及び官能基から選択され、nは少なくとも1であり、ここで、式(II)によって得られる単位が、式(I)によって得られる単位と異なるように、X 、X 、X 、G及びR2が選択される、項目1に記載のオリゴマー。
[4]
前記官能基が、カルボン酸及びその誘導体、ニトリル、スルホニルハライド、スルフォネート、イミダート、アミジン、メルカプタン、アルコール、ヨウ素、臭素、並びにこれらの組み合わせから選択される、項目3に記載のオリゴマー。
[5]
前記官能基がアルコール誘導体である、項目3に記載のオリゴマー。
[6]
式(III):
Figure 2017061470

の構造をもたらすエチレン性不飽和モノマーを更に含み、式中、Zは、エチレン、プロピレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、フッ素化アルキルビニルエーテル、フッ素化アルコキシビニルエーテル、官能基を含むフッ素化ビニル、ペルフルオロ−1,3−ジオキソール、及びこれらの組み合わせから選択されるモノマーから誘導され、更にpは少なくとも1である、項目1に記載のオリゴマー。
[7]
式(III):
Figure 2017061470

の構造をもたらすエチレン性不飽和モノマーを更に含み、式中、Zは、エチレン、プロピレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、フッ素化アルキルビニルエーテル、フッ素化アルコキシビニルエーテル、官能基を含むフッ素化ビニル、ペルフルオロ−1,3−ジオキソール、及びこれらの組み合わせから選択されるモノマーから誘導され、更にpは少なくとも1である、項目3に記載のオリゴマー。
[8]
R1及びR2が、
−(CF −、−O(CF −、−(CF −O−(CF −、−(CF −[O−(CF −、−(CF −[O−(CF(CF )CF −、及び−[(CF −O−] −[(CF −O−] −、並びにこれらの組み合わせから独立して選択され、式中、a、b、c、及びdは、独立して少なくとも1である、項目1又は3に記載のオリゴマー。
[9]
R1及びR2が、
−CF CF −、−CF CF OCF CF −、−CF CF(CF )−O−CF CF −から独立して選択される、項目1又は3に記載のオリゴマー。
[10]
前記オリゴマーが、20,000グラム/モル以下の数平均分子量を有する、項目1に記載のオリゴマー。
[11]
Mが、H 、NH 、PH 、H 、Na 、Li 、Cs 、Ca +2 、K 、Mg +2 、Zn +2 、及びCu +2 、及び/又は、N(CH 、NH (CH 、N(CH CH 、NH(CH CH 、NH(CH 、((CH CH CH CH )P が挙げられるがこれらに限定されない有機カチオン、並びにこれらの組み合わせから選択される、項目1に記載のオリゴマー。
[12]
前記オリゴマーが水溶性である、項目1に記載のオリゴマー。
[13]
項目1に記載のオリゴマーを含む水性エマルション。
[14]
項目13に記載の水性エマルションから誘導されるフルオロポリマー。

Claims (14)

  1. 式(IV):
    Figure 2017061470
    の高度フッ素化スルフィナートオリゴマーを含み、
    式中、X、X、及びXは、F、Cl、及びCFから独立して選択され、Rは、H、I、Br、直鎖又は分枝鎖アルキル、及びヘテロ原子を任意に含む直鎖又は分枝鎖フルオロアルキル基から独立して選択され、R1は、直鎖又は分枝鎖ペルフルオロ化連結基であり、飽和又は不飽和、置換又は非置換であってもよく、任意にヘテロ原子を含み、Yはハライドであり、Mはカチオンであり、mは少なくとも2である、オリゴマー。
  2. 式(IV)の高度フッ素化スルフィナートオリゴマーから誘導される塩類を更に含む、請求項1に記載のオリゴマー。
  3. 式(II):
    Figure 2017061470
    の第2の単位を更に含み、式中、X、X、又はXは、H、F、Cl、及びCFから独立して選択され、R2は、直鎖又は分枝鎖フッ素化連結基であり、飽和又は不飽和及び置換又は非置換であってもよく、任意にヘテロ原子を含み、Gは、ペルフルオロアルキル及び官能基から選択され、nは少なくとも1であり、ここで、式(II)によって得られる単位が、式(I)によって得られる単位と異なるように、X、X、X、G及びR2が選択される、請求項1に記載のオリゴマー。
  4. 前記官能基が、カルボン酸及びその誘導体、ニトリル、スルホニルハライド、スルフォネート、イミダート、アミジン、メルカプタン、アルコール、ヨウ素、臭素、並びにこれらの組み合わせから選択される、請求項3に記載のオリゴマー。
  5. 前記官能基がアルコール誘導体である、請求項3に記載のオリゴマー。
  6. 式(III):
    Figure 2017061470
    の構造をもたらすエチレン性不飽和モノマーを更に含み、式中、Zは、エチレン、プロピレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、フッ素化アルキルビニルエーテル、フッ素化アルコキシビニルエーテル、官能基を含むフッ素化ビニル、ペルフルオロ−1,3−ジオキソール、及びこれらの組み合わせから選択されるモノマーから誘導され、更にpは少なくとも1である、請求項1に記載のオリゴマー。
  7. 式(III):
    Figure 2017061470
    の構造をもたらすエチレン性不飽和モノマーを更に含み、式中、Zは、エチレン、プロピレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、フッ素化アルキルビニルエーテル、フッ素化アルコキシビニルエーテル、官能基を含むフッ素化ビニル、ペルフルオロ−1,3−ジオキソール、及びこれらの組み合わせから選択されるモノマーから誘導され、更にpは少なくとも1である、請求項3に記載のオリゴマー。
  8. R1及びR2が、
    −(CF−、−O(CF−、−(CF−O−(CF−、−(CF−[O−(CF−、−(CF−[O−(CF(CF)CF−、及び−[(CF−O−]−[(CF−O−]−、並びにこれらの組み合わせから独立して選択され、式中、a、b、c、及びdは、独立して少なくとも1である、請求項1又は3に記載のオリゴマー。
  9. R1及びR2が、
    −CFCF−、−CFCFOCFCF−、−CFCF(CF)−O−CFCF−から独立して選択される、請求項1又は3に記載のオリゴマー。
  10. 前記オリゴマーが、20,000グラム/モル以下の数平均分子量を有する、請求項1に記載のオリゴマー。
  11. Mが、H、NH 、PH 、H、Na、Li、Cs、Ca+2、K、Mg+2、Zn+2、及びCu+2、及び/又は、N(CH 、NH(CH 、N(CHCH 、NH(CHCH 、NH(CH 、((CHCHCHCH)Pが挙げられるがこれらに限定されない有機カチオン、並びにこれらの組み合わせから選択される、請求項1に記載のオリゴマー。
  12. 前記オリゴマーが水溶性である、請求項1に記載のオリゴマー。
  13. 請求項1に記載のオリゴマーを含む水性エマルション。
  14. 請求項13に記載の水性エマルションから誘導されるフルオロポリマー。
JP2016203383A 2010-12-17 2016-10-17 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類 Active JP6279688B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201061424153P 2010-12-17 2010-12-17
US61/424,153 2010-12-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013544551A Division JP6081922B2 (ja) 2010-12-17 2011-12-06 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類

Publications (2)

Publication Number Publication Date
JP2017061470A true JP2017061470A (ja) 2017-03-30
JP6279688B2 JP6279688B2 (ja) 2018-02-14

Family

ID=45418798

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013544551A Active JP6081922B2 (ja) 2010-12-17 2011-12-06 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類
JP2016203383A Active JP6279688B2 (ja) 2010-12-17 2016-10-17 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013544551A Active JP6081922B2 (ja) 2010-12-17 2011-12-06 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類

Country Status (5)

Country Link
US (1) US9266999B2 (ja)
EP (1) EP2651988B1 (ja)
JP (2) JP6081922B2 (ja)
CN (1) CN103370345B (ja)
WO (1) WO2012082454A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212279B2 (en) * 2010-12-17 2015-12-15 3M Innovative Properties Company Microemulsions and fluoropolymers made using microemulsions
EP2651863B1 (en) 2010-12-17 2019-12-04 3M Innovative Properties Company Methods of making partially fluorinated sulfinic acid monomers and their salts
CN103443210B (zh) 2010-12-17 2016-04-06 3M创新有限公司 具有侧链含溴部分的氟化低聚物
JP5844819B2 (ja) * 2010-12-17 2016-01-20 スリーエム イノベイティブ プロパティズ カンパニー 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類の調製
WO2012083107A2 (en) 2010-12-17 2012-06-21 3M Innovative Properties Company Fluorine-containing polymer comprising a sulfinate-containing molecule
US8907125B2 (en) * 2010-12-17 2014-12-09 3M Innovative Properties Company Preparation of perfluorovinyl ether sulfinic acids and their salts
CN103582627B (zh) 2011-06-03 2016-08-31 3M创新有限公司 烯丙基醚封端的氟代烷基亚磺酸及其盐
WO2013085864A2 (en) * 2011-12-06 2013-06-13 3M Innovative Properties Company Fluorinated oligomers having pendant functional groups
WO2013090251A2 (en) 2011-12-16 2013-06-20 3M Innovative Properties Company Processing aid composition derived from a sulfinate-containing molecule
US11767379B2 (en) 2018-03-01 2023-09-26 Daikin Industries, Ltd. Method for manufacturing fluoropolymer
US20220010118A1 (en) 2018-11-19 2022-01-13 Daikin Industries, Ltd. Composition and stretched body
CN116836340A (zh) 2018-11-19 2023-10-03 大金工业株式会社 改性聚四氟乙烯的制造方法和组合物
WO2020218620A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法、排水の処理方法、及び、フルオロポリマー水性分散液
EP3960713A4 (en) 2019-04-26 2023-01-18 Daikin Industries, Ltd. WATER TREATMENT METHOD AND COMPOSITION
WO2021045227A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 組成物およびその製造方法
JP7368759B2 (ja) 2019-09-05 2023-10-25 ダイキン工業株式会社 パーフルオロエラストマーの製造方法および組成物
CN114651018A (zh) 2019-11-19 2022-06-21 大金工业株式会社 含氟聚合物的制造方法、聚四氟乙烯的制造方法、全氟弹性体的制造方法和组合物
EP4249517A1 (en) 2020-11-19 2023-09-27 Daikin Industries, Ltd. Method for producing fluorine-containing elastomer aqueous dispersion, and composition
WO2022107890A1 (ja) 2020-11-19 2022-05-27 ダイキン工業株式会社 パーフルオロエラストマー水性分散液の製造方法、組成物、架橋性組成物および架橋物
JPWO2022107894A1 (ja) 2020-11-19 2022-05-27
TW202246426A (zh) 2021-03-10 2022-12-01 日商大金工業股份有限公司 塗料組成物、塗膜、積層體及塗裝物品
JPWO2022244785A1 (ja) 2021-05-19 2022-11-24
JPWO2022244784A1 (ja) 2021-05-19 2022-11-24
JPWO2022260139A1 (ja) 2021-06-11 2022-12-15
JPWO2023277140A1 (ja) 2021-06-30 2023-01-05
EP4365212A1 (en) 2021-06-30 2024-05-08 Daikin Industries, Ltd. Method for producing fluoropolymer composition, and fluoropolymer composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224176A (en) * 1975-07-09 1977-02-23 Asahi Chem Ind Co Ltd Cathion exchange membrane
JPS5224177A (en) * 1975-07-09 1977-02-23 Asahi Chem Ind Co Ltd Manufacturing method of fluorocarbon cathion exchange membrane
JPS53132094A (en) * 1977-04-20 1978-11-17 Du Pont Fluorinated ionnexchange polymer
JPS5657832A (en) * 1979-10-15 1981-05-20 Kanegafuchi Chem Ind Co Ltd Preparation of membrane structure for producing ion exchange membrane
JPS61185507A (ja) * 1985-02-14 1986-08-19 Tokuyama Soda Co Ltd 陰イオン交換体の製造方法
CN101721922A (zh) * 2008-07-22 2010-06-09 山东东岳神舟新材料有限公司 一种微孔膜增强的多层含氟交联掺杂离子膜及其制备方法
CN102008905A (zh) * 2010-06-18 2011-04-13 山东东岳神舟新材料有限公司 一种质子交换膜及其制备方法和应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2713593A (en) 1953-12-21 1955-07-19 Minnesota Mining & Mfg Fluorocarbon acids and derivatives
US3420877A (en) 1965-10-23 1969-01-07 Minnesota Mining & Mfg Process for the preparation of fluorocarbon sulfinates and derivatives thereof
US4151053A (en) 1975-07-09 1979-04-24 Asahi Kasei Kogyo Kabushiki Kaisha Cation exchange membrane preparation and use thereof
US4544458A (en) * 1978-11-13 1985-10-01 E. I. Du Pont De Nemours And Company Fluorinated ion exchange polymer containing carboxylic groups, process for making same, and film and membrane thereof
US4940525A (en) 1987-05-08 1990-07-10 The Dow Chemical Company Low equivalent weight sulfonic fluoropolymers
US5285002A (en) * 1993-03-23 1994-02-08 Minnesota Mining And Manufacturing Company Fluorine-containing polymers and preparation and use thereof
DE10209784A1 (de) * 2001-09-01 2003-12-04 Univ Stuttgart Inst Fuer Chemi Sulfinatgruppen enthaltende Oligomere und Polymere und Verfahren zu ihrer Herstellung
CN101693751B (zh) 2009-10-26 2011-03-09 山东东岳神舟新材料有限公司 功能性氟树脂及其应用
US9212279B2 (en) * 2010-12-17 2015-12-15 3M Innovative Properties Company Microemulsions and fluoropolymers made using microemulsions
EP2651985B1 (en) * 2010-12-17 2016-03-23 3M Innovative Properties Company Partially fluorinated polysulfinic acids and their salts
EP2651863B1 (en) * 2010-12-17 2019-12-04 3M Innovative Properties Company Methods of making partially fluorinated sulfinic acid monomers and their salts
WO2012083107A2 (en) * 2010-12-17 2012-06-21 3M Innovative Properties Company Fluorine-containing polymer comprising a sulfinate-containing molecule
JP5844819B2 (ja) * 2010-12-17 2016-01-20 スリーエム イノベイティブ プロパティズ カンパニー 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類の調製

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224176A (en) * 1975-07-09 1977-02-23 Asahi Chem Ind Co Ltd Cathion exchange membrane
JPS5224177A (en) * 1975-07-09 1977-02-23 Asahi Chem Ind Co Ltd Manufacturing method of fluorocarbon cathion exchange membrane
JPS53132094A (en) * 1977-04-20 1978-11-17 Du Pont Fluorinated ionnexchange polymer
JPS5657832A (en) * 1979-10-15 1981-05-20 Kanegafuchi Chem Ind Co Ltd Preparation of membrane structure for producing ion exchange membrane
JPS61185507A (ja) * 1985-02-14 1986-08-19 Tokuyama Soda Co Ltd 陰イオン交換体の製造方法
CN101721922A (zh) * 2008-07-22 2010-06-09 山东东岳神舟新材料有限公司 一种微孔膜增强的多层含氟交联掺杂离子膜及其制备方法
CN102008905A (zh) * 2010-06-18 2011-04-13 山东东岳神舟新材料有限公司 一种质子交换膜及其制备方法和应用

Also Published As

Publication number Publication date
CN103370345A (zh) 2013-10-23
EP2651988B1 (en) 2014-10-22
US20130267658A1 (en) 2013-10-10
US9266999B2 (en) 2016-02-23
JP2014504293A (ja) 2014-02-20
WO2012082454A1 (en) 2012-06-21
JP6081922B2 (ja) 2017-02-15
EP2651988A1 (en) 2013-10-23
CN103370345B (zh) 2016-06-29
JP6279688B2 (ja) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6279688B2 (ja) 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類
JP5844819B2 (ja) 高度フッ素化スルフィン酸のオリゴマー及びコオリゴマー並びにその塩類の調製
JP5986102B2 (ja) マイクロエマルジョン及びマイクロエマルジョンを用いて作製されたフルオロポリマー
JP6157499B2 (ja) ペンダント官能基を有するフッ素化オリゴマー
JP5837610B2 (ja) 部分的にフッ素化されたポリスルフィン酸及びその塩
JP6039575B2 (ja) 部分的にフッ素化されたスルフィン酸モノマー及びその塩
JP5866375B2 (ja) スルフィネート含有分子を含むフッ素含有ポリマー
JP4226253B2 (ja) 重合開始剤としてのペルフルオロジアシルペルオキシド
JP5533920B2 (ja) ポリフルオロアルカンカルボン酸フルオライドおよびその製造法
US6700023B1 (en) Low temperature initiators for fluoroolefin polymerization
JP2007077141A (ja) 新規なフルオロスルホニル基を有するノルボルネン類、およびその製造方法
JP2007308388A (ja) 有機過酸化物、ラジカル開始剤、その誘導体および製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170912

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250