JP2017031843A - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
JP2017031843A
JP2017031843A JP2015150633A JP2015150633A JP2017031843A JP 2017031843 A JP2017031843 A JP 2017031843A JP 2015150633 A JP2015150633 A JP 2015150633A JP 2015150633 A JP2015150633 A JP 2015150633A JP 2017031843 A JP2017031843 A JP 2017031843A
Authority
JP
Japan
Prior art keywords
limit value
air ratio
fuel
injection amount
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015150633A
Other languages
English (en)
Other versions
JP6426064B2 (ja
Inventor
敦仁 岩瀬
Atsuhito Iwase
敦仁 岩瀬
龍 遊木
Tatsu Yuki
龍 遊木
幸市 水谷
Koichi Mizutani
幸市 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2015150633A priority Critical patent/JP6426064B2/ja
Publication of JP2017031843A publication Critical patent/JP2017031843A/ja
Application granted granted Critical
Publication of JP6426064B2 publication Critical patent/JP6426064B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】気筒内の混合気が含む酸素の量(エアマス)を高い精度で計算できる場合とそうでない場合の両方において燃料噴射量を適切に制限することができるエンジンを提供する。【解決手段】エンジンは、DPFと、ECUと、を備える。このDPFは、排気ガス内の粒子状物質(PM)を捕捉することにより排気ガスを浄化する。ECUは、燃料噴射量の上限値であるλ制限噴射量を、空気過剰率λの下限値(λ下限値)に基づいて求める。ECUは、DPFに捕集されたPMの堆積量に基づいてλ下限値を補正し、補正後のλ下限値を用いてλ制限噴射量を求める。【選択図】図5

Description

本発明は、排気ガス浄化装置を備えるエンジンに関する。
従来から、複数の稼動条件に応じて算出される制限噴射量に基づいて、燃料の最大噴射量を設定するエンジンが知られている。特許文献1は、この種のエンジンを開示する。
この特許文献1のエンジンは、エンジンの目標回転数及びエンジンの冷却水温度に基づいて算出した基準最大噴射量と、目標回転数及び大気圧に基づいて算出した大気圧制限噴射量と、空気過剰率に基づいて算出した黒煙制限噴射量(λ制限噴射量)と、のうち最も小さい値を最終最大噴射量(最大燃料噴射量)に設定し、エンジンの始動が完了してからの経過時間が所定時間未満の場合、又は冷却水温度が所定温度未満の場合においては基準最大噴射量を所定量だけ増加させた値を最終最大噴射量とする構成となっている。特許文献1は、この構成により、運転環境及び使用態様に関わらず、運転状態を安定させるエンジンを提供できるとする。
特開2014−25441号公報
上記特許文献1の構成は、空気過剰率(λ)と、制御部に記憶された黒煙制限噴射量マップ(λベースマップ)と、を用いて黒煙制限噴射量を算出している。空気過剰率は空燃比を理論空燃比で除算して得られるものであるから、その計算には、気筒内の混合気が含む酸素の量(いわゆるエアマス)が必要になる。従って、空気過剰率の計算にあたっては、気筒に吸入される空気量が必要になり、また、排気ガスを吸気側に戻して再吸気させるEGR(排気ガス再循環)が行われる構成では、気筒に吸入されるEGRガス量も必要になる。
気筒に吸入される空気量及びEGRガス量は、公知の式を用いた理論的な計算により求めることができる。しかしながら、例えば排気側の圧力と吸気側の圧力との差が小さい状況においてはEGR還流量を正確に求めることが難しいため、気筒内の混合気が含む酸素の量を常に高い精度で計算できるとは限らず、空気過剰率の計算精度が低下する場合がある。
計算により得られた空気過剰率にマイナス側の誤差が生じた場合、当該空気過剰率に基づいて算出される黒煙制限噴射量は過少となる。この結果、燃料噴射量が必要以上に制限されて、特に過渡期(車両の加速や負荷の投入が行われる時期)において、出力低下やエンストなどが発生してしまうおそれがある。
一方、計算により得られた空気過剰率にプラス側の誤差が生じた場合、当該空気過剰率λに基づいて算出される黒煙制限噴射量は過多となる。この結果、燃料噴射量の制限が不十分となって黒煙が大量に発生し、排気ガス浄化装置(DPF:Diesel Particulate Filter)を頻繁に再生しなければならなくなるおそれがある。
本発明は以上の事情に鑑みてされたものであり、その目的は、気筒内の混合気が含む酸素の量(エアマス)を高い精度で計算できる場合とそうでない場合の両方において燃料噴射量を適切に制限することができるエンジンを提供することにある。
課題を解決するための手段及び効果
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
本発明の観点によれば、以下の構成のエンジンが提供される。即ち、このエンジンは、排気ガス浄化装置と、制御部と、を備える。前記排気ガス浄化装置は、排気ガスを浄化する。前記制御部は、燃料噴射量の上限値である制限噴射量を空気過剰率の下限値又は燃空比の上限値に基づいて求める。前記空気過剰率の下限値又は燃空比の上限値は、少なくとも、前記排気ガス浄化装置に捕集された粒子状物質の堆積量に応じて異なる。
このように粒子状物質の堆積量に基づいて空気過剰率の下限値又は燃空比の上限値を異ならせることで、エアマスの計算精度が例えば排気圧力によって変化し得ることを考慮して燃料噴射量を適切に制限することができる。例えば、粒子状物質の堆積量が少なくエアマスの計算精度が低いと見込まれる場合は、空気過剰率の下限値を意図的に小さく(又は燃空比の上限値を意図的に大きく)することで、燃料噴射量が過剰に制限されることによる出力の低下やエンスト等を防止することができる。一方、粒子状物質の堆積量が多くエアマスの計算精度が高いと見込まれる場合は、空気過剰率の下限値又は燃空比の上限値を本来あるべき値(あるいは、その近傍の値)にすることで、燃料噴射量の制限不足による未燃燃料の発生や排気ガス浄化装置の再生頻度の増加を回避することができる。
前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、前記制御部は、前記空気過剰率の下限値又は燃空比の上限値を、前記排気ガス浄化装置に捕集された粒子状物質の堆積量に基づいて補正する。前記制御部は、補正後の前記空気過剰率の下限値又は燃空比の上限値を用いて前記制限噴射量を求める。
このように、排気ガス浄化装置内に堆積した粒子状物質の堆積量に応じて空気過剰率の下限値又は燃空比の上限値を補正することで、状況に対応して燃料噴射量を適切に制限することができる。
前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、前記制御部は、前記空気過剰率の下限値又は前記燃空比の上限値をエンジン回転数及び燃料噴射量に基づいて求める。前記制御部は、前記空気過剰率の下限値又は前記燃空比の上限値の補正基準量をエンジン回転数及び燃料噴射量に基づいて求めるとともに、補正係数を少なくとも前記粒子状物質の前記堆積量に基づいて求める。前記制御部は、前記補正基準量に前記補正係数を乗じた値を用いて前記空気過剰率の下限値又は前記燃空比の上限値を補正する。
これにより、エンジンの回転数、燃料噴射量、及び粒子状物質の堆積量を複合的に考慮して、空気過剰率の下限値又は燃空比の上限値を適切に補正することができる。従って、エンジンの出力の低下やエンスト、又は排気ガス浄化装置の詰まりを一層好適に防止することができる。
前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、このエンジンは、吸気温度を検出する吸気温度検出部を備える。前記制御部は、前記補正係数を、少なくとも、前記粒子状物質の前記堆積量と、前記吸気温度検出部により検出された前記吸気温度と、に基づいて求める。
これにより、吸気温度も考慮して空気過剰率の下限値又は燃空比の上限値を補正することができるので、例えば吸気温度が高温の場合に未燃燃料や黒煙が発生するのを防止することができる。
前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、前記制御部には、エンジン回転数及び燃料噴射量に基づいて空気過剰率の下限値又は燃空比の上限値を求めるための情報が、前記粒子状物質の前記堆積量に応じて予め複数記憶される。前記制御部は、記憶された複数の前記情報のうち前記粒子状物質の前記堆積量に応じた情報に基づいて、前記空気過剰率の下限値又は前記燃空比の上限値を求める。
これにより、状況に対応して燃料噴射量を適切に制限することができる。
前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、このエンジンは、過給機と、大気圧検出部と、冷却水温度検出部と、を備える。前記過給機は、排気ガスのエネルギーを利用して空気を圧縮して吸入する。前記大気圧検出部は、運転環境における大気圧を検出する。前記冷却水温度検出部は、冷却水温度を検出する。前記制御部は、基準制限噴射量と、ブースト圧制限噴射量と、前記制限噴射量と、のうち最小の値を超えないように燃料噴射量を制御する。前記基準制限噴射量は、エンジン回転数、前記冷却水温度検出部により検出された前記冷却水温度、及び前記大気圧検出部により検出された前記大気圧に基づいて求められる。前記ブースト圧制限噴射量は、前記エンジン回転数及び前記過給機のブースト圧に基づいて求められる。前記制限噴射量は、前記空気過剰率の下限値又は燃空比の上限値に基づいて求められる。
これにより、エンジンの各種の稼動状態に応じて、エンジンの噴射量が過大にならないように適切に制御することができる。例えば、エンジンが高地で稼動する場合、大気圧による噴射量への影響を回避できる。また、加速又は負荷投入等の過渡期における過給機の応答遅れなどによって、出力の低下、排気ガス浄化装置の詰まり等を防止することができる。そして、粒子状物質の堆積量が少ないためにエアマスの計算精度が低い場合は、燃料噴射量が過剰に制限されるのを防止できるので、出力の低下及びエンストを一層好適に回避できる。一方、PMの堆積量が多いためにエアマスの計算精度が高い場合には、燃料噴射量の制限不足を防止できるので、排気ガス浄化装置の再生頻度の増加を好適に回避することができる。
本発明の第1実施形態に係るエンジンの概略平面図。 エンジンの吸気、排気及び燃料供給の流れを模式的に示す説明図。 ECUの構成を示す機能ブロック図。 エンジンにおける燃料噴射量の制限を説明するブロック図。 図4の空気過剰率制限ブロックを詳細に示すブロック図。 補正係数カーブを説明する概略図。 第2実施形態のエンジンにおける空気過剰率制限ブロックを詳細に示すブロック図。 補正係数マップを説明する概略図。 変形例における空気過剰率制限ブロックを詳細に示すブロック図。
次に、図面を参照して本発明の実施の形態を説明する。初めに、図1及び図2を参照して、エンジン100の概要について説明する。図1は、本発明の一実施形態に係るエンジン100の概略平面図である。図2は、エンジン100の吸気、排気及び燃料供給の流れを模式的に示す説明図である。図3は、ECU90の構成を示す機能ブロック図である。
本実施形態のエンジン100は、ディーゼルエンジンであり、例えば作業機及び船舶等に搭載して用いられる。このエンジン100は、エンジン本体10と、制御部であるECU(エンジンコントロールユニット)90と、を備えている。
エンジン本体10は、外部から空気を吸入する吸気部2と、燃焼室3を有する図略のシリンダと、燃料の燃焼によって燃焼室3内に発生する排気ガスを外部に排出する排気部4と、を主要な構成として備えている。
吸気部2は、吸気の通路である吸気管21を備える。また、吸気部2は、吸気管21において吸気が流れる方向の上流側から順に配置された、過給機22と、吸気弁27と、吸気マニホールド28と、を備える。
吸気管21は、吸気の通路であって、過給機22と、吸気弁27と、吸気マニホールド28と、を接続するように構成されている。吸気管21の内部には、外部から吸入された空気を流すことができる。
過給機22は、図2に示すように、タービン23と、シャフト24と、コンプレッサ25と、を備えている。シャフト24の一端はタービン23と接続され、他端はコンプレッサ25と接続されている。タービン23は、排気ガスを利用して回転するように構成されている。シャフト24を介してタービン23と連結されているコンプレッサ25は、タービン23の回転に伴って回転する。コンプレッサ25の回転により、図略のエアクリーナにより浄化された空気を圧縮して強制的に吸入することができる。
吸気弁27は、ECU90からの制御指令に従って、その開度を調節することにより、吸気通路の断面積を変化させる。これにより、吸気弁27を介して、吸気マニホールド28へ供給する空気量を調整することができる。
吸気マニホールド28は、吸気管21から供給された空気をエンジン本体10のシリンダ数に応じて分配し、それぞれのシリンダの燃焼室3へ供給することができるように構成されている。
なお、過給機22のコンプレッサ25の下流側に、過給機22によって吸入された圧縮空気を冷却水又は流動空気(即ち、風)と熱交換させることで冷却させる図略のインタークーラを設置しても良い。
燃焼室3では、吸気マニホールド28から供給された空気を圧縮し、高温になった圧縮空気に燃料を噴射することにより、燃料を自然着火燃焼させ、ピストンを押して運動させる。こうして得られた動力は、クランク軸等を介して、動力下流側の適宜の装置へ伝達される。
そして、本実施形態のエンジン100には、エンジン本体10が燃料の燃焼により過熱状態にならないようにするための図略の冷却水循環システムが設けられている。この冷却水循環システムは、冷却水を、エンジン本体10のシリンダヘッド等に形成された冷却ジャケット(図略)等に還流させ、エンジン本体10の冷却ジャケット等と熱交換させるように構成されている。
続いて、本実施形態のエンジン100において燃料の供給及び噴射を行う構成について簡単に説明する。図2に示すように、エンジン100は、燃料を貯留するための燃料タンク81と、燃料フィルタ82と、燃料ポンプ83と、コモンレール84と、インジェクタ85と、を備えている。
燃料ポンプ83によって吸い込まれた燃料は、燃料フィルタ82を通過し、これにより、燃料に混入しているゴミ及び汚れが取り除かれる。その後、燃料はコモンレール84へ供給される。コモンレール84は、高圧で燃料を蓄え、複数のインジェクタ85に分配して供給する。
インジェクタ85は、燃焼室3に燃料を噴射するためのインジェクタ電磁弁(燃料噴射バルブ)86を備える。インジェクタ電磁弁86がECU90の指示に応じたタイミングで開閉することにより、インジェクタ85が燃焼室3に燃料を噴射する。当該インジェクタ85の開閉を制御することにより、燃料噴射量を調整することができる。
燃焼室3で燃料が燃焼することによって発生した排気ガスは、排気部4を介して、燃焼室3からエンジン本体10の外へ排出される。
排気部4は、排気ガスの通路である排気管41を備える。また、排気部4は、排気管41において排気ガスが流れる方向における上流側から順に配置された、排気マニホールド42と、排気ガス浄化装置であるDPF60と、を備えている。
エンジン本体10はEGR装置50を備えており、排気ガスの一部を、図2に示すように、当該EGR装置50を介して吸気側へ還流させることができる。EGR装置50には、EGRクーラ51と、EGRバルブ52と、が設けられている。EGRクーラ51は、吸気へ還流させる排気ガスを冷却する。EGRバルブ52は、排気ガスの還流量を調整できるように構成されている。このように構成された冷却機能付きのEGR装置50により、例えばエンジン100の高負荷運転時における最高燃焼温度を下げることができるので、NOx(窒素酸化物)の生成量を低減することができる。
排気管41は、排気ガスの通路であって、排気マニホールド42と、DPF60と、を接続するように構成されている。排気管41の内部に、燃焼室3から排出された排気ガスを流すことができる。
排気マニホールド42は、各燃焼室3で発生した排気ガスをまとめて、当該排気ガスを過給機22のタービン23に供給するように排気管41へ導く。
なお、過給機22のタービン23とDPF60の間に、排気ガスの排出量を調整できる排気弁(図略)を設けても良い。
DPF60は、図1及び図2に示すように、排気管41の出口に設けられている。DPF60は、細長く形成されたケーシングを備える。また、DPF60は、酸化触媒61と、スートフィルタ62と、を備えている。酸化触媒61及びスートフィルタ62は、ケーシングの内部に配置されている。また、スートフィルタ62は、ケーシングの内部で排気ガスが流れる方向において、酸化触媒61の下流側に配置される。排気管41からDPF60に導入された排気ガスは、スートフィルタ62により浄化された後、エンジン100の外へ排出される。
酸化触媒61は、白金等で構成されており、排気ガスに含まれる一酸化炭素、一酸化窒素などの酸化を促進することができる。酸化触媒61の作用によって、排気ガス中の一酸化窒素は、不安定な二酸化窒素に酸化される。そして、二酸化窒素が一酸化窒素に戻るとき放出された酸素は、下流側のスートフィルタ62で捕捉されたPMの酸化のために供給される。
スートフィルタ62は、排気ガス内の煤等からなる粒子状物質(PM:Particulate Matter)を捕集することで、排気ガスを濾過することができる。また、スートフィルタ62の内部でPMを酸化反応させることができるようになっている。
なお、スートフィルタ62におけるPMの堆積量は、エンジン本体10が稼動するのに伴って徐々に増大するが、PMを燃焼させて除去する制御(再生制御)を適宜のタイミングで行うことで、堆積量を減らすことができる。スートフィルタ62へのPMの堆積は、流通抵抗の増大による排気圧力の上昇を通じて、EGRガスの還流に影響を与える。なお、以下の説明においては、スートフィルタ62に堆積されたPMを酸化することにより除去することをDPF再生と称する場合がある。
図2に示すECU90は、各種演算処理や制御を実行するCPUと、記憶部としてのROM及びRAMなどから構成され、エンジン本体10又はその近傍に配置される。本実施形態において、ECU90は、図1に示すように、エンジン本体10に配置されている。
ECU90は、様々な検知部及びセンサから出力される検出結果に基づいて、エンジン本体10の回転数、吸気流量(吸入空気量)、空気過剰率λ、排気流量、及び排気温度等を得ることができる。そして、ECU90は、様々なセンサから取得したエンジン本体10の状態に関する前記情報に基づいて、エンジン本体10を制御することができる。
空気過剰率λは、上述したとおり、空燃比を理論空燃比で除したものである。空気過剰率が小さ過ぎる場合(燃料量が過多な場合)は未燃燃料及び黒煙の発生の原因となるため、本実施形態では、空気過剰率λが小さくなり過ぎないように下限値を設定している。ECU90は、空気過剰率λの下限値(λ下限値)を、回転数及び燃料噴射量に基づいて計算することにより取得する。また、ECU90は、PMの堆積量に基づいて、上記のλ下限値を補正することができる。
エンジン本体10の状態に関する情報を取得するための検知部及びセンサとしては、例えば、回転数検知部91、燃料噴射量検知部92、冷却水温度センサ93、大気圧センサ71、吸気圧力センサ72、排気温度センサ75、排気圧力センサ74、差圧センサ76、酸化触媒温度センサ77、及びスートフィルタ温度センサ78を挙げることができる。以下、それぞれのセンサについて説明する。
回転数検知部91は、例えば、エンジン本体10が備える図略のクランク軸の回転を検出するクランクセンサとして構成することができる。
燃料噴射量検知部92は、例えば、ECU90から上記のインジェクタ電磁弁86への指令値に基づいて燃料噴射量を計算することにより得るように構成することができる。
冷却水温度センサ93は、エンジン100の冷却水の温度を検出し、上述の冷却水循環システムにおける冷却水経路の適宜の位置に配置された温度センサとして構成されている。
大気圧センサ71は、エンジン100の稼動時における環境の大気圧を検出する。エンジン100の適宜の位置に配置された圧力センサとして構成されている。
吸気圧力センサ72は、吸気マニホールド28内の気体(EGR混合気)の圧力を検出する。吸気温度センサ73は、吸気マニホールド28内の気体の温度を検出する。
排気圧力センサ74は、排気マニホールド42内の気体(排気)の圧力を検出する。排気温度センサ75は、排気マニホールド42内の気体の温度を検出する。
差圧センサ76は、DPF60において、スートフィルタ62の上流側(酸化触媒61の下流側)と、スートフィルタ62の下流側と、の圧力差を検出する。ECU90は、当該差圧センサ76の検出結果に基づいて、スートフィルタ62に堆積したPMの堆積量を算出することができる。なお、PMの堆積量の算出方法はこれに限定されず、例えばエンジン100の運転履歴などに基づいてPMの堆積量を推測して求めることもできる。
酸化触媒温度センサ77は、DPF60の入口近傍(酸化触媒61の上流側)の温度を検出する。即ち、当該酸化触媒温度センサ77を用いて、DPF60の入口の排気ガスの温度を検出することができる。
スートフィルタ温度センサ78は、酸化触媒61とスートフィルタ62との間(スートフィルタ62の上流側)の温度を検出する。
図3に示すように、ECU90には、エンジン100の稼動を制御する各種のパラメータを算出するための制御情報(具体的には、制御マップ及び制御カーブ)が複数記憶されている。制御情報の例としては、燃料噴射量の制限のベースとなる値(ベース制限噴射量)を算出するためのベース制限マップ、大気圧制限噴射量を算出するための大気圧制限マップ、ブースト圧制限噴射量を算出するためのブースト圧制限マップ、許容される空気過剰率λの下限値(λ下限値)を算出するためのλ下限値マップ、λ下限値の補正量を算出するための補正基準量マップ及び補正係数カーブ等を挙げることができる。なお、それぞれの制御情報の詳細については後述する。
次に、本実施形態のエンジン100において、ECU90における燃料噴射量の制御に関する最大燃料噴射量の設定について説明する。図4は、エンジン100における燃料噴射量の制限を説明するブロック図である。
本実施形態のエンジン100のECU90は、回転数検知部91により検出されたエンジン100の回転数、及び、冷却水温度センサ93により検出された冷却水温度に基づき、ECU90に予め記憶されているベース制限マップを用いてベース制限噴射量を求める。このベース制限マップは、回転数及び冷却水温度の組合せに最大噴射量を対応付けた2次元のテーブルとして表現することができる。
また、ECU90は、エンジン100の回転数、及び、大気圧センサ71により検出された大気圧に基づいて、ECU90に予め記憶されている大気圧制限マップを用いて大気圧制限噴射量を求める。この大気圧制限マップは、回転数及び大気圧の組合せに最大噴射量を対応付けた2次元のテーブルとして表現することができる。そして、ECU90は、ベース制限噴射量から大気圧制限噴射量を減算することにより、基準制限噴射量を計算する。
更に、ECU90は、エンジン100の回転数、及び、過給機22のブースト圧に基づいて、ECU90に予め記憶されているブースト圧制限マップを用いてブースト圧制限噴射量を求める。このブースト圧制限マップは、回転数及びブースト圧の組合せに最大噴射量を対応付けた2次元のマップとして表現することができる。
更に、ECU90は、後述する空気過剰率制限ブロックにおいて空気過剰率λの下限値(λ下限値)を計算するとともに、この空気過剰率の下限値にエアマスの値を代入することで、最大噴射量であるλ制限噴射量(制限噴射量)を求める。なお、このλ制限噴射量の計算の詳細については後述する。
その後、ECU90は、基準制限噴射量と、ブースト圧制限噴射量と、λ制限噴射量と、のうち最小の値を選択し、当該最小の値をエンジン100の最大燃料噴射量として設定する。そして、ECU90は、エンジン100の燃料噴射量を、この最大燃料噴射量を超えないように制御する。以上により、燃料噴射量を様々な観点で適切に制限してエンジン100を稼動させることができる。
続いて、空気過剰率λの下限値に基づくλ制限噴射量の計算について、図5等を参照して詳細に説明する。図5は、図4の空気過剰率制限ブロックを詳細に示すブロック図である。図6は、補正係数カーブを説明する概略図である。
図5に示すように、空気過剰率制限ブロックは、基本制限ブロックと、補正ブロックと、を備える。
基本制限ブロックでは、エンジン100の回転数及び燃料の噴射量に基づき、ECU90に予め記憶されているλ下限値マップを用いて、許容できる空気過剰率λの下限値(λ下限値)を求める。このλ下限値制限マップは、回転数及び燃料噴射量の組合せにλ下限値を対応付けた2次元のテーブルとして表現することができる。
なお、本実施形態のエンジン100においては、上記のλ下限値制限マップにおけるλ下限値は、エンジン100の回転数及び燃料噴射量に対応して本来定めるべき値より意図的に小さく設定されている。詳細は後述する。
補正ブロックでは、エンジン100の回転数及び燃料噴射量に基づき、ECU90に予め記憶されている補正基準量マップを用いて、上記のλ下限値を補正する基本となる値である補正基準量を求める。この補正基準量マップは、回転数及び燃料噴射量の組合せに補正基準量を対応付けた2次元のテーブルとして表現することができる。
また、補正ブロックでは、計算により得られるDPF60内のPMの堆積量に基づき、ECU90に予め記憶されている補正係数カーブを用いて、補正係数を求める。この補正係数カーブは、PM堆積量に補正係数を対応付けた1次元のテーブルとして表現することができる。
その後、補正ブロックでは、上記の補正基準量に補正係数を乗じることにより、λ補正量が求められる。
そして、ECU90は、基本制限ブロックで求められたλ下限値を、補正ブロックで求められたλ補正量を加算することにより補正し、補正後のλ下限値を求める。得られた補正後のλ下限値は、空気過剰率制限ブロックから出力される。
補正後のλ下限値は、空気過剰率λを求める一般的な式;
λ=(Air/Fuel)/(理論空燃比)
を用いてFuelの上限値を求めるために用いられる。具体的には、上記の式のうちλの部分に補正後のλ下限値を代入するとともに、Airには、排気圧力及び吸気圧力等に基づいて公知の方法により算出される、気筒内の混合気が含む酸素の量(エアマス)が代入される。これにより、Fuelの上限値(即ち、λ制限噴射量Q)を求めることができる。
ここで、気筒内の混合気が含む酸素の量は、混合気におけるEGRガスの比率の影響を受ける。排気側から吸気側に還流されるEGRガスの量は、排気圧力と吸気圧力の差が大きければ比較的良好な精度で計算できるが、排気圧力と吸気圧力の差が小さい場合は計算精度があまり期待できない。このように、エアマス(上記の式のAirの項)を高精度に計算できることが見込める状況と、そうでない状況と、が発生し得る。
上記の式で、エアマス(Air)の計算精度が低い場合、Fuelの上限値が過少又は過多になる可能性がある。特に、計算されたエアマス(Air)の値にプラス側の誤差があると、Fuelの上限値が過少になってエンジン100の出力が低下し、最悪な場合、エンストが発生する可能性もある。
そこで、上記のようにエアマスの計算精度が低下する場合でもエンジン100の出力低下が起こらないように、空気過剰率λの下限値を、本来あるべき値より意図的に小さく設定することが考えられる。このようにしてある程度のマージンを確保することで、エアマス(Air)の計算値にプラス側の誤差が生じても燃料の噴射量Fuelの上限値が過少となることを防止できるので、エンジン100が搭載された装置の作業性を良好に維持することができる。
しかし、エアマス(Air)の計算値に常にプラス側の誤差が生じるとは限らない。従って、上記のようにλの下限値を単純に小さくするのでは、例えばエアマス(Air)の計算値に誤差が殆ど無い場合には燃料の噴射量Fuelの上限値が多めに算出されてしまうので、噴射量の制限不足によってPMが大量に発生し、DPF60を頻繁に再生しなければならなくなるおそれがある。
この点、本実施形態のエンジン100において、基本制限ブロックで求められるλ下限値は、上記で説明したように、エンジン100の回転数及び燃料噴射量に対応して本来定めるべき値より意図的に小さく設定されている。その一方で、補正ブロックでは、DPF60におけるPM堆積量が多く、排気圧力が大きいためにエアマスの計算精度が比較的高いことを見込める場合には、λ下限値を大きくするように(本来定めるべき値に近づくように)補正する。これにより、エンジン100の稼動状況に合わせて燃料噴射量を適切に制限することができる。
上記の補正ブロックの動作について具体的に説明すると、ECU90は、エンジン回転数及び燃料噴射量に基づき、補正基準量マップを用いて、λ下限値の基本的な補正量(補正基準量)を求める。また、ECU90は、PM堆積量に基づき、補正係数カーブを用いて、補正係数を求める。そして、ECU90は、補正係数を上記の補正基準量に乗じることによってλ補正量を求める。
図6には、PM堆積量に基づいて補正係数を求めるための補正係数カーブが示されている。この図6に示すように、PMの堆積量が一定量未満である場合は、排気圧力があまり上がらないためにエアマスの計算精度が低くなると見込まれるので、噴射量の過剰な制限を防止するために、基本制限ブロックで求められるλ下限値(本来あるべき値よりも低い値)に近い値が空気過剰率制限ブロックから出力されるように補正係数が設定されている。一方、PMの堆積量が一定量以上である場合は、排気圧力が上がるためにエアマスの計算精度を一定程度確保できると見込まれるので、(基本制限ブロックで求められるλ下限値ではなく)本来あるべきλ下限値に近い値が空気過剰率制限ブロックから出力されるように補正係数が設定されている。
これにより、本実施形態のエンジン100は、空気過剰率λの観点による燃料噴射量の制限を、当該エンジン100の稼動状態に応じてエアマスの計算精度が変わり得ることを考慮しながら適切に行うことができる。即ち、エアマスの計算精度が低い場合は、意図的に小さく設定された空気過剰率λの下限値(あるいはその近傍の値)を用いて燃料噴射量の上限値を算出する一方、エアマスの計算精度が高い場合は、本来あるべき空気過剰率λの下限値(あるいはその近傍の値)を用いて燃料噴射量の上限値を算出することができる。従って、エアマスの計算精度が低いときにおける出力の低下を防止できるとともに、エアマスの計算精度が高いときにおけるPMの大量発生によるDPF60の再生頻度の増加を好適に回避することができる。
以上に説明したように、本実施形態のエンジン100は、DPF60と、ECU90と、を備える。DPF60は、排気ガスを浄化する。ECU90は、燃料噴射量の上限値であるλ制限噴射量を空気過剰率λの下限値(λ下限値)に基づいて求める。λ下限値は、DPF60に捕集されたPMの堆積量に応じて異なる。
このようにPMの堆積量に基づいてλ下限値を異ならせることで、エアマスの計算精度が例えば排気圧力によって変化し得ることを考慮して燃料噴射量を適切に制限することができる。例えば、PMの堆積量が少なくエアマスの計算精度が低いと見込まれる場合は、λ下限値を意図的に小さくすることで、燃料噴射量が過剰に制限されることによる出力の低下やエンスト等を防止することができる。一方、PMの堆積量が多くエアマスの計算精度が高いと見込まれる場合は、λ下限値を本来あるべき値(あるいは、その近傍の値)にすることで、燃料噴射量の制限不足による未燃燃料の発生やDPF60の再生頻度の増加を回避することができる。
また、本実施形態のエンジンにおいて、ECU90は、λ下限値を、DPF60に捕集されたPMの堆積量に基づいて補正する。ECU90は、補正後のλ下限値を用いてλ制限噴射量を求める。
このように、DPF60内に堆積したPMの堆積量に応じてλ下限値を補正することで、状況に対応して燃料噴射量を適切に制限することができる。
また、本実施形態のエンジン100において、ECU90は、エンジン100の回転数及び燃料噴射量に基づいて(補正前の)λ下限値を求める。また、ECU90は、λ下限値の補正基準量をエンジン100の回転数及び燃料噴射量に基づいて求めるとともに、補正係数をPMの堆積量に基づいて求める。そして、ECU90は、補正基準量に補正係数を乗じた値を用いてλ下限値を補正する。
これにより、エンジン100の回転数、燃料噴射量、及びPMの堆積量を複合的に考慮して、λ下限値を適切に補正することができる。従って、エンジン100の出力の低下やエンスト、又はDPF60の詰まりを一層好適に防止することができる。
また、本実施形態のエンジン100は、過給機22と、大気圧センサ71と、冷却水温度センサ93と、を備える。過給機22は、排気ガスのエネルギーを利用して空気を圧縮して吸入する。大気圧センサ71は、運転環境における大気圧を検出する。冷却水温度センサ93は、冷却水温度を検出する。ECU90は、基準制限噴射量と、ブースト圧制限噴射量と、λ制限噴射量と、のうち最小の値を超えないように燃料噴射量を制御する。基準制限噴射量は、エンジン100の回転数、冷却水温度センサ93により検出された冷却水温度、及び大気圧センサ71により検出された大気圧に基づいて求められる。ブースト圧制限噴射量は、エンジン100回転数及び過給機22のブースト圧に基づいて求められる。λ制限噴射量は、λ下限値に基づいて求められる。
これにより、エンジンの各種の稼動状態に応じて、エンジンの噴射量が過大にならないように適切に制御することができる。例えば、エンジンが高地で稼動する場合、大気圧による噴射量への影響を回避できる。また、加速又は負荷投入等の過渡期における過給機の応答遅れなどによって、出力の低下、排気ガス浄化装置の詰まり等を防止することができる。そして、PMの堆積量が少ないためにエアマスの計算精度が低い場合は、燃料噴射量が過剰に制限されるのを防止できるので、出力の低下及びエンストを一層好適に回避できる。一方、PMの堆積量が多いためにエアマスの計算精度が高い場合には、燃料噴射量の制限不足を防止できるので、排気ガス浄化装置の再生頻度の増加を好適に回避することができる。
次に、第2実施形態を説明する。図7は、第2実施形態のエンジンにおける空気過剰率制限ブロックを詳細に示すブロック図である。図8は、補正係数マップを説明する概略図である。なお、本実施形態の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。
知られているように、吸気温度が高い場合は低い場合に比べて、黒煙が生じたり排気温度が過剰に昇温したりする可能性が高くなる。この点を考慮し、本実施形態のエンジンは、上記のPM堆積量に加えて、吸気温度に基づいてλ下限値を補正するように構成されている。
具体的には、本実施形態では、補正基準量に乗算するための補正係数を、上記の補正係数カーブの代わりに、計算により得られるPM堆積量と、吸気温度センサ73で検出した吸気温度と、に基づく補正係数マップを用いて求める。この補正係数マップは、PM堆積量及び燃料噴射量の組合せに補正係数を対応付けた2次元のテーブルとして表現することができる。なお、上記以外の処理は、上述の第1実施形態と同様である。
図8には、PM堆積量及び吸気温度に基づいて補正係数を求めるための補正係数マップが概略的に示されている。図8に示すように、補正係数は、PMの堆積量が少ない程、また、吸気温度が低い程、基本制限ブロックで求められるλ下限値(本来あるべき値よりも低い値)に近い値が空気過剰率制限ブロックから出力されるように設定されている。また、補正係数は、PMの堆積量が多い程、また、吸気温度が高い程、(基本制限ブロックで求められるλ下限値ではなく)本来あるべきλ下限値に近い値が空気過剰率制限ブロックから出力されるように設定されている。これにより、吸気温度が高くなった場合にはλ下限値が増大側に補正されるので、燃料噴射量が十分に制限されて、黒煙の発生等を防止することができる。
以上に説明したように、本実施形態のエンジンは、吸気温度センサ73を備える。吸気温度センサ73は、吸気温度を検出する。ECU90は、補正係数を、PMの堆積量と、吸気温度センサ73により検出された吸気温度と、に基づいて求める。
これにより、吸気温度も考慮してλ下限値を補正することができるので、例えば吸気温度が高温の場合に未燃燃料や黒煙が発生するのを防止することができる。
次に、上記第1実施形態の変形例を説明する。図9は、変形例における空気過剰率制限ブロックを詳細に示すブロック図である。なお、本変形例の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。
本変形例のエンジンにおいては、空気過剰率制限ブロックにおいて、エンジンの回転数及び燃料の噴射量に基づいてλ下限値を求めるためのλ下限値マップが、PMの堆積量に応じて予め複数用意されている。なお、これらのλ下限値マップには、上述の第1実施形態において補正ブロックにより補正された後の値に相当するλ下限値が記憶されている。
図9の例では、PMの堆積量が多い場合(多)、中間の場合(中)、少ない場合(少)の3段階のそれぞれにおけるλ下限値マップがECU90に記憶されている。ECU90は、差圧センサ76の検出結果から得られたPMの堆積量に応じて、当該3つのλ下限値マップからPMの堆積量に対応するλ下限値マップを選択し、当該λ下限値マップを用いて、エンジンの回転数及び燃料の噴射量に基づいてλ下限値を求める。
このようにλ下限値マップをPM堆積量に応じて切り換えることで、λ下限値をPMの堆積量に応じて補正する上記の第1実施形態と実質的に同等の効果を奏することができる。なお、λ下限値マップの数は3つに限定されず、2つでも4つ以上でも良い。また、例えばPMの堆積量が少と中の中間である場合、少のλ下限値マップにより得られる値と中のλ下限値マップにより得られる値を適宜補間してλ下限値を求めても良い。
以上に説明したように、本変形例のエンジンにおいて、ECU90には、エンジンの回転数及び燃料噴射量に基づいてλ下限値を求めるためのλ下限値マップが、PMの堆積量に応じて予め複数記憶されている。ECU90は、記憶された複数のλ下限値マップのうち、PMの堆積量に対応するλ下限値マップに基づいてλ下限値を求める。
これにより、状況に対応して燃料噴射量を適切に制限することができる。
以上に本発明の好適な実施の形態(変形例)を説明したが、上記の構成は例えば以下のように変更することができる。
第1実施形態及び第2実施形態において、基本制限ブロックのλ下限値マップに記憶されているλ下限値は、本来あるべき値より意図的に小さく設定されている。しかしながら、当該λ下限値マップに、本来あるべきλ下限値をそのまま設定することもできる。この場合は、補正ブロック側で、PM堆積量が少ない場合にはλ下限値を減少させ、PM堆積量が多い場合にはλ下限値を殆ど減少させないようにλ補正量を出力するように変更すれば良い。
図6の補正係数カーブ及び図8の補正係数マップは一例であり、様々に変更することができる。
各種の制御情報(例えば、λ下限値マップ、補正基準量マップ、補正係数カーブ、補正係数マップ)は、マップ及びカーブの形で表現されることに限定されず、例えば数式の形でECU90に記憶させるように構成することもできる。
上記の実施形態等では、空気過剰率制限ブロックにおいて空気過剰率λの下限値を求めて補正し、これに基づいて制限噴射量を算出している。しかしながら、空気過剰率λの下限値に代えて、燃空比の上限値を求めて補正して制限噴射量を算出する構成に変更することができる。具体的には、ECU90が空気過剰率制限ブロックに代えて燃空比制限ブロックを備えることとし、この燃空比制限ブロックのうち基本制限ブロックで燃空比の上限値をマップ等により取得し、当該燃空比の上限値を補正ブロックで補正して、当該燃空比の上限値から制限噴射量(燃空比制限噴射量)を求めても良い。なお、空気過剰率の上限値を用いても燃空比の下限値を用いても技術的な意味は同じである。
本発明のエンジン100は、作業車両及び船舶以外の機械(例えば、発電機)にも適用することができる。
22 過給機
60 DPF(排気ガス浄化装置)
71 大気圧センサ(大気圧検出部)
72 吸気圧力センサ(吸気温度検出部)
90 ECU(制御部)
93 冷却水温度センサ(冷却水温度検出部)
100 エンジン

Claims (6)

  1. 排気ガスを浄化する排気ガス浄化装置と、
    燃料噴射量の上限値である制限噴射量を空気過剰率の下限値又は燃空比の上限値に基づいて求める制御部と、
    を備え、
    前記空気過剰率の下限値又は燃空比の上限値は、少なくとも、前記排気ガス浄化装置に捕集された粒子状物質の堆積量に応じて異なることを特徴とするエンジン。
  2. 請求項1に記載のエンジンであって、
    前記制御部は、前記空気過剰率の下限値又は燃空比の上限値を、前記排気ガス浄化装置に捕集された粒子状物質の堆積量に基づいて補正し、
    前記制御部は、補正後の前記空気過剰率の下限値又は燃空比の上限値を用いて前記制限噴射量を求めることを特徴とするエンジン。
  3. 請求項2に記載のエンジンであって、
    前記制御部は、前記空気過剰率の下限値又は前記燃空比の上限値をエンジン回転数及び燃料噴射量に基づいて求め、
    前記制御部は、前記空気過剰率の下限値又は前記燃空比の上限値の補正基準量をエンジン回転数及び燃料噴射量に基づいて求めるとともに、補正係数を少なくとも前記粒子状物質の前記堆積量に基づいて求め、
    前記制御部は、前記補正基準量に前記補正係数を乗じた値を用いて前記空気過剰率の下限値又は前記燃空比の上限値を補正することを特徴とするエンジン。
  4. 請求項3に記載のエンジンであって、
    吸気温度を検出する吸気温度検出部を備え、
    前記制御部は、前記補正係数を、少なくとも、前記粒子状物質の前記堆積量と、前記吸気温度検出部により検出された前記吸気温度と、に基づいて求めることを特徴とするエンジン。
  5. 請求項1に記載のエンジンであって、
    前記制御部には、エンジン回転数及び燃料噴射量に基づいて空気過剰率の下限値又は燃空比の上限値を求めるための情報が、前記粒子状物質の前記堆積量に応じて予め複数記憶され、
    前記制御部は、記憶された複数の前記情報のうち前記粒子状物質の前記堆積量に応じた情報に基づいて、前記空気過剰率の下限値又は前記燃空比の上限値を求めることを特徴とするエンジン。
  6. 請求項1から5までの何れか一項に記載のエンジンであって、
    排気ガスのエネルギーを利用して空気を圧縮して吸入する過給機と、
    運転環境における大気圧を検出する大気圧検出部と、
    冷却水温度を検出する冷却水温度検出部と、
    を備え、
    前記制御部は、
    エンジン回転数、前記冷却水温度検出部により検出された前記冷却水温度、及び前記大気圧検出部により検出された前記大気圧に基づいて求められた基準制限噴射量と、
    前記エンジン回転数及び前記過給機のブースト圧に基づいて求められたブースト圧制限噴射量と、
    前記空気過剰率の下限値又は燃空比の上限値に基づいて求められた前記制限噴射量と、
    のうち最小の値を超えないように燃料噴射量を制御することを特徴とするエンジン。
JP2015150633A 2015-07-30 2015-07-30 エンジン Active JP6426064B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150633A JP6426064B2 (ja) 2015-07-30 2015-07-30 エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150633A JP6426064B2 (ja) 2015-07-30 2015-07-30 エンジン

Publications (2)

Publication Number Publication Date
JP2017031843A true JP2017031843A (ja) 2017-02-09
JP6426064B2 JP6426064B2 (ja) 2018-11-21

Family

ID=57985767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150633A Active JP6426064B2 (ja) 2015-07-30 2015-07-30 エンジン

Country Status (1)

Country Link
JP (1) JP6426064B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303271A (ja) * 1995-04-28 1996-11-19 Isuzu Motors Ltd 電子制御式燃料噴射装置および方法
JPH1136994A (ja) * 1997-07-17 1999-02-09 Mazda Motor Corp ターボ過給機付直噴式エンジンの排気還流制御装置
JP2004340032A (ja) * 2003-05-15 2004-12-02 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2008157187A (ja) * 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp エンジンのegr制御装置
JP2014025441A (ja) * 2012-07-27 2014-02-06 Yanmar Co Ltd エンジン
WO2014038550A1 (ja) * 2012-09-07 2014-03-13 トヨタ自動車株式会社 内燃機関の制御システム
JP2015124698A (ja) * 2013-12-26 2015-07-06 ヤンマー株式会社 エンジンの制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303271A (ja) * 1995-04-28 1996-11-19 Isuzu Motors Ltd 電子制御式燃料噴射装置および方法
JPH1136994A (ja) * 1997-07-17 1999-02-09 Mazda Motor Corp ターボ過給機付直噴式エンジンの排気還流制御装置
JP2004340032A (ja) * 2003-05-15 2004-12-02 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2008157187A (ja) * 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp エンジンのegr制御装置
JP2014025441A (ja) * 2012-07-27 2014-02-06 Yanmar Co Ltd エンジン
WO2014038550A1 (ja) * 2012-09-07 2014-03-13 トヨタ自動車株式会社 内燃機関の制御システム
JP2015124698A (ja) * 2013-12-26 2015-07-06 ヤンマー株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
JP6426064B2 (ja) 2018-11-21

Similar Documents

Publication Publication Date Title
JP4797880B2 (ja) 内燃機関用排気ガス浄化装置
JP2008248729A (ja) 内燃機関のegr制御装置
JP2006316746A (ja) 内燃機関の排ガス浄化装置
JP5632223B2 (ja) エンジン装置の排気ガス再循環システム
WO2015097520A1 (en) Exhaust gas control device for internal combustion engine mounted on vehicle
JP2009281144A (ja) 過給機付き内燃機関の制御装置
JP2010096050A (ja) 過給システムの異常検出装置
JP4733003B2 (ja) 内燃機関の排ガス浄化装置
JP6455246B2 (ja) 排気浄化システム
JP2012197681A (ja) エンジン装置の排気ガス再循環システム
JP6444778B2 (ja) エンジン、及び当該エンジンを備えた作業車両
JP2007085227A (ja) 内燃機関のエキゾーストマニホールド内温度推定装置
WO2022049914A1 (ja) 再生制御装置
JP2011231645A (ja) 内燃機関の排気浄化装置
JP2019183816A (ja) 排気処理システム
JP2009036175A (ja) 内燃機関の燃料供給制御装置
JP6426064B2 (ja) エンジン
US10519885B2 (en) Control apparatus for engine
JP5796277B2 (ja) 排気ガス浄化システム
JP5823842B2 (ja) ターボチャージャ付多気筒内燃機関の排気還流装置
JP2007262939A (ja) 選択還元型NOx触媒付きエンジンの制御装置
JP6606931B2 (ja) 内燃機関の排気後処理装置
JP5815296B2 (ja) 内燃機関の排気浄化装置
JP6844421B2 (ja) ディーゼルエンジン
JP6894279B2 (ja) ディーゼルエンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181024

R150 Certificate of patent or registration of utility model

Ref document number: 6426064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350