JP2017030071A - Grinding device - Google Patents

Grinding device Download PDF

Info

Publication number
JP2017030071A
JP2017030071A JP2015150535A JP2015150535A JP2017030071A JP 2017030071 A JP2017030071 A JP 2017030071A JP 2015150535 A JP2015150535 A JP 2015150535A JP 2015150535 A JP2015150535 A JP 2015150535A JP 2017030071 A JP2017030071 A JP 2017030071A
Authority
JP
Japan
Prior art keywords
grinding
current value
frequency power
ultrasonic
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015150535A
Other languages
Japanese (ja)
Other versions
JP6489973B2 (en
Inventor
井上 雄貴
Yuki Inoue
雄貴 井上
俊洙 禹
Junsoo Woo
俊洙 禹
渡辺 真也
Shinya Watanabe
真也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2015150535A priority Critical patent/JP6489973B2/en
Priority to TW105119571A priority patent/TWI694896B/en
Priority to KR1020160087998A priority patent/KR102343159B1/en
Priority to CN201610603424.6A priority patent/CN106392886B/en
Publication of JP2017030071A publication Critical patent/JP2017030071A/en
Application granted granted Critical
Publication of JP6489973B2 publication Critical patent/JP6489973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/449Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428 involving the application of mechanical vibrations, e.g. ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain grinding force of a grinding grindstone, when grinding a wafer by using a grinding device for washing the grinding grindstone by injecting wash water of propagating an ultrasonic wave.SOLUTION: A grinding device 1 includes ultrasonic wash water supply means 9 for injecting wash water of propagating an ultrasonic wave to a grinding surface 740a of a grinding grindstone 740 provided in grinding means 7, a current value measurement part 14 for measuring a current value of a spindle motor 72 and ON/OFF means 16 for switching ON/OFF of oscillation of the ultrasonic wave in response to the current value measured by the current value measurement part 14, and the ON/OFF means 16 sets an upper limit value and a lower limit value to the current value of the spindle motor 72 measured by the current value measurement part 14 by changing in grinding by the grinding means 7, and grinds by switching supply of high frequency electric power from a high frequency power source 91 provided in the ultrasonic wash water supply means 9 between the upper limit value and the lower limit value of the current value of the spindle motor 72 measured by the current value measurement part 14, by the ON/OFF means 16.SELECTED DRAWING: Figure 1

Description

本発明は、ウエーハに対して研削砥石を当接して研削することができる研削装置に関する。   The present invention relates to a grinding apparatus capable of grinding by abutting a grinding wheel against a wafer.

半導体ウエーハ、サファイア、SiC、リチウムタンタレート(LiTaO3)、ガラス等の各種被加工物は、研削装置によって研削されて所定の厚さに形成された後に、切削装置等により分割されて個々のデバイス等となり、各種電子機器等に利用されている。かかる研削に使用される研削装置は、被加工物であるウエーハに対して回転する研削砥石の研削面を当接させることにより、ウエーハの研削を行うことができる。ここで、かかる研削を行うと、研削砥石の研削面に研削屑等による目詰まりや目つぶれが生じることで研削砥石の研削力が低下する。そして、研削砥石の目詰まりや目つぶれは、被加工物がいわゆる難研削材である場合に特に多く発生する。難研削材としては、サファイアやSiCのような硬質材と、リチウムタンタレート(LiTaO3)やガラスのような軟質材とがある。例えば、軟質材のリチウムタンタレートを、多くの気孔を備えるビトリファイドボンドで形成された研削砥石で研削すると、気孔内に研削屑が入り込み目詰まりや目つぶれが生じる。そこで、目詰まり等による研削砥石の研削力の低下を防ぐために、被加工物の研削中に研削砥石の研削面にドレッサーボードを押し当てて、研削と同時に研削砥石の研削面をドレスする方法がある(例えば、特許文献1参照)。 Various workpieces such as semiconductor wafers, sapphire, SiC, lithium tantalate (LiTaO 3 ), and glass are ground by a grinding machine to a predetermined thickness, and then divided into individual devices by a cutting machine. And are used in various electronic devices. A grinding apparatus used for such grinding can grind a wafer by bringing a grinding surface of a rotating grinding wheel into contact with a wafer as a workpiece. Here, when such grinding is performed, the grinding force of the grinding wheel decreases due to clogging or clogging due to grinding scraps or the like on the grinding surface of the grinding wheel. Further, clogging or crushing of the grinding wheel occurs particularly frequently when the workpiece is a so-called difficult-to-grind material. As hard-to-grind materials, there are hard materials such as sapphire and SiC, and soft materials such as lithium tantalate (LiTaO 3 ) and glass. For example, when lithium tantalate, which is a soft material, is ground with a grinding wheel formed of vitrified bonds having many pores, grinding debris enters the pores and clogging or clogging occurs. Therefore, in order to prevent a reduction in the grinding force of the grinding wheel due to clogging, etc., a method of pressing the dresser board against the grinding surface of the grinding wheel during grinding of the workpiece and dressing the grinding surface of the grinding wheel simultaneously with grinding is available. Yes (see, for example, Patent Document 1).

しかし、ドレッサーボードを研削砥石に押し当ててドレスを行う場合には、ドレッサーボードが磨耗するため、ドレッサーボードを定期的に交換する必要が生じる。そこで、ドレッサーボードを用いずに研削砥石の研削力を維持する方法として、被加工物の研削中に、高圧水や2流体等からなる洗浄水を研削砥石の研削面に対して噴射して洗浄する方法があり、さらに、超音波ノズルから洗浄水に超音波を伝播して洗浄水を超音波振動させることで、研削砥石の表面に目詰まりした研削屑のみならず、研削砥石の目つぶれにより砥石表面から砥石内部にまで食い込んだ研削屑をも除去して研削砥石の研削力を維持する研削装置について、本出願人は特許出願を行っている(例えば、特願2014−084198号)。   However, when dressing is performed by pressing the dresser board against the grinding wheel, the dresser board is worn out, so that the dresser board needs to be periodically replaced. Therefore, as a method of maintaining the grinding force of the grinding wheel without using a dresser board, cleaning is performed by spraying cleaning water consisting of high-pressure water or two fluids onto the grinding surface of the grinding wheel while grinding the workpiece. Furthermore, by transmitting ultrasonic waves from the ultrasonic nozzle to the cleaning water and ultrasonically vibrating the cleaning water, not only the grinding debris clogged on the surface of the grinding wheel but also the crushing of the grinding wheel The present applicant has filed a patent application for a grinding apparatus that maintains the grinding force of the grinding wheel by removing grinding debris that has penetrated from the grinding wheel surface into the grinding wheel (for example, Japanese Patent Application No. 2014-084198).

特開2011−189456号公報JP 2011-189456 A

しかし、上記特願2014−084198号に記載されている研削装置を用いてウエーハに研削加工を施す場合に、研削中に超音波発振部から単に超音波を発振し続け洗浄水に超音波を伝播し続けると、研削砥石の研削力が低下するという現象が確認されている。そこで、超音波を伝播させた洗浄水を研削砥石の研削面に対して噴射して研削面を洗浄する研削装置を用いてウエーハを研削する場合において、高い研削力を維持することで、ウエーハを複数枚連続して効率よく研削するという課題がある。   However, when the wafer is ground using the grinding apparatus described in the above Japanese Patent Application No. 2014-084198, the ultrasonic wave is simply oscillated from the ultrasonic wave oscillating unit during the grinding and propagated to the cleaning water. If it continues, the phenomenon that the grinding force of a grinding wheel will decline has been confirmed. Therefore, in the case of grinding a wafer using a grinding device that cleans the grinding surface by injecting cleaning water that has propagated ultrasonic waves onto the grinding surface of the grinding wheel, the wafer can be maintained by maintaining a high grinding force. There is a problem of efficient grinding of a plurality of sheets continuously.

上記課題を解決するための本発明は、ウエーハを保持する保持テーブルと、該保持テーブルに保持されるウエーハを研削する研削砥石を環状に配設した研削ホイールを回転可能に装着するスピンドルを回転させるスピンドルモータを有する研削手段と、該研削砥石とウエーハとに研削水を供給する研削水供給手段と、を備える研削装置であって、該研削水供給手段とは別に該研削砥石のウエーハに接触する研削面に超音波を伝播する洗浄水を噴射する超音波洗浄水供給手段と、該スピンドルモータの電流値を測定する電流値測定部と、該電流値測定部が測定する該スピンドルモータの電流値に応じて超音波の発振のONとOFFとを切換えるON/OFF手段と、を含み、該超音波洗浄水供給手段は、該洗浄水を該研削面に噴射する噴射口と超音波を発振する超音波発振部とを備える超音波ノズルと、該超音波発振部に高周波電力を供給する高周波電源と、を備え、該ON/OFF手段は、該研削手段による研削中に変化し該電流値測定部が測定する該スピンドルモータの該電流値の上限値と下限値とを設定し、該高周波電源から高周波電力を供給し超音波を伝播する洗浄水を該研削面に噴射しながら研削しているときに該電流値測定部が測定する該電流値が該上限値まで上がったら該高周波電源からの高周波電力の供給を停止し超音波を伝播しない該洗浄水を該研削面に供給し、該高周波電源からの高周波電力の供給が停止され超音波を伝播しない洗浄水を該研削面に噴射しながら研削しているときに該電流値測定部が測定する該電流値が該下限値まで下がったら該高周波電源から高周波電力を供給して超音波を伝播する洗浄水を該研削面に供給し、該電流値測定部が測定する該スピンドルモータの該電流値の該上限値と該下限値との間で該高周波電源からの高周波電力の供給をON/OFF手段で切換えて研削する研削装置である。   In order to solve the above problems, the present invention rotates a spindle for rotatably mounting a holding wheel for holding a wafer and a grinding wheel in which a grinding wheel for grinding the wafer held by the holding table is arranged in an annular shape. A grinding apparatus comprising a grinding means having a spindle motor and a grinding water supply means for supplying grinding water to the grinding wheel and the wafer, wherein the grinding apparatus is in contact with the wafer of the grinding wheel separately from the grinding water supply means Ultrasonic cleaning water supply means for injecting cleaning water that propagates ultrasonic waves to the grinding surface, a current value measuring unit that measures the current value of the spindle motor, and a current value of the spindle motor that the current value measuring unit measures ON / OFF means for switching on and off the oscillation of the ultrasonic wave according to the ultrasonic cleaning water supply means, the ultrasonic cleaning water supply means, and an injection port for injecting the cleaning water onto the grinding surface An ultrasonic nozzle including an ultrasonic oscillator that oscillates sound waves, and a high-frequency power source that supplies high-frequency power to the ultrasonic oscillator, and the ON / OFF means changes during grinding by the grinding means. An upper limit value and a lower limit value of the current value of the spindle motor measured by the current value measuring unit are set, and high-frequency power is supplied from the high-frequency power source and ultrasonic waves are propagated to the grinding surface while spraying the cleaning water. When the current value measured by the current value measuring unit is increased to the upper limit value during grinding, the supply of the high frequency power from the high frequency power supply is stopped and the cleaning water that does not propagate ultrasonic waves is supplied to the grinding surface. The current value measured by the current value measuring unit when the supply of high-frequency power from the high-frequency power supply is stopped and grinding is performed while spraying cleaning water that does not propagate ultrasonic waves onto the grinding surface is the lower limit value. If it falls to Washing water that supplies high-frequency power and propagates ultrasonic waves is supplied to the grinding surface, and the high-frequency value is between the upper limit value and the lower limit value of the current value of the spindle motor measured by the current value measurement unit. This is a grinding device that performs grinding by switching the supply of high-frequency power from a power source by means of ON / OFF means.

本発明に係る研削装置は、研削水供給手段とは別に研削砥石のウエーハに接触する研削面に超音波を伝播する洗浄水を噴射する超音波洗浄水供給手段と、スピンドルモータの電流値を測定する電流値測定部と、電流値測定部が測定する該スピンドルモータの電流値に応じて超音波の発振のONとOFFとを切換えるON/OFF手段と、を含み、超音波洗浄水供給手段は、洗浄水を研削面に噴射する噴射口と超音波を発振する超音波発振部とを備える超音波ノズルと、超音波発振部に高周波電力を供給する高周波電源とを備えるものとし、ON/OFF手段は、研削手段による研削中に変化し電流値測定部が測定するスピンドルモータの電流値の上限値と下限値とを設定し、高周波電源から高周波電力を供給し超音波を伝播する洗浄水を研削面に噴射しながら研削しているときに電流値測定部が測定する電流値が上限値まで上がったら高周波電源からの高周波電力の供給を停止し超音波を伝播する洗浄水を研削面に供給し、高周波電源からの高周波電力の供給が停止され超音波を伝播する洗浄水を研削面に噴射しながら研削しているときに電流値測定部が測定する電流値が下限値まで下がったら高周波電源から高周波電力を供給し超音波を伝播する洗浄水を研削面に供給して、電流値測定部が測定するスピンドルモータの電流値の上限値と下限値との間で高周波電源からの高周波電力の供給をON/OFF手段で切換えて研削できるようにしている。このように、研削加工中において、電流値測定部によりスピンドルモータの電流値を監視し、スピンドルモータの電流値によってON/OFF手段で超音波発振部からの超音波の発振と停止とを切換えることにより、超音波発振部から発振した超音波を超音波ノズルから噴射した洗浄水を介して間欠的に研削砥石の研削面に対して伝播させて研削面をドレスすることで、研削砥石の研削力を一定のレベルで維持することが可能となり、複数枚のウエーハを連続して効率よく研削することが可能となる。   The grinding apparatus according to the present invention measures the current value of an ultrasonic cleaning water supply unit that injects cleaning water that propagates ultrasonic waves onto a grinding surface that contacts a wafer of a grinding wheel, and a spindle motor separately from the grinding water supply unit. A current value measuring unit that performs the operation, and an ON / OFF unit that switches ON / OFF of the ultrasonic oscillation according to the current value of the spindle motor that is measured by the current value measuring unit. And an ultrasonic nozzle having an injection port for injecting cleaning water onto the grinding surface and an ultrasonic oscillation unit for oscillating ultrasonic waves, and a high-frequency power source for supplying high-frequency power to the ultrasonic oscillation unit, and ON / OFF The means sets an upper limit value and a lower limit value of the spindle motor current value that changes during grinding by the grinding means and is measured by the current value measuring unit, and supplies cleaning water that supplies high frequency power from a high frequency power source and propagates ultrasonic waves. grinding When the current value measured by the current value measuring unit rises to the upper limit value while grinding while spraying, the supply of high-frequency power from the high-frequency power supply is stopped and cleaning water that propagates ultrasonic waves is supplied to the grinding surface. When the supply of high-frequency power from the high-frequency power supply is stopped and grinding is performed while spraying cleaning water that propagates ultrasonic waves onto the grinding surface, if the current value measured by the current-value measuring unit falls to the lower limit value, the high-frequency power supply generates high-frequency power. Supply high-frequency power from the high-frequency power supply between the upper limit value and lower limit value of the spindle motor current value measured by the current value measurement unit by supplying cleaning water that supplies power and propagates ultrasonic waves to the grinding surface. It can be switched by ON / OFF means for grinding. In this way, during grinding, the current value of the spindle motor is monitored by the current value measuring unit, and the oscillation of the ultrasonic wave from the ultrasonic wave oscillating unit is switched between on and off by the current value of the spindle motor. The grinding force of the grinding wheel is dressed by intermittently propagating the ultrasonic wave oscillated from the ultrasonic oscillating unit to the grinding surface of the grinding wheel via the cleaning water jetted from the ultrasonic nozzle. Can be maintained at a constant level, and a plurality of wafers can be continuously and efficiently ground.

研削装置の一例を示す斜視図である。It is a perspective view which shows an example of a grinding device. 保持テーブルに保持されたウエーハを研削ホイールで研削している状態を示す側面図である。It is a side view which shows the state which grinds the wafer hold | maintained at the holding table with the grinding wheel. ON/OFF手段を作動させずに高周波電源からの高周波電力の供給を行い超音波を発振し続けながら研削加工を行った比較例1におけるスピンドルモータの電流値を示すグラフである。It is a graph which shows the electric current value of the spindle motor in the comparative example 1 which supplied the high frequency electric power from the high frequency power supply without operating the ON / OFF means and performed grinding while continuing to oscillate the ultrasonic wave. ON/OFF手段を作動させずに高周波電源からの高周波電力の供給を行い超音波の発振の停止と再開とを行って研削加工を行った比較例2におけるスピンドルモータの電流値を示すグラフである。It is a graph which shows the electric current value of the spindle motor in the comparative example 2 which supplied the high frequency electric power from the high frequency power supply without operating the ON / OFF means, and stopped and restarted the ultrasonic oscillation to perform the grinding process. . ON/OFF手段を作動させて高周波電源からの高周波の供給をスピンドルモータの電流値の上限値と下限値との間で切換えて研削加工を行った実施例1におけるスピンドルモータの電流値を示すグラフである。The graph which shows the current value of the spindle motor in Example 1 which turned on / off means and switched the supply of the high frequency from the high frequency power supply between the upper limit value and the lower limit value of the current value of the spindle motor and performed grinding. It is.

図1に示す研削装置1は、保持テーブル30上に保持されたウエーハWを、研削手段7によって研削する装置である。研削装置1のベース10上の前方(−Y方向側)は、図示しない搬送手段によって保持テーブル30に対してウエーハWの着脱が行われる領域である着脱領域Aとなっており、ベース10上の後方(+Y方向側)は、研削手段7によって保持テーブル30上に保持されたウエーハWの研削が行われる領域である研削領域Bとなっている。   A grinding apparatus 1 shown in FIG. 1 is an apparatus for grinding a wafer W held on a holding table 30 by a grinding means 7. The front (−Y direction side) on the base 10 of the grinding apparatus 1 is an attachment / detachment area A that is an area in which the wafer W is attached / detached to / from the holding table 30 by a conveying means (not shown). The rear side (+ Y direction side) is a grinding region B which is a region where the wafer W held on the holding table 30 is ground by the grinding means 7.

研削領域Bには、コラム11が立設されており、コラム11の側面には研削送り手段5が配設されている。研削送り手段5は、鉛直方向(Z軸方向)の軸心を有するボールネジ50と、ボールネジ50と平行に配設された一対のガイドレール51と、ボールネジ50の上端に連結しボールネジ50を回動させるモータ52と、内部のナットがボールネジ50に螺合し側部がガイドレール51に摺接する昇降板53と、昇降板53に連結され研削手段7を保持するホルダ54とから構成され、モータ52がボールネジ50を回動させると、これに伴い昇降板53がガイドレール51にガイドされてZ軸方向に往復移動し、ホルダ54に保持された研削手段7がZ軸方向に研削送りされる。   A column 11 is erected in the grinding region B, and a grinding feed means 5 is disposed on the side surface of the column 11. The grinding feed means 5 is connected to a ball screw 50 having a vertical (Z-axis direction) axis center, a pair of guide rails 51 arranged in parallel to the ball screw 50, and an upper end of the ball screw 50, and rotates the ball screw 50. A motor 52 to be moved, a lifting plate 53 whose inner nut is screwed into the ball screw 50, and a side portion is slidably in contact with the guide rail 51, and a holder 54 that is connected to the lifting plate 53 and holds the grinding means 7. When the ball screw 50 is rotated, the elevating plate 53 is guided by the guide rail 51 and reciprocated in the Z-axis direction, and the grinding means 7 held by the holder 54 is ground and fed in the Z-axis direction.

保持テーブル30は、例えば、その外形が円形状であり、ポーラス部材等からなりウエーハWを吸着する吸着部300と、吸着部300を支持する枠体301とを備える。吸着部300は図示しない吸引源に連通し、吸引源が吸引することで生み出された吸引力が、吸着部300の露出面であり枠体301の上面と面一に形成されている保持面300aに伝達されることで、保持テーブル30は保持面300a上でウエーハWを吸引保持する。また、保持テーブル30は、保持テーブル30の底面側に配設された回転手段31(図1には不図示)により駆動されて回転可能となっており、かつ、保持テーブル30の底面側に配設された図示しないY軸方向送り手段によって、着脱領域Aと研削領域Bとの間をY軸方向に往復移動可能となっている。   The holding table 30 has, for example, a circular outer shape, and includes a suction unit 300 that is made of a porous member or the like and that sucks the wafer W, and a frame body 301 that supports the suction unit 300. The suction unit 300 communicates with a suction source (not shown), and a suction surface generated by suction of the suction source is a holding surface 300a that is an exposed surface of the suction unit 300 and is flush with the upper surface of the frame 301. The holding table 30 sucks and holds the wafer W on the holding surface 300a. Further, the holding table 30 is driven to rotate by a rotating means 31 (not shown in FIG. 1) disposed on the bottom surface side of the holding table 30 and is arranged on the bottom surface side of the holding table 30. A Y-axis direction feeding means (not shown) provided can reciprocate between the attachment / detachment area A and the grinding area B in the Y-axis direction.

研削手段7は、軸方向が鉛直方向(Z軸方向)であるスピンドル70と、スピンドル70を回転可能に支持するスピンドルハウジング71と、スピンドル70を回転駆動させるスピンドルモータ72と、スピンドル70の下端に接続された円形状のマウント73と、マウント73の下面に着脱可能に接続された研削ホイール74とを備える。そして、研削ホイール74は、ホイール基台741と、ホイール基台741の底面に環状に配設された略直方体形状の複数の研削砥石740とを備える。研削砥石740は、例えば、結合材となる有気孔タイプのビトリファイドボンドでダイヤモンド砥粒等が固着されて成形されている。なお、研削砥石740の形状は、環状に一体に形成されているものでもよく、研削砥石740を構成する結合材も、ビトリファイドボンドに限られずレジンボンド又はメタルボンド等でもよい。   The grinding means 7 includes a spindle 70 whose axial direction is the vertical direction (Z-axis direction), a spindle housing 71 that rotatably supports the spindle 70, a spindle motor 72 that rotationally drives the spindle 70, and a lower end of the spindle 70. A circular mount 73 connected and a grinding wheel 74 detachably connected to the lower surface of the mount 73 are provided. The grinding wheel 74 includes a wheel base 741 and a plurality of grinding wheels 740 having a substantially rectangular parallelepiped shape disposed in an annular shape on the bottom surface of the wheel base 741. The grinding wheel 740 is formed, for example, with diamond abrasive grains or the like fixed by a porous hole type vitrified bond serving as a binder. The shape of the grinding wheel 740 may be integrally formed in an annular shape, and the binder constituting the grinding wheel 740 is not limited to vitrified bonds, and may be resin bonds or metal bonds.

図2に示すように、スピンドル70の内部には、研削水の通り道となる流路70aが、スピンドル70の軸方向(Z軸方向)に貫通して形成されており、流路70aは、さらにマウント73を通り、ホイール基台741に形成された流路70bに連通している。流路70bは、ホイール基台741の内部においてスピンドル70の軸方向と直交する方向に、ホイール基台741の周方向に一定の間隔をおいて配設されており、ホイール基台741の底面において研削砥石740に向かって研削水を噴出できるように開口している。   As shown in FIG. 2, a flow path 70 a serving as a path for grinding water is formed in the spindle 70 so as to penetrate in the axial direction (Z-axis direction) of the spindle 70. It passes through the mount 73 and communicates with a flow path 70 b formed in the wheel base 741. The flow path 70 b is disposed in the wheel base 741 in a direction orthogonal to the axial direction of the spindle 70 at a constant interval in the circumferential direction of the wheel base 741, and on the bottom surface of the wheel base 741. An opening is provided so that grinding water can be ejected toward the grinding wheel 740.

研削水供給手段8は、例えば、水源となるポンプ等からなる研削水供給源80と、研削水供給源80に接続されスピンドル70内部の流路70aと連通する配管81とから構成されている。   The grinding water supply means 8 includes, for example, a grinding water supply source 80 including a pump serving as a water source, and a pipe 81 connected to the grinding water supply source 80 and communicating with the flow path 70 a inside the spindle 70.

図1に示すように、スピンドルモータ72には、電流値測定部14が接続されている。電流値測定部14は、研削ホイール74によるウエーハを研削する際に発生する研削負荷に応じて変化する電流値、すなわち、研削ホイール74に接続されたスピンドル70の回転駆動に供されるスピンドルモータ72の電流値を測定する。また、電流値測定部14には、電流値測定部14が測定するスピンドルモータ72の電流値に応じて超音波の発振のONとOFFとを切換えるON/OFF手段16が接続されている。   As shown in FIG. 1, a current value measuring unit 14 is connected to the spindle motor 72. The current value measuring unit 14 is a current value that changes in accordance with a grinding load generated when the wafer is ground by the grinding wheel 74, that is, a spindle motor 72 that is used for rotational driving of the spindle 70 connected to the grinding wheel 74. Measure the current value. The current value measuring unit 14 is connected to ON / OFF means 16 for switching on and off the ultrasonic oscillation according to the current value of the spindle motor 72 measured by the current value measuring unit 14.

図1に示す超音波洗浄水供給手段9は、洗浄水を主に研削砥石740の研削面740aに噴射する噴射口900と超音波を発振する超音波発振部901とを備える超音波ノズル90と、超音波発振部901に高周波電力を供給する高周波電源91とを備える。超音波ノズル90の配設位置は、例えば、研削領域B内にある保持テーブル30に隣接する位置であって、かつ研削ホイール74の下方にある位置であり、研削中の研削砥石740の研削面740aに対して超音波ノズル90の先端である噴射口900が対向するように配設されている。なお、超音波ノズル90は、例えば、図示しないZ軸方向移動手段によりZ軸方向に移動可能に配設されてもよい。そして、超音波ノズル90には、ポンプ等で構成され洗浄水を供給する洗浄水供給源92と連通する配管920が接続されている。   The ultrasonic cleaning water supply means 9 shown in FIG. 1 includes an ultrasonic nozzle 90 including an injection port 900 that mainly jets cleaning water to the grinding surface 740a of the grinding wheel 740, and an ultrasonic oscillator 901 that oscillates ultrasonic waves. A high-frequency power source 91 that supplies high-frequency power to the ultrasonic oscillator 901. The position of the ultrasonic nozzle 90 is, for example, a position adjacent to the holding table 30 in the grinding region B and below the grinding wheel 74, and the grinding surface of the grinding wheel 740 being ground. The ejection port 900 which is the tip of the ultrasonic nozzle 90 is disposed so as to face 740a. The ultrasonic nozzle 90 may be disposed so as to be movable in the Z-axis direction by a Z-axis direction moving unit (not shown), for example. The ultrasonic nozzle 90 is connected to a pipe 920 that is configured by a pump or the like and communicates with a cleaning water supply source 92 that supplies cleaning water.

超音波ノズル90の内部に配設されている超音波発振部901には、超音波発振部901に高周波電力を供給する高周波電源91が、導電線910を介して接続されている。超音波発振部901は、高周波電源91から所定の高周波電力が供給されると、超音波発振部901に備える図示しない振動素子が高周波電力を機械振動に変換することで超音波を発振する。そして、発振された超音波は、超音波ノズル90の内部において、洗浄水供給源92から供給され配管920を通して超音波ノズル90の内部に送られた洗浄水に対して伝播される。超音波が伝播された洗浄水Lは、噴射口900から例えば+Z方向へ向かって噴射されて、研削砥石740の研削面740aに接触する。   A high-frequency power source 91 that supplies high-frequency power to the ultrasonic wave oscillating unit 901 is connected to the ultrasonic wave oscillating unit 901 disposed inside the ultrasonic nozzle 90 via a conductive wire 910. When a predetermined high frequency power is supplied from the high frequency power supply 91, the ultrasonic oscillation unit 901 oscillates an ultrasonic wave by a vibration element (not shown) provided in the ultrasonic oscillation unit 901 converting the high frequency power into mechanical vibration. The oscillated ultrasonic wave is propagated to the cleaning water supplied from the cleaning water supply source 92 and sent to the inside of the ultrasonic nozzle 90 through the pipe 920 inside the ultrasonic nozzle 90. The cleaning water L to which the ultrasonic wave has been propagated is ejected from the ejection port 900 in the + Z direction, for example, and comes into contact with the grinding surface 740a of the grinding wheel 740.

以下に、図1〜5を用いて、図1に示すウエーハWを研削装置1により連続して複数枚研削する場合の、研削装置1の動作及び研削方法について説明する。   The operation and grinding method of the grinding apparatus 1 when the wafer W shown in FIG. 1 is continuously ground by the grinding apparatus 1 will be described below with reference to FIGS.

図1に示すウエーハWは、例えば、リチウムタンタレート(LiTaO3)で形成される直径が6インチの基板上にSAWデバイス等が配設されたウエーハである。例えば、ウエーハWの表面Waには図示しないSAWデバイス等が配設されており、研削加工が施されるに際してウエーハWの表面Waには保護テープTが貼着され保護された状態となり、ウエーハWの裏面Wbが研削ホイール74で研削される。なお、ウエーハWの形状及び種類は、リチウムタンタレートで形成されるウエーハに限定されず、研削砥石740の種類等との関係で適宜変更可能であり、ガラスのような軟質材で形成されるウエーハや、SiC又はサファイアのような硬質材で形成されるウエーハでもよい。 The wafer W shown in FIG. 1 is a wafer in which a SAW device or the like is disposed on a 6-inch diameter substrate formed of lithium tantalate (LiTaO 3 ), for example. For example, a SAW device (not shown) or the like is disposed on the surface Wa of the wafer W, and when the grinding process is performed, the protective tape T is attached to the surface Wa of the wafer W to be protected. The back surface Wb is ground by the grinding wheel 74. The shape and type of the wafer W is not limited to a wafer formed of lithium tantalate, and can be changed as appropriate in relation to the type of the grinding wheel 740. A wafer formed of a soft material such as glass. Alternatively, a wafer formed of a hard material such as SiC or sapphire may be used.

ウエーハWの研削においては、まず、図1に示す着脱領域A内において、図示しない搬送手段により保護テープTが貼着されたウエーハWが保持テーブル30上に搬送される。そして、ウエーハWの保護テープT側と保持テーブル30の保持面300aとを対向させて位置合わせを行った後、ウエーハWをウエーハの裏面Wbが上側になるように保持面300a上に戴置する。そして、保持テーブル30に接続された図示しない吸引源により生み出される吸引力が保持面300aに伝達されることにより、保持テーブル30が保持面300a上でウエーハWを吸引保持する。   In grinding the wafer W, first, in the attachment / detachment area A shown in FIG. 1, the wafer W to which the protective tape T is attached is conveyed onto the holding table 30 by a conveying means (not shown). Then, after aligning the protective surface T of the wafer W with the holding surface 300a of the holding table 30 facing each other, the wafer W is placed on the holding surface 300a so that the back surface Wb of the wafer is on the upper side. . Then, the suction force generated by a suction source (not shown) connected to the holding table 30 is transmitted to the holding surface 300a, whereby the holding table 30 sucks and holds the wafer W on the holding surface 300a.

次いで、ウエーハWを保持した保持テーブル30が、図示しないY軸方向送り手段によって着脱領域Aから研削領域B内の研削手段7の下まで+Y方向へ移動して、研削手段7に備える研削ホイール74とウエーハWとの位置合わせがなされる。位置合わせは、例えば、図2に示すように、研削ホイール74の回転中心が保持テーブル30の回転中心に対して所定の距離だけ+Y方向にずれ、研削砥石740の回転軌道が保持テーブル30の回転中心を通るように行われる。そして、研削ホイール74の回転中心から−Y方向の領域では、研削砥石740の研削面740aがウエーハWの裏面Wbに対向している状態となる。また、研削ホイール74の回転中心から+Y方向の領域では、研削砥石740の研削面740aが−Z方向に向かって露出し、超音波ノズル90の先端となる噴射口900と対向している状態となる。   Next, the holding table 30 holding the wafer W is moved in the + Y direction from the attaching / detaching area A to below the grinding means 7 in the grinding area B by a Y-axis direction feeding means (not shown), and the grinding wheel 74 provided in the grinding means 7 is provided. And wafer W are aligned. For example, as shown in FIG. 2, the rotation center of the grinding wheel 74 is shifted in the + Y direction by a predetermined distance with respect to the rotation center of the holding table 30, and the rotation trajectory of the grinding wheel 740 rotates the holding table 30. It is done through the center. In a region in the −Y direction from the rotation center of the grinding wheel 74, the grinding surface 740 a of the grinding wheel 740 faces the back surface Wb of the wafer W. Further, in the region in the + Y direction from the rotation center of the grinding wheel 74, the grinding surface 740a of the grinding wheel 740 is exposed in the −Z direction and is opposed to the injection port 900 that is the tip of the ultrasonic nozzle 90. Become.

研削手段7に備える研削ホイール74とウエーハWとの位置合わせが行われた後、スピンドルモータ72によりスピンドル70が回転駆動されるのに伴って研削ホイール74が回転する。また、研削手段7が研削送り手段5(図2には不図示)により−Z方向へと送られ、研削手段7に備える研削ホイール74が−Z方向へと降下していき、研削ホイール74の回転中心から−Y方向の領域で研削砥石740がウエーハWの裏面Wbに当接することで研削加工が行われる。さらに、研削中は、回転手段31が保持テーブル30を回転させるのに伴って、保持面300a上に保持されたウエーハWも回転するので、研削砥石740がウエーハWの裏面Wbの全面の研削加工を行う。また、研削砥石740がウエーハWの裏面Wbに当接する際に、研削水供給手段8が、研削水をスピンドル70中の流路70aを通して研削砥石740とウエーハWとの接触部位に対して供給して、研削砥石740とウエーハWの裏面Wbとの接触部位を冷却する。   After the grinding wheel 74 provided in the grinding means 7 is aligned with the wafer W, the grinding wheel 74 rotates as the spindle 70 is driven to rotate by the spindle motor 72. Further, the grinding means 7 is fed in the −Z direction by the grinding feed means 5 (not shown in FIG. 2), and the grinding wheel 74 provided in the grinding means 7 descends in the −Z direction. Grinding is performed by the grinding wheel 740 coming into contact with the back surface Wb of the wafer W in a region in the −Y direction from the center of rotation. Further, during the grinding, the wafer W held on the holding surface 300a also rotates as the rotating means 31 rotates the holding table 30, so that the grinding wheel 740 grinds the entire back surface Wb of the wafer W. I do. Further, when the grinding wheel 740 contacts the back surface Wb of the wafer W, the grinding water supply means 8 supplies the grinding water to the contact portion between the grinding wheel 740 and the wafer W through the flow path 70a in the spindle 70. Then, the contact portion between the grinding wheel 740 and the back surface Wb of the wafer W is cooled.

さらに、研削中においては、図2に示すように、高周波電源91から超音波発振部901に対して所定の高周波電力が供給されて超音波発振部901から超音波が発振されるとともに、洗浄水供給源92から超音波ノズル90に対して洗浄水が供給されることにより、洗浄水に超音波が伝播され、超音波ノズル90の噴射口900から噴射される洗浄液Lが超音波振動をともなうものとなる。この超音波振動は、洗浄液Lの噴射方向の所定範囲(例えば、噴射口900から+Z方向に向かって幅10mm程度の範囲)内で発生する。この所定範囲の中間領域に研削砥石740の研削面740aが位置するように、超音波ノズル90の鉛直方向(Z軸方向)の位置が決定され、これにより、研削面740aが下降しても研削中に研削ホイール74の回転中心から+Y方向の領域において研削面740aが洗浄液Lにより洗浄されてドレスされる。   Further, during grinding, as shown in FIG. 2, a predetermined high frequency power is supplied from the high frequency power supply 91 to the ultrasonic oscillating unit 901 so that an ultrasonic wave is oscillated from the ultrasonic oscillating unit 901 and cleaning water When cleaning water is supplied from the supply source 92 to the ultrasonic nozzle 90, ultrasonic waves are propagated to the cleaning water, and the cleaning liquid L ejected from the ejection port 900 of the ultrasonic nozzle 90 is accompanied by ultrasonic vibration. It becomes. This ultrasonic vibration is generated within a predetermined range in the ejection direction of the cleaning liquid L (for example, a range of about 10 mm in width from the ejection port 900 toward the + Z direction). The position of the ultrasonic nozzle 90 in the vertical direction (Z-axis direction) is determined so that the grinding surface 740a of the grinding wheel 740 is located in the intermediate region of the predetermined range, and thus grinding is performed even when the grinding surface 740a is lowered. The grinding surface 740a is cleaned with the cleaning liquid L and dressed in the region in the + Y direction from the rotation center of the grinding wheel 74.

上記研削加工は、例えば、以下の条件で実施する。
ウエーハWの研削量 :15μm
スピンドル70の回転数 :1000rpm
保持テーブル30の回転数 :300rpm
研削送り手段5の研削送り速度 :0.3μm/秒
超音波発振部901の振動周波数 :500kHz
The grinding process is performed under the following conditions, for example.
Wafer W grinding amount: 15μm
Spindle 70 rotation speed: 1000 rpm
Number of rotations of holding table 30: 300 rpm
Grinding feed speed of the grinding feed means 5: 0.3 μm / second Vibration frequency of the ultrasonic wave oscillating unit 901: 500 kHz

上記条件で一枚のウエーハWを所定の研削量だけ研削して、一枚のウエーハWの研削を完了させた後、図1に示す研削送り手段5により研削手段7を+Z方向へと移動させて研削加工済みのウエーハWから離間させ、さらに図示しないY軸方向送り手段により保持テーブル30を−Y方向に移動させて着脱領域Aの元の位置に戻す。着脱領域Aの元の位置まで戻った保持テーブル30上に載置されている研削加工が施されたウエーハWを、図示しない搬送手段が保持テーブル30から図示しないウエーハカセットへと搬送して収納する。次いで、図示しない搬送手段が、研削加工前の別の新しい一枚のウエーハWを保持テーブル30に搬送して、上記と同様に研削加工を施していく。   After grinding one wafer W by a predetermined grinding amount under the above conditions to complete grinding of one wafer W, the grinding means 7 is moved in the + Z direction by the grinding feed means 5 shown in FIG. Then, the wafer is separated from the ground wafer W, and the holding table 30 is moved in the −Y direction by a Y-axis direction feeding means (not shown) to return to the original position of the attachment / detachment region A. The wafer W that has been ground and is mounted on the holding table 30 that has been returned to the original position in the detachable area A is transferred from the holding table 30 to a wafer cassette (not shown) and stored. . Next, a conveying means (not shown) conveys another new wafer W before grinding to the holding table 30 and performs grinding in the same manner as described above.

(比較例1)
比較例1では、ウエーハWの研削中に、研削装置1に備えるON/OFF手段16を作動させずに、例えば、研削ホイール74により複数枚のウエーハWを研削した後、超音波発振部901から超音波の発振を開始し、その後も超音波発振部901から超音波を間断なく洗浄水Lに伝播し続けて、さらに複数枚のウエーハWを継続して研削した。
(Comparative Example 1)
In Comparative Example 1, during the grinding of the wafer W, the ON / OFF means 16 provided in the grinding apparatus 1 is not operated, for example, after grinding a plurality of wafers W with the grinding wheel 74, the ultrasonic oscillator 901 The ultrasonic wave oscillation was started, and thereafter, the ultrasonic wave was continuously transmitted from the ultrasonic wave oscillating unit 901 to the cleaning water L, and a plurality of wafers W were continuously ground.

ここで、研削加工中に、研削砥石740の研削面740aが目詰まりしたり目つぶれしたりすることによって研削砥石740の研削力が低下すると、研削加工中におけるウエーハWの裏面Wbからの抵抗が増大し、それにともないスピンドルモータ72の電流値も上昇していく。そして、超音波発振部901からの超音波の発振を開始した後、ウエーハWの研削中に超音波発振部901から間断なく洗浄水Lに超音波を伝播し続けて研削砥石740の研削面740aの洗浄を続けると、研削ホイール74の回転力を生み出し電流値測定部14により測定されるスピンドルモータ72の電流値は、図3に示すグラフに見られるように上昇していく。すなわち、研削砥石740の研削力が低下する現象が確認され、それ以降は、超音波を発振し続けている限りにおいては、スピンドルモータ72の電流値が下降することがないことが確認された。したがって、比較例1においては、研削砥石740の研削力を維持できず、ウエーハWを複数枚連続して研削するのには不適格となる。なお、図3に示すグラフでは、縦軸においては、ウエーハWを図示しない搬送手段で交換する際の研削ホイール74の空転による電流値の低下は示しておらず、また、横軸においては、研削砥石740によりウエーハWを複数枚研削した後、洗浄液Lに継続して超音波が伝播され研削面740aが洗浄されてドレスされた後を示している。   Here, when the grinding force of the grinding wheel 740 is reduced by clogging or crushing the grinding surface 740a of the grinding wheel 740 during the grinding process, the resistance from the back surface Wb of the wafer W during the grinding process is reduced. Along with this, the current value of the spindle motor 72 also increases. Then, after starting the oscillation of the ultrasonic wave from the ultrasonic wave oscillating unit 901, the ultrasonic wave is continuously transmitted from the ultrasonic wave oscillating unit 901 to the cleaning water L during the grinding of the wafer W, and the grinding surface 740a of the grinding wheel 740 is continued. If the cleaning is continued, the rotational force of the grinding wheel 74 is generated, and the current value of the spindle motor 72 measured by the current value measuring unit 14 increases as seen in the graph shown in FIG. That is, it was confirmed that the grinding force of the grinding wheel 740 was decreased, and thereafter, as long as the ultrasonic wave was continuously oscillated, the current value of the spindle motor 72 did not decrease. Therefore, in Comparative Example 1, the grinding force of the grinding wheel 740 cannot be maintained, and it is unsuitable for grinding a plurality of wafers W continuously. In the graph shown in FIG. 3, the vertical axis does not show a decrease in current value due to idling of the grinding wheel 74 when the wafer W is replaced by a conveying means (not shown), and the horizontal axis shows grinding. After grinding a plurality of wafers W with a grindstone 740, ultrasonic waves are continuously propagated to the cleaning liquid L, and the ground surface 740a is cleaned and dressed.

(比較例2)
比較例2では、ウエーハWの研削中に、研削装置1に備えるON/OFF手段16を作動させず、超音波発振部901からの超音波の発振を行わないこととした。まず、比較例1における場合と同様に、研削ホイール74により複数枚のウエーハWを研削した後、超音波発振部901から超音波の発振を開始し、その後も超音波発振部901から超音波を間断なく洗浄水Lに伝播し続けて、さらにウエーハWの研削を複数枚継続して行う。
(Comparative Example 2)
In Comparative Example 2, during the grinding of the wafer W, the ON / OFF means 16 provided in the grinding apparatus 1 is not operated, and the ultrasonic oscillation from the ultrasonic oscillation unit 901 is not performed. First, similarly to the case of Comparative Example 1, after grinding a plurality of wafers W with the grinding wheel 74, the ultrasonic oscillation is started from the ultrasonic oscillation unit 901, and thereafter the ultrasonic wave is emitted from the ultrasonic oscillation unit 901. Propagation to the cleaning water L is continued without interruption, and a plurality of wafers W are continuously ground.

そしてウエーハWの研削を継続して行っていき、比較例1で確認できたスピンドルモータ72の電流値が上昇する現象が起こった後に、高周波電源91からの高周波電力の供給を停止し、超音波発振部901からの超音波の発振を停止させる。すると、図4に示すグラフに見られるように、再びスピンドルモータ72の電流値が下降する、つまり研削砥石740の研削力が上昇する現象が確認された。   Then, the wafer W is continuously ground, and after the phenomenon that the current value of the spindle motor 72 that can be confirmed in Comparative Example 1 increases, the supply of the high-frequency power from the high-frequency power supply 91 is stopped, and the ultrasonic wave The oscillation of the ultrasonic wave from the oscillation unit 901 is stopped. Then, as can be seen from the graph shown in FIG. 4, it was confirmed that the current value of the spindle motor 72 again decreases, that is, the grinding force of the grinding wheel 740 increases.

しかし、その後、超音波発振部901からの超音波の発振を停止させた状態でさらに複数枚のウエーハWを研削し続けると、再びスピンドルモータ72の電流値が上昇する、つまり研削砥石740の研削力が下降していく現象が確認された。そして、スピンドルモータ72の電流値が上昇した後に、再度高周波電源91からの高周波電力の供給を再開し、超音波発振部901から超音波を発振させて洗浄水Lに超音波を伝播させても、スピンドルモータ72の電流値は下降せず研削砥石740の研削力が上昇することはないことが確認された。したがって、比較例2では、研削砥石740の研削力を維持できず、ウエーハWを複数枚連続して研削するのには不適格となる。なお、図4に示すグラフでは、縦軸においては、ウエーハWを図示しない搬送手段で交換する際の研削ホイール74の空転による電流値の低下は示しておらず、また、横軸においては、洗浄液Lに継続して超音波が伝播され研削面740aが洗浄されてドレスされつつ研削砥石740によりウエーハWを複数枚研削した後を示している。   However, after that, when the plurality of wafers W are continuously ground in a state where the oscillation of the ultrasonic wave from the ultrasonic wave oscillating unit 901 is stopped, the current value of the spindle motor 72 increases again, that is, the grinding wheel 740 is ground. It was confirmed that the force was decreasing. Then, after the current value of the spindle motor 72 rises, the supply of the high frequency power from the high frequency power supply 91 is resumed, and the ultrasonic wave is oscillated from the ultrasonic wave oscillating unit 901 to propagate the ultrasonic wave to the cleaning water L. It was confirmed that the current value of the spindle motor 72 did not decrease and the grinding force of the grinding wheel 740 did not increase. Therefore, in Comparative Example 2, the grinding force of the grinding wheel 740 cannot be maintained, and it is unsuitable for grinding a plurality of wafers W continuously. In the graph shown in FIG. 4, the vertical axis does not indicate a decrease in the current value due to idling of the grinding wheel 74 when the wafer W is replaced by a conveying means (not shown), and the horizontal axis indicates the cleaning liquid. The ultrasonic wave is continuously propagated to L, and the grinding surface 740a is washed and dressed, and a plurality of wafers W are ground by the grinding wheel 740.

(実施例1)
実施例1では、ウエーハWの研削中に研削装置1に備えるON/OFF手段16を作動させて研削を行う場合について説明する。
Example 1
In the first embodiment, a case where grinding is performed by operating the ON / OFF means 16 provided in the grinding apparatus 1 during grinding of the wafer W will be described.

まず、ON/OFF手段16には、研削手段7による研削中に変化し電流値測定部14が測定するスピンドルモータ72の電流値の上限値と下限値とを予め設定しておく。   First, an upper limit value and a lower limit value of the current value of the spindle motor 72 that changes during grinding by the grinding means 7 and is measured by the current value measuring unit 14 are set in the ON / OFF means 16 in advance.

スピンドルモータ72の電流値の下限値は、例えば、上記比較例2において確認できた超音波の発振を停止した後のスピンドルモータ72の電流値の最低値よりは少なくとも高い電流値であり、当該最低値より1A程度高い電流値であると好ましい。本実施例1においては、例えば、スピンドルモータ72の電流値の下限値を8.5Aと設定する。   The lower limit value of the current value of the spindle motor 72 is, for example, a current value that is at least higher than the lowest value of the current value of the spindle motor 72 after stopping the ultrasonic oscillation that can be confirmed in the comparative example 2. The current value is preferably about 1 A higher than the value. In the first embodiment, for example, the lower limit value of the current value of the spindle motor 72 is set to 8.5A.

一方、スピンドルモータ72の電流値の上限値は、例えば、9Aと設定する。スピンドルモータ72の電流値の上限値は、例えば、スピンドルモータ72の電流値の下限値を元に決定され、スピンドルモータ72の電流値の下限値より1A程度大きい範囲で決定すると好ましい。なお、スピンドルモータ72の電流値の上限値及び下限値は、本実施例1に限定されるものではなく、ウエーハWの形状及び種類並びに研削砥石740の種類等により適宜変更可能となる。   On the other hand, the upper limit value of the current value of the spindle motor 72 is set to 9A, for example. The upper limit value of the current value of the spindle motor 72 is determined based on, for example, the lower limit value of the current value of the spindle motor 72, and is preferably determined within a range about 1A larger than the lower limit value of the current value of the spindle motor 72. The upper limit value and the lower limit value of the current value of the spindle motor 72 are not limited to those of the first embodiment, and can be appropriately changed depending on the shape and type of the wafer W, the type of the grinding wheel 740, and the like.

以下に、予めスピンドルモータ72の電流値の上限値を9Aとし、かつ電流値の下限値を8.5Aとして設定したON/OFF手段16を作動させて、研削手段7によりウエーハWを研削していく場合について、図5のグラフを用いて説明する。図5には図示していないが、複数枚のウエーハWを研削した後、高周波電源91から高周波電力を超音波発振部901に供給し超音波発振部901から超音波が伝播されて超音波振動をともなう洗浄水Lを研削砥石740の研削面740aに噴射しながら研削していく。そうすると、研削砥石740の研削面740aに対する洗浄水Lの供給により、超音波振動が研削面740aに伝播して、研削砥石740を形成するビトリファイドボンドの気孔中に入り込んだ研削屑が気孔中からかき出される。そのため、研削砥石740の研削抵抗が低下してスピンドルモータ72の電流値は下降していく、つまり研削砥石740の研削力は上がっていく。しかし、その後、超音波発振部901から超音波を発振し続けると、図5に示すように、スピンドルモータ72の電流値は上昇していく。   In the following, the wafer W is ground by the grinding means 7 by operating the ON / OFF means 16 in which the upper limit value of the current value of the spindle motor 72 is set to 9A and the lower limit value of the current value is set to 8.5A. The case of going will be described using the graph of FIG. Although not shown in FIG. 5, after grinding a plurality of wafers W, high frequency power is supplied from the high frequency power supply 91 to the ultrasonic oscillation unit 901, and ultrasonic waves are propagated from the ultrasonic oscillation unit 901, so that ultrasonic vibrations are generated. Grinding is performed while spraying the cleaning water L accompanied with the above onto the grinding surface 740a of the grinding wheel 740. Then, by supplying the cleaning water L to the grinding surface 740a of the grinding wheel 740, ultrasonic vibration propagates to the grinding surface 740a, and the grinding debris that has entered the pores of the vitrified bond forming the grinding wheel 740 is scraped from the pores. Is issued. Therefore, the grinding resistance of the grinding wheel 740 decreases and the current value of the spindle motor 72 decreases, that is, the grinding force of the grinding wheel 740 increases. However, when the ultrasonic wave is continuously oscillated from the ultrasonic wave oscillating unit 901 thereafter, the current value of the spindle motor 72 increases as shown in FIG.

そして、例えば、図5のグラフに示すように、電流値測定部14が測定するスピンドルモータ72の電流値が上限値である9Aまで上がった時点において、ON/OFF手段16が作動して高周波電源91からの高周波電力の供給を停止する。そうすると、超音波発振部901からの超音波の発振が停止し、超音波が伝播されない洗浄水Lが研削砥石740の研削面740aに供給される。   Then, for example, as shown in the graph of FIG. 5, when the current value of the spindle motor 72 measured by the current value measuring unit 14 has increased to 9A which is the upper limit value, the ON / OFF means 16 is activated and the high frequency power source is operated. The supply of high-frequency power from 91 is stopped. If it does so, the oscillation of the ultrasonic wave from the ultrasonic oscillation part 901 will stop, and the cleaning water L which an ultrasonic wave will not propagate is supplied to the grinding surface 740a of the grinding stone 740.

ON/OFF手段16により高周波電源91からの高周波電力の供給が停止され超音波が伝播されない洗浄水Lを研削砥石740の研削面740aに噴射させながら研削していくと、図5のグラフに示すように、電流値測定部14が測定するスピンドルモータ72の電流値が下限値である8.5Aまで下がる。この時点において、ON/OFF手段16が高周波電源91からの高周波電力の供給を再開して超音波発振部901からの超音波の発振を再開し、超音波が伝播される洗浄水Lを研削砥石740の研削面740aに供給する。   When the ON / OFF means 16 stops the supply of the high frequency power from the high frequency power supply 91 and the cleaning water L to which the ultrasonic wave is not propagated is sprayed onto the grinding surface 740a of the grinding wheel 740, the grinding is shown in the graph of FIG. As described above, the current value of the spindle motor 72 measured by the current value measuring unit 14 is lowered to 8.5 A which is the lower limit value. At this time, the ON / OFF means 16 resumes the supply of the high frequency power from the high frequency power supply 91 to resume the oscillation of the ultrasonic wave from the ultrasonic wave oscillating unit 901, and the cleaning water L to which the ultrasonic wave is propagated is used as the grinding wheel. 740 is supplied to the grinding surface 740a.

こうして研削砥石740の研削面740aへの洗浄水Lを介した超音波の伝播が再開されると、図5のグラフに示すように、電流値測定部14が測定するスピンドルモータ72の電流値が再び上昇していく。そして、電流値測定部14が測定するスピンドルモータ72の電流値が上限値である9Aまで上がった時点において、ON/OFF手段16が高周波電源91からの高周波電力の供給を停止し、超音波発振部901からの超音波の発振が停止する。そうすると、超音波が伝播されない洗浄水Lが研削砥石740の研削面740aに供給される。このように、ON/OFF手段16は、スピンドルモータ72の電流値が上限値と下限値との間の値をとるように超音波の発振を制御しながら研削を続行する。   When the propagation of the ultrasonic wave through the cleaning water L to the grinding surface 740a of the grinding wheel 740 is resumed in this way, the current value of the spindle motor 72 measured by the current value measuring unit 14 as shown in the graph of FIG. It will rise again. Then, when the current value of the spindle motor 72 measured by the current value measuring unit 14 has increased to 9A which is the upper limit value, the ON / OFF means 16 stops the supply of the high frequency power from the high frequency power supply 91, and the ultrasonic oscillation The oscillation of the ultrasonic wave from the unit 901 stops. Then, the cleaning water L to which no ultrasonic wave is propagated is supplied to the grinding surface 740a of the grinding wheel 740. In this way, the ON / OFF means 16 continues grinding while controlling the oscillation of the ultrasonic wave so that the current value of the spindle motor 72 takes a value between the upper limit value and the lower limit value.

なお、高周波電源91からの高周波電力の供給をON/OFF手段16が切換えるに際しては、ON/OFFの切換えと同時に、ウエーハWの交換も行うと好ましい。すなわち、例えば、一枚のウエーハWに対して常に高周波電源91からの高周波電力の供給をON(又はOFF)にした状態で、所定の研削量を研削して研削加工を行うと好ましい。   In addition, when the ON / OFF means 16 switches the supply of the high frequency power from the high frequency power supply 91, it is preferable to replace the wafer W simultaneously with the ON / OFF switching. That is, for example, it is preferable to perform grinding by grinding a predetermined grinding amount in a state where the supply of high-frequency power from the high-frequency power supply 91 is always ON (or OFF) for one wafer W.

このように、研削装置1は、実施例1において示すように、ON/OFF手段16を作動させ、研削加工中において、電流値測定部14が測定するスピンドルモータ72の電流値の上限値と下限値との間で高周波電源91からの高周波電力の供給をON/OFF手段16で切換え、間欠的に超音波発振部901から超音波を発振させ洗浄水Lに超音波を伝播させることで、研削砥石740の研削力を一定範囲に保つことが可能となり、ウエーハWを複数枚連続して研削することが可能となる。   Thus, as shown in the first embodiment, the grinding apparatus 1 operates the ON / OFF means 16 and the upper limit value and the lower limit value of the current value of the spindle motor 72 measured by the current value measuring unit 14 during the grinding process. By switching the supply of high-frequency power from the high-frequency power supply 91 between the values by the ON / OFF means 16 and intermittently oscillating ultrasonic waves from the ultrasonic oscillator 901 and propagating the ultrasonic waves to the cleaning water L, grinding is performed. The grinding force of the grindstone 740 can be kept within a certain range, and a plurality of wafers W can be ground continuously.

1:研削装置 10:ベース 11:コラム 14:電流値測定部
16:ON/OFF手段
30:保持テーブル 300:吸着部 300a:保持面 301:枠体
31:回転手段
5:研削送り手段 50:ボールネジ 51:ガイドレール 52:モータ
53:昇降板 54:ホルダ
7:研削手段 70:スピンドル 70a:流路 70b:流路
72:スピンドルモータ 73:マウント
74:研削ホイール 740:研削砥石 740a:研削面 741:ホイール基台
8:研削水供給手段 80:研削水供給源 81:配管
9:超音波洗浄水供給手段
90:超音波ノズル 900:噴射口 901:超音波発振部
91:高周波電源 910:導電線 92:洗浄水供給源 920:配管
W:ウエーハ Wa:ウエーハの表面 Wb:ウエーハの裏面 T:保護テープ
A:着脱領域 B:研削領域
1: Grinding device 10: Base 11: Column 14: Current value measuring unit
16: ON / OFF means 30: holding table 300: suction part 300a: holding surface 301: frame
31: Rotating means 5: Grinding feeding means 50: Ball screw 51: Guide rail 52: Motor
53: Elevating plate 54: Holder 7: Grinding means 70: Spindle 70a: Channel 70b: Channel
72: Spindle motor 73: Mount
74: Grinding wheel 740: Grinding wheel 740a: Grinding surface 741: Wheel base
8: Grinding water supply means 80: Grinding water supply source 81: Piping
9: Ultrasonic cleaning water supply means
90: Ultrasonic nozzle 900: Injection port 901: Ultrasonic oscillator
91: High frequency power source 910: Conductive wire 92: Cleaning water supply source 920: Pipe W: Wafer Wa: Wafer surface Wb: Wafer back surface T: Protective tape
A: Removable area B: Grinding area

Claims (1)

ウエーハを保持する保持テーブルと、該保持テーブルに保持されるウエーハを研削する研削砥石を環状に配設した研削ホイールを回転可能に装着するスピンドルを回転させるスピンドルモータを有する研削手段と、該研削砥石とウエーハとに研削水を供給する研削水供給手段と、を備える研削装置であって、
該研削水供給手段とは別に該研削砥石のウエーハに接触する研削面に超音波を伝播する洗浄水を噴射する超音波洗浄水供給手段と、該スピンドルモータの電流値を測定する電流値測定部と、該電流値測定部が測定する該スピンドルモータの電流値に応じて超音波の発振のONとOFFとを切換えるON/OFF手段と、を含み、
該超音波洗浄水供給手段は、該洗浄水を該研削面に噴射する噴射口と超音波を発振する超音波発振部とを備える超音波ノズルと、該超音波発振部に高周波電力を供給する高周波電源と、を備え、
該ON/OFF手段は、該研削手段による研削中に変化し該電流値測定部が測定する該スピンドルモータの該電流値の上限値と下限値とを設定し、
該高周波電源から高周波電力を供給し超音波を伝播する洗浄水を該研削面に噴射しながら研削しているときに該電流値測定部が測定する該電流値が該上限値まで上がったら該高周波電源からの高周波電力の供給を停止し超音波を伝播しない洗浄水を該研削面に供給し、
該高周波電源からの高周波電力の供給が停止され超音波を伝播しない洗浄水を該研削面に噴射しながら研削しているときに該電流値測定部が測定する該電流値が該下限値まで下がったら該高周波電源から高周波電力を供給して超音波を伝播する洗浄水を該研削面に供給し、
該電流値測定部が測定する該スピンドルモータの該電流値の該上限値と該下限値との間で該高周波電源からの高周波電力の供給をON/OFF手段で切換えて研削する研削装置。
A holding table for holding a wafer, a grinding means having a spindle motor for rotating a spindle for rotatably mounting a grinding wheel in which a grinding wheel for grinding a wafer held on the holding table is annularly arranged, and the grinding wheel And a grinding water supply means for supplying grinding water to the wafer,
Separately from the grinding water supply means, an ultrasonic cleaning water supply means for injecting cleaning water that propagates ultrasonic waves onto a grinding surface that contacts the wafer of the grinding wheel, and a current value measuring unit that measures the current value of the spindle motor And ON / OFF means for switching on and off the oscillation of the ultrasonic wave according to the current value of the spindle motor measured by the current value measuring unit,
The ultrasonic cleaning water supply means supplies an ultrasonic nozzle having an injection port for injecting the cleaning water onto the grinding surface and an ultrasonic oscillator for oscillating ultrasonic waves, and supplies high-frequency power to the ultrasonic generator. A high frequency power supply,
The ON / OFF means sets an upper limit value and a lower limit value of the current value of the spindle motor that changes during grinding by the grinding means and is measured by the current value measuring unit,
When the current value measured by the current value measuring unit rises to the upper limit value when the grinding is performed while supplying the high-frequency power from the high-frequency power source and spraying the cleaning water propagating ultrasonic waves to the grinding surface, Stop the supply of high frequency power from the power supply and supply cleaning water that does not propagate ultrasonic waves to the grinding surface,
When the supply of high-frequency power from the high-frequency power supply is stopped and grinding is performed while spraying cleaning water that does not propagate ultrasonic waves onto the grinding surface, the current value measured by the current value measuring unit decreases to the lower limit value. Then, supplying the high-frequency power from the high-frequency power supply and supplying cleaning water that propagates ultrasonic waves to the grinding surface,
A grinding apparatus that performs grinding by switching on / off means the supply of high-frequency power from the high-frequency power source between the upper limit value and the lower limit value of the current value of the spindle motor measured by the current value measuring unit.
JP2015150535A 2015-07-30 2015-07-30 Grinding equipment Active JP6489973B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015150535A JP6489973B2 (en) 2015-07-30 2015-07-30 Grinding equipment
TW105119571A TWI694896B (en) 2015-07-30 2016-06-22 Grinding device
KR1020160087998A KR102343159B1 (en) 2015-07-30 2016-07-12 Grinding apparatus
CN201610603424.6A CN106392886B (en) 2015-07-30 2016-07-28 Grinding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150535A JP6489973B2 (en) 2015-07-30 2015-07-30 Grinding equipment

Publications (2)

Publication Number Publication Date
JP2017030071A true JP2017030071A (en) 2017-02-09
JP6489973B2 JP6489973B2 (en) 2019-03-27

Family

ID=57985696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150535A Active JP6489973B2 (en) 2015-07-30 2015-07-30 Grinding equipment

Country Status (4)

Country Link
JP (1) JP6489973B2 (en)
KR (1) KR102343159B1 (en)
CN (1) CN106392886B (en)
TW (1) TWI694896B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180120601A (en) * 2017-04-27 2018-11-06 가부시키가이샤 오카모도 코사쿠 기카이 세이사쿠쇼 Electrostatic attachment chuck, method for manufacturing the same, and semiconductor device manufacturing method
CN109015165A (en) * 2017-06-09 2018-12-18 东和株式会社 Grinding attachment and the manufacturing method for being ground product
CN110340800A (en) * 2018-04-05 2019-10-18 株式会社迪思科 Grinding device
JP2021010993A (en) * 2019-07-09 2021-02-04 株式会社ディスコ Grinding device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045212B2 (en) * 2018-02-08 2022-03-31 株式会社ディスコ Grinding device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025653A (en) * 1983-07-20 1985-02-08 Hitachi Ltd How to dress grinding wheel
JPH04354673A (en) * 1991-05-28 1992-12-09 Hitachi Seiko Ltd Control method for grinding machine
JPH0557610A (en) * 1991-08-27 1993-03-09 Toshiba Mach Co Ltd Grinding method
JP2001096461A (en) * 1999-09-29 2001-04-10 Disco Abrasive Syst Ltd Dressing method and device for grinding wheel
US20030015215A1 (en) * 2001-07-20 2003-01-23 Chia-Lin Hsu Polishing pad conditioner and application thereof
JP2006281341A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Grinding device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577161A (en) * 1991-03-13 1993-03-30 Mitsubishi Materials Corp Dressing device for grinding machine
EP0576937B1 (en) * 1992-06-19 1996-11-20 Rikagaku Kenkyusho Apparatus for mirror surface grinding
JP2000117630A (en) * 1998-10-12 2000-04-25 Tokyo Seimitsu Co Ltd Dressing tool for wafer chamfering device, and dressing mechanism for the wafer chamfering device using the dressing tool
JP2001113455A (en) * 1999-10-14 2001-04-24 Sony Corp Chemical mechanical polishing device and method
JP2001328069A (en) * 2000-05-24 2001-11-27 Ebara Corp Method and device for cleaning of dresser in grinding device
EP1478011B1 (en) * 2002-02-20 2008-04-09 Ebara Corporation Method and device for polishing
TWI368555B (en) * 2004-11-01 2012-07-21 Ebara Corp Polishing apparatus
TW200734120A (en) * 2005-12-06 2007-09-16 Disco Corp Polishing grindstone and method for producing same
JP5254539B2 (en) * 2006-08-09 2013-08-07 株式会社ディスコ Wafer grinding equipment
JP2009094326A (en) * 2007-10-10 2009-04-30 Disco Abrasive Syst Ltd Method of grinding wafer
JP5165458B2 (en) * 2008-05-23 2013-03-21 オリンパス株式会社 Centering method and centering apparatus
CN102458766B (en) * 2009-06-04 2014-04-02 旭硝子株式会社 Method for grinding plate-like body
JP5550940B2 (en) * 2010-02-23 2014-07-16 株式会社ディスコ Transport mechanism
JP2011189456A (en) 2010-03-15 2011-09-29 Disco Corp Grinding device and grinding method
US8920214B2 (en) * 2011-07-12 2014-12-30 Chien-Min Sung Dual dressing system for CMP pads and associated methods
JP5856433B2 (en) * 2011-10-21 2016-02-09 株式会社ディスコ Grinding method of sapphire substrate
JP2013123792A (en) * 2011-12-16 2013-06-24 Fujitsu Ltd Method for manufacturing semiconductor device, and grinding device
JP6239354B2 (en) * 2012-12-04 2017-11-29 不二越機械工業株式会社 Wafer polishing equipment
JP6166974B2 (en) * 2013-07-22 2017-07-19 株式会社ディスコ Grinding equipment
CN103921213B (en) * 2014-03-14 2017-01-04 河南理工大学 Multiple spot ultrasonic activation CBN wheel dresser
CN104440559A (en) * 2014-11-24 2015-03-25 河南理工大学 Ultrasonic laser composite dressing device for superabrasive grinding wheel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025653A (en) * 1983-07-20 1985-02-08 Hitachi Ltd How to dress grinding wheel
JPH04354673A (en) * 1991-05-28 1992-12-09 Hitachi Seiko Ltd Control method for grinding machine
JPH0557610A (en) * 1991-08-27 1993-03-09 Toshiba Mach Co Ltd Grinding method
JP2001096461A (en) * 1999-09-29 2001-04-10 Disco Abrasive Syst Ltd Dressing method and device for grinding wheel
US20030015215A1 (en) * 2001-07-20 2003-01-23 Chia-Lin Hsu Polishing pad conditioner and application thereof
JP2006281341A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Grinding device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180120601A (en) * 2017-04-27 2018-11-06 가부시키가이샤 오카모도 코사쿠 기카이 세이사쿠쇼 Electrostatic attachment chuck, method for manufacturing the same, and semiconductor device manufacturing method
JP2018186217A (en) * 2017-04-27 2018-11-22 株式会社岡本工作機械製作所 Electrostatic attraction chuck and manufacturing method thereof and manufacturing method of semiconductor device
JP7012454B2 (en) 2017-04-27 2022-01-28 株式会社岡本工作機械製作所 Manufacturing method of electrostatic suction chuck and manufacturing method of semiconductor device
KR102541126B1 (en) * 2017-04-27 2023-06-07 가부시키가이샤 오카모도 코사쿠 기카이 세이사쿠쇼 Electrostatic attachment chuck, method for manufacturing the same, and semiconductor device manufacturing method
CN109015165A (en) * 2017-06-09 2018-12-18 东和株式会社 Grinding attachment and the manufacturing method for being ground product
KR20180134759A (en) * 2017-06-09 2018-12-19 토와 가부시기가이샤 Abrasive apparatus and method for manufacturing abrasive article
JP2018202592A (en) * 2017-06-09 2018-12-27 Towa株式会社 Grinding device and grinding method
KR102135067B1 (en) * 2017-06-09 2020-07-17 토와 가부시기가이샤 Abrasive apparatus and method for manufacturing abrasive article
CN110340800A (en) * 2018-04-05 2019-10-18 株式会社迪思科 Grinding device
CN110340800B (en) * 2018-04-05 2022-07-12 株式会社迪思科 Grinding device
JP2021010993A (en) * 2019-07-09 2021-02-04 株式会社ディスコ Grinding device
JP7299773B2 (en) 2019-07-09 2023-06-28 株式会社ディスコ Grinding equipment

Also Published As

Publication number Publication date
KR102343159B1 (en) 2021-12-23
KR20170015150A (en) 2017-02-08
TWI694896B (en) 2020-06-01
JP6489973B2 (en) 2019-03-27
TW201713460A (en) 2017-04-16
CN106392886B (en) 2020-03-17
CN106392886A (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6489973B2 (en) Grinding equipment
KR20150119806A (en) Grinding machine
JP5275016B2 (en) Grinding equipment
JP6704714B2 (en) Cutting equipment
JP2875513B2 (en) Semiconductor material processing method and apparatus
KR20200001979A (en) Ultrasonic water injection apparatus
JP4280557B2 (en) Cleaning device and polishing device
TW202207299A (en) Dressing apparatus and polishing apparatus
JP2001237204A (en) Method of manufacturing device
JPH1170456A (en) Wire cleaning device for fixed abrasive grain wire saw
JP7295621B2 (en) Wafer cutting method and wafer division method
JP2000015622A (en) Method and device for cutting outer peripheral blade
JP2013132721A (en) Grinding wheel
JP2010021273A (en) Method of manufacturing semiconductor device and semiconductor manufacturing apparatus
JP2020078849A (en) Grinding method and grinding apparatus
JP2023076059A (en) Creep feed grinding device
JP5706146B2 (en) Grinding equipment
JP2015013321A (en) Grinding wheel
JP4909575B2 (en) Cleaning method and cleaning equipment
JP7222635B2 (en) ultrasonic water injector
JP2000326185A (en) Grinding and polishing device and grinding and polishing method
JP2011146568A (en) Method and device for detecting cracking of wafer
JP2006281341A (en) Grinding device
JP2004050384A (en) Polishing device
JP2002178245A (en) Both-head planar grinding device and planar grinding method for plate work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6489973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250