JP2017028491A - 受信回路 - Google Patents

受信回路 Download PDF

Info

Publication number
JP2017028491A
JP2017028491A JP2015144789A JP2015144789A JP2017028491A JP 2017028491 A JP2017028491 A JP 2017028491A JP 2015144789 A JP2015144789 A JP 2015144789A JP 2015144789 A JP2015144789 A JP 2015144789A JP 2017028491 A JP2017028491 A JP 2017028491A
Authority
JP
Japan
Prior art keywords
frequency
value
sampling clock
circuit
adjustment value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015144789A
Other languages
English (en)
Other versions
JP6512011B2 (ja
Inventor
崇之 柴▲崎▼
Takayuki Shibazaki
崇之 柴▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015144789A priority Critical patent/JP6512011B2/ja
Priority to US15/185,964 priority patent/US9722616B2/en
Publication of JP2017028491A publication Critical patent/JP2017028491A/ja
Application granted granted Critical
Publication of JP6512011B2 publication Critical patent/JP6512011B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0807Details of the phase-locked loop concerning mainly a recovery circuit for the reference signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/091Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/095Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using a lock detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/107Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth
    • H03L7/1072Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth by changing characteristics of the charge pump, e.g. changing the gain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0004Initialisation of the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/06Speed or phase control by synchronisation signals the synchronisation signals differing from the information signals in amplitude, polarity or frequency or length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details
    • H04L7/0087Preprocessing of received signal for synchronisation, e.g. by code conversion, pulse generation or edge detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】サンプリングクロックの周波数の収束時間を短縮する。【解決手段】判定回路2は、入力データ信号Diを受け、サンプリングクロックCLKの論理レベルが変化するタイミングで、入力データ信号Diの値を判定する。サンプリングクロック生成回路3は、入力データ信号Diに基づきサンプリングクロックCLKを生成するとともに、サンプリングクロックCLKと、入力データ信号Diとの周波数差に基づく周波数調整値FRudを生成し、周波数調整値FRudに基づきサンプリングクロックCLKの周波数を調整する。周波数引き込み制御回路4は、期間Tごとに、周波数調整値FRudを積分して積分値を求め、期間Tが終わるまでにその積分値が閾値に達すると、期間Tが終わるまで、サンプリングクロック生成回路3に周波数調整値FRudを初期状態にさせるリセット信号FDrstを出力する。【選択図】図1

Description

本発明は、受信回路に関する。
近年、情報処理装置の性能向上に伴い、装置内外で送受信されるデータ信号のデータレートが高速化されてきている。
受信回路では、受信した入力データ信号から、入力データ信号の値とクロックとを再生するCDR(Clock and Data Recovery)が行われる。
CDRの手法の1つとして、リファレンスクロックを用いず、入力データ信号から再生したクロック(サンプリングクロック)を用いて入力データ信号のサンプリングを行う手法がある。この手法では、サンプリングクロックと入力データ信号との位相差や周波数差を検出し、サンプリングクロックの調整が行われる。サンプリングクロックの位相の検出方式として、1UI(Unit Interval)区間に2回のサンプリングを行う2xサンプリング方式がある。一方、サンプリングクロックの周波数の検出方式として、1UI区間で4回のサンプリングを行う4xサンプリング方式がある。
上記のような周波数検出方式では、サンプリングクロックを用いて検出された入力データ信号のエッジが、0〜360度までの位相領域を4象限に分割した各象限のどこにいるかが検出される。そして、象限をまたぐエッジの位相の変化により検出される位相回転方向から、入力データ信号に対してサンプリングクロックの周波数が低いか高いかが検出され、その検出結果に応じた周波数の調整値が出力される。
特開2005−252723号公報 特開2001−177397号公報 米国特許第6055286号
しかし、上記の周波数を検出する手法では、入力データ信号とサンプリングクロックとの周波数差が小さいときには、入力データ信号のエッジの位相のシフト量が少なくなり、エッジの位相が上記の象限を移るのに時間がかかり、周波数の検出に時間がかかる。
そこで、1回の周波数差の検出でのシフト量が大きくなるように、次に周波数差が検出されるまで同じ調整値を出力し、周波数調整の際の利得を等価的に大きくすることが考えられる。しかし、1回の周波数差の検出でのシフト量が大きくなると、入力データ信号とサンプリングクロックとの周波数差が小さいときには過調整が生じ、収束性が悪くなる可能性があった。
このように、従来の周波数を検出する手法を用いた受信回路では、サンプリングクロックの周波数を目標の周波数に収束させるのに時間がかかるという課題があった。
発明の一観点によれば、入力データ信号を受け、サンプリングクロックの論理レベルが変化するタイミングで、前記入力データ信号の値を判定する判定回路と、前記入力データ信号に基づき前記サンプリングクロックを生成するとともに、前記サンプリングクロックと、前記入力データ信号との周波数差に基づく周波数調整値を生成し、前記周波数調整値に基づき前記サンプリングクロックの周波数を調整するサンプリングクロック生成回路と、第1の期間ごとに、前記周波数調整値を積分して第1の積分値を求め、前記第1の期間が終わるまでに前記第1の積分値が第1の値に達すると、前記第1の期間が終わるまで、前記サンプリングクロック生成回路に前記周波数調整値を初期状態にさせるリセット信号を出力する周波数引き込み制御回路と、有する受信回路が提供される。
開示の受信回路によれば、サンプリングクロックの周波数の収束時間を短縮できる。
第1の実施の形態の受信回路の一例を示す図である。 第2の実施の形態の受信回路の一例を示す図である。 周波数引き込み制御回路の一例を示す図である。 データ信号に対する4相のクロックによるサンプリングタイミングの一例を示す図である。 位相の回転例を示す図である。 周波数引き込み制御回路による周波数調整値のリセット動作の一例を示す図である。 周波数引き込み制御回路による同期判定処理の一例を示す図である。 第3の実施の形態の受信回路の一例を示す図である。 第3の実施の形態の受信回路の周波数引き込み制御回路の一例を示す図である。 第4の実施の形態の受信回路の一例を示す図である。 データ信号に対する2相のクロックによるサンプリングタイミングの一例を示す図である。 0〜360度の位相領域を3分割した例を示す図である。 第5の実施の形態の受信回路の一例を示す図である。 第6の実施の形態の受信回路の一例を示す図である。
以下、発明を実施するための形態を、図面を参照しつつ説明する。
(第1の実施の形態)
図1は、第1の実施の形態の受信回路の一例を示す図である。
受信回路1は、判定回路2、サンプリングクロック生成回路3、周波数引き込み制御回路4を有する。
判定回路2は、入力データ信号Diを受け、サンプリングクロックCLKの論理レベルが変化するタイミングで、入力データ信号Diの値を判定し、判定値Doを出力する。判定回路2は、たとえば、サンプリングクロックCLKの立ち上がりタイミング(論理レベルがL(Low)レベルからH(High)レベルに変化するタイミング)で、データ判定用の閾値と入力データ信号Diとを比較する。判定回路2は、閾値よりも入力データ信号Diが大きければ、判定値Doとして1を、閾値よりも入力データ信号Diが小さければ、判定値Doとして0を出力する。
サンプリングクロック生成回路3は、入力データ信号Diに基づきサンプリングクロックCLKを生成するとともに、サンプリングクロックCLKと入力データ信号Diとの周波数差に基づく周波数調整値FRudを生成する。そしてサンプリングクロック生成回路3は、周波数調整値FRudに基づきサンプリングクロックCLKの周波数を調整する。
たとえば、サンプリングクロック生成回路3は、前述した4xサンプリング方式で、サンプリングクロックCLKと入力データ信号Diとの周波数差に基づく周波数調整値FRudを生成する。サンプリングクロック生成回路3は、入力データ信号Diに対してサンプリングクロックCLKの周波数が低いときは、サンプリングクロックCLKの周波数を上げる周波数調整値FRudとして“+1”を生成する。また、サンプリングクロック生成回路3は、入力データ信号Diに対してサンプリングクロックCLKの周波数が高いときは、サンプリングクロックCLKの周波数を下げる周波数調整値FRudとして“−1”を生成する。周波数調整値FRudの初期値は、たとえば、0である。なお、サンプリングクロック生成回路3は、上記のような周波数調整値FRudを2ビットの値として出力してもよい。
また、サンプリングクロック生成回路3は、サンプリングクロックCLKと入力データ信号Diとの位相差に基づく位相調整値を生成し、その位相調整値に基づき、サンプリングクロックCLKの位相を調整する機能も有する。また、サンプリングクロック生成回路3は、サンプリングクロックCLKの周波数が収束しているか否か(入力データ信号Diと周波数同期しているか否か)を判定し、収束したと判定したときには、その旨を示す信号を出力する機能も有する。
周波数引き込み制御回路4は、ある期間ごとに、周波数調整値FRudを積分して積分値を求める。そして、周波数引き込み制御回路4は、その期間が終わるまでに積分値がある値(閾値)に達すると、その期間が終わるまで、サンプリングクロック生成回路3に周波数調整値を初期状態にさせるリセット信号FDrstを出力する。
たとえば、周波数引き込み制御回路4は、図1に示すように、期間Tの範囲で、周波数調整値FRudの積分値が閾値に達すると、期間Tが終わるまで、リセット信号FDrstをLレベルからHレベルに立ち上げる。期間Tが終わると、周波数調整値FRudの積分値もリセットされる。なお、期間Tや閾値の設定の仕方の例については後述する。
以下第1の実施の形態の受信回路1によるサンプリングクロックCLKの周波数引き込み制御動作(周波数を収束させる動作)の一例を説明する。
なお、図1に示される目標周波数ftは、たとえば、入力データ信号Diに重畳されたクロックの周波数である。また、目標周波数ftを中心とした周波数fta〜ftbの範囲は、サンプリングクロック生成回路3の位相調整機能により、サンプリングクロックCLKの周波数を目標周波数ftに収束させることができる範囲を示している。
図1には、比較のために、上記のような周波数引き込み制御回路4をもたない受信回路で生成されるサンプリングクロックCLKの、周波数の変化の様子が波形5,6で示されている。
波形5は、サンプリングクロックCLKの周波数調整のための利得が比較的小さく、入力データ信号Diとの周波数差が検出されたときの周波数の調整量が少ない場合の、周波数の時間変化を示している。波形5では、周波数fta〜ftbの範囲に収束するまでの時間が長い。また、ノイズや、周波数調整機能と同時に動作している位相調整機能の影響で、周波数同期そのものができない可能性がある。
そのため、波形6のようにサンプリングクロックCLKの周波数調整のための利得を波形5より大きくし、入力データ信号Diとの周波数差が検出されたときの周波数の調整量を大きくすることが考えられる。1回の周波数差の検出でのシフト量が大きくなるように、次に周波数差が検出されるまで同じ周波数調整値FRudを出力し、周波数調整の際の利得を等価的に大きくすることができる。しかし、1回の周波数差の検出でのシフト量が大きくなると、入力データ信号DiとサンプリングクロックCLKとの周波数差が小さいときには過調整が生じ、収束性が悪くなる。周波数差が小さいときには、周波数の検出率が下がり、サンプリングクロッククCLKの周波数が目標周波数を超えても周波数の検出が行われないときには、“+1”の周波数調整値FRudが出力され続け、周波数は増加を続けてしまうためである。
なお、サンプリングクロックCLKの周波数調整のための利得を最適化することは、難しい。サンプリングクロックCLKの周波数調整のための利得は、入力データ信号Diのノイズや、サンプリングクロック生成回路3内の利得や特性などの様々なパラメータにより変動するためである。
第1の実施の形態の受信回路1では、図1の波形7に示すように、たとえば、時刻ta,tb,tcで、周波数調整値FRudの積分値が閾値に達するため、周波数引き込み制御回路4は、リセット信号FDrstをLレベルからHレベルに立ち上げる。これにより、周波数調整値FRudが初期化(リセット)され、0となり、周波数の調整が停止される。周波数引き込み制御回路4は、期間Tが終了するとリセット信号FDrstを0にし、積分値も0にリセットする。これにより、再び、周波数調整値FRudに基づく周波数調整が行われる。
このような受信回路1では、入力データ信号DiとサンプリングクロックCLKの周波数差に基づく周波数調整値FRudの積分値が閾値へ到達すると、周波数調整値FRudが初期化されることで、周波数差が小さいときの過調整が抑制される。これにより、サンプリングクロックCLKの周波数を周波数fta〜ftbの範囲に引き込みやすくすることができる。つまり、サンプリングクロックCLKの周波数の収束時間を短縮できる。
また、前述したように、入力データ信号DiとサンプリングクロックCLKとの周波数差が小さいときには、周波数の検出に時間がかかる。そのため、たとえば、時刻tc以降で、リセット信号FDrstがHレベルからLになった直後に、周波数調整値FRudが“+1”になり、サンプリングクロックCLKの目標周波数ftを超えるようなことが抑制される。サンプリングクロック生成回路3は、周波数同期を検出しやすくなる。
また、入力データ信号DiとサンプリングクロックCLKとの周波数差が大きいときには、周波数の検出率は上がるので、たとえば、時刻ta以降でリセット信号FDrstがHレベルからLになった後は、比較的すぐに周波数調整値FRudが“+1”になる。そのため、サンプリングクロックCLKの周波数の収束時間が長くなることが抑制される。
(第2の実施の形態)
図2は、第2の実施の形態の受信回路の一例を示す図である。
第2の実施の形態の受信回路10は、サンプリングクロックの周波数の検出方式として、1UI区間で4回のサンプリングを行う4xサンプリング方式を用いたものである。受信回路10は、バッファ11、比較回路12、サンプリングクロック生成回路13、周波数引き込み制御回路14を有する。
バッファ11は、入力データ信号Diに対して等化処理を行う。
比較回路12は、図1に示した判定回路2の機能を有する。比較回路12は、サンプリングクロック生成回路13において生成(再生)されたサンプリングクロックの立ち上がり(または立ち下がり)タイミングで、バッファ11から出力されるデータ信号と、データ信号の振幅レベルの中央に相当する閾値との比較を行う。そして比較回路12は、その比較結果を、判定値DОとして出力する。
たとえば、比較回路12は、データ信号の電圧が、データ信号の振幅レベルの中央に相当する閾値より、大きい場合は判定値DОとして1を出力し、小さい場合は判定値DОとして0を出力する。
サンプリングクロック生成回路13は、図1に示したサンプリングクロック生成回路13の機能を有する。サンプリングクロック生成回路13は、位相周波数制御部13a、CP(Charge Pump)13b1,13b2、フィルタ13c、QVCO(Quadrature Voltage Controlled Oscillator)13dを有する。
位相周波数制御部13aは、QVCO13dから出力される4相のクロックCLK0,CLK90,CLK180,CLK270を用いて、サンプリングクロックとバッファ11から出力されるデータ信号との位相差及び周波数差を検出する。さらに、位相周波数制御部13aは、検出した位相差に基づき、サンプリングクロックの位相を調整するための位相調整値PHUDと、サンプリングクロックの周波数を調整するための周波数調整値FRUD1を出力する。
CP13b1,13b2は、位相周波数制御部13aから出力される位相調整値PHUDと、周波数引き込み制御回路14から出力される周波数調整値FRUD2に基づき、出力する電流値を調整する。CP13b1は、位相調整値PHUDに基づき電流値を調整し、CP13b2は、周波数調整値FRUD2に基づき電流値を調整する。CP13b1とCP13b2の出力はショートされている。なお、CP13b1の利得よりもCP13b2の利得のほうが大きい。そのため、位相調整値PHUDと周波数調整値FRUD2がともに“+1”であっても、CP13b1による電流値の変化よりもCP13b2による電流値の変化のほうが大きい。たとえば、CP13b1の利得よりもCp13b2の利得が10倍程度大きく設定される。
フィルタ13cは、CP13b1,13b2が出力した電流値を電圧値に変換し、制御電圧値Vctrlとして出力する。
QVCO13dは、制御電圧値Vctrlに基づき発振周波数を変化させた4相のクロックCLK0〜CLK270を出力する。クロックCLK0〜CLK270は、90度ずつ位相が異なる。
周波数引き込み制御回路14は、図1に示した周波数引き込み制御回路4の機能を有する。周波数引き込み制御回路14は、第1の期間(以下期間T1と表記する)ごとに、周波数調整値FRUD1を積分して積分値を求める。そして、周波数引き込み制御回路14は、期間T1が終わるまでに積分値がある値(閾値)に達すると、期間T1が終わるまで、位相周波数制御部13aに、周波数調整値FRUD1を初期状態にさせるリセット信号FDrstを出力する。また、周波数引き込み制御回路14は、第2の期間(以下期間T2と表記する)ごとの周波数調整値FRUD1の積分値に基づき、サンプリングクロックの周波数が収束しているか否か(周波数同期しているか否か)を判定する。そして、周波数引き込み制御回路14は、周波数同期していると判定するまでは、周波数調整値FRUD1を、そのまま周波数調整値FRUD2としてCP13b2に出力し、周波数同期していると判定したときには、周波数調整値FRUD2を0にする。さらに、周波数引き込み制御回路14は、周波数同期していると判定したときには、たとえば、論理レベルがHレベルとなるロック信号Flockを出力する。
図3は、周波数引き込み制御回路の一例を示す図である。
周波数引き込み制御回路14は、タイマー回路20,21、積分回路22,23、ロック判定回路24、リセット判定回路25、選択回路26を有している。
タイマー回路20は、前述した期間T2ごとに論理レベルがHレベルとなるクリア信号CLR1を出力する。タイマー回路21は、前述した期間T1ごとに論理レベルが所定期間Hレベルとなるクリア信号CLR2を出力する。
積分回路22は、周波数調整値FRUD1を積分し、その積分値をロック判定回路24に出力する。また、積分回路22は、クリア信号CLR1の論理レベルがHレベルになると、積分値を0にリセットする。
積分回路23は、周波数調整値FRUD1を積分し、その積分値をリセット判定回路25に出力する。また、積分回路23は、クリア信号CLR2の論理レベルがHレベルになると、積分値を0にリセットする。
なお、積分回路22,23は、たとえば、図示しない加算器とレジスタなどで実現可能であり、所定期間ごとに周波数調整値FRUD1とレジスタに記憶されている値とを加算して加算結果を積分値として出力するとともに、加算結果によりレジスタの値を更新する。
ロック判定回路24は、クリア信号CLR1の論理レベルがHレベルになるタイミングで、積分回路22から出力される積分値が、2つの閾値で規定される範囲内に収まっているか否かを判定する。ロック判定回路24は、積分値がその範囲内に収まっていると判定したときには、サンプリングクロックがデータ信号と周波数同期していることを示す、論理レベルがHレベルとなるロック信号FDlockを出力する。ロック判定回路24は、積分値がその範囲内に収まっていないと判定したときには、ロック信号FDlockの論理レベルをLレベルとする。
リセット判定回路25は、積分回路23から出力される積分値が、閾値に達したか否かを判定する。リセット判定回路25は、積分回路23から出力される積分値が、閾値に達したと判定したときには、リセット信号FDrstの論理レベルをHレベルとし、閾値に達していないと判定したときには、リセット信号FDrstの論理レベルをLレベルとする。
選択回路26は、ロック信号FDlockの値(論理レベル)に基づき、周波数調整値FRUD1を周波数調整値FRUD2として出力するか、周波数調整値FRUD2を0とするか選択する。選択回路26は、ロック信号FDlockの論理レベルがLレベルのときは、周波数調整値FRUD1を周波数調整値FRUD2として出力し、ロック信号FDlockの論理レベルがHレベルのときは、周波数調整値FRUD2を0とする。
以下、受信回路10の動作例について説明する。
図4は、データ信号に対する4相のクロックによるサンプリングタイミングの一例を示す図である。
図4には、データ信号と、QVCO13dが出力するクロックCLK0〜CLK270の立ち上がりタイミング(論理レベルがLレベルからHレベルに立ち上がるタイミング)の例が示されている。たとえば、タイミングt1,t5は、クロックCLK90の立ち上がりタイミングであり、タイミングt2は、クロックCLK180の立ち上がりタイミングである。また、タイミングt3は、クロックCLK270の立ち上がりタイミングであり、タイミングt4は、クロックCLK0の立ち上がりタイミングである。なお、図4には様々なデータパターンによるデータ信号が重畳されて示されている。
1UI区間で4回のサンプリングが行われる4xサンプリング方式の周波数検出方式では、たとえば、上記のようなタイミングt1〜t5で、0〜360度の位相領域を4分割した4つの象限が規定される。以下では、タイミングt4で立ち上がるクロックCLK0のエッジの位相を0度として、タイミングt4〜t5で規定される0〜90度の位相領域を象限p1、タイミングt1〜t2で規定される90〜180度の位相領域を象限p2とする。また、タイミングt2〜t3で規定される180〜270度の位相領域を象限p3、タイミングt3〜t4で規定される270〜360(0)度の位相領域を象限p4とする。
第2の実施の形態の受信回路10では、データ信号のエッジの位相が象限p1〜p4のどこにいるかを検出するために、上記のようなタイミングt1〜t5でデータ信号のサンプリングが行われる。各タイミングt1〜t5では、位相周波数制御部13a内の図示しない判定回路において、閾値(データ信号の振幅レベルの中央に相当する)とデータ信号とが比較される。そしてその比較結果に基づき、位相周波数制御部13aは、データ信号のエッジの位相が象限p1〜p4のどこにいるか判定する。
たとえば、タイミングt2においてデータ信号よりも閾値が大きく、タイミングt3において、データ信号よりも閾値が小さい場合、データ信号のエッジ(立ち上がりエッジ)は象限p3にいると判定される。
図5は、位相の回転例を示す図である。
上記のような処理で、たとえば、データ信号のエッジが象限p3にいることが検出され、その後、データ信号のエッジが象限p4にいることが検出されたとする。このときのデータ信号のエッジの位相の回転方向は、図5の矢印Aに示すように、象限p3から象限p4の方向である。これは、サンプリングクロック(たとえば、クロックCLK0)の周期が1UIより長い状態、つまり、データ信号に対してサンプリングクロックの周波数が低い状態である。そのため、位相周波数制御部13aは、サンプリングクロックの周波数を上げるために“+1”となる周波数調整値FRUD1を出力する。
一方、データ信号のエッジが象限p4にいることが検出され、その後、データ信号のエッジが象限p3にいることが検出されたとする。このときのデータ信号のエッジの位相の回転方向は、図5の矢印Bに示すように、象限p4から象限p3の方向である。これは、サンプリングクロック(たとえば、クロックCLK0)の周期が1UIより短い状態、つまり、データ信号に対してサンプリングクロックの周波数が高い状態である。そのため、位相周波数制御部13aは、サンプリングクロックの周波数を下げるために“−1”となる周波数調整値FRUD1を出力する。
なお、位相周波数制御部13aは、周波数検出と同時に、サンプリングクロックとデータ信号との位相差に基づく位相調整値PHUDの生成も同時に行っている。
周波数引き込み制御回路14は、上記のような周波数調整値FRUD1を受け、以下のような処理を行う。
図6は、周波数引き込み制御回路による周波数調整値のリセット動作の一例を示す図である。
図6には、周波数調整値FRUD1,FRUD2、クリア信号CLR1,CLR2、ロック信号FDlock、リセット信号FDrstと積分回路22,23の積分値の様子が示されている。
タイミングt10では、タイマー回路21から出力されるクリア信号CLR2の論理レベルが所定期間Hレベルになっている。その後、位相周波数制御部13aによる上記の周波数検出により、サンプリングクロックがデータ信号よりも周波数が低いと判定され、周波数調整値FRUD1が“+1”となると(タイミングt11)、積分回路22,23は周波数調整値FRUD1の積分を開始する。積分回路22,23は、所定期間ごとに周波数調整値FRUD1の積分値を更新していく。
ロック判定回路24は、クリア信号CLR1の論理レベルがLレベルのままであるため、積分回路22から出力される積分値が、2つの閾値Vth1,Vth2で規定される範囲内に収まっているか否かの判定を行わない。そのため、ロック信号FDlockの論理レベルはLレベルのままであるので、選択回路26は、周波数調整値FRUD1を周波数調整値FRUD2として出力する。サンプリングクロック生成回路13は、これによって、サンプリングクロックの周波数を上げていく。
一方、リセット判定回路25は、積分回路23から出力される積分値が、閾値Vth3または閾値Vth4に達したか判定している。図6の例では、リセット判定回路25は、タイミングt12で、積分回路23から出力される積分値が、閾値Vth3に達したと判定する。そのため、リセット判定回路25は、リセット信号FDrstの論理レベルをHレベルとする。これによって、位相周波数制御部13aから出力される周波数調整値FRUD1が0に初期化され、周波数調整値FRUD2も0となる。このため、サンプリングクロック生成回路13は、サンプリングクロックの周波数調整を停止する。
期間T1が経過して再びクリア信号CLR2が所定期間立ち上がると(タイミングt13)、積分回路23の積分値が0に初期化される。このため、リセット判定回路25は、リセット信号FDrstの論理レベルをLレベルとする。その後再び、周波数調整値FRUD1が変化すると(タイミングt14)、同様の処理が行われる。
なお、リセット判定回路25が用いる閾値Vth3,Vth4は、たとえば、サンプリングクロック生成回路13の位相調整機能により、サンプリングクロックの周波数を目標周波数に収束できる範囲の広さ(オフセット)に基づき設定される。オフセットは規格で決まっており、目標周波数に対して、おおよそ±100〜1000ppm程度である。周波数調整値FRUD1のリセットは、周波数調整機能の利得が大きい場合のように(図1の波形6参照)、サンプリングクロックの周波数が上記のオフセットの範囲内に収束しなくなるのを抑制するために行われる。そのためサンプリングクロックの周波数が増加または減少していったときに上記のオフセットの範囲を飛び越えないように、閾値Vth3,Vth4が設定される。
また、期間T1は、短いほうが、周波数の更新頻度を高くできるために望ましい。しかし、周波数調整値FRUD1が“+1”または“−1”となり続けたときに、閾値Vth3,Vth4に達する時間より、期間T1のほうが長いことが好ましい。周波数調整値FRUD1が“+1”または“−1”となり続けたときに、閾値Vth3,Vth4に達する時間より前に、クリア信号CLR2の論理レベルが繰り返しHレベルとなると、周波数調整値FRUD1のリセットが発生しなくなる可能性があるためである。期間T1は、マージンも考慮して、周波数調整値FRUD1が“+1”または“−1”となり続けたときに、閾値Vth3,Vth4に達する時間の倍程度が望ましい。
図7は、周波数引き込み制御回路による同期判定処理の一例を示す図である。
図7では、図6に示した各信号のうちクリア信号CLR2と積分回路23の積分値は図示を省略している。
図7では、クリア信号CLR1の論理レベルが所定期間Hレベルになるタイミングt20から、次にクリア信号CLR1の論理レベルが所定期間Hレベルになるタイミングt21の間での積分回路22の積分値は閾値Vth1〜Vth2の範囲に収まっている。そのため、ロック判定回路24は、タイミングt21において、ロック信号FDlockの論理レベルをHレベルとする。ロック信号FDlockの論理レベルがHレベルとなると、選択回路26は、周波数調整値FRUD1が0から変化しても(タイミングt22)、周波数調整値FRUD2を0のまま固定する。これによって、サンプリングクロック生成回路13の周波数調整機能が停止する。なお、サンプリングクロック生成回路13の位相調整機能は動作するため、サンプリングクロックの周波数と目標周波数との差があっても、位相調整機能により、その差は小さくなっていく。このときの周波数の変動の大きさは、前述したようにCP13b2の利得よりCP13b1の利得のほうが小さいため、周波数調整機能による変動の大きさより小さい。
以上のような動作によって、サンプリングクロックの周波数は、図1に示した波形7のような特性を示すようになり、第1の実施の形態の受信回路1と同様の効果が得られる。
(第3の実施の形態)
図8は、第3の実施の形態の受信回路の一例を示す図である。
図2に示した第2の実施の形態の受信回路10と同様の要素については、同一符号が付されている。
第3の実施の形態の受信回路10aの周波数引き込み制御回路31は、サンプリングクロック生成回路30のCP13baの利得の変更を指示する利得変更信号GCPを出力する。
また、周波数引き込み制御回路31は、位相周波数制御部13aから出力される、周波数調整値FRUD1のほか、位相調整値PHUD1を受ける。そして、周波数引き込み制御回路31は、ロック信号Flockの論理レベルがHレベルとなるまでは、位相調整値PHUD1の値にかかわらず、位相調整値PHUD2を0とする。そして、周波数引き込み制御回路31は、ロック信号Flockの論理レベルがHレベルとなると、位相調整値PHUD1を、位相調整値PHUD2として出力する。
CP13baは、位相調整値PHUD2または周波数調整値FRUD2に基づき、出力する電流値を調整する。また、CP13baは、利得変更信号GCPに基づき、位相調整値PHUD2または周波数調整値FRUD2が、“+1”または“−1”のときの1度の電流値の変動量を変更する。CP13baは、利得変更信号GCPにより、利得を下げることが指示された場合、上記の電流値の変動量を小さくし、利得を上げることが指示された場合、上記の電流値の変動量を大きくする。
図9は、第3の実施の形態の受信回路の周波数引き込み制御回路の一例を示す図である。
図3に示した周波数引き込み制御回路14と同様の要素については、同一符号が付されている。
図9に示す周波数引き込み制御回路31のロック判定回路24aは、積分回路22から出力される積分値が、前述した期間T2の間で、2つの閾値で規定される範囲内であるか否かに基づき、CP13baの利得の変更を指示する利得変更信号GCPを出力する。
ロック判定回路24aは、積分回路22から出力される積分値が、期間T2の間で、2つの閾値で規定される範囲内であるとき(ロック信号Flockの論理レベルがHレベルとなるとき)は、CP13baの利得を下げるような利得変更信号GCPを出力する。また、ロック判定回路24aは、積分回路22から出力される積分値が、期間T2の間で、2つの閾値で規定される範囲外であるとき(ロック信号Flockの論理レベルがLレベルのとき)は、CP13baの利得を上げるような利得変更信号GCPを出力する。
選択回路26aは、位相周波数制御部13aから出力される周波数調整値FRUD1のほか、位相調整値PHUD1を受ける。そして、選択回路26aは、ロック信号Flockの論理レベルがHレベルとなるまでは、位相調整値PHUD1の値にかかわらず、位相調整値PHUD2を0とする。そして、選択回路26aは、ロック信号Flockの論理レベルがHレベルとなると、位相調整値PHUD1を、位相調整値PHUD2として出力する。
以上のような受信回路10aによれば、第2の実施の形態の受信回路10と同様の効果が得られる。
さらに、受信回路10aでは、サンプリングクロックの周波数の調整時に(ロック信号Flockの論理レベルがLレベルのときに)、位相周波数制御部13aから出力される位相調整値PHUD1は、CP13baに伝達されない。そのため、周波数調整が妨げられることを抑制でき、サンプリングクロックの周波数を目標の周波数により迅速に収束させることができる。また、ロック信号Flockの論理レベルがLレベルのときには、CP13baの利得を上げるような利得変更信号GCPが出力されるため、周波数調整値FRUD2が、“+1”または“−1”のときの1度の電流の変動量が大きくなる。このため、周波数の変動量も大きくなり、サンプリングクロックの周波数を目標の周波数により迅速に収束させることができる。
また、サンプリングクロックの周波数の調整が終了すると(ロック信号Flockの論理レベルがHレベルになると)、CP13baの利得を下げるような利得変更信号GCPが出力されるため、判定値DOに現れるノイズを削減できる。
(第4の実施の形態)
図10は、第4の実施の形態の受信回路の一例を示す図である。
第4の実施の形態の受信回路10bは、サンプリングクロックの周波数の検出方式として、1UI区間で2回のサンプリングを行う2xサンプリング方式を用いたものである。また、投機型DFE(Decision Feedback Equalizer)の機能も有する。受信回路10bは、バッファ40、判定回路41、サンプリングクロック生成回路42、周波数引き込み制御回路43を有する。
バッファ40は、入力データ信号Diに対して等化処理を行う。
判定回路41は、図1に示した判定回路2の機能を有し、サンプリングクロック生成回路42は、図1に示したサンプリングクロック生成回路3の機能を有する。また、周波数引き込み制御回路43は、図1及び図2に示した周波数引き込み制御回路4,14の機能を有する。
第4の実施の形態の受信回路10bでは、判定回路41とサンプリングクロック生成回路42が、図2及び図8に示した受信回路10,10aの比較回路12及びサンプリングクロック生成回路13,30と異なっている。
判定回路41は、比較回路41a,41b、選択部41cを有する。また、サンプリングクロック生成回路42は、比較回路42a、周波数制御部42b、位相制御部42c、CP42d1,42d2、フィルタ42e、VCO(Voltage Controlled Oscillator)42fを有する。
比較回路41aは、クロックCLK0の立ち上がりタイミングで、バッファ40から出力されるデータ信号と閾値VHとの比較を行い、その比較結果DHを出力する。閾値VHは、データ信号の振幅レベルの中央に相当する閾値V0より大きい値である。
比較回路41bは、比較回路41aでの比較タイミングと同じタイミングで、データ信号と閾値VLとの比較を行い、その比較結果DLを出力する。閾値VLは、閾値V0より小さい値である。
選択部41cは選択信号として入力される判定値DО(過去の判定値)に基づき、比較回路41a,41bが出力する比較結果DH,DLのいずれかを選択し、保持するとともに、保持した値を新たな判定値DОとして出力する。
比較回路42aは、クロックCLK180の立ち上がりタイミングで、データ信号と閾値V0との比較を行い、その比較結果Eを出力する。
周波数制御部42bは、比較結果DH,DL,Eに基づき、データ信号とクロックCLK0,CLK180の周波数差を検出し、その周波数差に基づき、クロックCLK0,CLK180の周波数を調整するために、周波数調整値FRUD1を出力する。
位相制御部42cは、判定値DО、比較結果Eに基づき、データ信号とクロックCLK0,CLK180の位相差を検出し、その位相差に基づき、クロックCLK0,CLK180の位相を調整するために、位相調整値PHUDを出力する。
CP42d1は、位相制御部42cから出力される位相調整値PHUDに基づき電流値を調整し、CP42d2は、周波数引き込み制御回路43から出力される周波数調整値FRUD2に基づき電流値を調整する。CP42d1とCP42d2の出力はショートされている。なお、CP42d1の利得よりもCP42d2の利得のほうが大きい。
フィルタ42fは、CP42d1,42d2が出力した電流値を電圧値に変換し、制御電圧値Vctrlとして出力する。
VCO42fは、制御電圧値Vctrlに基づき発振周波数を変化させた2相のクロックCLK0,CLK180を出力する。たとえば、クロックCLK180の立ち上がり(または立ち下がり)タイミングは、クロックCLK0の立ち上がり(または立ち下がり)タイミングから1UIの半分だけずれている。
上記のような受信回路10bにおいて、周波数制御部42bは、たとえば、以下のようにして周波数調整値FRUD1を出力する。
図11は、データ信号に対する2相のクロックによるサンプリングタイミングの一例を示す図である。図11には、データ信号と、VCO42fが出力するクロックCLK0,CLK180の立ち上がりタイミングの例が示されている。たとえば、タイミングt30,t32は、クロックCLK0の立ち上がりタイミングであり、タイミングt31は、クロックCLK180の立ち上がりタイミングである。なお、図11には様々なデータパターンによるデータ信号が重畳されて示されている。
1UI区間で2回のサンプリングが行われる2xサンプリング方式の周波数検出方式では、たとえば、上記のようなタイミングt30〜t32で、0〜360度の位相領域を3分割した3つの領域P1,P2,P3が規定される。
図12は、0〜360度の位相領域を3分割した例を示す図である。
領域P1は、図11に示したタイミングt30,t32を始点とし、領域P3の始点を終点とする範囲である。領域P2は、領域P3の終点を始点とし、図11に示したタイミングt30,32(領域P1の始点)を終点とする範囲である。図12の例では、領域P1の始点及び領域P2の終点の位相を0度としている。
領域P3は、領域P1,P2の間に、図11に示したタイミングt31を中心にした範囲で設定されている。領域P3の広さは、データ信号のスルーレートと上記の閾値VH,VLに応じて変化する。たとえば、データ信号の、スルーレートが小さいと領域P3は広くなり、スルーレートが大きいと領域P3は狭くなる。また、たとえば、閾値VHが大きいほど、または閾値VLが小さいほど、領域P3は広くなり、その逆では、領域P3は狭くなる。なお、領域P3の広さに応じて、領域P1,P2の広さも変わる。
ここで、領域P3の広さに応じて検出可能なクロックCLK0,CLK180の周波数の範囲や検出率が変化する。領域P3が狭すぎると、クロックCLK0,CLK180の周波数が変化しても領域P1〜P3間を跨ぐ変化(位相の回転)が検出されない可能性があるためである。そのため、データ信号のスルーレートなどの特性に応じて、比較回路41a,41bの閾値VH,VLを設定し、領域P3の範囲を設定することで、所望の周波数の検出率を実現することができる。
周波数制御部42bは、比較結果DH,DL,Eに基づき、上記のような領域P1〜P3のどこに、データ信号のエッジが位置するか検出する。そして、周波数制御部42bは、エッジが位置する領域の変化に基づき、データ信号のエッジの位相の回転方向を検出することで、データ信号の周波数に対して、クロックCLK0,CLK180の周波数が高いか低いかを検出する。そして、周波数制御部42bは、検出結果に基づき、クロックCLK0,CLK180の周波数を調整する周波数調整値FRUD1を出力する。
本実施の形態の受信回路10bにおいても、周波数引き込み制御回路43は、期間T1(図6参照)ごとに、周波数調整値FRUD1を積分して積分値を求める。そして、周波数引き込み制御回路43は、期間T1が終わるまでに積分値がある値(閾値)に達すると、期間T1が終わるまで、周波数制御部42bに、周波数調整値FRUD1を初期状態にさせるリセット信号FDrstを出力する。また、周波数引き込み制御回路43は期間T2(図7参照)ごとの周波数調整値FRUD1の積分値に基づき、サンプリングクロックの周波数が収束しているか否かを判定する。そして、周波数引き込み制御回路43は、周波数同期していると判定するまでは、周波数調整値FRUD1を、そのまま周波数調整値FRUD2としてCP42d2に出力し、周波数同期していると判定したときには、周波数調整値FRUD2を0にする。さらに、周波数引き込み制御回路43は、周波数同期していると判定したときには、たとえば、論理レベルがHレベルとなるロック信号Flockを出力する。
周波数引き込み制御回路43は、図3に示した周波数引き込み制御回路14と同様の回路で実現可能である。
これによって、第4の実施の形態の受信回路10bにおいても、第2の実施の形態の受信回路10と同様の効果が得られる。さらに、第4の実施の形態の受信回路10bでは、2相のクロックCLK0,CLK180を用いた2回のサンプリングと3回の比較判定で、データ信号に対し、クロックCLK0,CLK180の周波数が高いか低いかを検出できる。このため、サンプリング数を減らせ、クロックの増加に伴う回路などを削減でき、回路面積の増大を抑制できる。また、回路を削減することができることから、消費電力を削減することができる。
さらに、受信回路10bでは、比較回路41a,41bから出力される比較結果DH,DLを用いて投機型DFEの機能を実現させている。そのため、投機型DFEの機能の追加に伴う回路面積の増大を抑制できる。
(第5の実施の形態)
図13は、第5の実施の形態の受信回路の一例を示す図である。
図10に示した第4の実施の形態の受信回路10bと同様の要素については、同一符号が付されている。
第5の実施の形態の受信回路10cの周波数引き込み制御回路51は、第3の実施の形態の受信回路10aの周波数引き込み制御回路31と同様の機能を有する。
すなわち周波数引き込み制御回路51は、サンプリングクロック生成回路50のCP42daの利得の変更を指示する利得変更信号GCPを出力する。また、周波数引き込み制御回路51は、周波数制御部42bから出力される周波数調整値FRUD1のほか、位相制御部42cから出力される位相調整値PHUD1を受ける。そして、周波数引き込み制御回路51は、ロック信号Flockの論理レベルがHレベルとなるまでは、位相調整値PHUD1の値にかかわらず、位相調整値PHUD2を0とする。そして、周波数引き込み制御回路51は、ロック信号Flockの論理レベルがHレベルとなると、位相調整値PHUD1を、位相調整値PHUD2として出力する。
CP42daは、位相調整値PHUD2または周波数調整値FRUD2に基づき、出力する電流量を調整する。また、CP42daは、利得変更信号GCPに基づき、位相調整値PHUD2または周波数調整値FRUD2が、“+1”または“−1”のときの1度の電流値の変動量を変更する。CP42daは、利得変更信号GCPにより、利得を下げることが指示された場合、上記の電流値の変動量を小さくし、利得を上げることが指示された場合、上記の電流値の変動量を大きくする。
周波数引き込み制御回路51は、図9に示した周波数引き込み制御回路31と同様の回路で実現可能である。
以上のような第5の実施の形態の受信回路10cによれば、第3及び第4の実施の形態の受信回路10a,10bと同様の効果が得られる。
(第6の実施の形態)
図14は、第6の実施の形態の受信回路の一例を示す図である。
受信回路10dは、バッファ60、比較回路61,62,63,64,65,66を有している。さらに、受信回路10dは、デマルチプレクサ(以下DMXと表記する)67、選択部68、周波数制御部69、位相制御部70、周波数引き込み制御回路71、CP72、フィルタ73、VCO74、分周器75を有する。
インターリーブ動作を可能とするため、受信回路10dは、比較回路61〜63と、比較回路64〜66の並列構造となっている。これにより入力データ信号Diが高周波であるときも、並列処理を行うことでCDR動作が可能となる。
バッファ60は、入力データ信号Diに対して等化処理を行い、データ信号を出力する。
比較回路61,62は、それぞれクロックCLKa0の立ち上がりタイミングで、バッファ60から出力されるデータ信号と閾値VH,VLの比較を行い、その比較結果DH0,DL0を出力する。
比較回路63は、クロックCLKa90の立ち上がりタイミングで、バッファ60から出力されるデータ信号と閾値V0との比較を行い、その比較結果E0を出力する。
比較回路64,65は、それぞれクロックCLKa180の立ち上がりタイミングで、バッファ60から出力されるデータ信号と閾値VH,VLの比較を行い、その比較結果DH1,DL1を出力する。
比較回路66は、クロックCLKa270の立ち上がりタイミングで、バッファ60から出力されるデータ信号と閾値V0との比較を行い、その比較結果E1を出力する。
DMX67は、それぞれ1ビットである比較結果DH0,DH1の2ビットを逆多重化し、nビットの比較結果DHとして出力し、それぞれ1ビットである比較結果DL0,DL1の2ビットを逆多重化しnビットの比較結果DLとして出力する。さらに、DMX67は、それぞれ1ビットである比較結果E0,E1の2ビットを逆多重化し、nビットの比較結果Eとして出力する。
選択部68、周波数制御部69、位相制御部70、周波数引き込み制御回路71は、第5の実施の形態の受信回路10cの選択部41c、周波数制御部42b、位相制御部42c、周波数引き込み制御回路51と同様の機能を有する。また、CP72、フィルタ73、VCO74も、第5の実施の形態の受信回路10cの、CP42da、フィルタ42e、VCO42fと同様の機能を有する。
分周器75は、VCO74から出力されるクロックCLK0,CLK180を分周して4相のクロックCLKa0〜CLKa270を生成する。
クロックCLKa0〜CLKa270の周波数は、第5の実施の形態の受信回路10cのクロックCLK0,CLK180の周波数の半分である。また、クロックCLKa0〜CLKa270の位相関係は、たとえば、クロックCLKa0の位相を基準(0度)とすると、クロックCLKa90は、クロックCLKa0に対して90度の位相差がある。また、クロックCLKa180は、クロックCLKa0に対して180度の位相差がある。また、クロックCLKa270は、クロックCLKa0に対して270度の位相差がある。
本実施の形態の受信回路10dでは、上記のような4相のクロックCLKa0〜CLKa270の立ち上がりタイミングに同期して、比較回路61〜66のそれぞれが順次動作可能となるため、受信回路10cに対して、半分の周波数での動作が可能となる。また、比較回路61〜66のそれぞれの出力がDMX67によって2:nに逆多重化され、低速の並列データに変換されるため、DMX67より後段の回路については、受信回路10cに対して1/nの速度で動作させることが可能となる。このため、回路に要求される動作速度の制約を緩和させることができる。つまり、比較的低速な回路を用いることができる。
なお、上記の受信回路10dは、2並列でインターリーブ動作を行う回路であったが、並列数に制限はなく、3並列以上としてもよい。並列数に応じてクロックの周波数を下げ、異なる位相関係をもつクロックを増加させることで、より低速な回路で、周波数検出処理を実現することが可能となる。
また、第2乃至第4の実施の形態の受信回路10,10a,10bにおいても、上記のようなインターリーブ動作が可能なように、比較回路の数を増やし、DMXや分周器を追加するようにしてもよい。
以上、実施の形態に基づき、本発明の受信回路の一観点について説明してきたが、これらは一例にすぎず、上記の記載に限定されるものではない。
以上説明した複数の実施の形態に関し、さらに以下の付記を開示する。
(付記1) 入力データ信号を受け、サンプリングクロックの論理レベルが変化するタイミングで、前記入力データ信号の値を判定する判定回路と、
前記入力データ信号に基づき前記サンプリングクロックを生成するとともに、前記サンプリングクロックと、前記入力データ信号との周波数差に基づく周波数調整値を生成し、前記周波数調整値に基づき前記サンプリングクロックの周波数を調整するサンプリングクロック生成回路と、
第1の期間ごとに、前記周波数調整値を積分して第1の積分値を求め、前記第1の期間が終わるまでに前記第1の積分値が第1の値に達すると、前記第1の期間が終わるまで、前記サンプリングクロック生成回路に前記周波数調整値を初期状態にさせるリセット信号を出力する周波数引き込み制御回路と、
有することを特徴とする受信回路。
(付記2) 前記周波数引き込み制御回路は、第2の期間ごとに、前記周波数調整値を積分して第2の積分値を求め、前記第2の期間内での前記第2の積分値が、第1の範囲内であるときには、前記サンプリングクロックが前記入力データ信号と周波数同期していることを示すロック信号を出力し、前記サンプリングクロック生成回路に、前記周波数調整値に基づく前記周波数の調整を停止させる、
ことを特徴とする付記1に記載の受信回路。
(付記3) 前記周波数引き込み制御回路は、
前記第1の積分値を生成する第1の積分回路と、
前記第2の積分値を生成する第2の積分回路と、
前記第1の期間ごとに前記第1の積分値を0にする第1のクリア信号を出力する第1のタイマー回路と、
前記第2の期間ごとに前記第2の積分値を0にする第2のクリア信号を出力する第2のタイマー回路と、
前記第1の積分値と前記第1の値とを比較し、前記第1の積分値が前記第1の値に達すると、前記リセット信号を出力するリセット判定回路と、
前記第2の積分値が前記第1の範囲内であるか否かを判定し、前記第2のクリア信号に基づき、前記第2の期間内での前記第2の積分値が、前記第1の範囲内であるときには、前記ロック信号を出力するロック判定回路と、
前記ロック判定回路の出力に基づき、前記サンプリングクロック生成回路に、前記周波数調整値に基づく前記周波数の調整を停止させるか否かを選択する選択回路と、
を有することを特徴とする付記2に記載の受信回路。
(付記4) 前記サンプリングクロック生成回路は、前記サンプリングクロックと、前記入力データ信号との位相差に基づく位相調整値を生成し、前記位相調整値に基づき前記サンプリングクロックの位相を調整し、
前記周波数引き込み制御回路は、前記第2の期間内での前記第2の積分値が、前記第1の範囲外であるときには、前記サンプリングクロック生成回路に、前記位相調整値に基づく前記位相の調整を停止させる、
ことを特徴とする付記2に記載の受信回路。
(付記5) 前記周波数引き込み制御回路は、
前記第1の積分値を生成する第1の積分回路と、
前記第2の積分値を生成する第2の積分回路と、
前記第1の期間ごとに前記第1の積分値を0にする第1のクリア信号を出力する第1のタイマー回路と、
前記第2の期間ごとに前記第2の積分値を0にする第2のクリア信号を出力する第2のタイマー回路と、
前記第1の積分値と前記第1の値とを比較し、前記第1の積分値が前記第1の値に達すると、前記リセット信号を出力するリセット判定回路と、
前記第2の積分値が前記第1の範囲内であるか否かを判定し、前記第2のクリア信号に基づき、前記第2の期間内での前記第2の積分値が、前記第1の範囲内であるときには、前記ロック信号を出力するロック判定回路と、
前記ロック判定回路の出力に基づき、前記サンプリングクロック生成回路に、前記位相調整値に基づく前記位相の調整、または前記周波数調整値に基づく前記周波数の調整を停止させるか否かを選択する選択回路と、
を有することを特徴とする付記4に記載の受信回路。
(付記6) 前記サンプリングクロック生成回路は、前記周波数調整値または前記位相調整値に基づき出力する電流値を変更することで、前記周波数または前記位相を調整するチャージポンプを有し、
前記周波数引き込み制御回路は、前記第2の期間内での前記第2の積分値が、前記第1の範囲内であるときには、前記チャージポンプの利得を第1の利得から前記第1の利得よりも小さい第2の利得に変更させる利得変更信号を出力する、
ことを特徴とする付記4に記載の受信回路。
(付記7) 前記ロック判定回路は、前記第2の期間内での前記第2の積分値が、前記第1の範囲内であるときには、前記チャージポンプの利得を第1の利得から前記第1の利得よりも小さい第2の利得に変更させる利得変更信号を出力する、ことを特徴とする付記6に記載の受信回路。
(付記8) 前記第1の期間は、同じ値の前記周波数調整値が生成され続けたときに、前記第1の積分値が前記第1の値に達する時間よりも長いことを特徴とする付記1乃至7の何れか一つに記載の受信回路。
1 受信回路
2 判定回路
3 サンプリングクロック生成回路
4 周波数引き込み制御回路
5〜7 波形

Claims (5)

  1. 入力データ信号を受け、サンプリングクロックの論理レベルが変化するタイミングで、前記入力データ信号の値を判定する判定回路と、
    前記入力データ信号に基づき前記サンプリングクロックを生成するとともに、前記サンプリングクロックと、前記入力データ信号との周波数差に基づく周波数調整値を生成し、前記周波数調整値に基づき前記サンプリングクロックの周波数を調整するサンプリングクロック生成回路と、
    第1の期間ごとに、前記周波数調整値を積分して第1の積分値を求め、前記第1の期間が終わるまでに前記第1の積分値が第1の値に達すると、前記第1の期間が終わるまで、前記サンプリングクロック生成回路に前記周波数調整値を初期状態にさせるリセット信号を出力する周波数引き込み制御回路と、
    有することを特徴とする受信回路。
  2. 前記周波数引き込み制御回路は、第2の期間ごとに、前記周波数調整値を積分して第2の積分値を求め、前記第2の期間内での前記第2の積分値が、第1の範囲内であるときには、前記サンプリングクロックが前記入力データ信号と周波数同期していることを示すロック信号を出力し、前記サンプリングクロック生成回路に、前記周波数調整値に基づく前記周波数の調整を停止させる、
    ことを特徴とする請求項1に記載の受信回路。
  3. 前記サンプリングクロック生成回路は、前記サンプリングクロックと、前記入力データ信号との位相差に基づく位相調整値を生成し、前記位相調整値に基づき前記サンプリングクロックの位相を調整し、
    前記周波数引き込み制御回路は、前記第2の期間内での前記第2の積分値が、前記第1の範囲外であるときには、前記サンプリングクロック生成回路に、前記位相調整値に基づく前記位相の調整を停止させる、
    ことを特徴とする請求項2に記載の受信回路。
  4. 前記サンプリングクロック生成回路は、前記周波数調整値または前記位相調整値に基づき出力する電流値を変更することで、前記周波数または前記位相を調整するチャージポンプを有し、
    前記周波数引き込み制御回路は、前記第2の期間内での前記第2の積分値が、前記第1の範囲内であるときには、前記チャージポンプの利得を第1の利得から前記第1の利得よりも小さい第2の利得に変更させる利得変更信号を出力する、
    ことを特徴とする請求項3に記載の受信回路。
  5. 前記第1の期間は、同じ値の前記周波数調整値が生成され続けたときに、前記第1の積分値が前記第1の値に達する時間よりも長いことを特徴とする請求項1乃至4の何れか一項に記載の受信回路。
JP2015144789A 2015-07-22 2015-07-22 受信回路 Active JP6512011B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015144789A JP6512011B2 (ja) 2015-07-22 2015-07-22 受信回路
US15/185,964 US9722616B2 (en) 2015-07-22 2016-06-17 Reception circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015144789A JP6512011B2 (ja) 2015-07-22 2015-07-22 受信回路

Publications (2)

Publication Number Publication Date
JP2017028491A true JP2017028491A (ja) 2017-02-02
JP6512011B2 JP6512011B2 (ja) 2019-05-15

Family

ID=57837971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015144789A Active JP6512011B2 (ja) 2015-07-22 2015-07-22 受信回路

Country Status (2)

Country Link
US (1) US9722616B2 (ja)
JP (1) JP6512011B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6839354B2 (ja) * 2017-02-03 2021-03-10 富士通株式会社 Cdr回路及び受信回路
TWI681635B (zh) * 2018-11-21 2020-01-01 國立交通大學 無參考訊號源時脈資料回復系統及其頻率偵測器
CN115378568B (zh) * 2022-08-19 2023-08-08 深圳市紫光同创电子有限公司 一种时钟同步电路以及时钟同步方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163114A (ja) * 1994-12-02 1996-06-21 Electron & Telecommun Res Inst 多端制御構造を有する高速ビット同期装置
JP2003273731A (ja) * 2002-03-13 2003-09-26 Fujitsu Access Ltd 位相同期回路
JP2004222325A (ja) * 2004-04-05 2004-08-05 Opnext Japan Inc 位相周波数同期回路、同期判定回路および光受信器
US20040202266A1 (en) * 2003-03-26 2004-10-14 Peter Gregorius Clock and data recovery unit

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012494A (en) * 1989-11-07 1991-04-30 Hewlett-Packard Company Method and apparatus for clock recovery and data retiming for random NRZ data
US5473639A (en) * 1993-07-26 1995-12-05 Hewlett-Packard Company Clock recovery apparatus with means for sensing an out of lock condition
US6055286A (en) 1997-07-01 2000-04-25 Hewlett-Packard Company Oversampling rotational frequency detector
JP3559743B2 (ja) 1999-12-17 2004-09-02 日本オプネクスト株式会社 位相周波数同期回路および光受信回路
JP3968525B2 (ja) 2004-03-04 2007-08-29 ソニー株式会社 位相同期回路および情報再生装置
US7664204B1 (en) * 2005-03-10 2010-02-16 Marvell International Ltd. Adaptive timing using clock recovery
US7590207B1 (en) * 2005-10-20 2009-09-15 Altera Corporation Modular serial interface in programmable logic device
US20130216003A1 (en) * 2012-02-16 2013-08-22 Qualcomm Incorporated RESETTABLE VOLTAGE CONTROLLED OSCILLATORS (VCOs) FOR CLOCK AND DATA RECOVERY (CDR) CIRCUITS, AND RELATED SYSTEMS AND METHODS
US8803573B2 (en) * 2012-10-09 2014-08-12 Lsi Corporation Serializer-deserializer clock and data recovery gain adjustment
JP6032082B2 (ja) * 2013-03-25 2016-11-24 富士通株式会社 受信回路及び半導体集積回路
JP6303513B2 (ja) * 2014-01-14 2018-04-04 富士通株式会社 マルチレーンリタイマ回路およびマルチレーン伝送システム
JP6264056B2 (ja) * 2014-01-22 2018-01-24 富士通株式会社 クロックデータリカバリー回路及びその方法
JP6337479B2 (ja) * 2014-01-24 2018-06-06 富士通株式会社 位相補間クロック発生回路
JP6303823B2 (ja) * 2014-05-30 2018-04-04 富士通株式会社 受信回路
JP6361433B2 (ja) * 2014-10-02 2018-07-25 富士通株式会社 周波数検出回路及び受信回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163114A (ja) * 1994-12-02 1996-06-21 Electron & Telecommun Res Inst 多端制御構造を有する高速ビット同期装置
JP2003273731A (ja) * 2002-03-13 2003-09-26 Fujitsu Access Ltd 位相同期回路
US20040202266A1 (en) * 2003-03-26 2004-10-14 Peter Gregorius Clock and data recovery unit
JP2004222325A (ja) * 2004-04-05 2004-08-05 Opnext Japan Inc 位相周波数同期回路、同期判定回路および光受信器

Also Published As

Publication number Publication date
JP6512011B2 (ja) 2019-05-15
US20170026047A1 (en) 2017-01-26
US9722616B2 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
US9520883B2 (en) Frequency detection circuit and reception circuit
JP6839354B2 (ja) Cdr回路及び受信回路
US10103911B2 (en) Receiver circuit and eye monitor system
JP4756954B2 (ja) クロックアンドデータリカバリ回路
US8634509B2 (en) Synchronized clock phase interpolator
TWI535213B (zh) 時脈資料回復電路與方法
JP4557947B2 (ja) クロックデータ復元装置
JP4886276B2 (ja) クロックデータ復元装置
US8803573B2 (en) Serializer-deserializer clock and data recovery gain adjustment
US9455725B2 (en) Phase detector and associated phase detecting method
US8811557B2 (en) Frequency acquisition utilizing a training pattern with fixed edge density
JP6512011B2 (ja) 受信回路
US9887831B2 (en) Clock data recovery circuit, integrated circuit including the same, and clock data recovery method
US9461811B1 (en) Clock and data recovery circuit and clock and data recovery method
JP4331081B2 (ja) クロック・データリカバリ回路
JP6421515B2 (ja) 信号再生回路および信号再生方法
CN110710152B (zh) 时钟恢复系统
JP2015216439A (ja) 受信回路
JP2009515488A (ja) 拡散スペクトラムクロック発生装置としての非線形フィードバック制御ループ
KR101599196B1 (ko) 디지털 주파수 검출 방식의 클럭 데이터 복원 장치
JP2015100017A (ja) 位相比較回路およびクロックデータリカバリ回路
KR20120113888A (ko) 위상 고정루프에서 고주파 신호의 위상잡음을 최소화하는 주파수 분할방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6512011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150