JP2016506867A - 浸透分離システム及び方法 - Google Patents

浸透分離システム及び方法 Download PDF

Info

Publication number
JP2016506867A
JP2016506867A JP2015557032A JP2015557032A JP2016506867A JP 2016506867 A JP2016506867 A JP 2016506867A JP 2015557032 A JP2015557032 A JP 2015557032A JP 2015557032 A JP2015557032 A JP 2015557032A JP 2016506867 A JP2016506867 A JP 2016506867A
Authority
JP
Japan
Prior art keywords
chamber
solution
osmosis unit
forward osmosis
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015557032A
Other languages
English (en)
Inventor
ティー. ハンコック,ネイサン
ティー. ハンコック,ネイサン
ノウォシールスキ−スレポウロン,マレク,エス.
ドロバー,クリストファー
Original Assignee
オアシス ウォーター,インコーポレーテッド
オアシス ウォーター,インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オアシス ウォーター,インコーポレーテッド, オアシス ウォーター,インコーポレーテッド filed Critical オアシス ウォーター,インコーポレーテッド
Publication of JP2016506867A publication Critical patent/JP2016506867A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0021Forward osmosis or direct osmosis comprising multiple forward osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0023Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0024Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/06Use of osmotic pressure, e.g. direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/12Use of permeate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

半透過性膜を通じて溶媒を第1の溶液から誘導するために、第2の濃縮された溶液を用いることで、溶質を濃縮するために第1の溶液から溶媒を抽出することを含む、浸透圧的に駆動される膜システムを用いる分離過程が開示される。【選択図】図7

Description

関連出願の相互参照
本出願は、2013年2月8日に出願された米国仮特許出願第61/762,385号、2013年10月4日に出願された米国仮特許出願第61/887,076号、2013年11月5日に出願された米国仮特許出願第61/900,095号、及び、2013年11月15日に出願された米国仮特許出願第61/904,882号の優先権と利益とを主張し、それらの開示全体は、本明細書により、それらの全体において、本明細書において参照により組み込まれている。
一つ以上の態様は、概して、浸透分離に関する。より詳細には、一つ以上の態様は、溶質を水溶液から分離するための、順浸透など、浸透圧的に駆動される膜過程の使用を含む。
順浸透が脱塩のために用いられてきた。概して、順浸透脱塩過程は、半透過性の膜によって分離された二つの室を有する容器を伴う。一方の室は海水を含む。他方の室は、海水と濃縮された溶液との間で濃度勾配を発生する濃縮された溶液を含む。この勾配は、水を選択的に通過させる膜を通して、海水から濃縮された溶液に水を誘導するが、塩は誘導しない。次第に、濃縮された溶液に入る水が、溶液を希釈していく。次に、溶質が希釈された溶液から除去されて、飲料水を作り出す。
順浸透過程に供給される供給溶液に関しては、起こり得る様々な問題がある。例えば、供給溶液は、膜の反対側の濃縮された誘導溶液が過程によって高度に希釈されることになり、それによって誘導溶液の回収/再生を複雑にする、十分に低い塩分濃度を有し得る。供給溶液の状態は、順浸透過程において使用可能にされる特定の前処理過程の使用を必要とすることもある。ほとんどの前処理過程は、例えば、追加のエネルギー若しくは化学物質(例えば、石灰軟化)の使用、又は、さらなる工程(例えば、イオン交換樹脂の再生)を必要とすることで、全体の過程をよりコストの掛かるものにしている。また、順浸透過程の後、濃縮された供給溶液に関する廃棄の問題がある可能性がある。例えば、高度に濃縮された塩水は、濃縮された塩水を水域に排出すると局所的な生態系に悪影響を与えるといった、環境上の廃棄の問題を提起する。これらの問題についてのいくつかの解決策がある一方で、それらの解決策は、高価となりやすい、及び/又は、過剰な複雑性を基本的な順浸透過程に付け加えてしまう。
本発明の態様は、概して、順浸透分離(FO:Forward Osmosis separation)、直接浸透濃縮(DOC:Direct Osmotic Concentration)、圧力支援順浸透(PAFO:Pressure-Assisted Forward Osmosis)、及び圧力遅延浸透(PRO:Pressure Retarded Osmosis)を含む、浸透圧的に駆動される膜システム及び方法に関する。
一態様では、本発明は、第1の溶液から溶媒を浸透抽出するためのシステム(及び、その対応する方法ステップ)に関する。システムは、第1の溶液の供給源に流体連結される入口を有する第1の室、濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を第2の室から分離し、溶媒を第1の溶液から浸透圧的に分離することで、第1の室に第2の溶液と、第2の室に希釈された誘導溶液とを形成するように構成される半透過性膜システムを各々有する複数の順浸透ユニットを備える。システムは、複数の順浸透ユニットと流体連通し、希釈された誘導溶液を濃縮された誘導溶液と溶媒流れとに分離するように構成される分離システムと、複数の順浸透ユニット及び分離システムと流体連通するフラッシングシステムとをも備える。フラッシングシステムは、フラッシング溶液の供給源(例えば、前述の溶媒流れ)、フラッシング溶液の供給源及び複数の順浸透ユニットのうちの少なくとも一つと流体連通する流体移送装置、フラッシング溶液の供給源、流体移送装置、及び少なくとも一つの順浸透ユニットと流体連通する弁構成、並びに、フラッシング溶液の供給源、流体移送装置、又は弁構成のうちの少なくとも一つと流体連通する制御システムを備える。制御システムは、流体移送装置及び弁構成を介して、フラッシング溶液の供給源を少なくとも一つの順浸透ユニットと運転可能に連結するように構成される。
前述の態様の様々な実施形態では、弁構成は、複数の弁と、システムの少なくとも一つの運転特性に基づいて信号を生成するように構成される少なくとも一つのセンサとを備える。制御システムは、所定のプロトコル、又は、少なくとも一つのセンサによって生成された一つ以上の信号によって引き起こされることのうちの少なくとも一つに従って、フラッシングシステムを制御するように構成される一組の命令を含む。制御システムは、フラッシング溶液の供給源からのフラッシング溶液の流れを、少なくとも一つの順浸透ユニットの第2の室を通るように導くために、複数の弁のうちの一つ以上を作動できる。ある実施形態では、制御システムは、フラッシング溶液を、複数の直列の順浸透ユニットの各々へ導く。
別の態様では、本発明は、第1の溶液から溶媒を浸透抽出するための代替のシステム及び方法に関する。システムは、第1の溶液の供給源に流体連結される入口を有する第1の室、濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を第2の室から分離し、溶媒を第1の溶液から浸透圧的に分離することで、第1の室に第2の溶液と、第2の室に希釈された誘導溶液とを形成するように構成される半透過性膜システムを有する順浸透ユニットを備える。システムは、順浸透ユニットと流体連通し、希釈された誘導溶液を濃縮された誘導溶液と溶媒流れとに分離するように構成される分離システムも備える。分離システムは、順浸透ユニットとすべて流体連通する濾過ユニット、逆浸透ユニット、及びバイパス回路を備える。濾過ユニットは、希釈された誘導溶液の少なくとも第1の一部分を受け入れるための、順浸透ユニットの第2の室に流体連結される入口を有する第1の室、低希釈された誘導溶液を逆浸透ユニットに移送するための、逆浸透ユニットに流体連結される出口を有する第2の室、及び、第1の室を第2の室から分離し、希釈された誘導溶液から溶質を一部除去し、それによって、残りの希釈された誘導溶液を第2の室に通すことで、第2の室で低希釈された誘導溶液を形成するように構成される濾過膜を備える。除去された溶質は、濾過ユニットの第1の室から出口を介して順浸透ユニットの第1の室に戻される。逆浸透ユニットは、希釈された誘導溶液の少なくとも第2の一部分を受け入れるための、順浸透ユニットの第2の室に流体連結される入口、及び、濃縮された誘導溶液を順浸透ユニットに導入するための、順浸透ユニットの第2の室に流体連結される出口を有する第1の室、第1の室に連結される半透過性膜、並びに、半透過性膜に連結され、膜を通して流動された溶媒を受け入れることで、第1の室の濃縮された誘導溶液を、順浸透ユニットへの移送に向けて出て行かせるように構成される第2の室を備える。バイパス回路は、希釈された誘導溶液の第1の一部分及び第2の一部分を濾過ユニット及び逆浸透ユニットに選択的に導くように構成される。概して、バイパス回路は、いずれかのユニットへ導かれた希釈された誘導溶液の一部を調節するための(ある実施形態では、監視するための)、任意の必要な弁、センサ、制御部などを備える。システム又は方法の具体的な用途(例えば、供給/誘導の化学的性質、運転パラメータ、及び周囲条件)に依存して、希釈された誘導溶液の0〜100%のいずれかが、濾過ユニット又は逆浸透ユニットのいずれかへ導かれ得る。
前述の態様の様々な実施形態では、順浸透ユニットは、第1の溶液の供給源に流体連結される入口を有する第1の室、濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を第2の室から分離し、溶媒を第1の溶液から浸透圧的に分離することで、第1の室に第2の溶液と、第2の室に希釈された誘導溶液とを形成するように構成される半透過性膜システムを各々備える複数の順浸透ユニットを備える。また、希釈された誘導溶液の一部は、例えば、ポンプ又は他の圧力変換装置を介して、圧力下で、濾過ユニット及び/又は逆浸透ユニットに送られ得る。ある実施形態では、分離システムは、希釈された誘導溶液の第1の一部分、希釈された誘導溶液の第2の一部分、又は両方に添加剤を導入するための手段をさらに備える。添加剤を導入するための手段は、流体搬送回路又はユニットのうちの一つに添加剤を直接的に導入するための弁及びポート構成を備え得る。また、手段は、添加剤を貯蔵するために、及び/又は、添加剤をシステムに送るために、計量装置などと共に貯蔵及び/又は混合タンクを備えてもよい。システムの一つ以上の実施形態では、分離システムは、逆浸透ユニットから濃縮された誘導溶液を受け入れるために、逆浸透ユニットの第1の室の出口と流体連通すると共に、順浸透ユニットにさらに濃縮された誘導溶液を導入するために、順浸透ユニットの前記第2の室と流体連通する熱回収ユニットを備え得る。
さらに別の態様では、本発明は、第1の溶液から溶媒を抽出するためのシステム及び方法に関する。あるこのようなシステムは、順浸透ユニットと、逆浸透ユニットと、分離システムとを備える。順浸透ユニットは、第1の溶液の供給源に流体連結される入口を有する第1の室、濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を第2の室から分離する半透過性膜システムを備える。半透過性膜は、溶媒を第1の溶液から浸透圧的に分離することで、第1の室に(又は、膜の一方側に)第2の溶液と、第2の室に(又は、膜の反対側に)希釈された誘導溶液とを形成するように構成される。逆浸透ユニットは、順浸透ユニットの第2の室の出口に流体連結され、また、順浸透ユニットの第2の室と流体連通し、圧力下で、希釈された誘導溶液を受け入れるように構成される第1の室、第1の室に連結される半透過性膜、及び、半透過性膜に連結され、膜を通して流動された溶媒を受け入れることで、逆浸透ユニットの第1の室の低希釈された誘導溶液を出て行かせるように構成される第2の室を備える。分離システムは、順浸透ユニット及び逆浸透ユニットと流体連通し、希釈された誘導溶液又は低希釈された誘導溶液を濃縮された誘導溶液と溶媒流れとに分離するように構成される。分離システムは、低希釈された誘導溶液を逆浸透ユニットから受け入れるための、逆浸透ユニットの第1の室の出口に流体連結される入口、及び、濃縮された誘導溶液を順浸透ユニットに導入するための、順浸透ユニットの第2の室に流体連結される出口を備える。
前述の態様の様々な実施形態では、システムは、順浸透ユニットの第2の室と逆浸透ユニットの第1の室との間に配置され、順浸透ユニットの第2の室及び逆浸透ユニットの第1の室と流体連通する圧力交換器を備える。圧力交換器は、逆浸透ユニットの第1の室に導入される希釈された誘導溶液の圧力を増加するように構成される。システムは、低希釈された誘導溶液を順浸透ユニットに再び導くために、逆浸透ユニットの第1の室、及び、順浸透ユニットの第2の室と流体連通するバイパスシステムも備え得る。一つ以上の実施形態では、システムは、物質を希釈された誘導溶液又は他の関連する流れに導入する、又は、物質を誘導溶液又は他の関連する流れから除去するためのポートシステム(例えば、入口又は出口及び必要な弁)を備える。システムは、順浸透ユニット、逆浸透ユニット、又は分離システムのうちの少なくとも一つと流体連通する少なくとも一つの処理システムも備え得る。少なくとも一つの処理システムは、希釈された誘導溶液に加えられる物質を除去するように構成され得る。一実施形態では、ポートシステムは、逆浸透ユニットの第1の室と流体連通する。
追加の実施形態では、システムは、希釈された誘導溶液の浸透圧を、例えば低減するといった、変更するための手段を備える。希釈された誘導溶液の浸透圧を変更するための手段は、化学物質加法、化学物質減法、還元-酸化、反応抽出、濾過、析出、又は、例えば、電磁信号(光分解)、電気信号(電気分解)、又は温度信号(熱分解)など、エネルギー信号への曝露のうちの少なくとも一つを含み得る。さらに、システムは、順浸透ユニット、逆浸透ユニット、又は分離システムのうちの少なくとも一つと流体連通し、希釈された誘導溶液の浸透圧変更を逆にする少なくとも一つの処理システムも備え得る。一つ以上の実施形態では、希釈された誘導溶液の浸透圧を変更するための手段は、逆浸透ユニットの第1の室と流体連通する。
さらに別の態様では、本発明は、溶液から溶媒を抽出するための追加のシステム及び方法に関する。このようなシステムの一例は、第1の順浸透ユニットと、第2の順浸透ユニットと、分離システムとを備える。第1の順浸透ユニットは、第1の溶液の供給源に流体連結される入口を有する第1の室、濃縮された第1の誘導溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を第2の室から分離する半透過性膜システムを備える。半透過性膜は、溶媒を第1の溶液から浸透圧的に分離することで、第1の室に(又は、膜の第1の側に)第2の溶液と、第2の室に(又は、膜の反対側に)希釈された第1の誘導溶液とを形成するように構成される。第2の順浸透ユニットは、第1の順浸透ユニットと流体連通し、また、第1の順浸透ユニットの第2の室の出口に流体連結される入口を有し、第1の順浸透ユニットから希釈された第1の誘導溶液を受け入れるように構成される第1の室、濃縮された第2の誘導溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を第2の室から分離する半透過性膜システムを備える。半透過性膜は、溶媒を希釈された第1の誘導溶液から浸透圧的に分離することで、第1の室に(又は、膜の第1の側に)濃縮された第1の誘導溶液と、第2の室に(又は、膜の反対側に)希釈された第2の誘導溶液とを形成するように構成される。分離システムは、第2の順浸透ユニットと流体連通し、希釈された第2の誘導溶液を濃縮された第2の誘導溶液と溶媒流れとに分離するように構成される。分離システムは、希釈された第2の誘導溶液を第2の順浸透ユニットから受け入れるための、第2の順浸透ユニットの第2の室の出口に流体連結される入口、及び、濃縮された第2の誘導溶液を第2の順浸透ユニットに導入するための、順浸透ユニットの第2の室に流体連結される出口を備える。
前述の態様の様々な実施形態では、システムは、第1の順浸透ユニットの第2の室及び第2の順浸透ユニットの第1の室と流体連通する除去装置を備える。除去装置は、第1の誘導溶液をさらに濃縮する、及び/又は、第2の順浸透ユニットの膜を通して逆に流動した可能性のある第2の誘導溶液から誘導溶質を除去するように構成される。一つ以上の実施形態では、第1の順浸透ユニット又は第2の順浸透ユニットの少なくとも一方は浸漬される。また、システムは、第1の順浸透ユニットの第2の室及び第2の順浸透ユニットの第1の室と流体連通する逆浸透ユニットを備え得る。逆浸透ユニットは、溶媒を希釈された第1の誘導溶液から除去するように構成され得る。加えて、このシステム、及び、本明細書で記載されているすべてのシステムは、それぞれのシステムの運転を増進するために、誘導溶液の浸透圧を変更するための開示されている手段を備え得る。
さらに別の態様では、本発明は、溶液から溶媒を抽出するためのさらなるシステム及び方法に関する。このようなシステムの一例では、システムは、逆浸透ユニットと、第1の順浸透ユニットと、第2の順浸透ユニットと、分離システムとを備える。逆浸透ユニットは、第1の溶液の供給源に流体連通する第1の室、第1の室に連結される半透過性膜、及び、半透過性膜に連結され、膜を通して流動された溶媒の第1の一部分を受け入れることで、逆浸透ユニットの第1の室の濃縮された第1の溶液を出て行かせるように構成される第2の室を備える。第1の順浸透ユニットは、逆浸透ユニットと流体連結され、また、逆浸透ユニットの第1の室と流体連通する入口を有し、濃縮された第1の溶液を受け入れるように構成される第1の室、濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を第2の室から分離する半透過性膜システムを備える。半透過性膜は、溶媒の第2の一部分を濃縮された第1の溶液から浸透圧的に分離することで、第1の室に(又は、膜の側方に)さらに濃縮された第1の溶液と、第2の室に(又は、膜の側方に)希釈された誘導溶液とを形成するように構成される。第2の順浸透ユニットは、第1の順浸透ユニットと流体連通し、また、第1の順浸透ユニットの第1の室の出口に流体連結される入口を有し、第1の順浸透ユニットからさらに濃縮された第1の溶液を受け入れるように構成される第1の室、供給溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を第2の室から分離する半透過性膜システムを備える。半透過性膜は、溶媒を供給溶液から浸透圧的に分離することで、第1の室(又は、膜の側方)の濃縮された第1の溶液を希釈し、第2の室(又は、膜の側方)の供給溶液を濃縮するように構成される。様々な実施形態では、さらに濃縮された第1の溶液は、圧力下で(例えば、ポンプを介して)、第2の順浸透ユニットへ導かれる。分離システムは、第1の順浸透ユニットと流体連通し、希釈された誘導溶液を濃縮された誘導溶液と溶媒流れとに分離するように構成される。分離システムは、希釈された誘導溶液を第1の順浸透ユニットから受け入れるための、第1の順浸透ユニットの第2の室の出口に流体連結される入口、及び、濃縮された誘導溶液を第1の順浸透ユニットに導入するための、第1の順浸透ユニットの第2の室に流体連結される出口を備える。
前述の態様の様々な実施形態では、第2の順浸透ユニットはPROユニットであり、システムは、第2の順浸透ユニットの第1の室と流体連通し、加圧された希釈された第1の溶液を受け入れるように構成されるタービンを備える。システムは、逆浸透ユニット及び第2の順浸透ユニットと流体連通し、希釈された第1の溶液を、第2の順浸透ユニットの第1の室の出口から逆浸透ユニットの第1の室の入口に戻すように構成される弁構成(例えば、バイパスシステム)も備え得る。様々な実施形態では、供給溶液が廃水流出の流れを含む。また、システムは、逆浸透ユニットからのエネルギーを再び捕捉するために、逆浸透ユニットと流体連通するエネルギー回収装置を備え得る。
別の態様では、本発明は、溶液から溶媒を抽出するための追加のシステム及び方法に関する。あるこのようなシステムは、選択膜ユニットと、順浸透ユニットと、分離システムと、少なくとも一つの弁構成とを備える。選択膜ユニットは、第1の溶液を条件付け、また、第1の溶液の供給源に流体連結される入口を有する第1の室、第2の溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を前記第2の室から分離する選択膜を備える。選択膜は、少なくとも第1の溶液内の特定のイオンを第1の溶液から第2の溶液に通し、それによって第1の溶液を条件付ける(例えば、溶液を軟化する)ことが選択的にできるように構成される。順浸透ユニットは、選択膜ユニットと流体連通し、また、条件付けられた第1の溶液を受け入れるために、第1の溶液の供給源又は選択膜ユニットの第1の室の出口の少なくとも一方と流体連結される入口を有する第1の室、濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、第1の室を第2の室から分離する半透過性膜システムを備える。半透過性膜は、溶媒を第1の溶液から浸透圧的に分離することで、第1の室に第2の溶液の供給源と、第2の室に希釈された誘導溶液とを形成するように構成される。分離システムは、順浸透ユニットと流体連通し、希釈された誘導溶液を濃縮された誘導溶液と溶媒流れとに分離するように構成される。分離システムは、希釈された誘導溶液を順浸透ユニットから受け入れるための、順浸透ユニットの第2の室の出口に流体連結される入口、及び、濃縮された誘導溶液を順浸透ユニットに導入するための、順浸透ユニットの第2の室に流体連結される出口を備える。弁構成は、順浸透ユニットの第1の室、選択膜ユニットの第2の室、及び、第2の溶液の代替供給源と流体連通する。弁構成は、第2の溶液を、順浸透ユニットの第1の室又は代替供給源のいずれかから選択膜ユニットの第2の室へ導くように構成され得る。
前述の態様の様々な実施形態では、システムは、第1の溶液の供給源、選択膜ユニット、及び順浸透ユニットと流体連通する第2の弁構成を備える。第2の弁構成は、第1の溶液を、選択膜ユニット若しくは順浸透ユニットのいずれかへ導くか、又は、条件付けられた第1の溶液を順浸透ユニットへ導くように構成される。一つ以上の実施形態では、様々な弁構成は、例えば、いずれかのユニット又は両方のユニットに呼び水を入れるために、ポート(例えば、入口)と、溶液を選択膜ユニット及び/又は順浸透ユニットに導入するための必要な弁とを備え得る。追加又は代替で、ポートは、溶液をいずれかのユニットから除去するための出口であり得る。一つ以上の実施形態では、システムは、選択膜ユニット、順浸透ユニット、又は分離システムのうちの少なくとも一つと流体連通する少なくとも一つの処理システムを備える。選択膜は、陽イオン選択膜、又は、具体的な用途に適合するような任意の他の種類の膜であり得る。
前述の態様の様々な実施形態では、濃縮された誘導溶液は、少なくとも相関関係の所望のモル比において、アンモニア及び二酸化炭素を含む。しかしながら、他の誘導溶液が、例えば、NaCl、又は、2013年11月13日に出願されたPCT特許出願PCT/US13/69895('895出願)に開示されている様々な代替の誘導溶液のうちのいずれのものも含め、本発明の範囲内で検討及び考慮されている。'895出願の開示は、本明細書により、その全体において、本明細書において参照により組み込まれている。加えて、'895出願に開示されているようなものなど、誘導溶質と溶媒とを分離及び回収するための他のシステム及び方法が、本発明の範囲内で検討及び考慮されている。さらに、様々な前処理システム及び後処理システムが、本発明の前述の態様に組み込まれ得る。前処理システムは、第1の溶液を予熱するための熱源、第1の溶液のpHを調整するための手段、消毒のための手段(例えば、化学的又は紫外線)、分離及び浄化、第1の溶液を濾過するためのフィルタ若しくは他の手段(例えば、炭濾過、砂濾過、又は逆浸透)、ポリマー添加のための手段、イオン交換、又は、第1の溶液を軟化するための手段(例えば、石灰軟化)の少なくともうちの一つを備え得る。後処理システムは、逆浸透システム、イオン交換システム、第2の順浸透システム、蒸留システム、パーベーパレーション装置、機械的蒸気再圧縮システム、熱交換システム、又は濾過システムのうちの少なくとも一つを備え得る。追加の実施形態では、システムは、誘導溶液の所望のモル比を維持するために、第2の室への誘導溶質の再導入を容易にするように構成される吸収体を備える再利用システムも備え得る。
これらの例示の態様及び実施形態のさらなる他の態様、実施形態、及び利点は、後で詳細に説明される。さらに、前述の情報と以下の詳細な説明との両方は、様々な態様及び実施形態の単なる図示による例であり、請求した態様及び実施形態の本質及び特性を理解するための概要又は構想を提供するように意図されていることを理解されたい。したがって、これらの目的及び他の目的は、本明細書で開示されている本発明の利点及び特徴と共に、以下の説明及び添付の図面への参照を通じて明らかとなる。さらに、本明細書で記載されている様々な実施形態の特徴は、相互に排他的ではなく、様々な組み合わせ及び置き換えで存在できる。
図面では、同様の符号は、概して、異なる図を通じて同じ部品に言及している。また、図は、縮尺通りである必要はなく、代わりに、本発明の原理を説明する上で、強調が概して行われており、本発明の限度の定義とは意図されていない。明確にする目的のために、すべての構成要素がすべての図面で符号付けされているとは限らない可能性もある。以下の記載では、本発明の様々な実施形態が、以下の図面を参照しつつ記載されている。
本発明の一つ以上の実施形態による、溶媒を浸透抽出するためのシステムの概略図である。 本発明の一つ以上の実施形態による図1のシステムのある用途の概略図である。 本発明の一つ以上の実施形態による順浸透ユニット及び逆浸透ユニットを備える代替の浸透システムの概略図である。 図3のシステムの代替の実施形態の概略図である。 本発明の一つ以上の実施形態による二つの順浸透ユニットを備える代替の浸透システムの概略図である。 図4のシステムの代替の実施形態の概略図である。 本発明の一つ以上の実施形態による逆浸透ユニット、順浸透ユニット、及び圧力遅延浸透ユニットを備える代替の浸透システムの概略図である。 本発明の一つ以上の実施形態による順浸透ユニット及び選択膜ユニットを備える代替の浸透システムの概略図である。 図6の選択膜ユニットの詳細な概略図である。 本発明の一つ以上の実施形態による浸透逆フラッシングシステムを備える代替の浸透システムの概略図である。 本発明の一つ以上の実施形態により運転される、図7の代替の浸透システムで可能な追加的な溶媒回収のグラフである。 本発明の一つ以上の実施形態により運転される、図7の代替の浸透システムで可能な追加的な溶媒回収のグラフである。 本発明の一つ以上の実施形態による代替の浸透システムの概略図である。
一つ以上の実施形態によれば、水溶液から水を抽出するための浸透方法は、概して、水溶液を順浸透膜の第1の表面に曝すことを含み得る。第2の溶液、又は誘導溶液は、水溶液の濃度に対して大きな濃度を持っており、順浸透膜の第2の反対の表面に曝され得る。そして、水を水溶液から順浸透膜を通って第2の溶液に誘導させることができ、低濃縮された溶液から高濃縮された溶液への移動を含む流体移動特性を利用する順浸透を介して、水の濃縮された溶液を作り出す。水の濃縮された溶液は、希釈された誘導溶液とも称され、第1の出口において集められ、純水を生成するためにさらなる分離過程を経てもよい。第2の製品流れ、つまり、枯渇又は濃縮された加工処理水溶液は、排出のために、又は、さらなる処理のために、第2の出口で集められ得る。代替で、本明細書に記載されている様々なシステム及び方法は、非水溶液で実施されてもよい。
一つ以上の実施形態によれば、順浸透膜モジュールは、一つ以上の順浸透膜を備え得る。順浸透膜は、例えば、水の通過を許容するが、塩化ナトリウム、炭酸アンモニウム、重炭酸アンモニウム、及びカルバミン酸アンモニウムなど、そこに溶け込んでいる溶質を除外する、概して半浸透性であり得る。多くの種類の半透過性膜は、それらが水(つまり、溶媒)の通過を許容する一方で溶質の通過を妨げることができ、また、溶液の溶質と反応しないという条件で、この目的に適している。
一つ以上の実施形態によれば、少なくとも一つの順浸透膜が筐体又はケーシング内に位置付けられ得る。筐体は、概して、自身に位置付けられる膜を収容するサイズ及び形とされ得る。例えば、筐体は、順浸透膜を螺旋状に巻いている場合、実質的に円筒形であってもよい。モジュールの筐体は、モジュールに供給溶液及び誘導溶液を提供するための入口と、モジュールから製品流れを取り出すための出口とを含み得る。ある実施形態では、筐体は、モジュールに導入される流体、又は、モジュールから取り出される流体を保持又は保管するための、少なくとも一つの貯留部又は空間を提供し得る。少なくとも一つの実施形態では、筐体は断熱され得る。
一つ以上の実施形態によれば、概して、順浸透膜モジュールは、第1の溶液及び第2の溶液を半透過性膜の第1の側及び第2の側とそれぞれ接触させるように、構築及び構成され得る。第1の溶液及び第2の溶液は停滞したままであり得るが、第1の溶液及び第2の溶液の両方が、直交流、つまり、半透過性膜の表面と平行な流れによって導入されることが好ましい。これは、概して、一つ以上の流体流路に沿う膜表面積を増加することで、順浸透過程の効率を増加する。ある実施形態では、第1の溶液及び第2の溶液は同じ方向に流れる。他の実施形態では、第1の溶液及び第2の溶液は反対方向に流れる。少なくともある実施形態では、同様の流体動力学が、膜表面の両側に存在し得る。これは、モジュール又は筐体における一つ以上の順浸透膜の戦略的統合によって実現され得る。
一つ以上の実施形態によれば、誘導溶質は再使用のために回収され得る。分離システムは、実質的に溶質のない製品水を生成するために、希釈された誘導溶液から溶質を揮散し得る。ある実施形態では、分離システムは、蒸留塔又は他の熱的若しくは機械的な回収機構を備え得る。したがって、誘導溶質は、再利用システムなどによって、濃縮された誘導溶液に戻される。気体の溶質は、濃縮された誘導溶液を形成するために、凝縮又は吸収され得る。吸収体は、吸収剤として、希釈された誘導溶液を用い得る。他の実施形態では、製品水は、溶質再利用システムから気体流の吸収の全部又は一部のための吸収剤として用いられ得る。
図1は、一つ以上の前処理及び/又は後処理のユニット運転14、16を含む順浸透のシステム/過程12を用いる、溶媒を浸透抽出するためのシステム10の概略を表している。本明細書に記載されているもの、さらに、米国特許第6,391,205号及び第8,002,989号と、米国特許出願公報第2011/0203994号、第2012/0273417号、第2012/0267306号、第2012/0267307号とに記載されているものなど、様々な順浸透のシステム及び過程を用いることができる。これらの特許及び特許出願公報の開示は、本明細書により、それらの全体において、本明細書において参照により組み込まれている。
一つ以上の実施形態によれば、システム10は、順浸透過程12を増進するために、一つ以上の前処理運転14を含み得る。前処理運転は、第1の溶液を予熱するための熱源、第1の溶液のpHを調整するための手段、消毒のための手段(例えば、化学的又は紫外線)、分離及び浄化、第1の溶液を濾過するためのフィルタ若しくは他の手段(例えば、炭濾過、砂濾過、ナノ濾過、又は逆浸透)、熱交換、ポリマー添加のための手段、スケール防止剤の使用、イオン交換、又は、第1の溶液を軟化するための手段(例えば、石灰軟化)のうちの少なくとも一つを備え得る。
一つ以上の実施形態によれば、システム10は、一つ以上の後処理運転16を含み得る。後処理システム/運転は、逆浸透システム、イオン交換システム、追加の順浸透過程、蒸留システム、パーベーパレーション装置、機械的蒸気再圧縮システム、熱交換システム、又は濾過システムのうちの少なくとも一つを備え得る。後処理は、製品水の塩分濃度を、単一パス順浸透システムによって生成されるもの未満に減らすことができる。他の実施形態では、後処理は、製品流れに本来あるはずの誘導溶質を除去するために代替又は追加で用いられ得る。ある特定の非限定的な実施形態では、順浸透塩水排出は、塩水に逆拡散する誘導溶質を除去するために、イオン交換、蒸留、パーベーパレーション、膜蒸留、曝気、生物学的処理、又は他の過程を用いて後処理され得る。追加の後処理運転は、例えば、結晶化及び蒸発を用いる、ゼロリキッドディスチャージ(ZLD:Zero Liquid Discharge)処理を含み得る。一実施形態では、ZLD処理は、例えば、蒸発システムの代わりに、順浸透システムを用いる。追加の実施形態では、システムは、誘導溶液の所望のモル比を維持するために、第2の室への誘導溶質の再導入を容易にするように構成される吸収体を備える再利用システムも備え得る。
図2は、本発明の一つ以上の実施形態による、溶媒を浸透抽出するためのシステム10の一つの可能な用途を表している。図1に関連して詳述したように、システム10は、順浸透システム12と、一つ以上の前処理及び後処理のユニット14、16とを備えている。システム10は、単一の前処理又は単一の後処理を含め、一つ以上の順浸透システム12と併せて、前処理及び後処理のユニット14、16の任意の組み合わせを備え得る。本明細書で説明されている様々なシステム/ユニットは、従来の配管技術によって相互接続でき、本明細書に記載されている様々なシステム及び過程の運転を監視及び制御するために、ポンプ、弁、センサ、計測器など、任意の数の構成要素及び構成要素の組み合わせを備えることができる。様々な構成要素が、本明細書において後で記載しているように、制御装置と併せて用いられ得る。
図2に示す用途では、システム10は、内地の供給源18から汽水を処理するために用いられるが、他の供給源が本発明の範囲内で検討及び考慮される。図示するように、供給流れ20が前処理ユニット14へ導かれ、そこで供給流れは、例えば、加熱される。供給流れが前処理されると、処理された流れ22は順浸透システム12へ導かれ、そこで、前述のように、第1の溶液を提供する。選択的に、処理された流れ22は、順浸透システム12に入る前に、さらなる加工処理(例えば、pH調整)のための追加の前処理ユニットへ導かれ得る。ある実施形態では、前処理ユニット14は、供給20をFOモジュールに導入する前に供給20を濃縮するために、逆浸透モジュールを備え得る。この構成は、前述のように、最初の供給が低い塩分濃度を有する場合に、特に有用であり得る。誘導溶液が、本明細書で説明したように、膜を通した溶媒の移動を促進するために必要な浸透圧勾配を提供するために、流れ24によって順浸透システム12に提供される。
少なくとも二つの流れが順浸透システム12を出て行き、それらは、溶媒が抽出されている濃縮された供給流れ又は処理された流れ26と、溶媒が加えられている希釈された誘導流れ28とである。濃縮された流れ26は、次に、追加の溶媒を回収するために第2の順浸透システムなど、さらなる加工処理のために後処理ユニット16へ導かれ得る。追加の後処理過程は、ゼロリキッドディスチャージをさらに提供するために、例えば結晶化及び蒸発で、利用され得る。完全に加工処理又は濃縮された供給は、濃縮の性質に依存して、廃棄、再利用、又は再生され得る(矢印38)。
希釈された誘導流れ28は分離システム30へ導くことができ、そこで、溶媒及び/又は誘導溶質は回収され得る。選択的に、希釈された誘導流れ28は、例えば、希釈された誘導溶液が分離システム30へ導かれる前に予熱され得る(流れ28b)といった、追加の加工処理にとって望ましいとされる後処理ユニットへも導かれ得る(流れ28a)。一つ以上の実施形態では、分離システム30は、例えば飲料水といった実質的に精製された溶媒流れ32と、誘導溶質流れ36を生成するために、誘導溶質を希釈された誘導流れ28から分離する。一つ以上の実施形態では、溶媒流れ32は、溶媒の最終使用に依存して、さらなる加工処理のための後処理ユニットへも導かれ得る(流れ32a)。例えば、溶媒は、溶媒になおも存在し得る追加の誘導溶質を除去するために、蒸留によってさらに処理され得る。一つ以上の実施形態では、誘導溶質流れ36は、回収された誘導溶質の意図した使用に依存して、誘導流れ24に直接的に戻されてもよく(流れ36a)、誘導流れ24に再統合するために再利用システム34へ導かれてもよく(流れ36b)、又は、さらなる加工処理に向けた後処理ユニットへ導かれてもよい(流れ36c)。一つ以上の実施形態では、再利用システム34は、例えば、供給流れ20との熱交換を提供するために、前処理ユニット14と併せて使用できる(流れ40)。
システム10が低塩分濃度供給20を処理するために使用される別の可能な用途では、前処理システム14は、供給20を順浸透システム12へ導く前に供給20を濃縮する逆浸透ユニットであり得る。この実施形態では、前処理ユニット14は、溶媒/浸透の流れ32cと、FOモジュール12による処理のための濃縮供給流れ22とを提供する。また、この前処理/ROユニット14は、分離システム30からの製品溶媒32(流れ32a)を処理する後処理ユニット16と併せて、又は、後処理ユニット16の代わりに用いられ得る。具体的には、製品溶媒流れ32bが、分離システム30から供給流れ20へ導かれ、そこで、供給流れ20と混ぜ合わされ、前処理/ROユニット14に導入され得る。代替又は追加で、製品流れ32bはユニット14に直接的に供給されてもよい。概して、様々な流れが、過程の運転を最適化するために必要であるように、様々な処理ユニット14、16と、モジュール12と、サブシステムとの間で導かれ得る。
図3は、すべてが流体連通する順浸透ユニット212、逆浸透ユニット216、及び分離/再利用システム230をも用いる溶媒を抽出するための代替のシステム210の単純化された概略図である。システム210は、先に開示されているものと同様であり、例えば、順浸透ユニット212は順浸透膜213を備えており、逆浸透ユニットは逆浸透膜217などを備えている。システム210は、具体的な用途に適合するために、必要な弁、ポンプ、配管などのすべても備えている。一実施形態では、システム210は、高度に希釈された誘導溶液をもたらし得る低塩分濃度供給での使用のために構成される。
具体的には、図3に示すように、供給溶液220は、順浸透ユニット212の膜213の一方の側へ導かれ、一方、濃縮された誘導溶液224が膜213の他方の側へ導かれる。供給溶液220が低塩分濃度の供給である場合、誘導溶液は高度に希釈されることになる。高度に希釈された誘導溶液226が、順浸透ユニット212を出て行き、逆浸透ユニット216へ導かれる一方、濃縮された供給溶液222が、順浸透ユニット212を出て行き、さらなる加工処理のために送られ得るか、又は廃棄され得る。ある場合には、濃縮された供給溶液222は、食品又は薬剤製品など、一つ以上の望ましい成分を含む。
高度に希釈された誘導溶液226は、溶媒を膜217に押し通す逆浸透ユニット216で加圧される。この製品溶媒232Aは、例えば、現状通り使用され得る、廃棄され得る、さらなる加工処理のために送られ得る、又は、統合システム内の熱伝導流体として用いられ得る製品水として、逆浸透ユニット216から除去され得る。逆浸透ユニット216の第1の側216Aに留まる誘導溶液は、ここでは低希釈されており、具体的な用途に適合するために必要なように、誘導溶液をさらに濃縮するためにさらなる加工処理のために送られ得るか、及び/又は、現状通り順浸透ユニット212に戻されて再利用され得る。図3に示すように、低希釈された誘導溶液227が、さらなる濃縮のために分離/再利用ユニット230へ導かれる。しかしながら、システム210は、低希釈された誘導溶液の少なくとも一部を順浸透ユニット212に、直接的に、又は、分離/再利用ユニット230を出て行く濃縮された誘導溶液流れ224との組み合わせで、戻すように導くための選択的なバイパス回路229(及び、任意の必要な弁)も備える。
概して、分離/再利用ユニットは、例えば、その開示が、本明細書により、その全体において、本明細書において参照により組み込まれている米国特許出願公開第2012/0067819号('819公開)、又は、'895出願で開示されている種類のうちのいずれのものであってもよい。一実施形態では、ユニット230は、誘導溶質を溶媒から分離するために、熱回収過程を含む。代替の実施形態では、ユニット230は逆浸透モジュールを備えている。回収された誘導溶質は、ユニット230を出て行き(バイパスされた希釈された誘導溶液流れ229と混合されている一実施形態において)、濃縮された誘導溶液224として順浸透ユニット212へ導かれ、一方、残っている溶媒232Bが、例えば、現状通り使用され得る、廃棄され得る、又は、さらなる加工処理のために送られ得る製品水として、ユニット230を出て行く。
図3Aは、図3のシステム210の代替を描写しており、システム210は、逆浸透ユニット216へ導かれる希釈された誘導溶液の浸透圧を変更(例えば、低減)するための手段を備えている。希釈された誘導溶液の浸透圧を上回ることで、逆浸透ユニット216からのより大きな溶媒抽出をもたらすために、より少ないエネルギーが必要とされるため、希釈された誘導溶液の浸透圧を低減することは、逆浸透過程をより効率的にする。概して、浸透圧を低減するための手段は、触媒相変化、加熱、冷却、反応剤の添加、又は、電場若しくは磁場の導入など、様々な機構及び/又は過程を含むことができる。ある実施形態では、物理的又は化学的な媒体が希釈された誘導溶液226に導入され、誘導溶質と可逆的又は非可逆的に反応して、その濃度を低減するか、又は、膜によるその阻止特性を変化させる。少なくとも一実施形態では、電気又は電磁(例えば、紫外光)信号の導入が、相変化、イオン化の度合いの変化、又は、溶液226の浸透圧を低減する他の誘発された変化など、誘導溶質に変化を引き起こし得る。ある実施形態では、希釈された誘導溶液226の浸透圧は、pHレベルを調整すること、溶質のイオン性質を調整すること、又は、溶質の物理的なサイズを変更することで、低減され得る。例えば、イオン種が非イオン化され得るか、又は、大形種が比較的小形化され得る。ある実施形態では、電気透析(ED)など、加熱、冷却、真空、又は加圧を用いない技術が実施されてもよい。少なくとも一つの実施形態では、有機種の溶質の溶解性が、希釈された誘導溶液226の温度、圧力、pH、又は他の特性を変えることなどによって、操作されてもよい。少なくともある実施形態では、ナトリウム再充填イオン交換技術、又は酸若しくは塩基の再充填イオン交換など、イオン交換が実施され得る。浸透圧を低減するための他の手段が、本発明の範囲内で検討及び考慮される。
様々な実施形態において、システム210は、物質を希釈された誘導溶液226に加えるために、任意の必要な弁を含む、入口225又は他の導入位置(つまり、ポートシステム)を含む。一実施形態では、物質は水酸化銅[Cu(OH)2]であるが、他の金属/物質が、本発明の範囲内で検討及び考慮される。追加の物質が、希釈された誘導溶液226内の特定の誘導溶質を取り除く、又は、その誘導溶質と結合するために用いられてもよい。誘導溶液がアンモニア基である特定の実施形態では、水酸化銅は、逆浸透ユニット216の膜217によってより容易に拒絶されることで、希釈された誘導溶液の浸透圧を変更するより大きな分子を作り出すために、アンモニアと結合することになる。
再使用のために誘導溶質をより完全に回収するために、及び、追加の物質を回収するために(又は、希釈された誘導溶液の浸透圧を変更した結果を逆にするために)、システム210は、例えば、分離/再利用ユニット230への入口に、及び/又は、製品溶媒出口に配置され得る、一つ以上の処理ユニット214A、214Bも備えることになる。処理ユニット214は、前処理及び後処理のユニット14、16に関して先に記載した種類のうちのいずれのものであってもよい。例えば、第1の処理ユニット214Aは、水酸化銅とアンモニアとを分離するために相変化機構を備え得る一方、第2の処理ユニット214Bは、水酸化銅を製品溶媒232Bから除去するためにナノ濾過を備えてもよい。追加又は代替で、前処理ユニット214は、熱源(例えば、熱交換器)であり得るし、又は、熱源を備え得る。例えば、一実施形態では、希釈された誘導溶液は、分離/再利用システム230に行く前に予熱され得る。様々な処理ユニット214は、希釈された誘導溶液の浸透圧を変更するための先に記載した機構及び/又は過程のうちのいずれも組み込むことができる。一つ以上の実施形態では、過程は、低希釈された誘導溶液227を、熱、電磁気、又は電気の信号(例えば、電解槽)に曝すことを含み得る。具体的な実施形態では、希釈された誘導溶液226は、紫外線又は他のエネルギーの放出源に曝されて、例えば、活性化エネルギーを上回って、イオン種を、より大きい分子量の単一の中性化合物に変換することによって、その浸透圧を低減する。希釈された誘導溶液の化学的性質を変えることで、逆浸透過程は、同じポンプ圧力でより大きな溶媒回収を得ることができる。
図4は、溶媒を抽出するための別の代替のシステム310の単純化された概略図である。しかしながら、システム310は、すべてが流体連通する二つの順浸透ユニット312、316と分離/再利用システム330とを用いている。システム310は、先に開示されているものと同様であり、例えば、順浸透ユニット312、316は順浸透膜313、317を備えており、システム310は、具体的な用途に適合するために、必要な弁、ポンプ、配管などのすべても備えている。一実施形態では、システム310は、第1の順浸透ユニット312が、例えばタンク305で、浸漬される使用について構成されており、第2の順浸透ユニット316とは異なる誘導溶液を用いている。
図4に示すように、供給溶液320は、第1の順浸透ユニット312の膜313の一方の側へ導かれ、一方、濃縮された第1の誘導溶液324が膜313の他方の側へ導かれる。一実施形態では、第1の誘導溶液がMgCl2、CaCl2、Ca(NO3)2、NaCl、KCl、又は同様物から成る群から選択される。一つ以上の実施形態では、第1の誘導溶液が、浸漬されたシステムに適合するように選択される。希釈された第1の誘導溶液326が順浸透ユニット312から出て行く一方、濃縮された供給322が順浸透ユニット312から出て行く。一つ以上の実施形態では、濃縮された供給322が、タンク305に排出され得るか、廃棄され得るか、又は、さらなる加工処理のために送られ得る。ある実施形態では、誘導溶液は光分解誘導溶質を備えており、光分解誘導溶質の場合では、希釈された第1の誘導溶液326が、第2の順浸透ユニット316に送られる前に、その浸透圧を低くするために、紫外光又は他の励振源に曝露され得る。浸透圧を低減するための他の手段(例えば、化学物質加法)は、本明細書で前述のように組み込まれ得る。
希釈された第1の誘導溶液326が、第2の順浸透ユニット316の膜317の一方の側へ導かれ、一方、濃縮された第2の誘導溶液325が、希釈された第1の誘導溶液326から溶媒を抽出することで、第1の誘導溶液を再濃縮するために、膜317の他方の側へ導かれる(排出324')。再濃縮された第1の誘導溶液324'は、第1の順浸透ユニット312へ再び導かれるように、例えば、除去装置340、又は、第1の誘導溶液(排出324)のさらなる条件付け/濃縮のための他の処理過程へ導かれる。
希釈された第2の誘導溶液327は、第2の順浸透ユニット316から排出され、第2の誘導溶液の再濃縮及び製品溶媒332の回収ための分離/再利用システム330へ導かれる。概して、分離/再利用ユニット330は、'819公開又は'895出願におけるものを含む、本明細書で開示されている種類のうちのいずれのものであってもよく、誘導溶質を溶媒から分離する。回収された誘導溶質/再濃縮された誘導溶液325は、ユニット330を出て行き、第2の順浸透ユニット316に戻されるように導かれる。残りの溶媒332は、例えば、現状通り使用され得る、さらなる加工処理のために送られ得る、又は、廃棄され得る製品水として、ユニット330を出て行く。
図4Aは、図4のシステム310の代替を描写しており、システム310は、第1の順浸透ユニット312の出口及び第2の順浸透ユニット316の供給側で希釈された第1の誘導溶液326と流体連通する追加の逆浸透ユニット346を備えている。この代替のシステムの一つの具体的な用途は、第1の供給320が低塩分濃度の供給であり、第1の希釈された誘導溶液326が高度に希釈されることになり得る場合である。逆浸透ユニット346は、高度に希釈された誘導溶液326が第2の順浸透ユニット316に供給される前に、高度に希釈された誘導溶液326を少なくとも部分的に濃縮できる。図4Aに示すように、希釈された誘導溶液326が、圧力下で、逆浸透ユニット346の膜345の一方の側に導入される。希釈された誘導溶液326の加圧は、第1の順浸透ユニット312を出て行く溶液の増加した体積のおかげによるものであるか、又は、圧力交換装置(例えば、ポンプ)の助けによるものであり得る。製品溶媒232B(例えば、飲料水)は、膜345の他方の側から回収され、現状通り使用され得るか、廃棄され得るか、又は、さらなる加工処理のために送られ得る。一つ以上の実施形態では、製品溶媒は、飲料水として使用できる。低希釈された第1の誘導溶液326'が、逆浸透ユニット346を出て行き、先に記載したような加工処理のために第2の順浸透ユニット316へ導かれる。また、先に記載した誘導溶液の浸透圧を変更するための様々な手段が、システム310に組み込まれてもよい。
図5は、溶媒を抽出するための別の代替のシステム510の単純化された概略図である。このシステム510は、すべてが流体連通の様々な状態となっている逆浸透ユニット516、二つの順浸透ユニット512、546、及び、分離/再利用システム530を用いている。システム510は、先に開示されているものと同様であり、例えば、様々な浸透ユニット512、516、546は、先に記載したように、膜513、517、545を備えており、システム510は、具体的な用途に適合するために、必要な弁、ポンプ、配管などのすべても備えている。一実施形態では、システム510は、廃水流出が濃縮された供給(例えば、高度に濃縮された塩水)を希釈してより廃棄し易くするために用いられる用途のために、構成されている。
図5に示すように、供給流れ520(例えば、海水)が、圧力下で、逆浸透ユニット516の膜517の一方の側に導入される。製品溶媒532A(例えば、飲料水)は、膜517の他方の側から回収され、さらなる加工処理のために送られ得るか、又は、廃棄され得る。次に、濃縮された供給522(例えば、塩水)は、第1の順浸透ユニット512の膜513の一方の側へ導かれる。一実施形態では、逆浸透ユニット516は、低塩分濃度の供給を、順浸透ユニット512へ導く前に、濃縮するために用いられ得る。代替で、逆浸透ユニット516は省略でき、供給520は第1の順浸透ユニット512に直接的に送られてもよい。
濃縮された誘導溶液524は、溶媒を供給流れ522(又は、ある実施形態では供給流れ520)から誘導するために、第1の順浸透ユニット512の膜513の反対側へ導かれる。一実施形態では、濃縮された供給流れ522'は、後で記載しているように、第2の順浸透ユニット546へ導かれる。ここで希釈された誘導溶液526は、第1の順浸透ユニット512を出て行き、製品溶媒532Bの再濃縮及び回収のための分離/再利用システム530へ導かれる。概して、分離/再利用ユニット530は、先に記載した種類のうちのいずれのものであってもよい。回収された誘導溶質/再濃縮された誘導溶液524は、ユニット530を出て行き、第1の順浸透ユニット512に戻されるように導かれる。残りの溶媒532Bは、例えば、現状通り使用され得る、さらなる加工処理のために送られ得る、又は、廃棄され得る製品水として、ユニット530を出て行く。代替又は追加で、溶媒は、溶媒回路532cを介して元の供給520へ導かれ得ると共に、ROモジュール516への導入のために供給520と混ぜ合わされ得るか、又は、ROモジュール516に直接的に供給され得る。
さらに濃縮された供給溶液522'(例えば、濃縮された塩水)は、第2の順浸透ユニット546の膜545の一方の側に導入される。様々な実施形態では、濃縮された供給溶液522'は圧力下で導入され、第2の順浸透ユニットはPROユニットとして運転されている。概して、濃縮された供給液522'は、特に濃縮された塩水の場合、現状通り排出されると環境に悪影響を有している可能性がある。例えば、過塩水の溶液の天然の水源への排出は、その水源の局所的な生態系を破壊する可能性がある。濃縮された供給522'を希釈するために第2の順浸透ユニット546を使用することは、この希釈された供給522"を、廃棄するのを全体としてより容易にし、排出を概してより許容可能とさせることができる。現在の用途では、濃縮された供給522'は、誘導溶液の供給源として使用されている。濃縮された供給522'が溶媒(例えば、水)を誘導する二次的な供給溶液は、典型的には、用途を限定している供給源である、及び/又は、概して、人の使用には望ましくない。一実施形態では、二次的な供給547は、加工処理され、多くの用途への使用に安全である一方、典型的には人の使用には望ましくない廃水流出である。代替又は追加で、二次的な供給547は、例えば、二次的な供給547を置換又は補完する供給520の一部による分岐流れといった、元の供給520からのものであり得る。
図5に示すように、二次的な供給547は、第2の順浸透ユニット546の膜545の反対側へ導かれる。濃縮された供給522'は、順浸透ユニット546を出て行くと共に、廃棄され得るか、又は、さらなる加工処理のために送られ得る希釈された供給522"を、作り出す膜545を通して溶媒を誘導する。第2の順浸透ユニット546がPROユニットである実施形態では、システム510は、供給/誘導溶液出口543と流体連通するタービン548を備え得る。PROユニットの例は、米国特許出願公開第2010/0024423号及び第2010/0183903号に開示されており、それらの開示は、本明細書により、それらの全体において、本明細書において参照により組み込まれている。代替又は追加で、システム510は、希釈された供給522"の少なくとも一部を、供給520から逆浸透ユニット516及び/又は第1の順浸透ユニット512に戻すように導くためのバイパス回路529(及び、任意の必要な弁)を備え得る。
濃縮された二次的な供給549は、第2の順浸透ユニット546を出て行くと共に、廃棄され得るか、又は、さらなる加工処理のために送られ得る。廃水流出供給547の場合、溶媒の除去よってここでは小さな体積を有する濃縮された流出549が、焼却炉へ導かれ得るか、又は、さらなる濃縮/処理のための廃水加工処理施設に戻すように導かれ得る。追加で、第2の順浸透ユニット546は一つ以上の実施形態で浸漬され得る。
図6は、溶媒を抽出するための別の代替のシステム610の単純化された概略図である。しかしながら、このシステム610は、選択膜ユニット656及び分離/再利用システム630と流体連通する一つ以上の順浸透ユニット612を使用している。様々な実施形態では、選択膜は陽イオン選択膜655であり、選択膜ユニット656は硬水軟化モジュールである。システム610は、先に開示されているものと同様であり、後で記載しているように、一つ以上の前処理及び/又は後処理のユニット614、616を備え得る。前処理及び後処理のユニット614、616は、先に記載した種類のうちのいずれのものであってもよい。追加で、システム610は、具体的な用途に適合するために必要な弁、ポンプ、配管などのすべても備えている。
図6に示すように、システム610は、選択膜ユニット656と、バイパス回路又は弁構成611(弁623A、623B、及び回路621)と、順浸透ユニット612と、分離/再利用システム630と、呼び水システム又は第2の弁構成619(弁623C及び入口625)と、様々な前処理及び後処理のユニット614、616とを備えている。順浸透ユニット612及び分離/再利用ユニット630は、概して、他のシステム10、210、310、510に関連して先に記載したように運転する。概して、第1の弁構成611は、供給溶液流れ620を選択膜ユニット656へ導くか、又は、選択膜ユニット656をバイパスし、供給流れ620を順浸透膜613の一方の側に直接的に流体連結するかのいずれかのために構成される。分離/再利用システム630は、順浸透膜613の他方の側に流体連結され、濃縮された誘導溶液624を供給し、希釈された誘導溶液626を加工処理する。
選択膜ユニット656が陽イオン選択膜ユニットである様々な実施形態では、ユニット656は、例えば、カルシウム、マグネシウム、バリウム、及びストロンチウムといった、硬度イオンを供給溶液620から除去するために用いられている。これらの様々な硬度イオンは、脱塩システムで沈殿する傾向があり、脱塩過程に有害である汚染及びスケールを生じさせる。軟化された供給溶液620'は、順浸透ユニット612の膜613の一方の側へ導かれる。一つ以上の実施形態では、最初の供給溶液620は第1の処理ユニット614Aによって加工処理され得る、及び/又は、軟化された供給溶液620'は、順浸透ユニット612への導入の前に、第2の処理ユニット614Bにおいてさらに処理され得る。典型的には、陽イオン選択膜ユニット656は、図6Aに関連してより詳細に記載するように、膜545の反対側における順浸透ユニット612からの濃縮された供給622を、最初の供給620のように、硬度イオンの交換のために用いる。しかしながら、各々のユニット612、656が、「供給」流れに関して他方に依拠しているため、ユニット612、656のうちの一方又は両方は、典型的には、呼び水がされる必要がある。
概して、システム610はバイパス回路611を備えており、バイパス回路611は、未処理の供給として直接的に、又は、処理ユニット614のうちの一つによって加工処理した後に間接的に、供給溶液を順浸透ユニット612に提供するために必要な弁623A、623B、及び回路621を備えている。バイパス回路611は、具体的な用途に適合するために必要なように、任意の数及び構成の弁及び回路を備え得ると共に、必要に応じて、一つ以上の処理ユニット614をも備え得る。バイパス回路611は、システム610に、陽イオン選択膜ユニット656が供給620を軟化するために必要とされる濃縮された供給622を生成することを、開始させることができる。代替で、供給620は、最初に順浸透ユニット612に呼び水するために、ユニット656で加工処理することなくユニット656をそのままに通り抜けて送られてもよい。さらに別の可能な実施形態では、バイパス回路611は、代替の供給を順浸透ユニット612に導入するためのポート又は他の手段を備え得る。
追加又は代替で、システム610は、順浸透ユニット612への最初の供給を軟化するために、呼び水の溶液(例えば、塩水)を陽イオン選択膜ユニット656に提供できる呼び水システム619を備え得る。呼び水システム619は、一つ以上の弁623Cと、呼び水の溶液をシステム610に導入するための一つ以上の入口625(又は、他の手段)とを備えている。システム610が定常状態に達すると、呼び水の溶液の供給が停止され得る。システム弁623Cは、例えば、陽イオン選択膜ユニット656をバイパスするために、又は、濃縮された供給622を排出するために、濃縮された供給622の方向を変えるために使用されてもよい。一つ以上の実施形態では、システム610は、濃縮された供給622を、陽イオン選択膜ユニット656へ導く前に、又は、排出する前に、さらに加工処理するために、後処理ユニット616を備えてもよい。
陽イオン選択膜ユニット656の運転は、供給が塩水の供給源である一つの可能な実施形態に関連して、図6Aに示されている。図6Aに示すように、塩水供給620は、ユニット656の陽イオン選択膜655の一方の側に導入される。供給620は、ナトリウムイオン(Na+)及び塩化物イオン(Cl-)を、カルシウム(Ca2+)、マグネシウム(Mg2+)、バリウム(Ba2+)、ストロンチウム(St2+)など、様々な硬度のイオンと共に含んでいる。順浸透ユニット612(又は、他の供給源)からの濃縮された塩水622が、陽イオン選択膜655の他方の側に導入される。膜655を通じた正のナトリウムイオン(Na+)についての化学的活性の差が、膜655を通じて塩水622から供給620にナトリウムイオンを移動させる。電気選択性が、供給620から塩水622への膜655を通じた、正に帯電された硬度イオン(例えば、Ca2+、Mg2+、Ba2+、及びSt2+)の通過をもたらす。膜655が陽イオン選択性であるため、負に帯電されたイオン(例えば、Cl-、SO4-、HCO3-、及びCO3-)は、膜655を通過せず、それによって、順浸透ユニット612へ導かれるための軟化された供給620'をもたらす。ここで硬度イオンを含んでいる濃縮された塩水、又は、重い塩水622'は、さらなる加工処理のために送られ得るか、又は、廃棄され得る。
図7は、直列又は並列に配置され得る一つ以上の順浸透モジュール712a、712b、712「n」(一般に712であり、「n」は、システム710の任意の具体的な実施形態に備えられ得る、実質的に制限のない数のモジュールを表している)を利用する代替の浸透システム710を描写している。図7で示すように、順浸透モジュール712は、分離/再利用システム730、及び、膜713a、713b、713n(ここでも、一般に713であり、nは、膜のある対応する数字を表している)を洗浄するための浸透逆フラッシングシステム750と、直列に配置されている。概して、順浸透モジュール712は、先に記載したものと同様に構成されており、また、同様に作動する。また、分離/再利用システム730は、先に記載したものと同様である。一つだけの分離/再利用システム730が描写されているが、複数のシステム730が、具体的な用途に適合するために用いられてもよい(例えば、各々の順浸透モジュール712について、又は、直列若しくは並列の複数のシステム/段について、サイズ設定され配管される単一のシステム730)。逆フラッシングシステム750は、概して、後でより詳細に記載しているように、逆フラッシング溶液751の供給源755と、流体移送装置(例えば、ポンプ)753と、一連の弁757、759、765、767、769と、センサ761(計測器又は状態ランプなど、視覚指示器が有る又は無い)と、逆フラッシング及び関連する過程を実施するための関連する配管とを備えている。弁及び他の構成要素の必ずしもすべてが別々に配管される必要はなく、任意の数/組み合わせの弁又は他の構成要素が、一つ以上の多岐管組立体に組み込まれてもよいことに留意されたい。
基本システム710の運転は、次のように進行する。供給流れ720が、半透過性膜713aによって第1の室又は側712'と第2の室/側712"とに分割されている第1の順浸透モジュール712aに導入される。供給流れ720は、各々の連続する順浸透モジュール712a、712b、及び712nへ導かれ、濃縮された供給流れ722として、最後のモジュール712nを出て行く。順浸透モジュール712の具体的な数及び構成は、具体的な用途に適合するように選択されることになり(例えば、供給流れの開始濃度及び必要な最終濃度、流動、流量など)、直列及び/又は並列に配置された任意の数のモジュールを備え得る。例えば、複数の並列な対の順浸透モジュールが直列に配置されてもよい。図7で示されている実施形態では、濃縮された誘導溶液724が、順浸透モジュール712のうちの直列の最後のモジュール712nに、供給流れ720として膜713nの反対側に導入され、それによって、誘導溶液720が、連続するモジュール712を通るように導かれるとき、供給流れ720と誘導溶液724との間に直交流を提供する。しかしながら、濃縮された誘導溶液724は、具体的な用途に適合するために、供給流れ720が最初に導入されるとき、同じモジュール712aに最初に導入され得るか、及び/又は、複数の段に同時に(つまり、並列に)導入され得る。また、様々な流れ/溶液が、膜713を通じた所望の流動を維持するために必要とされる最適な浸透差圧を得るために必要とされるように、調整/分割され得る。
供給流れ720は、各々の順浸透モジュール712を通過するときに、前述の濃縮された供給流れ722が最後の順浸透モジュール712nから排出されている状態で、より濃縮されることになる。濃縮された誘導溶液724は、供給流れから誘導溶液への膜713を通る溶媒の通過のため、各々の連続する順浸透モジュール712を通過するときに希釈されることになり、希釈された誘導溶液726を、「第1の」順浸透モジュール712aから排出する。典型的には、濃縮された供給流れ722は、廃棄されるか、又は、さらなる加工処理のために送られ、一方、希釈された誘導溶液726は、誘導溶質を回収する/誘導溶液を再濃縮するために、及び、製品溶媒(例えば、水)732を回収するために、分離/再利用システム730へ導かれる。代替又は追加で、各々の順浸透モジュール712を出て行く、より濃縮された供給流れの一部は、膜713を通じた最適な浸透差圧を維持するために必要とされるように、最初の供給流れ720に戻されるように方向が変えられて混ぜ合わされ得るか、又は、続く順浸透モジュール712へ導かれ得る。例えば、続くモジュール712へ導かれる供給流れが、膜713を通じた浸透差圧が小さ過ぎるため、流動の許容できない低下が生じるようにして、濃縮され過ぎている場合、前のモジュール712を出て行く低濃縮された供給の一部が、例えば、弁767b〜767nの適切な作動によって、続くモジュールに入って行く供給と混ぜ合わされ得る。
先に記載したように、浸透逆フラッシングシステム750は、一つ以上の弁757、759、765、767を介して順浸透モジュール712のうちの一つ以上と流体連通するフラッシング溶液751の供給源755を備えることになる。ある実施形態では、フラッシング溶液751は水(例えば、製品溶媒732又は他の低塩分濃度溶液)であるが、流動が誘導側712'から膜713の供給側712"に作り出されるように、溶液が供給流れより小さい浸透圧を有している限り、例えば、誘導溶液の希釈されたもの(例えば、逆フラッシングを受けるモジュールへ導かれ得る、他のモジュールのうちの一つを出て行く希釈された誘導溶液)、又は、用途に特定の溶液の化学的性質(例えば、システムの一つ以上の態様と化学的に互換性のある溶液、及び/又は、供給流れに流動されるときに追加的な有益な効果を有し得る溶液)など、他の流体が本発明の範囲内で検討及び考慮されている。ある実施形態では、フラッシング溶液751は、膜の活性層への汚染を低減/排除するために、膜を通して逆に流動できる、酸、キレート剤、又は界面活性剤などの、添加剤を含んでいる。このような添加剤の例には、クエン酸、硫酸、塩酸、エチレンジアミン四酢酸(EDTA)、及び、他の低分子量の物質が含まれる。追加の実施形態では、フラッシング溶液751の温度は、例えば、フラッシング溶液の温度が、膜を通じた添加剤の逆の流動の一助とするために上昇され得るといった、具体的な用途に適合するために変化され得る。一つ以上の実施形態では、フラッシング溶液751は、全体システム710の一部として、タンク755に貯蔵されるが、外部供給源から、例えば、ポート763b及び弁759bの配置を介して、供給されてもよい。弁757、759、765、767、769は、閉止弁及び方向弁の必然的な任意の組み合わせであり得ると共に、典型的には、当業界でよく知られているような、様々なシステム730、750とモジュール712との間で複数の流れを制御できる多方向弁となる。
概して、逆フラッシングシステム750は、必要に応じて運転させることができ(例えば、手動による開始によって、又は、システム710の一つ以上の性能特性の変化を表す信号によって始動されるため)、又は、例えば、供給流れ720、722及び/若しくは誘導溶液724、726の性質/化学的性質、運転条件(例えば、温度、流量、流動、圧力など)、前処理の有無、並びにそれらの組み合わせを考慮するプロトコルに依存するといった特定の間隔で、運転することができる。例えば、逆フラッシングシステム750は、例えば、3時間間隔で、又は、他の用途に特定の間隔で、一回の運転でモジュール712のすべてを洗い流すようにプログラムでき、例えば、供給流れ720が膜713を汚す高い可能性がある場合、より頻繁な間隔が好ましいこともある。他の間隔には、例えば、最初の運転の期間の間は48時間ごと又は6時間ごとで、続く運転の期間についてはより短い間隔又はより長い間隔を含み得る。また、浸透逆フラッシング処置の期間は、具体的な用途に適合するように選択できる。代替又は追加で、逆フラッシングシステム750は、モジュール712の上流及び/又は下流に配置されている一つ以上のセンサ761によって発生される一つ以上の信号に基づいて、必要に応じて個々のモジュール712を洗い流すこともできる。ある実施形態では、システムは、各々が独自のプロトコルを有する個々のモジュールで、浸透逆フラッシング処置を実施し得る。例えば、各々のモジュールは、第1のモジュールが12時間ごとに洗い流され、第2のモジュールが第1のモジュールの2時間後において12時間ごとに洗い流され、第3のモジュールが2時間後において同じく12時間ごとに洗い流されるなど、時間差のスケジュールで、6〜24時間ごとに洗い流されてもよい。モジュールについての洗い流す間隔は、実質的に同じであってもよいし、又は、具体的な用途に適合するために変化してもよい。例えば、供給入口の下流の最後のモジュールは、最も濃縮した供給に曝されるため、より多くの汚染を被る可能性があり、したがって、より長い期間で洗い流される、又は、場合により、同様に、若しくは、代替で、他のモジュールよりも頻繁に洗い流される必要がある可能性がある。必然的に、洗い流す間隔及び期間の任意の組み合わせが、モジュールの数、供給及び誘導の溶液の化学的性質、周囲条件、膜材料などによって定められ得るため、具体的な用途に適合するために可能である。
逆フラッシング処置が必要であることが判定されるとき、所定のプロトコル、又は、システム性能特性の変化の測定(例えば、典型的には連続的に監視されている流動の低下)のいずれかに基づいて、一つ以上の弁が作動させられて(手動により、又は、制御システムによって電気的により)、様々な流れ/溶液の流路の方向を変える。概して、本発明の一つ以上の実施形態による通常の運転では、弁757a、757b、及び757dは、濃縮された誘導溶液724の順浸透モジュール712への直接的な流れと(分離/再利用システム730から、又は、例えばポート763b及び弁759bの配置を介して、システム710に導入されるかのいずれかで)、順浸透モジュール712から分離/再利用システム730への希釈された誘導溶液726の排出とを可能にするために位置付けられている。追加の弁(例えば、流れ制御又は圧力逃がし式)及びセンサ761が、様々なシステムと、それらの間の流れとをさらに監視及び制御するためにあってもよい。例えば、システム710は、当業界でよく知られているように、例えば、過剰な溶質及び/又は望ましくない溶質(例えば、供給流れ720から膜713を通過する溶質)を、希釈された誘導溶液726内から除去するための排出として使用できる追加のポート763a及び弁759aの構成を、希釈された誘導溶液726を分離/再利用システム730に搬送する回路に備えてもよい。代替又は追加で、ポート763a及び弁759aの構成は、システム710に追加の化学物質及び/又は補給誘導溶液を導入するために用いることができ、例えば、リン酸ナトリウムが、希釈された誘導溶液726に、そのpHを調整するために加えられてもよい。一つ以上の実施形態では、ポート763b及び弁759bの構成は、追加の化学物質を導入するために、及び/又は、濃縮された誘導溶液724の最初又は補給の供給源でシステム710を呼び水するために、用いられ得る。
逆フラッシング処置を開始するために、少なくとも弁757dが、順浸透モジュール712への濃縮された誘導溶液724の流れを停止するために、及び、逆フラッシングシステム750から順浸透モジュール712の誘導側712'にフラッシング溶液751を導入するために作動される。代替で、弁757dは、例えば、任意の所与のモジュール712に導入されるフラッシング溶液751を特別に変更するために、フラッシング溶液の性質に依存して、濃縮された誘導溶液724の流れを著しく減らし、その一部をフラッシング溶液751に計量しながら供給するために作動される。典型的には、フラッシング溶液751は、直列の順浸透モジュール712に導入されるが、フラッシング溶液751は、弁757、759、765、767、769の適切な組み合わせ及び作動を介して、並列又は単一で、モジュール712に導入できる。例えば、弁757cは、フラッシング溶液を全体の一連のモジュールへ導くために、又は、フラッシング溶液751を複数のモジュール712の間で分割するために、作動できる。一実施形態では、浸透逆フラッシング処置は、一度に単一のモジュール/段で実行され(モジュールは、適切な弁の作動によって、残りのモジュールから隔離され得る)、一方、他のモジュール/段は通常通り運転し続け、それによって、全体のシステムの定常状態の運転を維持する。追加の弁構成が、具体的な用途に適合するように、フラッシング溶液751を他の流れ/溶液と混合するために用いられ得る。一例では、希釈された誘導溶液726は、溶液724を、弁757、759、765を介してモジュール712に方向を変えることで、フラッシング溶液として使用できる。フラッシング溶液751がより低い濃度の溶質である(又は、脱イオン化された水の場合、必然的に溶質がない)ため、つまり、より低い浸透ポテンシャルであるため、溶媒は、モジュール712の誘導側712'から、膜713を通って、供給側712"に(つまり、供給流れ720に)流れることになり、それによって、膜713の供給側712"に沈着している可能性のあるあらゆるスケール又は他の汚染物質の少なくとも一部を除去する。逆フラッシング処置の期間は、具体的な用途に適合するために変化することになり、1分間から60分間まで、好ましくは5分間から45分間まで、より好ましくは10分間から20分間まで、続く可能性がある。概して、処置の期間は、膜に付着しているスケール/汚染物質の実質的に一部又は全部を、最短の停止時間(例えば、供給流れ720が濃縮されていない時間)で除去するように選択されることになる。ある例示の実施形態では、浸透の逆の洗い流しは、48時間ごとに約15分間運転する。さらに別の実施形態では、浸透の逆の洗い流しは、1〜2時間ごとに約5〜10分間運転する。また、モジュール712を通る供給流れ又は誘導溶液の流量は、フラッシング処置の間に変更され得る。例えば、供給流れ720(逆の洗い流しの処置の間の誘導流れ)の流量は、例えば、膜表面に形成されているあらゆる汚染/スケールへのせん断力を大きくするために、増加され得る。増加された流量は、浸透の逆の洗い流しの間により大きな流動量ももたらし、膜の洗浄のさらなる一助となることができる。また、システム710は、順浸透モジュール712の各々に再循環回路771a、771b、771nを備えることができる。回路771は、ポンプ(又は、他の圧力交換装置)と、任意の浸透モジュール712とを備えることができる。一実施形態では、浸透の逆の洗い流しのプロトコルは、例えば、モジュール712を通る流量を変化(例えば、増加)すること、及び/又は、供給流れの少なくとも一部の流れ方向を逆にすることによって、膜の洗浄の一助とするように、再循環回路771を運転することを含んでいる。また、特定の洗い流しのプロトコルは、具体的な用途に適合するように選択されることになる。運転パラメータのうちでも、供給流れの化学的性質、目標の流動、運転圧力、及び/又は温度の性質は、適切な浸透逆フラッシング処置(例えば、間隔、期間、溶液の化学的性質など)を決定するためにすべて考慮する可能性がある。
モジュール712を出て行く「使用された」フラッシング溶液751'は、フラッシング溶液751の性質に依存して、弁757、759、765、769の適切な作動によって、分離/再利用システム730へ導かれ得るか、一つ以上のモジュール712に戻って再循環され得るか、又は、逆フラッシングシステム750に戻され得る。一つ以上の実施形態では、フラッシング溶液751'は、ポート763a及び弁759aの構成によって除去され、また、廃棄されるか、逆フラッシングシステム750に戻されるか、供給流れ720に加えられるか、又は、加工処理のための場所に送られる。ここで希釈された供給流れ722'は、最初の供給流れ720に戻されるように再循環され得るか、又は、例えば少なくとも弁757eの作動によって、濃縮された供給722とのさらなる加工処理のために送られ得る/廃棄され得る。
概して、直列の構成のモジュール712を運転するとき、図7に示して先に記載したように、供給流れ濃度がモジュール712を流れて行くにつれて増加し、誘導溶液濃度がモジュール712を流れて行くにつれて低下するように、供給流れ720と誘導溶液724との直交流で運転することが一般的に望ましい。供給流れと誘導溶液との直交流の向きは、この実施形態では垂直であると考慮され得るが、他の実施形態では、供給流れと誘導溶液との直交流は、正確な平行又は直角とは対照的に、接線方向であってもよい。この構成は、モジュール712aの膜713aを通じて、最低に濃縮された誘導溶液に相対する最低に濃縮された供給流れをもたらし、モジュール712nの膜713nを通じて、最高に濃縮された誘導溶液に相対する最高の濃縮された供給流れをもたらす。これは、モジュール712のすべてにわたって最適な浸透差圧をもたらす。しかしながら、ある実施形態では、供給流れ720からの溶媒の回収/除去を増加するために、一つ以上の順浸透モジュール712、又は、後の/続く順浸透モジュール712(誘導溶液の流れ方向によって決定される)にわたる流動を増加するように、一つ以上の順浸透モジュール712にわたっての浸透差圧を変更することが望ましい、一つ以上の実施形態では、これは、逆フラッシングシステム750の少なくとも一部を用いて、一つ以上の他の溶液の一部を特定のモジュール712に導入し、それによって任意の特定の膜713を通じた浸透差圧を変更することによって、達成できる。
あるこのような例では、濃縮されている(又は、供給源に依存して、少なくともより濃縮されている)誘導溶液724の一部が、典型的な運転の間、続く順浸透モジュール712に導入されている部分的に希釈された誘導溶液に加えられてもよく、これは、膜を通じた追加的な流動(つまり、より大きな溶媒の回収)をもたらすことができる。これは、システムのモジュール712の数、モジュールの構成、及び、どのモジュールの流動量が変更の対象とされているかに依存して、弁757bと、弁759c、759n、765のうちの一つ以上とを作動することによって達成できる。例えば、一つ以上の実施形態では、弁757bは、任意の特定のモジュール712への濃縮された誘導溶液の流れを中断しないように、複数のモジュール712への濃縮された誘導溶液724の一部を計量するために使用され得る。代替で、弁757、759、765、769の異なる組み合わせが、希釈された誘導溶液726の一部を、単独、又は、濃縮された誘導溶液724の一部との混合のいずれかで、任意の特定のモジュール712へ導かれる部分的に希釈された誘導溶液に導入するために作動でき、それによって、具体的な用途に適合するために、任意の特定のモジュール712に、特別に変更された濃度を有する誘導溶液の導入をもたらす。あるこのような用途は、誘導溶液濃度が、モジュール712のすべてにわたって比較的一定の流動量を維持するために変化される必要があるように、供給流れ濃度が変化する状況を含み得る。このような実施形態では、様々なセンサ761が、供給流れ720、722及び誘導溶液724、726の異なる特性を監視するために(例えば、伝導度センサによる濃度レベル)、並びに、一つ以上のモジュール712への誘導溶液濃度を変更するために必要とされるように適切な弁757、759、765、767、769の作動を引き起こすために、用いられ得る。
図8A及び図8Bのグラフは、先の例の一つ以上に従って運転するとき、続く順浸透モジュール712(つまり、供給流れがより低い濃縮とされてもいる、供給流れの流れ方向に対してより手前のモジュール)からの増加した溶媒の回収についての潜在能力を示している。図8A及び図8Bに示すように、縦座標に相対流動(JW)が描画され、横座標にモジュールの数(n)が描画された形で、線801/801'は、通常の運転におけるシステム710についての平均流動を表しており、一方、線803/803'は、濃縮された誘導溶液の部分的なバイパスとして浸透逆フラッシングシステム750を利用するシステム710についての平均流動を表している。
図8Aに描画した具体的な例では、システム710は六つの順浸透モジュール712を備えており、濃縮された誘導溶液724の一部は、最後の三つのモジュール(つまり、712d、712e、712f)(「1/2n」)にバイパスされているが、システム710は、任意の数の順浸透モジュール712を備えることができ、濃縮された誘導溶液724は、任意の数のモジュールに任意の順番でバイパスできる。概して、任意の続くモジュール712に入る部分的に希釈された誘導溶液への、追加の濃縮された誘導溶液の導入は、そのモジュール712に関する浸透差圧を増加させ、これは、関連する膜713を通る流動の増加をもたらす(つまり、追加的な溶媒の回収)。
図8Aで見ることができるように、変更されていない浸透差圧(つまり、通常の運転)は、複数の連続する順浸透膜を通じてほとんど一定の流動量をもたらし、一方、変更された浸透差圧の場合、後のモジュール712a、712b、712cにおいて「通常」に最終的に戻るシステム流動において、最初の増加がある(具体的には、モジュール712d、712e、712fにおいて)。図8Bによって描写されるように、濃縮された誘導溶液724の一部は、代替のモジュール712(例えば、712f、712d、712b)に導入され、それによって、平均システム流動における全体の増加について、モジュール流動に代わりの増加をもたらす。
さらに、逆フラッシングシステム750又はその一部は、全体システム710の他の運転を制御するために、及び/又は、代替の逆フラッシングプロトコルを行うためにも、用いられ得る。例えば、ある実施形態では、膜713の誘導側712'と供給側712"との間の浸透差圧が非常に大きいため、膜が剥離及び/又はブリスタリングの危険がある可能性がある。この状況では、逆フラッシングシステムの様々な弁及び回路が、異なる流れ/溶液を迂回及び/又は混合するために用いられ得る。例えば、逆フラッシング処置の間、希釈された誘導溶液726及び/又は濃縮された誘導溶液724の一部は、フラッシング溶液751と混合されて、その適切な浸透ポテンシャルを得ることができ、延いては、膜713の両方の側の間の最適な浸透差圧を得ることができる。例えば、逆フラッシング処置の間に、供給流れ720が最初に導入され、最も濃縮されている場合(図7のモジュール712a)といった、ある場合において、弁757a及び/又は弁757bは、弁759b及びおそらく弁765(どの溶液が導入されるかに依存する)と共に、順浸透モジュール712aに導入されるフラッシング溶液751に誘導溶液の一部を導入し、それによって膜713aを挟んでの浸透差圧を低下させるために、作動され得る。誘導溶液の他の部分/濃度は、システム710の任意の具体的な実施形態で用いられる順浸透モジュール712の数に依存して、適切な弁757、759、765、767、769を作動することによって、膜713を挟んでの適切な浸透差圧を得るために必要であるとして、他の順浸透モジュール712a、712nに加えられてもよい。
図9は、溶媒を抽出するための別の代替のシステム910の単純化された概略図である。このシステム910は、一つ以上の順浸透ユニット912(例えば、具体的な用途に適合するために、直列及び/又は並列に配置された複数のユニット)と、すべてが様々な流体連通の状態になっているナノ濾過/限外濾過ユニット914、逆浸透ユニット916、及び膜蒸留ユニット958のうちの一つ以上を組み込む分離システム930とを用いる。システム910は、先に開示されているものと同様であり、例えば、様々な浸透/濾過ユニット912、914、916は、先に記載したように、膜913、915、917を備えており、システム910は、具体的な用途に適合するために、必要な弁、ポンプ、配管、センサ、制御部などのすべても備えている。一実施形態では、システム910は、供給流れが、膜913を通じた選択的な浸透に置かれ得る、及び/又は、前処理を必要とすることになる特定の溶質を含む用途に向けて、構成されている。ある実施形態では、膜は、高い選択的浸透特性を有し、それによって、これらの溶質に膜913を通過させることができてもよいが、代替の種類の膜が、例えば、供給の化学的性質、誘導溶液の化学的性質、周囲条件など、具体的な用途に向けてシステム910の性能を最大化するために用いられてもよい。
図9に示すように、供給溶液920は、順浸透ユニット912の膜913の一方の側へ導かれ、一方、濃縮された誘導溶液924'が膜913の他方の側へ導かれる。希釈された誘導溶液926が、順浸透ユニット912を出て行き、分離システム930へ導かれる一方、濃縮された供給溶液922が、順浸透ユニット912を出て行き、現状通り使用されるか、さらなる加工処理のために送られ得るか、又は廃棄され得る。ある場合には、濃縮された供給溶液922は、食品又は薬剤製品など、一つ以上の望ましい成分を含む。
概して、分離システム930は、希釈された誘導溶液926の少なくとも一部を最初に処理するためのナノ濾過(NF:nanofiltration)又は限外濾過(UF:ultrafiltration)ユニット914と、NF/UFユニット914によって加工処理される希釈された誘導溶液926'、順浸透ユニット912によって直接的に作り出された希釈された誘導溶液926、又はそれら両方を処理するための逆浸透ユニット916とを備えている。システム930は、誘導溶液の追加の濃縮のために、及び/又は、後でより詳細に説明するように、追加の製品水を回収するために、膜蒸留ユニット958、又は、本明細書で先に記載したような他の熱回収システムを、選択的に備え得る。一つ以上の実施形態では、希釈された誘導溶液926は、カルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、様々な硫酸塩、スルホン酸塩、概して他の難溶性無機溶質、又は、有機成分など、膜913を通じて選択的に浸透されている一つ以上の溶質962を含み得る。希釈された誘導溶液926の少なくとも一部(浸透された溶質を含む)は、NF/UFユニット914へ導かれ得る。ある実施形態では、希釈された誘導溶液の全部又は一部は、バイパス回路929及び弁構成959を介してNF/UFユニット914をバイパスでき、一部において希釈された誘導溶液926の条件/化学的性質に依存して、逆浸透ユニット916に直接的に送られ得る。ある実施形態では、バイパス弁構成959は、NF/UFユニット914及び/又は逆浸透ユニット916への希釈された誘導溶液926の一部を計量できる三方弁を備え得る。代替で、複数の弁が、希釈された誘導溶液926又はその一部を適切な処理過程に選択的に導くために用いられ得る。
典型的には、NF/UF膜915は、誘導溶質(例えば、NaCl)の少なくとも実質的な部分を通過させることができる一方で、浸透された溶質962の少なくとも実質的な部分を妨げる「目が弛んだ」NF膜(又は、「目が詰まった」UF膜)である。概して、何が検討されているかに拘わらず、約30%のみの除去率の膜915が許容可能(例えば、NaCl誘導溶質が使用される場合、0%〜20%が好ましい)であるが、望ましい除去率は、例えば、溶液の化学的性質、運転パラメータ、及び周囲条件といった、様々なシステム条件に依存して変わることになる。一つ以上の実施形態では、NaClなどの一価化合物を含む誘導溶質は、NF膜915をより容易に通過し、濃縮された誘導溶液924として使用するために、逆浸透ユニット916で濃縮され得る一方で、Ca2+、硫酸塩、又は有機化合物などの二価又は多塩基の化合物は、膜915によって除去され、供給流れ920に戻される。これらの溶質962は、溶質962を供給920に戻すために任意の必要なポンプ、弁、制御部などを備え得る回路968を介して、システム供給920へ導かれ得る。一つ以上の実施形態では、希釈された誘導溶液926の約10%だけがNF/UFユニット914へ導かれ、NF/UFユニット914は、溶質排出過程と同様に作用して、誘導溶液で高まり得る望ましくない溶質の少なくとも一部を除去する、並びに/又は、順浸透ユニット912の供給及び誘導の側912a、912bの間のイオンの平衡化を助け、それによって、別個の排出回路の必要性がなくなる。
また、分離システム930/バイパス回路(929、959)は、加工処理の前に、一つ以上の添加剤を希釈された誘導溶液926に導入するための手段964(例えば、タンク、計量/混合装置などが有る又は無いポート及び弁構成)を備えてもよい。ある実施形態では、分散剤(例えば、リグニンスルホン酸ナトリウム塩)が、供給流れ920への添加剤の導入を容易にするために、NF/UFユニット914の前で希釈された誘導溶液926に加えられ得ることになるが、添加剤の少なくとも実質的な部分は、NF/UF膜によって除去され、望ましくない溶質962と共に供給に戻すことができる。ある実施形態では、添加剤は、供給流れ920へ導かれる前に、NF/UF膜の汚染又はスケールを低減又は排除できる。代替又は追加で、導入手段964は、システム910の他の領域に他の添加剤(例えば、スケール防止剤、腐食防止剤、錯化剤、調合剤、金属イオン封鎖剤、汚泥調整剤、又は汚泥抑制剤)を導入するために用いられ得る。例えば、システム910は、追加の誘導溶質を誘導溶液に導入するための同様の手段966を備えてもよい。ある実施形態では、これらの手段966は、膜913を通って逆に流動した可能性のある、又は、誘導溶液回収過程において失われた可能性のある任意の溶質を置換するために、塩水製造機(例えば、主要な誘導溶質がNaClである)を備えている。これらの手段966、典型的には、濃縮された誘導溶液が順浸透ユニット912に導入される場所の近くに配置されることになるが、他の場所も、具体的な用途に適合するために可能である。
希釈された誘導溶液926、926'は、逆浸透ユニット916で(例えば、ポンプ953又は他の圧力交換器を介して)加圧され、溶媒を膜917に押し通す。この製品溶媒932は、例えば、現状通り使用され得る、廃棄され得る、さらなる加工処理のために送られ得る、又は、統合システム内の熱伝導流体として用いられ得る製品水として、逆浸透ユニット916から除去され得る。逆浸透ユニット916の第1の側916Aに留まる誘導溶液は、ここでは濃縮された誘導溶液924であり、具体的な用途に適合するために必要なように、現状通り順浸透ユニット912に戻るように送られ得るか、又は、誘導溶液をさらに濃縮するために、及び/若しくは、追加の製品溶媒を回収するために、さらなる加工処理のために送られ得る。図9に示すように、逆浸透ユニット916を出て行く濃縮された誘導溶液924は、さらなる濃縮のために選択的な膜蒸留ユニット958へ導かれ、追加の製品水932'及びより濃縮された誘導溶液926'を生成する。
一つ以上の実施形態によれば、本明細書に記載されている装置、システム、及び方法は、概して、装置の少なくとも一つの運転パラメータ、又は、限定されることはないが、作動弁及びポンプなど、システムの構成要素を調整又は調節するためのものであると共に、浸透圧的に駆動される膜モジュール、又は、具体的なシステムの他のモジュールを通る一つ以上の流体流れの性質又は特性を調節するための制御装置を備え得る。制御装置は、濃度、流量、pHレベル、又は温度など、システムの少なくとも一つの運転パラメータを検出するように構成された少なくとも一つのセンサと電気通信していてもよい。制御装置は、概して、センサによって作り出された信号に応答して、一つ以上の運転パラメータを調節するために、制御信号を作り出すように構成され得る。例えば、制御装置は、浸透圧的に駆動される膜システム、並びに、関連する前処理システム及び後処理システムの任意の流れ、構成要素、又はサブシステムの条件、性質、又は状態の表示を受信するように構成され得る。制御装置は、典型的には、表示、及び、設定ポイントなどの目標値又は所望の値のいずれのもののうちの一つ以上に基づいている少なくとも一つの出力信号の生成を容易にするアルゴリズムを、典型的には含んでいる。一つ以上の具体的な態様によれば、制御装置は、任意の流れの任意の測定された性質の表示を受信するように、及び、測定された性質の目標値からのあらゆる逸脱を縮小するために、システム構成要素のうちのいずかに対する制御、駆動、若しくは出力の信号を生成するように、構成され得る。
一つ以上の実施形態によれば、過程制御システム及び方法は、pH及び伝導度を含む検出パラメータに基づき得るなど、様々な濃縮レベルを監視し得る。過程流れ流量及びタンクレベルも制御され得る。温度及び圧力が監視され得る。膜の漏れが、イオン選択プローブ、pHメータ、タンクレベル、及び流れ流量を用いて検出され得る。漏れは、膜の誘導溶液側をガスで加圧し、超音波検出器を用いることで、及び/又は、供給水側における漏れの目視観察によって、検出することもできる。他の運転パラメータ及び保守問題が監視されてもよい。様々な過程の効率が、製品水の流量及び品質と、熱流と、電気エネルギー消費とを測定することなどによって、監視され得る。生物学的汚染軽減のための洗浄プロトコルは、膜システムにおける特定の点における供給溶液及び誘導溶液の流量によって決定される流動低下を測定することなどによって、制御され得る。塩水流れにおけるセンサは、蒸留、イオン交換、不連続点塩素処理、又は同様のプロトコルなどによって、処理がいつ必要とされるかを示すことができる。これは、pH、イオン選択プローブ、フーリエ変換赤外分光分析(FTIR:Fourier Transform Infrared Spectrometry)、又は、誘導溶質濃度を感知する他の手段で行われ得る。誘導溶液の条件は、溶質の補給追加、及び/又は交換のために監視及び追跡され得る。同様に、製品水の品質は、従来の手段によって、又は、アンモニウム若しくはアンモニアのプローブなどのプローブで、監視され得る。FTIRは、例えば、適切なプラント運転を確保するために、有用であり得る情報を提供する、及び、膜イオン交換の効果などの具合を特定するための、存在する種を検出するために実施され得る。
当業者は、本明細書で記載されているパラメータ及び構成が例示であることと、実際のパラメータ及び/又は構成は、本発明のシステム及び技術が用いられる具体的な用途に依存することとを理解すべきである。当業者は、所定の実験を用いるだけで、本発明の具体的な実施形態と同等のものを、理解すべきである、又は、確保することができるべきである。そのため、本明細書で記載されている実施形態が、例だけを用いて提示されていることと、添付の特許請求の範囲及びその均等物内で、本発明が、具体的に記載されている以外の仕方で実施されてもよいこととは、理解されるものである。
さらに、本発明は、本明細書に記載されている各々の特徴、システム、サブシステム、又は技術と、本明細書に記載されている二つ以上の特徴、システム、サブシステム、又は技術の任意の組み合わせとを対象にしており、二つ以上の特徴、システム、サブシステム、及び/又は方法の任意の組み合わせは、このような特徴、システム、サブシステム、及び技術が相互に矛盾していない場合、特許請求の範囲で具現化されるとして、本発明の範囲内にあると見なされる。さらに、一つの実施形態との関連のみで詳述された作用、要素、及び特徴は、他の実施形態の同様の役割から排除されるように意図されてはいない。

Claims (27)

  1. 第1の溶液から溶媒を浸透抽出するためのシステムであって、
    前記第1の溶液の供給源に流体連結される入口を有する第1の室、
    濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、前記溶媒を前記第1の溶液から浸透圧的に分離することで、前記第1の室に第2の溶液と、前記第2の室に希釈された誘導溶液とを形成するように構成される半透過性膜システム
    を各々備える複数の順浸透ユニットと、
    前記複数の順浸透ユニットと流体連通し、前記希釈された誘導溶液を前記濃縮された誘導溶液と溶媒流れとに分離するように構成される分離システムと、
    前記複数の順浸透ユニット及び前記分離システムと流体連通するフラッシングシステムであって、
    フラッシング溶液の供給源、
    フラッシング溶液の前記供給源及び前記複数の順浸透ユニットのうちの少なくとも一つと流体連通する流体移送装置、
    フラッシング溶液の前記供給源、前記流体移送装置、及び前記少なくとも一つの順浸透ユニットと流体連通する弁構成、並びに、
    フラッシング溶液の前記供給源、前記流体移送装置、又は前記弁構成のうちの少なくとも一つと流体連通し、前記流体移送装置及び前記弁構成を介して、フラッシング溶液の前記供給源を前記少なくとも一つの順浸透ユニットと運転可能に連結するように構成される制御システム
    を備えるフラッシングシステムと
    を備えるシステム。
  2. 前記弁構成が、
    複数の弁と、
    前記システムの少なくとも一つの運転特性に基づいて信号を生成するように構成される少なくとも一つのセンサと
    を備える、請求項1に記載のシステム。
  3. 前記制御システムが、所定のプロトコル、又は、前記少なくとも一つのセンサによって生成された一つ以上の信号によって引き起こされることのうちの少なくとも一つに従って、前記フラッシングシステムを制御するように構成される一組の命令を含む、請求項2に記載のシステム。
  4. 前記制御システムが、フラッシング溶液の前記供給源からのフラッシング溶液の流れを、前記少なくとも一つの順浸透ユニットの前記第2の室を通るように導くために、前記複数の弁のうちの一つ以上を作動する、請求項3に記載のシステム。
  5. 前記制御システムが、前記フラッシング溶液を、前記複数の直列の順浸透ユニットの各々へ導かれる、請求項1に記載のシステム。
  6. 第1の溶液から溶媒を浸透抽出するためのシステムであって、
    前記第1の溶液の供給源に流体連結される入口を有する第1の室、
    濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、前記溶媒を前記第1の溶液から浸透圧的に分離することで、前記第1の室に第2の溶液と、前記第2の室に希釈された誘導溶液とを形成するように構成される半透過性膜システム
    を備える順浸透ユニットと、
    前記順浸透ユニットと流体連通し、前記希釈された誘導溶液を前記濃縮された誘導溶液と溶媒流れとに分離するように構成され、前記順浸透ユニットとすべて流体連通する濾過ユニット、逆浸透ユニット、及びバイパス回路を備える分離システムとを備え、
    前記濾過ユニットが、
    前記希釈された誘導溶液の少なくとも第1の一部分を受け入れるための、前記順浸透ユニットの前記第2の室に流体連結される入口を有する第1の室、
    低希釈された誘導溶液を前記逆浸透ユニットに移送するための、前記逆浸透ユニットに流体連結される出口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、前記希釈された誘導溶液から溶質を一部除去することで、前記第2の室で前記低希釈された誘導溶液を形成するように構成される濾過膜であって、前記除去された溶質が、前記濾過ユニットの前記第1の室から出口を介して前記順浸透ユニットの前記第1の室に戻される、濾過膜を備え、
    前記逆浸透ユニットが、
    前記希釈された誘導溶液の少なくとも第2の一部分を受け入れるための、前記順浸透ユニットの前記第2の室に流体連結される入口、及び、前記濃縮された誘導溶液を前記順浸透ユニットに導入するための、前記順浸透ユニットの前記第2の室に流体連結される出口を有する第1の室、
    前記第1の室に連結される半透過性膜、並びに、
    前記半透過性膜に連結され、前記膜を通して流動された溶媒を受け入れることで、前記第1の室の前記濃縮された誘導溶液を、前記順浸透ユニットへの移送に向けて出て行かせるように構成される第2の室を備え、
    前記バイパス回路が、前記希釈された誘導溶液の前記第1の一部分及び前記第2の一部分を前記濾過ユニット及び前記逆浸透ユニットに選択的に導くように構成される、システム。
  7. 前記順浸透ユニットが、
    前記第1の溶液の前記供給源に流体連結される入口を有する第1の室と、
    濃縮された誘導溶液の前記供給源に流体連結される入口を有する第2の室と、
    前記第1の室を前記第2の室から分離し、前記溶媒を前記第1の溶液から浸透圧的に分離することで、前記第1の室に前記第2の溶液と、前記第2の室に前記希釈された誘導溶液とを形成するように構成される半透過性膜システムと
    を各々備える複数の順浸透ユニットを備える、請求項6に記載のシステム。
  8. 前記希釈された誘導溶液の前記一部分が、圧力下で、前記濾過ユニット及び前記逆浸透ユニットの少なくとも一方に送られる、請求項6に記載のシステム。
  9. 前記分離システムが、前記希釈された誘導溶液の前記第1の一部分又は前記第2の一部分のうちの少なくとも一方に添加剤を導入するための手段をさらに備える、請求項6に記載のシステム。
  10. 前記分離システムが、さらなる濃縮のために前記逆浸透ユニットから前記濃縮された誘導溶液を受け入れるために、前記逆浸透ユニットの前記第1の室の前記出口と流体連通すると共に、前記順浸透ユニットに前記高濃縮された誘導溶液を導入するために、前記順浸透ユニットの前記第2の室と流体連通する熱回収ユニットをさらに備える、請求項6に記載のシステム。
  11. 第1の溶液から溶媒を浸透抽出するためのシステムであって、
    前記第1の溶液の供給源に流体連結される入口を有する第1の室、
    濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、前記溶媒を前記第1の溶液から浸透圧的に分離することで、前記第1の室に第2の溶液と、前記第2の室に希釈された誘導溶液とを形成するように構成される半透過性膜システム
    を備える順浸透ユニットと、
    前記順浸透ユニットの前記第2の室の出口に流体連結される逆浸透ユニットであって、
    前記順浸透ユニットの前記第2の室と流体連通し、圧力下で、前記希釈された誘導溶液を受け入れるように構成される第1の室、
    前記第1の室に連結される半透過性膜、及び、
    前記半透過性膜に連結され、前記膜を通して流動された溶媒を受け入れることで、前記逆浸透ユニットの前記第1の室の低希釈された誘導溶液を出て行かせるように構成される第2の室
    を備える逆浸透ユニットと、
    前記順浸透ユニット及び前記逆浸透ユニットと流体連通し、前記希釈された誘導溶液又は前記低希釈された誘導溶液を前記濃縮された誘導溶液と溶媒流れとに分離するように構成される分離システムであって、
    前記低希釈された誘導溶液を前記逆浸透ユニットから受け入れるための、前記逆浸透ユニットの前記第1の室の出口に流体連結される入口、及び、
    前記濃縮された誘導溶液を前記順浸透ユニットに導入するための、前記順浸透ユニットの前記第2の室に流体連結される出口
    を備える分離システムと
    を備えるシステム。
  12. 前記低希釈された誘導溶液を前記順浸透ユニットに再び導くために、前記逆浸透ユニットの前記第1の室、及び、前記順浸透ユニットの前記第2の室と流体連通するバイパスシステムをさらに備える、請求項11に記載のシステム。
  13. 前記希釈された誘導溶液の浸透圧を低下するための手段をさらに備える、請求項11に記載のシステム。
  14. 前記希釈された誘導溶液の前記浸透圧を低下するための前記手段が、化学物質加法、化学物質減法、還元-酸化、反応抽出、濾過、析出、又は、エネルギー信号への曝露のうちの少なくとも一つを含む、請求項13に記載のシステム。
  15. 前記希釈された誘導溶液の前記浸透圧低下を逆にするために、前記順浸透ユニット、前記逆浸透ユニット、又は前記分離システムのうちの少なくとも一つと流体連通する少なくとも一つの処理システムをさらに備える、請求項13に記載のシステム。
  16. 前記希釈された誘導溶液の前記浸透圧を低下するための前記手段が、前記逆浸透ユニットの前記第1の室と流体連通する、請求項13に記載のシステム。
  17. 第1の溶液から溶媒を浸透抽出するためのシステムであって、
    前記第1の溶液の供給源に流体連結される入口を有する第1の室、
    濃縮された第1の誘導溶液の供給源に流体連結される入口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、前記溶媒を前記第1の溶液から浸透圧的に分離することで、前記第1の室に第2の溶液と、前記第2の室に希釈された第1の誘導溶液とを形成するように構成される半透過性膜システム
    を備える第1の順浸透ユニットと、
    前記第1の順浸透ユニットと流体連通する第2の順浸透ユニットであって、
    前記第1の順浸透ユニットの前記第2の室の出口に流体連結される入口を有し、前記第1の順浸透ユニットから前記希釈された第1の誘導溶液を受け入れるように構成される第1の室、
    濃縮された第2の誘導溶液の供給源に流体連結される入口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、前記溶媒を前記希釈された第1の誘導溶液から浸透圧的に分離することで、前記第1の室に前記濃縮された第1の誘導溶液と、前記第2の室に希釈された第2の誘導溶液とを形成するように構成される半透過性膜システム
    を備える第2の順浸透ユニットと、
    前記第2の順浸透ユニットと流体連通し、前記希釈された第2の誘導溶液を前記濃縮された第2の誘導溶液と溶媒流れとに分離するように構成される分離システムであって、
    前記希釈された第2の誘導溶液を前記第2の順浸透ユニットから受け入れるための、前記第2の順浸透ユニットの前記第2の室の出口に流体連結される入口、及び、
    前記濃縮された第2の誘導溶液を前記第2の順浸透ユニットに導入するための、前記順浸透ユニットの前記第2の室に流体連結される出口
    を備える分離システムと
    を備えるシステム。
  18. 前記第1の順浸透ユニット又は第2の順浸透ユニットの少なくとも一方は浸漬される、請求項17に記載のシステム。
  19. 前記第1の順浸透ユニットの前記第2の室及び前記第2の順浸透ユニットの前記第1の室と流体連通し、溶媒を前記希釈された第1の誘導溶液から除去するように構成される逆浸透ユニットをさらに備える、請求項17に記載のシステム。
  20. 第1の溶液から溶媒を浸透抽出するためのシステムであって、
    前記第1の溶液の供給源に流体連通する第1の室、
    前記第1の室に連結される半透過性膜、及び、
    前記半透過性膜に連結され、前記膜を通して流動された前記溶媒の第1の一部分を受け入れることで、前記逆浸透ユニットの前記第1の室の濃縮された第1の溶液を出て行かせるように構成される第2の室
    を備える逆浸透ユニットと、
    前記逆浸透ユニットと流体連結される第1の順浸透ユニットであって、
    前記逆浸透ユニットの前記第1の室と流体連通する入口を有し、前記濃縮された第1の溶液を受け入れるように構成される第1の室、
    濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、前記溶媒の第2の一部分を前記濃縮された第1の溶液から浸透圧的に分離することで、前記第1の室にさらに濃縮された第1の溶液と、前記第2の室に希釈された誘導溶液とを形成するように構成される半透過性膜システム
    を備える第1の順浸透ユニットと、
    前記第1の順浸透ユニットと流体連通し、前記希釈された誘導溶液を前記濃縮された誘導溶液と溶媒流れとに分離するように構成される分離システムであって、
    前記希釈された誘導溶液を前記第1の順浸透ユニットから受け入れるための、前記第1の順浸透ユニットの前記第2の室の出口に流体連結される入口、及び、
    前記濃縮された誘導溶液を前記第1の順浸透ユニットに導入するための、前記第1の順浸透ユニットの前記第2の室に流体連結される出口
    を備える分離システムと、
    前記第1の順浸透ユニットと流体連通する第2の順浸透ユニットであって、
    前記第1の順浸透ユニットの前記第1の室の出口に流体連結される入口を有し、前記第1の順浸透ユニットから前記さらに濃縮された第1の溶液を受け入れるように構成される第1の室、
    供給溶液の供給源に流体連結される入口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、溶媒を前記供給溶液から浸透圧的に分離することで、前記第1の室の前記濃縮された第1の溶液を希釈し、前記第2の室の前記供給溶液を濃縮するように構成される半透過性膜システム
    を備える第2の順浸透ユニットと
    を備えるシステム。
  21. 前記第2の順浸透ユニットが圧力遅延浸透ユニットである、請求項20に記載のシステム。
  22. 前記第2の順浸透ユニットの前記第1の室と流体連通し、前記希釈された第1の溶液を受け入れるように構成されるタービンをさらに備える、請求項21に記載のシステム。
  23. 前記逆浸透ユニット及び前記第2の順浸透ユニットと流体連通し、前記希釈された第1の溶液を、前記第2の順浸透ユニットの前記第1の室の前記出口から前記逆浸透ユニットの前記第1の室の前記入口に戻すように構成されるバイパスシステムをさらに備える、請求項20に記載のシステム。
  24. 前記供給溶液が廃水流出の流れを含む、請求項20に記載のシステム。
  25. 第1の溶液から溶媒を浸透抽出するためのシステムにおいて、
    前記第1の溶液を条件付けるための選択膜ユニットであって、
    前記第1の溶液の供給源に流体連結される入口を有する第1の室、
    第2の溶液の供給源に流体連結される入口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、少なくとも前記第1の溶液内の特定のイオンを前記第1の溶液から前記第2の溶液に通すことが選択的にできるように構成される選択膜
    を備える選択膜ユニットと、
    前記選択膜ユニットと流体連通する順浸透ユニットであって、
    前記条件付けられた第1の溶液を受け入れるために、前記第1の溶液の前記供給源又は前記選択膜ユニットの前記第1の室の出口の少なくとも一方と流体連結される入口を有する第1の室、
    濃縮された誘導溶液の供給源に流体連結される入口を有する第2の室、及び、
    前記第1の室を前記第2の室から分離し、前記溶媒を前記第1の溶液から浸透圧的に分離することで、前記第1の室に前記第2の溶液の前記供給源と、前記第2の室に希釈された誘導溶液とを形成するように構成される半透過性膜システム
    を備える順浸透ユニットと、
    前記順浸透ユニットと流体連通し、前記希釈された誘導溶液を前記濃縮された誘導溶液と溶媒流れとに分離するように構成される分離システムであって、
    前記希釈された誘導溶液を前記順浸透ユニットから受け入れるための、前記順浸透ユニットの前記第2の室の出口に流体連結される入口、及び、
    前記濃縮された誘導溶液を前記順浸透ユニットに導入するための、前記順浸透ユニットの前記第2の室に流体連結される出口
    を備える分離システムと、
    前記順浸透ユニットの前記第1の室、前記選択膜ユニットの前記第2の室、及び前記第2の溶液の代替供給源と流体連通し、前記第2の溶液を、前記順浸透ユニットの前記第1の室又は前記代替供給源のいずれかから前記選択膜ユニットの前記第2の室へ導くように構成される弁構成と
    を備えるシステム。
  26. 前記第1の溶液の前記供給源、前記選択膜ユニット、及び前記順浸透ユニットと流体連通し、前記第1の溶液を、前記選択膜ユニット若しくは前記順浸透ユニットのいずれかへ導くか、又は、前記条件付けられた第1の溶液を前記順浸透ユニットへ導くように構成される第2の弁構成をさらに備える、請求項25に記載のシステム。
  27. 前記選択膜は陽イオン選択膜である、請求項25に記載のシステム。
JP2015557032A 2013-02-08 2014-02-05 浸透分離システム及び方法 Pending JP2016506867A (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201361762385P 2013-02-08 2013-02-08
US61/762,385 2013-02-08
US201361887076P 2013-10-04 2013-10-04
US61/887,076 2013-10-04
US201361900095P 2013-11-05 2013-11-05
US61/900,095 2013-11-05
US201361904882P 2013-11-15 2013-11-15
US61/904,882 2013-11-15
PCT/US2014/014914 WO2014124034A1 (en) 2013-02-08 2014-02-05 Osmotic separation systems and methods

Publications (1)

Publication Number Publication Date
JP2016506867A true JP2016506867A (ja) 2016-03-07

Family

ID=51296749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015557032A Pending JP2016506867A (ja) 2013-02-08 2014-02-05 浸透分離システム及び方法

Country Status (14)

Country Link
US (3) US20140224718A1 (ja)
EP (1) EP2953707A4 (ja)
JP (1) JP2016506867A (ja)
KR (1) KR20150114507A (ja)
CN (2) CN105073229B (ja)
AU (1) AU2014215005B2 (ja)
BR (1) BR112015019057A2 (ja)
CA (1) CA2899176A1 (ja)
CL (1) CL2015002206A1 (ja)
IL (1) IL240143A0 (ja)
MX (1) MX2015010228A (ja)
PE (1) PE20151277A1 (ja)
SG (1) SG11201505935WA (ja)
WO (1) WO2014124034A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023933A (ja) * 2016-08-10 2018-02-15 株式会社神鋼環境ソリューション 水処理装置、及び、水処理方法
JP2019107575A (ja) * 2017-12-15 2019-07-04 ダイセン・メンブレン・システムズ株式会社 ろ過処理装置とその運転方法
JP2019126767A (ja) * 2018-01-24 2019-08-01 ダイセン・メンブレン・システムズ株式会社 樹脂成分を含む汚染水用のろ過処理装置並びにその運転方法
JP2020011227A (ja) * 2018-07-20 2020-01-23 ベニット エム カンパニー リミテッド 正浸透性能が改善されたメンブレン装置及びそれを用いる溶液分離方法
JP7421496B2 (ja) 2018-12-21 2024-01-24 国立大学法人高知大学 排水処理装置及び排水処理方法
JP7462460B2 (ja) 2020-04-06 2024-04-05 美浜株式会社 濃縮装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016025716A1 (en) * 2014-08-15 2016-02-18 Oasys Water, Inc. Osmotically driven membrane processes and systems and methods for draw solute recovery
WO2016030939A1 (ja) * 2014-08-25 2016-03-03 三菱重工業株式会社 水処理装置、及びその運転方法
WO2016057764A1 (en) * 2014-10-10 2016-04-14 Oasys Water, Inc. Osmotic separation systems and methods
WO2016160810A1 (en) * 2015-03-30 2016-10-06 Oasys Water, Inc. Osmotic separation systems and methods
US9206060B1 (en) 2015-05-22 2015-12-08 Basel Abusharkh Method for purifying liquids
US9427705B1 (en) 2015-05-22 2016-08-30 Basel Abusharkh Method of solvent recovery from a dilute solution
ES2747304T3 (es) * 2015-08-14 2020-03-10 Fluvicon Gmbh Purificación de líquidos mediante ósmosis forzada, intercambio iónico y reconcentración
WO2018028839A1 (en) * 2016-08-12 2018-02-15 Fluvicon Gmbh Fluid purification using forward osmosis, ion exchange, and re-concentration
KR101690977B1 (ko) * 2015-11-30 2016-12-29 한국기계연구원 다단 정삼투 공정을 이용한 담수화 장치 및 담수화 방법
US11198097B2 (en) * 2016-02-02 2021-12-14 Trevi Systems Inc. Osmotic pressure assisted reverse osmosis process and method of using the same
EP3426607A4 (en) * 2016-03-09 2019-10-16 Enrgistream Pty Ltd METHOD AND SYSTEM FOR TREATING WASTEWATER AND GENERATING ELECTRICITY
US9604178B1 (en) * 2016-04-17 2017-03-28 Upen Jayant BHARWADA Integrated osmosis systems and methods
EP4166221A3 (en) * 2016-06-06 2023-07-12 Battelle Memorial Institute Cross current staged reverse osmosis
US20190185350A1 (en) * 2016-08-04 2019-06-20 Oasys Water LLC Systems and methods for improving performance of forward osmosis systems
US11802261B2 (en) 2017-04-24 2023-10-31 Porifera, Inc. System and method for producing beer/hard cider concentrate
WO2019002065A1 (en) * 2017-06-28 2019-01-03 Gambro Lundia Ab SYSTEM AND METHOD FOR RENAL REPLACEMENT THERAPY
CA3084619A1 (en) * 2017-12-07 2019-06-13 Coors Brewing Company Method and system for producing ultra-high gravity alcoholic beverages
CA3106280A1 (en) 2018-07-20 2020-01-23 Porifera, Inc. Osmosis modules having recirculation loops
WO2020041542A1 (en) * 2018-08-22 2020-02-27 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
EP3517508A1 (en) * 2018-09-21 2019-07-31 SUEZ Groupe Zero liquid discharge treatment process for recovering water from a contaminated liquid effluent for its subsequent reuse
WO2021030205A1 (en) * 2019-08-09 2021-02-18 Trevi Systems, Inc. Stackable forward osmosis membrane vessel with side ports
WO2021072345A1 (en) * 2019-10-11 2021-04-15 Massachusetts Institute Of Technology Deformation-enhanced cleaning of fouled membranes
US10940439B1 (en) * 2019-12-10 2021-03-09 Kuwait Institute For Scientific Research High water recovery hybrid membrane system for desalination and brine concentration
KR102423788B1 (ko) * 2020-04-29 2022-07-22 지에스건설 주식회사 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
CN111921381B (zh) * 2020-09-17 2020-12-22 山东龙安泰环保科技有限公司 一种用于电渗析器阴阳极的降温装置
EP4247522A1 (en) 2020-11-17 2023-09-27 Gradiant Corporation Osmotic methods and systems involving energy recovery
CN114956274B (zh) * 2022-06-13 2023-07-25 西安交通大学 一种电化学除垢-核晶造粒耦合工艺处理电厂循环排污水的一体化反应器及其去除方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521306A (ja) * 2005-12-22 2009-06-04 スタットクラフト ディベロップメント エーエス 半透性特性を有する膜に対してメンテナンスを実行する方法及びシステム
US20120267306A1 (en) * 2009-10-30 2012-10-25 Oasys Water, Inc. Osmotic separation systems and methods
US20120285886A1 (en) * 2009-11-25 2012-11-15 I.D.E. Technologies Ltd. Reciprocal enhancement of reverse osmosis and forward osmosis
JP2012250200A (ja) * 2011-06-06 2012-12-20 Hitachi Ltd 正浸透膜を用いた海水淡水化システム

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470093A (en) 1966-11-09 1969-09-30 Hydrocarbon Research Inc Osmotic purification of solutions
IL101906A0 (en) 1992-05-18 1992-12-30 Yissum Res Dev Co Extraction of electrolytes from aqueous solutions
GB9210980D0 (en) 1992-05-22 1992-07-08 Dow Danmark Cassette membrane system and method of use for low pressure separations
US5695643A (en) 1993-04-30 1997-12-09 Aquatech Services, Inc. Process for brine disposal
WO1999039799A1 (en) 1998-02-09 1999-08-12 Mcginnis Robert L Osmotic desalinization process
EP1140330B1 (en) 1998-11-23 2005-04-06 Zenon Environmental Inc. Water filtration using immersed membranes
AU2002247049A1 (en) 2001-02-01 2002-08-12 Yale University Osmotic desalination process
GB0317839D0 (en) 2003-07-30 2003-09-03 Univ Surrey Solvent removal process
CA2547503C (en) 2003-11-26 2012-03-13 Aquatech International Corporation Method for production of high pressure steam from produced water
US20060011544A1 (en) * 2004-03-16 2006-01-19 Sunity Sharma Membrane purification system
GB0413110D0 (en) 2004-06-11 2004-07-14 Univ Surrey Cooling apparatus
GB0416310D0 (en) * 2004-07-21 2004-08-25 Bp Exploration Operating Method
US8083942B2 (en) * 2004-12-06 2011-12-27 Board of Regents of the Nevada System of Higher Education, on Behalf of the Universary of Nevada, Reno Systems and methods for purification of liquids
US20060157410A1 (en) * 2005-01-14 2006-07-20 Saline Water Conversion Corporation (Swcc) Fully integrated NF-thermal seawater desalination process and equipment
WO2007147013A1 (en) * 2006-06-13 2007-12-21 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Combined membrane-distillation-forward-osmosis systems and methods of use
CN101108760B (zh) * 2006-07-19 2010-05-12 厦门中联环环保工程有限公司 再生水连续微滤处理工艺
GB0621247D0 (en) 2006-10-25 2006-12-06 Univ Surrey Separation process
ES2562603T3 (es) 2006-11-09 2016-03-07 Yale University Motor de calor osmótico
US7981196B2 (en) 2007-06-04 2011-07-19 Posco Apparatus and method for recovering carbon dioxide from flue gas using ammonia water
NL1035431C2 (nl) * 2007-06-29 2009-11-04 Water En Energiebedrijf Aruba Een innovatief hybride Osmose en Reverse Osmosis (ORO) ontzoutingsproces voor de productie van drinkwater.
US20100192575A1 (en) * 2007-09-20 2010-08-05 Abdulsalam Al-Mayahi Process and systems
FR2927622B1 (fr) 2008-02-14 2014-08-01 Otv Sa Procede de traitement d'eau par systeme membranaire de type nanofiltration ou osmose inverse permettant des taux de conversion eleves grace a l'elimination de la matiere organique.
MX338976B (es) 2008-06-20 2016-05-06 Univ Yale Procesos de separacion por osmosis directa.
CN102583803B (zh) * 2008-11-28 2013-10-16 株式会社神钢环境舒立净 淡水生成方法、淡水生成装置、海水淡化方法和海水淡化装置
BRPI0923152A2 (pt) 2008-12-03 2016-02-10 Oasys Water Inc armazenamento em rede osmótica em escala de utilidade pública
GB0822362D0 (en) * 2008-12-08 2009-01-14 Surrey Aquatechnology Ltd Improved solvent removal
GB0822359D0 (en) 2008-12-08 2009-01-14 Univ Surrey Solvent separation
US8021553B2 (en) * 2008-12-18 2011-09-20 Nrgtek, Inc. Systems and methods for forward osmosis fluid purification using cloud point extraction
WO2010088170A2 (en) 2009-01-29 2010-08-05 The Board Of Trustees Of The University Of Illinois Solvent removal and recovery from inorganic and organic solutions
US20120118826A1 (en) 2009-07-09 2012-05-17 I.D.E. Technologies Ltd. Desalination system
US8545701B2 (en) * 2009-08-18 2013-10-01 Maher Isaac Kelada Induced symbiotic osmosis [ISO] for salinity power generation
US9044711B2 (en) 2009-10-28 2015-06-02 Oasys Water, Inc. Osmotically driven membrane processes and systems and methods for draw solute recovery
MX2012004975A (es) 2009-10-28 2012-07-20 Oasys Water Inc Sistemas y metodos de separacion osmotica.
GB0918916D0 (en) 2009-10-28 2009-12-16 Surrey Aquatechnology Ltd Thermal desalination
US20110168381A1 (en) 2009-12-11 2011-07-14 Hydration Systems, Llc Osmotic Water Transfer System and Related Processes
US20110155666A1 (en) 2009-12-30 2011-06-30 Chevron U.S.A. Inc. Method and system using hybrid forward osmosis-nanofiltration (h-fonf) employing polyvalent ions in a draw solution for treating produced water
WO2011086346A1 (en) * 2010-01-14 2011-07-21 Bp Exploration Operating Company Limited Process of supplying water of controlled salinity
KR101200838B1 (ko) * 2010-07-14 2012-11-13 한국기계연구원 염도차를 이용한 삼투발전 및 해수의 담수화를 위한 장치 및 방법
EP2607320A4 (en) * 2010-08-17 2014-05-14 Toray Industries APPARATUS FOR PRODUCING FRESHWATER AND METHOD OF USE THEREOF
DE102010050892A1 (de) 2010-11-10 2012-04-12 Aaa Water Technologies Ag Separationssystem
US20120174639A1 (en) 2011-01-11 2012-07-12 Herron John R Food Waste Concentration System and Related Processes
WO2012102677A1 (en) 2011-01-24 2012-08-02 Nano-Mem Pte. Ltd. Method and apparatus for recovering water from a source water
JP5575015B2 (ja) 2011-03-07 2014-08-20 株式会社日立製作所 淡水製造システム
WO2012138502A1 (en) 2011-04-06 2012-10-11 Ysawyer John E Treatment of waters with multiple contaminants
US9315396B2 (en) 2011-04-06 2016-04-19 Water Conservation Technology International, Inc. Water conservation methods combining osmotic membrane processed water for subsequent efficient use in cooling tower applications
CN105439246A (zh) 2011-04-25 2016-03-30 Oasys水有限公司 渗透分离系统和方法
CN102284249A (zh) * 2011-06-07 2011-12-21 天津工业大学 一种污染膜的清洗方法和装置
WO2013003607A2 (en) 2011-06-28 2013-01-03 King Abdullah University Of Science And Technology Apparatus, system, and method for forward osmosis in water reuse
JP5941629B2 (ja) 2011-07-01 2016-06-29 株式会社日立製作所 水浄化システム及び水浄化方法
US8491795B2 (en) 2011-09-01 2013-07-23 Kenneth Yat-Yi Chen Conversion of seawater to drinking water at room temperature
US20130186822A1 (en) 2012-01-20 2013-07-25 Hydration Systems, Llc Low energy forward osmosis membrane water processing system
JP2013158732A (ja) 2012-02-07 2013-08-19 Hitachi Plant Technologies Ltd 逆浸透膜モジュールの洗浄装置
US9708870B2 (en) 2012-02-22 2017-07-18 Richard Paul Posa System and method for treating produced, desalted, and flow back water
WO2013126895A1 (en) 2012-02-23 2013-08-29 Hydration Systems, Llc Forward osmosis with an organic osmolyte for cooling towers
CN202440388U (zh) * 2012-03-06 2012-09-19 北京科泰兴达高新技术有限公司 一种饮用水净化设备
KR101319411B1 (ko) 2012-03-12 2013-10-22 지에스건설 주식회사 Fo/ro 하이브리드 해수 담수화 장치 및 방법
JP2013202456A (ja) 2012-03-27 2013-10-07 Kobelco Eco-Solutions Co Ltd 淡水の製造方法及び淡水の製造装置
JP2014065008A (ja) 2012-09-26 2014-04-17 Kubota Corp 水処理方法および水処理システム
US20140124443A1 (en) 2012-11-07 2014-05-08 Robert L. McGinnis Systems and Methods for Integrated Heat Recovery in Thermally Separable Draw Solute Recycling in Osmotically Driven Membrane Processes
PE20150972A1 (es) 2012-11-16 2015-07-09 Oasys Water Inc Soluciones de extraccion y recuperacion de soluto de extraccion para procesos de membrana impulsada osmoticamente
US9919936B2 (en) 2012-11-16 2018-03-20 Samsung Electronics Co., Ltd. Water recovery method
US20140151300A1 (en) 2012-12-05 2014-06-05 Water & Power Technologies, Inc. Water treatment process for high salinity produced water
WO2014110425A2 (en) 2013-01-10 2014-07-17 Cath Tzahi Y Water reuse system and method
WO2014123339A1 (ko) 2013-02-06 2014-08-14 한국과학기술원 무삼투압차 상태에서 유압-막공정 법으로 용질 함유 수용액을 고농도로 농축하는 방법
WO2014124443A1 (en) 2013-02-11 2014-08-14 Inkling Systems, Inc. Creating and editing digital content works
US9617173B2 (en) 2013-03-04 2017-04-11 Ecolab Usa Inc. Method for treatment and reuse of used water streams
EP2969145A4 (en) 2013-03-15 2017-01-25 Porifera Inc. Advancements in osmotically driven membrane systems including multi-stage purification
WO2015009554A1 (en) 2013-07-15 2015-01-22 Hydration Systems, Llc Method and system for generating strong brines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521306A (ja) * 2005-12-22 2009-06-04 スタットクラフト ディベロップメント エーエス 半透性特性を有する膜に対してメンテナンスを実行する方法及びシステム
US20120267306A1 (en) * 2009-10-30 2012-10-25 Oasys Water, Inc. Osmotic separation systems and methods
US20120285886A1 (en) * 2009-11-25 2012-11-15 I.D.E. Technologies Ltd. Reciprocal enhancement of reverse osmosis and forward osmosis
JP2012250200A (ja) * 2011-06-06 2012-12-20 Hitachi Ltd 正浸透膜を用いた海水淡水化システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023933A (ja) * 2016-08-10 2018-02-15 株式会社神鋼環境ソリューション 水処理装置、及び、水処理方法
JP2019107575A (ja) * 2017-12-15 2019-07-04 ダイセン・メンブレン・システムズ株式会社 ろ過処理装置とその運転方法
JP7034697B2 (ja) 2017-12-15 2022-03-14 ダイセン・メンブレン・システムズ株式会社 ろ過処理装置とその運転方法
JP2019126767A (ja) * 2018-01-24 2019-08-01 ダイセン・メンブレン・システムズ株式会社 樹脂成分を含む汚染水用のろ過処理装置並びにその運転方法
JP7034735B2 (ja) 2018-01-24 2022-03-14 ダイセン・メンブレン・システムズ株式会社 樹脂成分を含む汚染水用のろ過処理装置並びにその運転方法
JP2020011227A (ja) * 2018-07-20 2020-01-23 ベニット エム カンパニー リミテッド 正浸透性能が改善されたメンブレン装置及びそれを用いる溶液分離方法
JP7421496B2 (ja) 2018-12-21 2024-01-24 国立大学法人高知大学 排水処理装置及び排水処理方法
JP7462460B2 (ja) 2020-04-06 2024-04-05 美浜株式会社 濃縮装置

Also Published As

Publication number Publication date
CL2015002206A1 (es) 2015-11-27
AU2014215005A1 (en) 2015-08-13
EP2953707A1 (en) 2015-12-16
CN105073229B (zh) 2017-04-05
EP2953707A4 (en) 2018-01-17
BR112015019057A2 (pt) 2017-07-18
CN105073229A (zh) 2015-11-18
CN107261847A (zh) 2017-10-20
PE20151277A1 (es) 2015-09-23
SG11201505935WA (en) 2015-08-28
CA2899176A1 (en) 2014-08-14
KR20150114507A (ko) 2015-10-12
US20140224716A1 (en) 2014-08-14
IL240143A0 (en) 2015-09-24
AU2014215005B2 (en) 2018-11-01
US20180155218A1 (en) 2018-06-07
US10427957B2 (en) 2019-10-01
WO2014124034A1 (en) 2014-08-14
US20140224718A1 (en) 2014-08-14
MX2015010228A (es) 2015-11-30
WO2014124034A8 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
US10427957B2 (en) Osmotic separation systems and methods
Damtie et al. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review
TWI570064B (zh) 海水脫鹽方法
JP5941629B2 (ja) 水浄化システム及び水浄化方法
WO2018150980A1 (ja) 逆浸透処理装置及び逆浸透処理方法
AU2015244268B2 (en) Osmotic separation systems and methods
JP6189205B2 (ja) 濃縮装置のスケール検知装置及び方法、水の再生処理システム
WO2016057764A1 (en) Osmotic separation systems and methods
KR102423788B1 (ko) 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
KR20170098249A (ko) 삼투압 구동 멤브레인 시스템 및 공정의 염수 농도 증강
KR101817685B1 (ko) 압력지연삼투 기술을 이용한 해수담수화 시스템
AU2017305436B2 (en) Systems and methods for improving performance of forward osmosis systems
WO2016160810A1 (en) Osmotic separation systems and methods
Liu et al. Semi batch dual-pass nanofiltration as scaling-controlled pretreatment for seawater purification and concentration with high recovery rate
WO2016035175A1 (ja) 水処理装置及び水処理装置の運転方法
KR20160054230A (ko) 압력지연삼투 기술을 이용한 해수담수화 시스템
JP2015093255A (ja) 造水システムおよび造水方法
Jeong et al. Evaluation of FO membrane performance for each type of pre-treatment from WWTP secondary effluents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180626