WO2014123339A1 - 무삼투압차 상태에서 유압-막공정 법으로 용질 함유 수용액을 고농도로 농축하는 방법 - Google Patents

무삼투압차 상태에서 유압-막공정 법으로 용질 함유 수용액을 고농도로 농축하는 방법 Download PDF

Info

Publication number
WO2014123339A1
WO2014123339A1 PCT/KR2014/000952 KR2014000952W WO2014123339A1 WO 2014123339 A1 WO2014123339 A1 WO 2014123339A1 KR 2014000952 W KR2014000952 W KR 2014000952W WO 2014123339 A1 WO2014123339 A1 WO 2014123339A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
osmotic pressure
chamber
concentrated
solute
Prior art date
Application number
PCT/KR2014/000952
Other languages
English (en)
French (fr)
Inventor
장호남
정권수
박권우
김유천
서준현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US14/764,975 priority Critical patent/US9950297B2/en
Publication of WO2014123339A1 publication Critical patent/WO2014123339A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/08Ethanol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2669Distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/14Batch-systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/08Use of membrane modules of different kinds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a method for concentrating an aqueous solution at low pressure in an osmotic pressure difference state, and more particularly, to a method for concentrating a solute-containing aqueous solution to be concentrated at low pressure in an osmotic pressure state.
  • the substances that humanity needs are in the form of solids, liquids, and gases in the ocean, land, and atmosphere, and exist as independent molecules or compounds.
  • the desired material can be obtained through catalysts, chemical reactions, bioreactions and the like.
  • salt the most commonly encountered substance, is present in seawater at 3.0% (weight gain).
  • Salt in seawater is 30 g of salt and 1000 g of water in 1000 g of solution. If only 500g of water is removed, 30g of salt and 470g of water will remain, and if only 250g of water is removed, 220g of water and 30g of salt will remain, and if 125g of water is removed again, 95g of water and 30g of salt (28%) will remain.
  • Subsequent removal of 62.5 g of water leaves 22.5 g of water and 30 g of salt, with the salt content being 57.1% (wt).
  • the maximum solubility of salt is 26.4% (359g / 1000g of water), so the water continues to be removed, but before it reaches 22.5g of water and 30g of salt, salt begins to precipitate in crystal form.
  • Organic acids are decomposed anaerobic organisms such as food waste, anaerobic, the polymer becomes a single molecule, and then through a mixture of organic acids (acetic acid, propyl acid, butyric acid) to form methane gas and carbon dioxide gas.
  • concentration of the organic acid obtained by fermentation is known as about 35g / L (45g / L, sodium salt).
  • biofuels bio alcohol, biodiesel
  • further enrichment is required.
  • the concentrated organic acid is further concentrated by using calcium hydroxide (Ca (OH) 2 ) to prepare a calcium-organic acid mixture, and then applying heat.
  • the addition of sulfuric acid (H 2 SO 4 ) allows calcium to be precipitated in the form of salts with calcium sulfate (CaSO 4 ).
  • Organic acids can be obtained by fermentation of organic materials.According to the fermentation method and raw materials, organic acids having the ratio of acetic acid, propyl acid and butyric acid are 8: 1: 1 6: 1: 3 or 5: 1: 5. can do.
  • Bioethanol is produced from 6 to 10% of corn starch and sugarcane as raw materials.
  • Metha (1982) concentrated a solution of 7.6% ethanol at 60 atm to 20 to 30% by reverse osmosis and then distilled it to 95%. Concentration up to 9% and 99.5% using azeotropic distillation compared the economics of using ethanol for fuel and distillation from the beginning.
  • the energy required for the concentration of salt, volatile organic acid (VFA) and ethanol is as follows.
  • the energy evaporated to 30 ° C to 100 ° C water vapor per 1 m 3 is 2.7 ⁇ 10 9 joules, 1 kwh 3.6 ⁇ 10 Since it is 6 joules, the energy is 730 kwh. Since thermal energy can be used many times, MSF requires about 25 kwh. (http://en.wikipedia.org/wiki/Multi-Stage_Flash)accessed on November 10, 2012).
  • the membrane method is applied to the forward osmosis method in addition to the reverse osmosis method has been widely used industrially.
  • the flux of the solvent (water) and the movement of the solutes (salt, VFA, ethanol) are as follows.
  • Jw is the water flux
  • Lp is the water permeation coefficient
  • ⁇ P is the hydraulic pressure difference between the feed chamber and the draw chamber
  • is the osmotic pressure difference between the feed chamber and the draw chamber.
  • the Js is divided into one due to the difference in osmotic pressure and one due to the flux of the solute.
  • the solute When there is no Jw in Equation (2), the solute may move to the feed chamber by the draw chamber due to the osmotic pressure difference.
  • C means concentration
  • R means gas constant
  • T means temperature
  • Vsp is the volume of 1 mole of solvent when the solute concentration is 0
  • is the activity coefficient of the solvent
  • X is the mole fraction of the solute.
  • the salt When 30 g / L of solute is dissolved in water, the salt has an osmotic pressure of 25.4 bar, albumin 0.01 bar and particles 1.2x10 -12 bar.
  • Reverse osmosis and forward osmosis have the advantage of saving energy by using membranes, but as the concentration progresses, the osmotic pressure in the feed chamber increases, making it impossible to concentrate the feed solution or increase the utilization of the feed solution (Loeb, S, Loeb-Sourirajan Membrane, How it Came About Synthetic Membranes, ACS Symposium Series, 153, 1, 1-9, 1981; Loeb, S., J. Membr. Sci, 1, 49, 1976).
  • the forward osmosis method uses a material with a high osmotic pressure in the draw chamber so that only water flows from the feed chamber to the draw chamber by ⁇ difference rather than ⁇ P (McCutcheon JR, McGuinnis RL, Elimelech RL, Desalination, 174, 1-11, 2005).
  • the forward osmosis system has an advantage of increasing the osmotic pressure of the draw chamber as much as possible, but as the amount of water is increased, ⁇ becomes smaller and smaller, so that the permeation amount gradually decreases.
  • the induction solution can be regenerated, it is not economical, and as the concentration of the induction solution in the draw chamber increases, the solute of the induction solution is despread into the feed chamber by the membrane diffusion action.
  • the present inventors have made efforts to solve the above problems, and as a result, the solute-containing aqueous solution to be concentrated is introduced into a feed chamber of a concentrator including a feed chamber and a draw chamber partitioned into a reverse osmosis membrane and / or an forward osmosis membrane.
  • the feed solution is concentrated in the car by hydraulic pressure ( ⁇ P) alone, so that the diluted draw solution has a low osmotic pressure, so that pure water can be recovered by reverse osmosis. Finally, energy consumption and operation is maximized while maximizing the concentration of the feed solution. After confirming that the cost can be minimized, the present invention has been completed.
  • the present invention is (a) the first step of concentrating the concentrated solute-containing aqueous solution using reverse osmosis, (b) reverse osmosis membrane or forward osmosis of the first concentrated solute-containing aqueous solution Into the second osmotic pressure concentrator comprising a feed chamber and a draw chamber partitioned by the membrane to the secondary concentration and (c) recovering the secondary concentrated solute-containing aqueous solution, the second concentrated solute-containing aqueous solution It provides a method for concentrating an aqueous solution at low pressure in a non-osmotic pressure difference comprising the step of recycling a portion to the draw chamber.
  • the step of concentrating the first concentrated solute-containing aqueous solution into the osmotic pressure difference concentrator (i) transfers the primary concentrated aqueous solution to the feed chamber of the osmotic pressure difference concentrator, the feed Injecting a solution having an osmotic pressure that is the same as that of the aqueous solution transferred to the chamber or in a range that does not affect ⁇ P in the formula (1), to form a non-osmotic state between the feed chamber and the draw chamber; And (ii) concentrating the aqueous solution by transferring the water of the aqueous solution to the draw chamber by applying a pressure of 1 to 5 atm for the forward osmosis membrane and 5 to 200 atm for the reverse osmosis membrane to the feed chamber in a non-osmotic state. do.
  • the method of concentrating the aqueous solution at low pressure in a non-osmotic pressure difference state transfers some of the secondary concentrated solute-containing aqueous solution (eg, 1 to 99%) to the draw chamber to maintain the same osmotic pressure as the feed chamber. Then, it is transferred back to the reverse osmosis separator, the water in the aqueous solution is discharged to the outside, and the concentrated aqueous solution is characterized in that it further comprises the step of transferring to the no osmotic pressure concentrator.
  • the solute-containing aqueous solution to be concentrated is at least one selected from the group consisting of sea water, brackish water, volatile organic acid salts, fermentation products, and low molecular weight substances having similar characteristics. It is done.
  • the solution introduced into the draw chamber to form a low / low osmotic state between the feed chamber and the draw chamber (1) using a portion of the concentrated aqueous solution transferred to the feed chamber or (2) the ( It is selected from the group consisting of 1) the aqueous solution of 1) to further increase the osmotic pressure, but can be easily separated or added to the liquid / solid, or (3) containing a component such as feed solution and osmotic pressure. do.
  • the volume ratio of the feed chamber and the draw chamber of the osmotic pressure difference concentrator is characterized in that 100 ⁇ 1: 1.
  • the concentration using the osmotic pressure difference concentrator is characterized in that it is carried out in a batch or continuous method.
  • the feed chamber and the draw chamber is characterized in that it is composed of multiple stages.
  • the pH of the aqueous solution is 3-11
  • the temperature is characterized in that the temperature at which the water maintains a liquid state.
  • the method for independently recovering the solute and water from the aqueous solution further concentrated in the osmotic pressure difference concentrator is multistage evaporation, distillation, pervaporation, pyrolysis, sulfuric acid and ammonia, natrium, It is characterized in that it is selected from the group consisting of calcium salt precipitation.
  • FIG. 1 is a conceptual diagram for a method for concentrating an aqueous solution hydraulically in a zero / low osmotic pressure difference state of the present invention.
  • FIG. 2 is a diagram illustrating a material resin of a method for concentrating an aqueous NaCl solution in a hydraulic / low osmotic pressure difference state according to an embodiment of the present invention.
  • FIG 3 is a diagram illustrating a method for maintaining the osmotic pressure difference in the draw chamber of the osmotic pressure difference concentrator according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a material resin of a method for concentrating an aqueous mixed organic acid solution hydraulically in a zero / low osmotic pressure difference state according to an embodiment of the present invention.
  • FIG. 5 (a) is an explanatory diagram of a device for comparing the osmotic pressure in the solute solution for measuring the static equilibrium according to an embodiment of the present invention
  • A static equilibrium by osmotic pressure in the feed chamber and draw chamber
  • B photographs experimenting with the static equilibrium by osmotic pressure
  • (b) are the flux of the membrane in a high concentration solute solution using a lab-scale flow-recirculaion set according to an embodiment of the present invention It is explanatory drawing about the apparatus to measure.
  • FIG. 6A is an explanatory diagram of an insertionless pressure differential batch system including a high pressure feed chamber A and an atmospheric pressure draw chamber B.
  • FIG. (B) is the specific design drawing of A and B.
  • the water is discharged to the outside of the various types of solute-containing aqueous solution to be concentrated using a reverse osmosis separator, and the concentrated aqueous solution includes a feed chamber and a draw chamber partitioned by a reverse osmosis membrane or an forward osmosis membrane.
  • FIG. 1 is a conceptual diagram for a method for concentrating an aqueous solution hydraulically in a zero / low osmotic pressure difference state of the present invention.
  • the concept of non-low osmotic feed liquid concentration includes a pure regeneration process by reverse osmosis and a low / low osmotic pressure concentration process, and the concentrated solution in the low / low osmotic pressure concentration process is The solute can be recovered by removing water in the final water removal process. At this time, a small amount of water is also recovered to recover all water and solutes contained in the solution.
  • FIG. 2 is a diagram illustrating a mass resin of a method for concentrating an aqueous solution at a low pressure in an osmotic pressure difference state according to an embodiment of the present invention.
  • the influent consists of 970 g of water and 30 g of salt, and out of the area partitioned by dotted lines is 30 g of salt and 970 g of water, in which the total amount of solute and solvent introduced coincides with the total amount of outflow. do.
  • RO-1 reverse osmosis separator
  • RO-2 reverse osmosis separator
  • MSF final solids recovery device
  • the concentration of the final concentrated water concentrated in the osmotic pressure difference concentrator was 24% with 33 g NaCl and 104 g of water, of which 90.9% was recovered and 9.1% was recycled to have the same osmotic pressure as the feed chamber in the draw chamber. That is, the final concentrated water is diluted in the permeated water of the feed chamber permeated by reverse osmosis in the draw chamber, and is transferred to RO-2 (reverse osmosis separator) with 3 g of salt and 422 g of water to regenerate 375 g of water, and concentrated to RO -1 (reverse osmosis separator) is joined to the same concentration as the influent and fed back into the osmotic pressure concentrator.
  • RO-2 reverse osmosis separator
  • the concentration of influent flowing into the osmotic pressure difference concentrator is 6%, the effluent is 24%, and the concentration of osmotic pressure is 4 times concentrated in the osmotic pressure concentrator.
  • the calculated osmotic pressure of this saturated concentrate is 120 bar, VFA-Na is less than 100bar, ethanol is 95wt% is about 1865bar, but because of the osmotic pressure difference, it is possible to use 50bar of RO process in general, and ethanol can be operated at low pressure by recirculating concentrated water. This is not necessary.
  • the energy consumption in the seawater desalination process using reverse osmosis can be estimated as follows.
  • the energy consumption in the seawater desalination process using reverse osmosis can be estimated as follows.
  • the osmotic pressure of the feed solution In order to concentrate the aqueous solution at low pressure in the absence of an osmotic pressure difference, the osmotic pressure of the feed solution must be known in advance.
  • the osmotic pressure solution is put in one chamber of the forward osmosis reactor, the solution to be measured is put in the other chamber, and the water is transferred By confirming the direction, the osmotic pressure of the solution to be measured can be confirmed.
  • a VFA solution having a concentration of 3.5 wt% prepared by combining acetic acid, propionic acid, and butyric acid is filled into a feed chamber, and the osmotic pressure of the draw chamber is 5M NaCl (prediction 108). bar, reference Lenntech), after 48 hours, it can be seen that equilibrium is reached.
  • the concentration of the VFA solution in the feed chamber was 14% based on the solvent, and the concentration was increased four times, which is a result of 75% of water moving from the left (1) to the right (2).
  • Theoretical value of the osmotic pressure calculated by Equation (4) of 3.5% aqueous VFA solution is 10 atm and 14% is 40 atm, and 3.5wt% VFA solution (adjust the pH to 8 using NaOH solution)
  • the theoretical value of osmotic pressure calculated by is about 8 atm (Lenntech (http://www.lenntech.com/calculators/activity/activity-coefficient.htm), accessed on Jan 20, 2014).
  • the flux to be measured is difficult to obtain relatively accurate flux due to concentration polarization due to incomplete mixing between both chambers.
  • the fluid recirculation system is equipped with a scale to measure the weight of the feed chamber and the draw chamber, respectively, the fluid movement between the chambers can be measured in real time, and the flux of the membrane according to the concentration change between the chambers can be measured.
  • the fluid recirculation system can be used to measure the initial and final concentrations of the feed chamber to obtain data for scale-up, such as the actual time required for concentration and the membrane area, based on the size and separation of membrane devices. Predict, and in particular, size feed chambers and draw chambers.
  • the present invention in one aspect, (a) using a reverse osmosis to concentrate the solute-containing aqueous solution to the primary concentration, (b) the first concentrated solute-containing aqueous solution is partitioned into a reverse osmosis membrane or forward osmosis membrane Into the second osmotic pressure concentrator including a feed chamber and a draw chamber for secondary concentration and (c) recovering the secondary concentrated solute-containing aqueous solution, a portion of the secondary concentrated solute-containing aqueous solution to the draw chamber It relates to a method for concentrating the aqueous solution at low pressure in a non-osmotic pressure difference comprising the step of recycling to.
  • the step (b) of further concentrating the primary concentrated solute-containing aqueous solution using an osmotic pressure difference concentrator (i) transfers the concentrated aqueous solution to a feed chamber of the osmotic pressure difference concentrator, and Introducing a solution having the same osmotic pressure as the concentrated aqueous solution transferred to the feed chamber into the draw chamber to form an osmotic state between the feed chamber and the draw chamber; And (ii) a pressure of up to 0 to 5 atm for forward osmosis (FO) and 10 to 200 atm for reverse osmosis is applied to the feed chamber at zero osmotic pressure, and the water in the concentrated aqueous solution is drawn. And further concentrating the concentrated aqueous solution by transferring to the chamber.
  • a pressure of up to 0 to 5 atm for forward osmosis (FO) and 10 to 200 atm for reverse osmosis is applied to the feed chamber at zero osmotic pressure, and the water in the
  • the membrane may be broken and lose its function.
  • the high pressure pump is currently used up to 250 atm, but there is a problem in manufacturing the membrane or module that can withstand it. There can be.
  • 1 to 99% of the secondary concentrated solute-containing aqueous solution is preferably used as the predicted value calculated from the material balance and the pressure balance of the example ( Example: 10%) to the draw chamber to maintain the same osmotic pressure as the feed chamber, which is then transferred back to the reverse osmosis separator, after which the water in the aqueous solution is discharged to the outside, and the concentrated aqueous solution is transferred to the osmotic pressure difference concentrator. It may further comprise the step of.
  • the aqueous solution introduced into the draw chamber to maintain the osmotic pressure is the aqueous solution transferred to the feed chamber, methanol, ethanol, ammonia carbamate-containing solution, high osmotic waste solution, calcium chloride-containing liquid and magnesium chloride-containing liquid It may be characterized in that selected from the group consisting of.
  • the aqueous solution of the draw chamber may be transferred to a reverse osmosis separator (RO-1) or another reverse osmosis separator (RO-2) used before the osmotic pressure difference concentration process.
  • RO-1 reverse osmosis separator
  • RO-2 reverse osmosis separator
  • the volume of the draw chamber is less than the volume of the feed chamber, it is preferable to keep the residence time of the aqueous solution short.
  • the volume ratio of the feed chamber and the draw chamber of the osmotic pressure difference concentrator is preferably 1/10 to maintain the same residence time in the feed chamber and the draw chamber. In order to keep time short, it is preferable that it is 1/100, and in order to keep residence time long, it is preferable that it is 1/1.
  • the osmotic pressure difference concentrator according to the present invention may be composed of a plurality. That is, the feed chamber and the draw chamber constituting the osmotic pressure difference concentrator is characterized in that it is composed of a multi-stage.
  • FIG 3 is a diagram illustrating a method of maintaining the osmotic pressure in the draw chamber of the osmotic pressure difference concentrator according to an embodiment of the present invention.
  • V4 and V5 mean the volume of the feed chamber and the draw chamber volume
  • P4 means the total amount of permeate that is permeated without osmotic pressure difference.
  • C4 As the concentration of C4 is increased, the concentration of C4 increases as compared with C3, which is concentrated in the previous osmotic pressure difference concentrator, and increases as the fourth chamber influent flow rate q4 decreases.
  • C4 and C5 are the same concentration, but q5, the fifth chamber influent flow rate, may be 1/10 of q4 after 90% recovery.
  • V5 is set to V4 to equalize the residence time of the fluid. About 1/10 of; (1) V5 / V4 may be set to 1/10 so that the residence time of the fluid in the feed chamber and the draw chamber is the same; (2) V5 / V4 may be 1/100 of v4 to make the draw chamber shorter than the feed chamber. (3) V5 / V4 may be used to make the draw chamber longer.
  • the amount of permeated water P4 that has passed through the membrane is less than the fourth draw chamber influent flow rate q5 and the fourth feed chamber influent flow rate q4. That is, the osmotic pressure of the draw chamber can be kept low or the same as the osmotic pressure of the feed chamber.
  • Another method for maintaining the osmotic pressure in the draw chamber of the osmotic pressure difference concentrator of the present invention is to introduce an osmolyte causing a large osmotic pressure effect to a part of the draw chamber, but this has a problem of regeneration.
  • the reverse osmosis membrane or the forward osmosis membrane partitioning the feed chamber and the draw chamber of the osmotic pressure difference concentrator may be used without particular limitation as long as it does not pass the solute and mainly passes the solvent.
  • the solute means a liquid or solid substance dissolved in water as a solvent.
  • the solute-containing aqueous solution to be concentrated may include sea water, brackish water, cell metabolites, reaction solutions, and the like, and cell metabolites may be cultured cells of animal cells, plant cells, or microorganisms. , A primary product, a secondary product, an in vitro secreted protein, a biotransformation, and the like.
  • reaction solution examples include a reaction solution through a chemical reaction and a reaction solution through an enzyme reaction.
  • the primary products of the microorganisms include organic acids (acetic acid, propionic acid, butyric acid, lactic acid, citric acid, lactic acid, succinic acid, etc.), alcohols (ethanol, butanol, etc.), nucleic acids, amino acids (lysine, tryptophan, etc.), vitamins, polysaccharides, and the like. It may be illustrated, but is not limited thereto.
  • the secondary products of the microorganisms include antibiotics (such as lung nicillin), enzyme inhibitors, physiologically active substances (taxols, etc.), and the in vitro secreted proteins of the microorganisms include enzymes such as amylase and cellulase, insulin, interferon, and single group antibodies.
  • antibiotics such as lung nicillin
  • enzyme inhibitors such as a carboxyl-containing carboxyl-containing carboxyls, etc.
  • the in vitro secreted proteins of the microorganisms include enzymes such as amylase and cellulase, insulin, interferon, and single group antibodies.
  • the biotransformation of the microorganism is a substance produced by using a microorganism or an enzyme, and examples thereof may include steroids, but are not limited thereto.
  • a concentration capable of concentrating ethanol in a reverse osmosis concentrator Is about 20%, and theoretically, it can be concentrated up to 20 ⁇ 100% by the osmotic pressure difference method.
  • membranes that can concentrate ethanol up to 91-100%, such as volatile organic acids (VFA) or salt have not yet been developed.
  • the saturation degree is about 50 to 60 wt%, so it is theoretically possible to concentrate 100%, and also the high solute rejection rate, so that 100% can be concentrated in the absence of osmotic pressure difference.
  • the pH of the aqueous solution is 2-13
  • the temperature is the temperature at which water maintains the liquid (usually 0 to 100 °C, preferably 15 to 50 °C, more preferably 20 to 40 °C) or more Or can be For example, mixtures with other solutes / solvents may deviate from the above temperatures.
  • a concentrated aqueous solution transferred to the feed chamber a solution that can be easily separated after use, and the like may be used. It is preferred to use an aqueous solution of the same composition as the concentrated aqueous solution transferred to the chamber.
  • the concentration using the osmotic pressure difference concentrator may be performed in a batch or continuous manner to maximize the effect.
  • the batch may be performed when there is no flow with both chambers and the external system, and the continuous may be performed when there is a flow with the external system.
  • the feed chamber and the draw chamber is characterized in that it is composed of multiple stages.
  • the method of recovering the solute and the water from the aqueous solution further concentrated in the osmotic pressure difference concentrator can be independently used a multi-stage evaporation method, dialysis evaporation, pyrolysis method, sulfuric acid method, calcium method and the like.
  • the present invention is not limited thereto, and the step of recovering water from the concentrated aqueous solution may include (a) first concentrating the aqueous solution containing the solute to be concentrated using reverse osmosis, and (b) the first concentrated solute.
  • the step of concentrating the secondary aqueous solution containing the aqueous solution containing the feed chamber and the draw chamber partitioned by the membrane and the secondary chamber (c) to recover the secondary concentrated solute-containing aqueous solution, the second concentrated solute Recycling a portion of the aqueous solution to the draw chamber, wherein recovering the solute may be accomplished by (c) the second concentrated Recovering the solute-containing aqueous solution may be in the step of recycling a portion of the secondary concentrated solute-containing aqueous solution to the draw chamber.
  • a sample NaCl aqueous solution was put in a device as shown in FIG. 6 (a), and pressure was applied to measure the amount of the amount transmitted through the RO membrane in the high pressure A chamber as a weight in the B chamber (atmospheric pressure) for a given time.
  • the membrane used in this example is RE2521-TL (Woongjin Chemical Co, Seoul, Korea; http: //www.csmfilter.com) Ltd, which is a thin-film composite type, and the membrane is used in a negatively charged, polyamide, spiral-wound module. It is RO film. Transmission capacity is 1.1m3 / day, and the effective area of 1.1m 2. 99% rejection at 1,500mg / L salt solution, 1.0MPa, maximum pressure is 4.14MPa, maximum flow rate is 1.36m 3 / hr, minimum flow rate (concentrate) is 0.23m 3 / hr. The maximum temperature is 45 ° C. and the pH is 3.0-10.0 and can withstand 2.0-11.0.
  • Example 2 Concentration of VFA-Na Aqueous Solution Using Osmotic Pressure Concentrator
  • Example 1 concentration of NaCl as a sample of volatile fatty acid-Na was performed the following osmotic pressure difference experiment.
  • VFA-Na contained 294.8 g in 1000 g of water, resulting in 22.77 wt%.
  • the molar concentration is 3.73m.
  • Osmotic pressure is 67 bar.
  • NaCl 17.7wt (3.68m) w-flux is 0.7475 at 30bar, whereas VFA-Na is 0.2044, so the flux is much lower.
  • both the feed solution and the induction solution are made of high concentration of NaCl solution, and when external pressure is used, water is transferred from the feed chamber to the draw chamber to reduce the NaCl concentration. It was confirmed that it can increase.
  • the draw solution was diluted from 26.4 wt% to 24.23 wt%, and the feed solution was concentrated from 22.3 wt% to 24.02 wt%.
  • the feed solution was concentrated / diluted from 17.6wt% to 21.46wt% and the draw solution from 26.4wt% to 22.83wt%.
  • the osmotic pressure difference can be said. Since it is a continuous stirred tank reactor / separator (CSTR), the feed chamber concentration is C4 and the draw chamber concentration is C6. That is, by comparing the concentrations of C4 and C6 with each other, it is a matter of whether the external hydraulic pressure can afford the difference between the osmotic pressures ⁇ 4 and ⁇ 6.
  • CSTR continuous stirred tank reactor / separator
  • the osmotic pressure difference between C4 and C6 is easily expressed as PQ * C3. If the externally applied hydraulic pressure ⁇ P is greater than the osmotic pressure difference (C4-C6), the osmotic pressure difference process is possible.
  • This PQ can be adjusted by the enrichment recovery rate R and can be adjusted so that P4 / q5 is less than 1, or a higher ⁇ P can be used.
  • PFR plug flow reactor
  • P4 is proportional to the membrane area but q5 is not so that the PQ can be kept smaller than 1.
  • the above figures are from the company's data, because they are at very low solute concentrations.
  • osmotic pressure is 128 bar at saturation concentration of 6.14m and 3% of this is only 3.84bar.
  • Subsequent processes include C3-C7; C2-C8 has a high flux even though the osmotic pressure is lower than the above process, so it is possible to easily overcome the osmotic pressure difference even at a weak hydraulic pressure.
  • V4 and V5 mean the volume of the feed chamber and the draw chamber volume
  • P4 means the total amount of permeate that is permeated without osmotic pressure difference.
  • the concentration of C4 increases as compared with C3, which is concentrated in the previous osmotic pressure difference concentrator, and increases as the fourth chamber effluent flow rate q4 decreases. This is because the fourth influent q3 is the sum of the membrane permeate P4 and q4.
  • the above feed chambers are designed to increase the concentration than the previous chamber by sending membrane permeate into the draw chamber.
  • the draw chamber concentration may be gradually lowered due to the dilution effect because the membrane permeate comes from the feed chamber. How to maintain the concentration is the key to the osmotic pressure difference.
  • the method of maintaining this is (1) adjusting the residence time in the draw chamber (2) diluting the material with a large external osmotic pressure as in the normal osmotic pressure, but maintaining a high osmotic pressure.
  • a material having a low molecular weight but high osmotic pressure such as methanol and ethanol, can be used.
  • Ethanol 94.5% has an osmotic pressure of 1800 atm. In the present invention, to maximize the method of (1).
  • V5 should be about 1/10 of V4 to equalize the residence time of the fluid, ie V5 / V4 should be 1/10; (2) V5 / V4 can be set to 1/100 of v4 to make the draw chamber shorter than the feed chamber, and (3) V5 / V4 can be made larger to make the draw chamber shorter.
  • V5 / V4 can be set to 1/100 of v4 to make the draw chamber shorter than the feed chamber, and (3) V5 / V4 can be made larger to make the draw chamber shorter.
  • the concentration of C5 is the concentration of C5 is q5 / (q5 + P4) C5.
  • the maximum saturation concentration in seawater desalination is 6.14 molal.
  • the osmotic pressure corresponding to this is only 112 atm, so when converting into an osmotic pressure difference within 0.076C3 or less than 10 bar, even a small hydraulic pressure can easily overcome the small osmotic pressure difference.
  • solubility is about 500g of VFA-Na per 1000g of water. If the mixed molecular weight is 78, the number of molal (m) is 6.41 m. At this time, the osmotic pressure will be about 120 atm, so it will not be significantly different from seawater desalination, and it will be possible to concentrate to the saturated state of the salt.
  • the method of concentrating the aqueous solution at low pressure in the non-osmotic pressure difference state consumes less energy, and can be concentrated until the concentration of the saturated aqueous solution or the solute of the maximum solute is 100% without using an extraction solvent. There is no need to use the osmotic pressure induction solution of.

Abstract

본 발명은 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법에 관한 것으로서, 더욱 상세하게는 농축하고자 하는 용질 함유 수용액을 무 삼투압 상태에서 저압으로 농축하는 방법에 관한 것이다. 본 발명에 따른 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법은 (a) 역삼투압 분리기에서 농축하고자 하는 용질 함유 수용액중 물은 외부로 배출하고, 농축된 수용액은 무삼투압차 농축기로 이송시키는 단계; (b) 역삼투압막 또는 정상투압막으로 구획되어 있는 피드 챔버와 드로우 챔버를 포함하는 무삼투압차 농축기를 이용하여 상기 농축된 수용액을 추가로 농축시키는 단계; 및 (c) 상기 무삼투압차 농축기에서 추가로 농축된 수용액으로부터 용질 및 물을 각각 회수하는 단계를 포함한다. 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법을 이용할 경우, 에너지의 소비가 적고, 추출용매를 사용하지 않아도 최대 용질의 포화 수용액 또는 용질의 농도가 100% 될 때까지 농축할 수 있으며, 별도의 삼투압 유도 용액을 사용하지 않아도 되는 장점이 있다.

Description

무삼투압차 상태에서 유압-막공정 법으로 용질 함유 수용액을 고농도로 농축하는 방법
본 발명은 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법에 관한 것으로서, 더욱 상세하게는 농축하고자 하는 용질 함유 수용액을 무삼투압 상태에서 저압으로 농축하는 방법에 관한 것이다.
인류가 필요로 하는 물질은 고체, 액체, 기체의 형태로 해양, 육지, 대기 중에 존재하며 독립된 분자나 화합물로 존재한다. 목적하는 물질은 촉매, 화학반응, 생물반응 등을 통하여 수득할 수 있다.
예를 들어, 우리가 가장 흔하게 접하는 물질인 소금은 바닷물에 3.0%(무게 증량)으로 존재한다. 바닷물속의 소금은 용액 1000g 중 30g이 소금이고 970g이 물이다. 여기서 물만 500g을 제거하면 30g의 소금과 470g의 물이 남게 되며, 여기서 추가로 250g의 물만 제거하면 220g의 물과 30g의 소금이 남게 되고, 다시 물을 125g을 제거하면 95g의 물과 30g의 소금(28%)이 남게 된다. 계속하여 62.5g의 물을 제거하면 22.5g의 물과 30g의 소금이 남게 되는데, 이때 소금의 함량은 57.1%(wt)가 된다. 그런데 소금의 최대 용해도는 26.4%(359g/물1000g)이므로, 물은 계속 제거되지만 22.5g의 물과 소금 30g이 되기 전에 소금이 결정의 형태로 석출되기 시작한다.
유기산은 음식물쓰레기 등 부패하기 쉬운 동식물 생체가 혐기성으로 분해되기 시작하면 고분자는 단분자가 되고, 다시 유기산(초산, 프로필산, 부칠산 등)의 혼합물을 거쳐 메탄가스와 탄산가스가 된다. 이때 발효로 얻을 수 있는 유기산의 농도는 약 35g/L(45g/L, 나트륨염)으로 알려져 있다. 그러나 이를 생물연료(바이오 알콜, 바이오 디젤)의 원료로 사용하기 위해서는 추가 농축이 필요하다. 미국공개특허 제2012-0118827호에서는 정삼투압 방법을 이용하여 유기산을 농축하여 약 4배인 140g/L(=용매) 농도로 농축한 바 있다.
농축된 유기산을 더욱 농축하는 방법은 수산화칼슘(Ca(OH)2)을 사용하여 칼슘?유기산 혼합물을 제조한 후, 열을 가하는 방법으로서, 이를 이용하면 100%까지 농축이 가능하며, 여기에 98% 황산(H2SO4)을 첨가하면 황산칼슘(CaSO4)으로 칼슘이 염의 형태로 염 침전을 할 수 있다. 유기산은 유기물의 발효로 얻을 수 있는 데 이때 발효방법과 원료에 따라 초산, 프로필산, 부칠산의 비율이 8:1:1 6:1:3 또는 5:1:5의 함량을 가진 유기산을 제조할 수 있다.
바이오 에탄올은 옥수수 전분, 사탕수수를 원료로 하여 6∼10% 로 생산되는 데 Metha(1982)는 7.6% 에탄올 함유 용액을 60기압으로 역삼투압법으로 20∼30% 로 농축한 뒤에 이를 증류로 95%까지 농축하고 azeotropic 증류를 활용하여 99.5%까지 농축하여 연료용 에탄올로 하는 방법과 증류를 처음부터 활용하는 방법의 경제성을 비교하였다. 참고문헌:Metha, GD, Journal of Membrane Science, 12,1-26(1982)
이상의 예에서 소금, 휘발성 유기산 (VFA) 및 에탄올의 농축에 소요되는 에너지는 다음과 같다.
표 1
물질 열적 방법 막의 활용 제한 이유
소금 가능(100%까지) 7%까지 피드용액 삼투압
VFA 가능(100%까지) 14%까지(정삼투압) 피드용액 삼투압
에탄올 가능(95%까지) 20~30%의 저농도만 가능 피드용액 삼투압
상기 물질을 열적인 방법으로 1000g의 물을 제거하는 데 소요되는 에너지를 살펴보면, 1m3당 30℃에서 100℃의 수증기로 증발시키는 에너지는 2.7×109줄(joule)이며, 1kwh가 3.6×106줄(joule)이므로 에너지는 730kwh이다. 열에너지는 여러 번 사용할 수 있으므로 다단 증발법(MSF)은 약 25kwh가 필요하다. (http://en.wikipedia.org/wiki/Multi-Stage_Flash)accessed on November 10, 2012).
반면, 막 공법(역삼투압 및 정삼투압)은 소요되는 에너지가 물 1m3당 제거 에너지가 2.5M줄(joule)에 불과하고, 이를 kwh로 환산하면 0.69kwh(=2.5MJ/3.6MJ)이다. 열적인 방법에서 가장 효율이 좋은 다단 증발법(MSF)의 소요 에너지가 25kwh인데 비해 막을 이용하면 0.69wkh의 에너지가 소요되므로, 막 공법을 적용하면 경제성이 높아지게 된다(http://en.wikipedia.org/wiki/Multi-stage_flash_distillation).
현재 막 공법은 역삼투압법 외에 정삼투압법까지 적용되고 있어 산업적으로도 많이 활용되고 있다. 막 공법에서 용매(물)의 플럭스와 용질(소금, VFA, 에탄올)의 이동에 대해서 살펴보면 다음과 같다.
Jw = Lp (△P -σ△π) ----- (1)
Js = Cs (1-σ)Jw+ω△π ----- (2)
여기서, Jw는 물의 흐름(water flux), Lp는 수분 투과 계수, △P는 피드 챔버와 드로우 챔버의 수력압력 차이, △π는 피드 챔버와 드로우 챔버의 삼투압 차이를 의미한다. 그리고, 상기 Js는 용질의 flux로 Jw에 의한 것과 삼투압 차이에 의한 것으로 나누어진다.
상기 (2)식에서 Jw가 없는 경우는 삼투압 차이에 의해 용질이 드로우 챔버에 의해서 피드 챔버로 움직일 수 있다. σ는 용질의 막에 의한 반사계수로 σ=1이면 용질은 완전 불통과이며 두 챔버간의 삼투압 차이도 최대가 된다.
삼투압은 π =CRT ------------------(3)로 표시된다.
여기서, C는 농도, R은 기체상수, T는 온도를 의미한다.
또 용질을 많이 포함하는 고농도 용액인 경우 Lewis 근사식은
π=RT/vsp ln (1-γX)-----------------(4)
이다(참고문헌: Lewis, G. N., The osmotic pressure of concentrated solutions and the laws of perfect solution. Journal of the American Chemical Society 1908, 30, 668-683.).
여기서 Vsp는 용질의 농도가 0인 경우 용매의 1몰의 부피이고 γ는 용매의 활성화 계수 (activity coefficient), X는 용질의 몰 분율이다.
30g/L의 용질이 물에 녹아 있을 경우 소금은 25.4bar, 알부민은 0.01bar, 입자는 1.2x10-12bar의 삼투압을 가진다.
역삼투압 및 정삼투압 방식은 막을 이용하여 에너지를 절약하는 이점은 있으나 농축이 진행될수록 피드 챔버속의 삼투압은 증가되어 더 이상 피드용액을 농축하거나, 피드용액의 활용도를 높이는 것이 불가능해진다 (Loeb, S, Loeb-Sourirajan Membrane, How it Came About Synthetic Membranes, ACS Symposium Series, 153, 1, 1~9, 1981; Loeb, S., J. Membr. Sci, 1, 49, 1976).
최근 연구되기 시작한 정삼투압 방식은 드로우 챔버에 삼투압이 높은 물질을 사용하여 △P보다는 △π차이에 의해 피드 챔버에서 드로우 챔버로 물만 넘어오게 하는 방식이다 (McCutcheon JR, McGuinnis RL, Elimelech RL, Desalination, 174, 1~11, 2005).
정삼투압 방식은 드로우 챔버의 삼투압을 최대한 올리는 이점은 있으나, 물이 넘어오는 양이 증가함에 따라 △π가 점점 작아져서 투과량이 점점 줄어지게 된다. 이 경우 유도용액을 재생할 수는 있으나, 경제적이지 못하며, 또 드로우 챔버의 유도용액의 농도가 높아질수록 막 확산작용에 의해 유도용액의 용질이 피드 챔버속으로 역확산되는 단점이 있다.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 역삼투압막 및/또는 정삼투압막으로 구획되어 있는 피드 챔버 및 드로우 챔버를 포함하는 농축장치의 피드 챔버에 농축하고자 하는 용질 함유 수용액을 투입하고, 드로우 챔버에는 피드 챔버에 투입된 수용액과 동일한 삼투압을 가지는 용액을 투입할 경우, 상기 (1) 및 (2)식에서 △π를 제거/최소화하여 무삼투압차 상태(△π =0)혹은 저삼투압차에서 유압(△P) 만으로 피드 용액을 농축하고, 이로 인해 희석된 드로우 용액은 낮은 삼투압을 가지게 되므로 역삼투압으로 순수한 물을 회수할 수 있으며, 최종적으로 피드용액의 농축을 최대화하면서 에너지 소모 및 운영비용을 최소화 할 수 있다는 사실을 확인하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 다양한 종류의 농축하고자 하는 용질 함유 수용액의 농축을 최대화하면서, 에너지 및 운영비용을 최소화할 수 있는 수용액의 농축 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은발명은 (a) 역삼투압을 이용하여 농축 대상 용질 함유 수용액을 1차 농축시키는 단계, (b) 상기 1차 농축된 용질 함유 수용액을 역삼투압막 또는 정삼투압막으로 구획되어 있는 피드 챔버와 드로우 챔버를 포함하는 무삼투압차 농축기에 투입하여 2차 농축하는 단계 및 (c) 상기 2차 농축된 용질 함유 수용액을 회수하되, 상기 2차 농축된 용질 함유 수용액의 일부를 상기 드로우 챔버로 재순환시키는 단계를 포함하는 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법을 제공한다.
본 발명에 있어서, 상기 1차 농축된 용질 함유 수용액을 무삼투압차 농축기에 투입하여 2차 농축하는 단계는 (i) 무삼투압차 농축기의 피드 챔버로 상기 1차 농축된 수용액을 이송시키고, 상기 피드 챔버로 이송된 수용액과 동일한 혹은 식(1)에서 △P에 영향을 주지 않는 범위의 삼투압을 가지는 용액을 드로우 챔버로 투입하여, 피드 챔버와 드로우 챔버간의 무삼투압 상태를 형성하는 단계; 및 (ii) 무삼투압 상태에서 피드 챔버에 정삼투압막의 경우는 1∼5기압, 역삼투압막의 경우는 5∼200기압의 압력을 가하여 수용액의 물을 드로우 챔버로 이송시킴으로써 수용액을 농축시키는 단계를 포함한다.
본 발명에 따른 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법은 상기 2차 농축된 용질 함유 수용액 중 일부 (예: 1~99%)를 드로우 챔버로 이송시켜, 피드 챔버와 동일한 삼투압을 유지시키고, 이를 다시 역삼투압 분리기로 이송시킨 다음, 수용액중 물을 외부로 배출하고, 농축된 수용액은 상기 무삼투압차 농축기로 이송시키는 단계를 추가적으로 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 농축하고자 하는 용질 함유 수용액은 해수(sea water), 기수(brackish water), 발효산물인 휘발성 유기산 염 및 이와 비슷한 특성을 갖는 저분자 물질로 구성된 군으로부터 선택되는 1개 이상인 것을 특징으로 한다.
본 발명에 있어서, 피드 챔버와 드로우 챔버간의 무/저삼투압 상태를 형성하기 위하여 드로우 챔버에 투입하는 용액은, (1) 상기 피드 챔버로 이송된 농축된 수용액의 일부를 이용하거나 (2) 상기 (1)의 수용액 에다가 삼투압을 추가로 높이기는 하나 쉽게 분리할 수 있는 혹은 액체/고체를 첨가하거나 (3) 피드 용액과 같은 성분과 삼투압을 가지도록 제조된 함유액으로 구성된 군에서 선택되는 것을 특징으로 한다.
본 발명에 있어서, 상기 무삼투압차 농축기의 피드 챔버와 드로우 챔버의 부피비는 100~1: 1인 것을 특징으로 한다.
본 발명에 있어서, 상기 무삼투압차 농축기를 이용한 농축은 회분식 또는 연속식 방법으로 수행되는 것을 특징으로 한다.
본 발명에 있어서, 상기 피드 챔버 및 드로우 챔버는 다단계로 구성되어 있는 것을 특징으로 한다.
본 발명에 있어서, 상기 수용액의 pH는 3-11, 온도는 물이 액체 상태를 유지하는 온도 인 것을 특징으로 한다.
본 발명에 있어서, 상기 무삼투압차 농축기에서 추가로 농축된 수용액으로부터 용질 및 물을 각각 독립적으로 회수하는 방법은 다단 증발법, 증류, 투과증발(pervaporation), 열분해법, 황산법 및 암모니아, 나트리움, 칼슘염 침전법으로 구성된 군에서 선택되는 것을 특징으로 한다. 본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 본 발명의 무/저삼투압차 상태에서 유압으로 수용액을 농축하는 방법에 대한 개념도이다.
도2는 본 발명의 일 실시예에 따른 무/저삼투압차 상태에서 유압으로 NaCl 수용액을 농축하는 방법의 물질수지를 도식화한 도면이다.
도 3은 본 발명의 일 실시예에 따른 무삼투압차 농축기의 드로우 챔버에서 무삼투압차를 유지하는 방법을 도식화한 도면이다.
도 4는 본 발명의 일 실시예에 따른 무/저삼투압차 상태에서 유압으로 혼합 유기산 수용액을 농축하는 방법의 물질수지를 도식화한 도면이다.
도 5의 (가)는 본 발명의 일 실시예에 따른 정적평형을 측정하는 용질용액에서의 삼투압을 상대 비교하는 장치에 대한 설명도이고(A: 피드 챔버와 드로우 챔버에서 삼투압에 의한 정적 평형을 나타내는 설명도, B: 삼투압에 의한 정적 평형을 실험한 사진), (나)는 본 발명의 일 실시예에 따른 유체재순환 시스템(lab-scale flow-recirculaion set)을 이용한 고농도 용질 용액에서의 막의 플럭스 측정하는 장치에 대한 설명도이다.
도 6의 (가)는 고압피드챔버(A)와 상압 드로챔버(B)를 포함하는 무삽투압차 회분식 시스템의 설명도이다. (나)는 A와 B의 구체적인 설계도면이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
역삼투압법에 소요되는 에너지가 재래식의 열을 이용하는 다단계 증발공법에 비해 훨씬 적다는 것은 이미 잘 알려져 있으며, 또한 최근에 연구되기 시작한 정삼투압법 역시 유도용액(draw solution)의 재생에 예상보다 많은 에너지가 소요되고, 유도용액이 손실되므로 정삼투압법이 역삼투압법에 비해 해수 담수화에 큰 실익이 없다는 점이 점점 부각되고 있다.
해수 담수화와는 반대로 고부가가치의 저분자 물질을 포함하는 수용액을 역삼투압법으로 농축시킬 경우, 경제성이 있을 수도 있으나, 유도용액을 재생하는 데는 다단계증발법(MSF)과 같은 열적인 방법을 시용해야 하므로 시설비 및 에너지 비용이 부담으로 작용된다.
또한, 발효액의 농축에 있어서도 정삼투압법으로 3.5%를 4배로 농축하여 14%(용매기준)로 만드는 것은 어렵지 않았으나 실질적으로 발효산업에서 필요한 농도는 거의 발효산물의 20∼60무게%의 염포화수용액에서 에탄올의 순도 99.5% 액체까지 다양하나, 정삼투압법 만으로 소정의 목적을 달성하기는 어려운 실정이다.
또한 정삼투압에서는 고농도의 유도용액을 사용하므로 피드챔버로 확산되어 피드용액과 섞일 수가 있고 피드용액의 용질거절율 (rejection rate)이 100%이하인 경우 유도용액에 섞인 용질을 회수하는 것이 어렵다는 단점이 있다.
본 발명에서는 역삼투압 분리기를 이용하여 다양한 종류의 농축하고자 하는 용질 함유 수용액중 물은 외부로 배출시키고, 농축된 수용액을 역삼투압막 또는 정삼투압막으로 구획되어 있는 피드 챔버 및 드로우 챔버를 포함하는 농축장치의 피드 챔버에 투입시킨 다음, 피드 챔버에 투입된 수용액과 동일한 혹은 약간 삼투압을 가지는 용액을 드로우 챔버에 투입할 경우, 피드 챔버와 드로우 챔버간의 삼투압차가 0(△π =0)에 가깝게 되어 적은 압력만으로도 피드 용액을 농축할 수 있다는 것을 확인하고자 하였다.
도 1은 본 발명의 무/저삼투압차 상태에서 유압으로 수용액을 농축하는 방법에 대한 개념도이다.
도 1에 도시된 바와 같이, 무/저삼투압차 피드액 농축의 개념은 역삼투압에 의한 순수재생 공정과 무/저삼투압차 농축공정을 포함하며, 무/저삼투압차 농축공정에서 농축된 용액은 마지막 물 제거 공정에서 물을 제거함으로써 용질을 회수할 수 있다. 이때 소량의 물도 회수되어 용액에 포함된 모든 물과 용질이 모두 회수된다.
도 1에 표시된 “R”은 농축공정에서 얼마큼의 농축된 용액을 회수하느냐를 나타내는 척도이다. 만일 R=0이라면 회수가 전혀 되지 않는 것을 의미하며, R=1이면 전부 회수되는 것을 의미한다.
정삼투압공정에서는 농축액의 전부 회수를 위해서는 유도챔버 삼투압을 유지하기 위하여 외부에서 유도용액을 공급해 주어야하므로, 희석된 유도용액을 다시 재생하는 공정이 추가로 필요하다.
따라서, 본 발명에서는 R=0.9로 하여 90%를 회수하고, 10%는 피드 챔버와 드로우 챔버 간의 무/저 삼투압차를 유지시키는데 이용할 수 있다.
본 발명의 일 실시예에서는 무/저삼투압차 상태에서 유압을 가하여 해수, VFA-Na 등은 비교적 낮은 유압을 사용하여 용질의 농도가 100%가 될 때까지 농축할 수 있다는 것을 확인할 수 있었으며 고농도 에탄올 (예: 94% 이상)은 외부 유압을 낮추기 위하여 많은 양의 농축용액을 드로챔버로 이송해야 하는 어려움이 있다는 것을 확인하였다. 한 가지 큰 장점은 피드챔버의 용질이 드로챔버로 넘어오더라도 갖은 성분을 가지므로 특별히 추후에 분리를 할 필요도 없고 또 막의 rejection rate가 많이 높을 필요도 없다는 점이다. 본 기술은 VFA-salt, NaCl은 물론 에탄올과 같은 고삼투압을 갖는 용액의 고농도 농축에도 적용이 가능하다.
도 2는 본 발명의 일 실시예에 따른 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법의 물질수지를 도식화한 도면이다.
도 2에서, 유입수는 970g의 물과 30g의 소금으로 구성되어 있고, 점선으로 구획되어 있는 구역 외부로 나가는 것은 30g의 소금과 970g의 물로서, 유입되는 용질 및 용매의 총량과 유출되는 총량이 일치한다.
물의 수지만 살펴보면 RO-1(역삼투압 분리기)에서 500g, RO-2(역삼투압 분리기)에서 375g, 최종 고형분 회수장치(예: MSF)에서 95g이 회수되어 총 970g의 물이 모두 100% 회수되며, 고형분 회수장치에서 소금도 30g 모두 회수된다.
무삼투압차 농축기에서 농축된 최종 농축수의 농도는 33g NaCl, 물 104g으로 24%인데, 이중 90.9%는 회수하고, 9.1%는 재순환시켜 드로우 챔버에서 피드 챔버와 동일한 삼투압을 갖도록 한다. 즉, 드로우 챔버에서 역삼투압으로 투과된 피드 챔버의 투과수에 최종 농축수가 희석되어, 3g의 소금과 422g의 물로 RO-2(역삼투압 분리기)로 이송되어 375g의 물을 재생하고, 농축되어 RO-1(역삼투압 분리기)에서의 유입수와 같은 농도로 합류하여 다시 무삼투압 농축기로 투입된다.
무삼투압차 농축기로 유입되는 유입수의 농도는 6%이고, 유출수는 24%로써, 무삼투압차 농축기에서 4배의 농축이 이루어지는데, 이 포화 농축수의 계산된 삼투압은 무려 NaCl의 경우는 120bar, VFA-Na는 100bar 이하, 에탄올은 95wt%가 약 1865bar이지만, 무 삼투압 차이기 때문에 실질적으로는 통상 RO공정의 50bar 사용이 가능하고 에탄올의 경우는 농축수 재순환 방법으로 낮은 압력에서도 운전이 가능해 높은 압력이 필요하지 않게 된다.
참고로, 역삼투압을 이용한 해수 담수화 공정에서 에너지 소모는 아래와 같이 예측할 수 있다. 역삼투압에 가하는 압력(P)은 △P + Ps로 표시할 수 있는데, 이때 △P는 과압(overpressure)으로서 막저항을 이기기 위한 압력이며, Ps는 삼투압을 의미한다 (Optimizing the Efficiency of Reverse Osmosis Seawater Desalination, http://urila.tripod.com/Seawater.htm). 따라서, 소요되는 최소한의 일의 양(W)은=P×V이므로, Ps=27bar이면 1톤의 물을 생산하는 데 최소한의 일의 양(W)은 27.1/36=0.75kwh 이다.
참고로, 역삼투압을 이용한 해수 담수화 공정에서 에너지 소모는 아래와 같이 예측할 수 있다. 역삼투압에 가하는 압력(P)은 △P + Ps로 표시할 수 있는데, 이때 △P는 과압(overpressure)으로서 막저항을 이기기 위한 압력이며, Ps는 삼투압을 의미한다 (Optimizing the Efficiency of Reverse Osmosis Seawater Desalination, http://urila.tripod.com/Seawater.htm). 따라서, 소요되는 최소한의 일의 양(W)은=P×V이므로, Ps=27bar이면 1톤의 물을 생산하는 데 최소한의 일의 양(W)은 27.1/36=0.75kwh 이다.
다시 도 2를 참조로 하면, RO-1에서 500g, RO-2에서 375g의 물을 회수할 수 있고, 전체적으로 875g의 물을 회수할 수 있다. 역삼투압 분리기, 무삼투압차 농축기, 최종 고형분 회수장치에서의 소요되는 에너지는 다음과 같다.
(1) RO-1, RO-2: 0.875kg/m3 × 0.75kwh = 0.656kwh + 0.875kg × △P
(2) 무삼투압차 농축기(Zero osmotic pressure unit): 0.413kg × △P
(3) 최종 고형분 회수장치(예: MSF): 0.095kg × △P
△P에 의한 에너지 소모는 0.875+0.413+0.095=1.383×△P 이다. 이는 비가역적으로 사용되어 열로 변할 수도 있지만, 에너지 회수 장치에 의해 회수될 수도 있다. 1m3당 0, 0.25kwh, 0.5kwh, 0.75kwh로 계산하여 보면 각각 0.656kwh, 1.001kwh(=0.656+1.383×0.25), 1.346kwh(=0.656+1.383×0.5), 1.691kwh(=0.656+1.383×0.75)가 된다.
기존의 역삼투압법을 이용할 경우, 물의 회수율이 50∼60%에 불과한 반면, 무삼투압차 상태에서 저압으로 수용액을 농축시킬 경우, 물을 거의 100% 회수할 수 있고, 또한 용질을 전부 회수할 수 있어 부가가치가 큰 장점이 있다.
무삼투압차 상태에서 저압으로 수용액을 농축하기 위해서는 피드용액의 삼투압을 미리 알고 있어야 하는데, 삼투압을 알고 있는 용액을 정삼투압 반응기의 한쪽 챔버에 넣고, 측정하고자 하는 용액을 다른 챔버에 넣은 후, 물의 이동방향을 확인함으로써 측정하고자 하는 용액의 삼투압을 확인할 수 있다.
가령, 도 5(가)에 도시된 바와 같이, 초산, 프로피온산, 부칠산을 조합하여 제조한 3.5wt%의 농도를 가진 VFA 용액을 피드 챔버에 채우고, 드로우 챔버에 삼투압이 높은 5M NaCl(예측치 108 bar, 참고문헌 Lenntech)을 채울 경우, 48시간 후에, 평형상태에 도달하는 것을 확인할 수 있게된다. 이때 피드 챔버에 있는 VFA 용액 농도는 용매기준 14%로서, 농도가 4배 증가하였고, 이는 75%의 물이 좌측(1)에서 우측(2)로 이동한 결과임을 알 수 있다. 3.5% VFA 수용액의 식(4)로 계산한 삼투압의 이론값은 10기압, 14%는 40기압이고, 3.5wt%의 VFA 용액 (NaOH용액을 이용하여 pH를 8로 조정)의 식(3)으로 계산한 삼투압의 이론값은 대략 8기압이다((Lenntech(http://www.lenntech.com/calculators/activity/activity-coefficient.htm), accessed on Jan 20, 2014).
이와 같이, 피드 챔버 및 드로우 챔버에 서로 동일하거나 다른 물질을 채우고, 물의 이동 정도를 관찰하면, 어느 쪽이 실질적으로 높은 삼투압을 가졌는지를 쉽게 확인할 수 있다.
그러나, 측정하는 플럭스(flux)는 양 챔버 간의 불완전한 혼합으로 인한 농도 분극현상 때문에 상대적으로 정확한 플럭스를 얻기가 힘든 면이 있다.
따라서, 도 5(나)에 도시된 바와 같이, 유체 재순환 시스템을 이용하여 고농도 용질 용액에서 막의 플럭스를 측정하는 것이 바람직하다.
상기 유체 재순환 시스템은 피드 챔버와 드로우 챔버의 무게를 각각 측정할 수 있도록 저울이 구비되어 있으므로, 챔버간의 유체 이동을 실시간으로 측정하고, 각 챔버간의 농도 변화에 따른 막의 플럭스를 측정 할 수 있다.
또한, 유체 재순환 시스템을 이용하면 피드 챔버의 최초 농도와 최종 농도를 측정하여 농축에 필요한 실제 소요시간, 막의 면적 등 스케일 업에 필요한 자료를 얻을 수 있으며, 이를 바탕으로 막 장치의 크기, 분리정도를 예측하고, 특히 피드 챔버와 드로우 챔버의 크기를 정할 수 있다.
본 발명은 일 관점에서, (a) 역삼투압을 이용하여 농축 대상 용질 함유 수용액을 1차 농축시키는 단계, (b) 상기 1차 농축된 용질 함유 수용액을 역삼투압막 또는 정삼투압막으로 구획되어 있는 피드 챔버와 드로우 챔버를 포함하는 무삼투압차 농축기에 투입하여 2차 농축하는 단계 및 (c) 상기 2차 농축된 용질 함유 수용액을 회수하되, 상기 2차 농축된 용질 함유 수용액의 일부를 상기 드로우 챔버로 재순환시키는 단계를 포함하는 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법에 관한 것이다.
본 발명에 있어서, 무삼투압차 농축기를 이용하여 상기 1차 농축된 용질 함유 수용액을 추가로 농축시키는 (b) 단계는 (i) 무삼투압차 농축기의 피드 챔버로 상기 농축된 수용액을 이송시키고, 상기 피드 챔버로 이송된 농축된 수용액과 동일한 삼투압을 가지는 용액을 드로우 챔버로 투입하여, 피드 챔버와 드로우 챔버간의 무삼투압 상태를 형성하는 단계; 및 (ii) 무삼투압 상태에서 피드 챔버에 정삼투압(Forward Osmosis,FO)의 경우에는 0∼5기압, 역삼투압의 경우는 10∼200기압까지의 압력을 가하여, 농축된 수용액중의 물을 드로우 챔버로 이송시킴으로써 농축된 수용액을 추가로 농축시키는 단계를 포함할 수 있다.
상기 피드 챔버에 가하는 압력이 FO경우는 너무 높을 경우 막이 파괴되어 기능을 상실할 가능성이 있고 역삼투압의 경우는 현재 고압펌프가 250기압까지 사용화 되어 있으나 이를 견딜 수 있는 막, 혹은 모듈제작에 문제가 있을 수 있다.
본 발명에 따른 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법은 또한, 상기 2차 농축된 용질 함유 수용액 중 1∼99%를 바람직하게는 실시예의 물질수지 및 압력수지에서 계산된 예측치만큼을 (예: 10%) 드로우 챔버로 이송시켜, 피드 챔버와 동일한 삼투압을 유지시키고, 이를 다시 역삼투압 분리기로 이송시킨 다음, 수용액중 물을 외부로 배출하고, 농축된 수용액은 상기 무삼투압차 농축기로 이송시키는 단계를 추가적으로 포함할 수 있다.
본 발명에 있어서, 무삼투압 상태를 유지하기 위해 드로우 챔버로 투입되는 수용액은 상기 피드 챔버로 이송된 수용액, 메탄올, 에탄올, 암모니아 카바메이트 함유액, 고 삼투압 폐용액, 염화칼슘 함유액 및 염화마그네슘 함유액으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
이때, 드로우 챔버의 수용액은 무삼투압차 농축공정 이전에 사용하였던 역삼투압 분리기(RO-1) 또는 또 다른 역삼투압 분리기(RO-2)로 이송될 수 있다.
본 발명에 있어서, 드로우 챔버와 피드챔버간의 삼투압차가 없도록 유지하기 위해서는 상기 드로우 챔버의 부피는 피드 챔버의 부피보다 적고, 수용액의 체류시간을 짧게 유지하는 것이 바람직하다.
즉, 상기 농축수회수율을 90%로 가정할 때 무삼투압차 농축기의 피드 챔버와 드로우 챔버의 부피비는 피드챔버와 드로챔버에서의 체류시간을 동일하게 유지하기 위해서는 1/10인 것이 바람직하고, 체류시간을 짧게 유지하기 위해서는 1/100인 것이 바람직하며, 체류시간을 길게 유지하기 위해서는 1/1인 것이 바람직하다.
본 발명에 따른 무삼투압차 농축장치는 다수로 구성될 수 있다. 즉, 무삼투압차 농축장치를 구성하는 피드 챔버 및 드로우 챔버는 다단계로 구성되어 있는 것을 특징으로 한다.
도 3은 본 발명의 일 실시예에 따른 무삼투압차 농축기의 드로우 챔버에서 삼투압을 유지하는 방법을 도식화한 도면이다.
무삼투압차 농축기를 이용하여 수용액을 농축시킨 후, 농축된 수용액을 회수하지 않는다면 농축하는 의미가 없을 것이다. 그러나, 본 발명에서 무삼투압차 농축기에서 농축된 수용액 중 약 90중량% 정도를 회수하고, 10중량%를 다시 드로우 챔버로 이송시키는 것은 피드 챔버와의 삼투압차가 나지 않도록 하기 위한 것이다.
구획된 마지막 장치에서, V4 및 V5는 피드 챔버의 부피와 드로우 챔버 부피를 의미하고, P4는 삼투압차 없이 투과되는 투과수의 총량을 의미한다.
농축수의 농도인 C4는 P4가 커질수록 이전 무삼투압차 농축장치에서 농축된 농축수인 C3에 비해 농도가 증가하며, 4번째 챔버 유입수 유량인 q4가 작을수록 커진다. C4와 C5는 같은 농도이나 5번째 챔버 유입수 유량인 q5는 90%를 회수하면 q4의 1/10이 될 수도 있다.
무삼투압차를 유지하기 위해서는 피드챔버와 드로우 챔버의 체류시간으로 조정이 가능한데, 농축수 회수율을 90%로 했을 때 피드 챔버와 드로우 챔버에서 (1)유체의 체류시간을 동일하게 하기 위해서는 V5를 V4의 약 1/10로 하면 된다; 피드 챔버와 드로우 챔버에서 (1) 유체의 체류시간을 동일하게 하기 위해서는 V5/V4를 1/10로 하면 된다; (2) 드로우 챔버의 체류시간을 피드챔버보다 짧게 하기 위해서는 V5/V4를 v4의 1/100로 할 수도 있고 (3) 또 길게 할 수 있게 하기 위해서는 V5/V4를 할 수 있다. 상기 (1)의 경우는 용액이 V4, V5에 머무는 시간이 각각 10h라고 하면 이 때 막을 통과하는 용액(혹은 물)의 양이 P4이라하고 하면 q5는 q5+P4가 된다. 이때 C5의 농도는 C5의 농도는 q5/(q5+P4)C5가 된다. (2)의 경우 체류시간을 1/10로 하면 q5/(q5+1/10P4)C5가 된다. 체류시간의 영향을 받는 것은 P4이기 때문이다. (3)의 경우 체류시간을 10배로 하면 q5/(q5+10P4)C5이 된다. 즉 1의 경우는 통상 1/10정도의 영향을 받는 다고 하면 (2)의 경우는 (1)의 1/10의 영향을, (3)의 경우는 10배의 더 많은 P4를 갖게 된다. 물론 자세히 고려하자면 드로 챔버의 물이 추가되어 농도 희석효과가 생기지만 이는 외부 유압 △P로 역삼투압 상태를 유지할 수 있다고 한다. 무삼투압차에 시스템에서 산물의 회수율 (R)을 높이는 방법은 (2)의 경우로 설계상/운전상 문제가 없다면 드로우 챔버의 체류시간을 짧게하여 가능한 한 분리가에서 높은 드로우 용액 농도를 유지함으로써 무삼투압차를 최대한도로 유지할 수 있다. 자세한 것은 구체적인 실시예에서 설명하도록 한다.
일반적으로 막을 통과한 투과수(P4)의 양은 4번째 드로챔버 유입수 유량 q5 및 4번째 피드 챔버 유입수 유량인 q4에 비하여 적다. 즉 드로우 챔버의 삼투압은 피드 챔버의 삼투압에 비해 낮게 혹은 동일하게 유지할 수 있다.
본원발명의 무삼투압차 농축장치의 드로우 챔버에서 삼투압을 유지하기 또 다른 방법으로서 드로우 챔버의 일부에 삼투압 유발효과가 큰 삼투압 유발액(osmolyte)을 투입하는 것이 있으나 이는 재생을 해야 하는 문제가 있다.
본 발명에 있어서, 상기 무삼투압차 농축장치의 피드 챔버와 드로우 챔버를 구획하는 역삼투압막 또는 정삼투압막은 용질은 통과시키지 않고, 용매를 주로 통과시키는 막이라면 특별한 제한없이 이용할 수 있다.
본 발명에 있어서, 용질이라 함은 물을 용매로 하여 녹아 있는 액체 혹은 고체 상태의 물질을 의미한다.
본 발명에 있어서, 상기 농축 대상 용질 함유 수용액은 해수(sea water), 기수(brackish water), 세포 대사산물, 반응액 등을 예시할 수 있으며, 세포 대사산물은 동물 세포, 식물 세포 또는 미생물의 배양액, 이들의 1차 산물, 2차 산물, 체외 분비 단백질, 생물 변환물(biotransformation) 등을 포함하는 개념이다.
상기 반응액으로는 화학반응을 통한 반응액 및 효소반응을 통한 반응액을 예시할 수 있다.
상기 미생물의 1차 산물로는 유기산(초산, 프로피온산, 부틸산, 유산, 구연산, 유산, 숙신산 등), 알코올(에탄올, 부탄올 등), 핵산, 아미노산(라이신, 트립토판 등), 비타민, 다당류 등을 예시할 수 있으나, 이에 한정되는 것은 아니다.
상기 미생물의 2차 산물로는 항생제(폐니실린 등), 효소저해제, 생리활성물질(탁솔 등)을, 상기 미생물의 체외 분비 단백질로는 아밀라제, 셀룰라제 등의 효소, 인슐린, 인터페론, 단일군 항체 등을, 상기 미생물의 생물변환물(biotransformation)은 미생물 또는 효소를 활용하여 생산된 물질로서, 스테로이드 등을 예시할 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 도 2 또는 도 4의 구조를 갖는 역삼투압 분리기 및 무삼투압 농축기를 포함하는 장치를 이용하여, 에탄올을 농축시킬 경우, 역삼투압 농축기(RO-1)에서 에탄올을 농축시킬 수 있는 농도는 약 20% 정도이며, 이론적으로 무삼투압차 방법으로 20~100%까지 농축할 수 있는 것으로 알려졌다. 그러나 에탄올을 휘발성 유기산 (VFA)이나 소금처럼 91~100%까지 농축시킬 수 있는 막은 아직 개발되지 않고 있다.
발성 유기산염 (VFA)의 경우는 포화도가 50∼60wt% 정도 이므로 이론적으로 100% 농축이 가능하며, 또 용질거절율 (rejection rate)도 높아 무삼투압차 상태에서 100% 농축이 가능하다.
본 발명에 있어서, 상기 수용액의 pH는 2-13, 온도는 물이 액체를 유지하는 온도 (통상 0∼100℃, 바람직하게는 15∼50℃, 더욱 바람직하게는 20∼40℃) 혹은 그 이상이나 이하가 될 수 있다. 예를 들면 다른 용질/용매와 혼합물인 경우는 위의 온도를 벗어날 수 있다.
본 발명에 있어서, 피드 챔버와 드로우 챔버간의 무삼투압 상태를 형성하기 위하여 드로우 챔버에 투입하는 용액으로는 피드 챔버로 이송된 농축된 수용액, 사용 후 분리가 용이한 용액 등을 이용할 수 있으나, 상기 피드 챔버로 이송된 농축된 수용액과 동일한 조성의 수용액을 이용하는 것이 바람직하다.
본 발명에 있어서, 상기 무삼투압차 농축기를 이용한 농축은 그 효과를 극대화하기 위하여 회분식 또는 연속식으로 수행될 수 있다.
상기 회분식은 양챔버와 외부시스템과 흐름이 없는 경우, 상기 연속식은 외부시스템과 흐름이 있는 경우 수행될 수 있다.
본 발명에 있어서, 상기 피드 챔버 및 드로우 챔버는 다단계로 구성되어 있는 것을 특징으로 한다.
본 발명에 있어서, 상기 무삼투압차 농축기에서 추가로 농축된 수용액으로부터 용질 및 물을 회수하는 방법은 각각 독립적으로 통상적으로 알려져 있는 다단 증발법, 투석증발, 열분해법, 황산법, 칼슘법 등을 이용할 수 있으나, 이에 한정되는 것은 아니며, 농축된 수용액으로부터 물을 회수하는 단계는 본 발명의 (a) 역삼투압을 이용하여 농축 대상 용질 함유 수용액을 1차 농축시키는 단계, (b) 상기 1차 농축된 용질 함유 수용액을 막으로 구획되어 있는 피드 챔버와 드로우 챔버를 포함하는 무삼투압차 농축기에 투입하여 2차 농축하는 단계 및 (c) 상기 2차 농축된 용질 함유 수용액을 회수하되, 상기 2차 농축된 용질 함유 수용액의 일부를 상기 드로우 챔버로 재순환시키는 단계에 있을 수 있으며, 용질을 회수하는 단계는 본 발명의 (c) 상기 2차 농축된 용질 함유 수용액을 회수하되, 상기 2차 농축된 용질 함유 수용액의 일부를 상기 드로우 챔버로 재순환시키는 단계에 있을 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1 무삼투압 농축장치를 이용한 NaCl 수용액의 농축
도 6(가)와 같은 장치에 시료(NaCl 수용액)를 넣고 압력을 가하여 주어진 시간동안에 고압 A챔버에서 RO막을 통해서 투과한 양이 B챔버 (상압)에 무게로 나타난 양을 측정한다.
본 실시예에 사용된 막은 RE2521-TL(Woongjin Chemical Co, Seoul, Korea;http://www.csmfilter.com) Ltd로서 thin-film composite형이며 막은 negatively charged, polyamide, spiral-wound module에 사용되고 있는 RO사용막이다. 투과능력은 1.1m3/day이고 유효면적은 1.1m2이다. 1,500mg/L 소금용액, 1.0MPa에서 99% rejection 하며, 최대압력은 4.14MPa이고 최대 유량은 1.36m3/hr, 최저 유량(농축액)은 0.23m3/hr이다. 최대 온도는 45℃이고 pH는 3.0∼10.0이며 또한 2.0∼11.0까지 견딜 수 있다.
하기 표2의 조성을 가진 NaCl용액을 A, B 챔버에 500ml씩 채운 실험을 실하면 시간에 따른 투과량이 B챔버의 무게로 나타나 이를 컴퓨터로 모니터 한다. NaCl의 경우는 conductivity meter(CM-31p, TOADKK, Japan)를 사용했고 VFA-Na의 경우는 HPLC(YoungLin, Korea)를 사용하였다.
아래 표는 NaCl의 포화용액이 물 1000g당 359g이므로 포화 NaCl양의 80%가 22.3wt%, 60%가 17.7%이다.
표 2 NaCl의 무삼투압차 환경하에서 농축공정
NaCl(Feed 농도-Draw 농도), 22.3wt%∼22.3wt%; 17.7wt%∼22.3wt%; 17.7%∼17.7%; Fm: Feed의 실험 전 NaCl 총량; Fc Feed에서 실험 후 농도 rejection(%)
운전조건 압력(bar) Fm-NaCl(총량, g) 물투과량(ml) 잔여용액량(ml) Fc-NaCl(g/L) w-flux
22.3-22.3 30 143.6 13.34 486.66 295.0 0.6634 100
17.7-22.3 107.7 17.69 482.31 223.3 0.8798 100
17.7-17.7 5 107.7 6.02 493.98 218.0 0.2994 100
10 107.7 8.41 491.59 219.0 0.4182 100
20 107.7 10.14 489.86 219.8 0.5043 100
30 107.7 15.03 484.97 222.07 0.7475 100
모든 단위는 g이며, Fm-NaCl은 피드챔버에서 NaCl총량, 시작 피드/드로챔버에서 각각 500g으로 시작, 물투과량(ml)=500(ml)-잔여용액량(ml), rejection 100%로 그대로 피드챔버에 남아 있어 물이 빠져 나간 양만큼 농축됨. w-flux=물투과량/면적.시간, g/(m2.h)의 단위를 가짐. Fc=143.5/0.48666=295.07(g/L)
22.3 wt %는 4.9m(molal, 물 1000g 기준), 17.7 wt %는 3.68m이다. 이때의 예상 삼투압은 각각 97bar 및 68bar 이다. 상기 표1에서 feed와 draw 챔버에서 각각 같은 물질과 같은 농도를 투입하여 무삼투압차 (22.3%, 22.3%) 환경을 만든 후에 실험한 결과를 보면 w-flux가 0.6634이고 17.7%, 22.3%는 draw chamber가 고농도 이므로 forward osmosis 환경이다. 이 경우는 0.8798로 같은 △P (30bar)에서 무 삼투압차에서도 flux가 있음을 알 수 있다.
아래 칸의 17.7%, 17.7% 의 무 삼투압차 환경 (△P=5∼30 bar)에서 용매인 물이 잘 투과함을 알 수가 있고 △P가 증가하면 w-flux가 증가함 (0.2994에서 0.7475)을 알 수가 있다. 본 실험에서 w-flux(L/m2.h)=0.025△P의 직선 관계가 있음을 알 수 있고 0.025의 단위는 L/(m2.h.bar)가 된다. 그리고 같은 압력 30bar에서 높은 농도(22.3-22.3)에서 w-flux는 0.6634인데 비해 17.7-17.6에서는 0.7475인 것을 보면 낮은 농도의 삼투압차에서 높은 w-flux을 가짐을 알 수 있다.
실시예 2: 무삼투압 농축장치를 이용한 VFA-Na 수용액의 농축
실시예 1(NaCl의 농축)에서 사용한 막과 실험장치를 이용하여 volatile fatty acid-Na를 시료로 하여 다음과 같은 무삼투압차 실험을 수행하였다.
표 3 VFA-Na의 무삼투압차 환경 하에서 농축공정
VFA(Feed 농도-Draw 농도), 22.77wt%∼22.77% rejection(%)
운전조건 압력(bar) F-VFA 물투과량 F-잔여물량 D-VFA의 농도 w-Flux
22.77-22.77 5 147.4 2.17 497.83 296.18 0.1079 100
10 147.4 2.98 497.02 296.66 0.1482 100
20 147.4 3.95 496.05 297.24 0.1964 100
30 147.4 4.11 495.89 297.34 0.2044 100
모든 단위는 g이며, w-flux는 L/m2.h이다.
표 3에서와 같이 물 1000g에 VFA-Na가 294.8g이 포함되어 22.77wt%가 되었다. 몰랄농도로 표시하면 3.73m이다. 삼투압력은 67bar이다. 같은 몰랄농도에서 비교하여 보면 NaCl 17.7wt(3.68m)의 w-flux가 30bar에서 0.7475인데 비해, VFA-Na에서는 0.2044이므로 flux가 많이 떨어짐을 알 수 있다.
실시예 3: 무삼투압차 농축공정(FO)
압력도움 정삼투압 공정(Pressure Assisted Osmosis)을 이용하여 고농도의 NaCl 용액을 농축하는 실험을 수행하였다. 정삼투압 공정에 사용된 막(membrane)은 Cellulose triacetate 재질의 카트리지(Hydration Technologies, USA)를 이용하였다.
통상의 정삼투압 공정은 드로우 챔버에 삼투압이 높은 다른 용질을 사용하지만, 본 실시예에서는 피드 챔버와 동일한 용질을 사용하였다. 아래 실험은 무삼투압차를 정삼투압차에 적용을 위한 실험이라고 할 수 있다.
즉, 피드 용액으로 NaCl 용해도(359g/L)의 80%(287g/L) 및 60%(215g/L) 농도인 고농도의 NaCl 용액을 사용하였으며, 유도 용액으로 100%(359g/L) NaCl 수용액을 사용하였다. 유도 용액은 암모니아수를 이용하여 pH를 8로 적정한 후 실험에 사용하였으며, 외부 압력 20psi (1.36atm, 1.38bar)를 가하였다.
1L의 피드 용액과 유도 용액으로 600분간 농축을 진행하고, 그 결과를 하기 표 4에 나타내었다.
표 4 정삼투압에 의한 유압 1.3기압 부과 시 농축공정
실험 용액구분 시작농도(중량%) 최종 농도(중량%)
I물 이동량(93.32g) 피드용액 287g-NaCl/물 1000g(22.3) 287g-NaCl/w-907.68g(24.02)
드로용액 359g-NaCl/물 1000g(26.4) 359g-NaCl/w-1122.68g(24.23)
II물 이동량(213.4g) 피드용액 215g-NaCl/물 1000g(17.6) 215g-NaCl/w-786.6g(21.46)
드로용액 359g-NaCl/물 1000g(26.4) 359g-NaCl/w-1213.4g(22.83)
표 4에 나타난 바와 같이, 실험실 규모의 압력도움 정삼투압 공정에서 피드 용액과 유도 용액을 모두 고농도의 NaCl 용액으로 하고, 외부 압력을 이용할 경우, 피드 챔버에서 드로우 챔버로 물을 이송시켜, NaCl 농도를 증가시킬 수 있다는 것을 확인할 수 있었다. 실험1에서는 드로용액은 26.4wt%에서 24.23wt%로 희석되었고, 피드 용액은 22.3wt%에서 24.02wt%로 농축되었다. 실험2에서는 피드용액은 17.6wt%에서 21.46wt%로, 드로용액은 26.4wt%에서 22.83wt%로 농축/희석되었음을 알 수 있다.
실시예 4: 무삼투압차 연속 농축시스템 공정
무삼투압차 공정에서 가장 중요한 부분의 가장 마지막 챔버로 [도3]에서 점선으로 표시한 피드챔버(R4)와 드로챔버(R5)에서 용액의 농도를 서로 비교해 볼 필요가 있다. 두 농도가 같으면 무삼투압차라고 이야기 할 수 있다. 완전 혼합분리기 (CSTR: continuous stirred tank reactor/separator)이기 때문에 피드챔버측 농도는 C4, 드로챔버측 농도는 C6와 같다. 즉 C4와 C6의 농도를 서로 비교하여 이에 해당하는 삼투압 π4와 π6의 차이를 외부 유압이 감당할 수 있느냐가 관건이 된다.
도 3에서 C4와 C6의 농도 차이를 정리하면, P4/q4, P4/q5 <<1 이므로 C4-C6=[C3(1+P4/q4)/(1+P4/q5)]*[1-1/(1+P4/q5)]≡C3*P4/q5 됨을 알 수 있다. 당연히 q5는 q4의 일부를 사용하므로 q5≤q4이다. 회수율(R)이 0인 경우는 q5=q4이고 R=1인경우는 q5=0가 된다. 요약하면 C4-C6=PQ*C3가 된다 여기서 PQ는 P4-permeate와 draw flow rate-q5의 비율로 P4/q5)*C3이다. C4와 C6의 삼투압차이는 PQ*C3로 쉽게 표시되며 외부 인가 유압 △P가 삼투압차(C4-C6)보다 크면 무삼투압차 공정이 가능하다. 이 PQ는 농축회수율 R로 조절이 가능하며 P4/q5가 1 보다 작은 수가 되도록 조절하거나 혹은 높은 △P를 사용할 수 있다. 또한 다단계 분리기를 plug flow reactor (PFR)형태로 운전하면 P4는 막면적에 비례하지만 q5는 그렇지 않으므로 PQ를 1보다 작게 유지 할 수가 있다.
예: P4=1m3/m2.d이고 q4=5.52m3/m2.d에서(실시예 1의 CSM RE2521-TL 카다로그) R=0로 하고 전부를 recycle하면 PQ44=0.18이고, R=0.5가 되면 PQ45=0.36으로 크다. 그러나 위의 수치는 업체에서 제공한 자료로 아주 낮은 용질 농도에서 이기 때문에 큰 수치가 나온 것이며, 그러나 고농도에서는 당 발명자가 실험한 P4는 실시예 1,2에 가장 큰 수치인 0.74L/(m2.h)x24=18L/(m2.d)=0.018m3/m2.d을 적용한다.
q5를 q4=5.52의 10% 로 하면 P4/q5=0.018/0.552=0.032정도이다. πf-πd=△π(0.032C3)의 삼투압<외부유압 △P를 가해 주면 된다. NaCl의 경우 포화농도 6.14m농도에서 삼투압은 128 bar 정도이며 이것의 3%는 3.84bar에 불과하다. 그 이후의 공정들은 C3-C7; C2-C8들은 위의 공정보다 삼투압이 낮아도 flux가 크므로 약한 유압에도 쉽게 삼투압차이의 극복이 가능하다.
구획된 마지막 장치에서, V4 및 V5는 피드 챔버의 부피와 드로우 챔버 부피를 의미하고, P4는 삼투압차 없이 투과되는 투과수의 총량을 의미한다.
농축수의 농도인 C4는 P4가 커질수록 이전 무삼투압차 농축장치에서 농축된 농축수인 C3에 비해 농도가 증가하며, 4번째 챔버 유출수 유량인 q4가 작을수록 커진다. 왜나하면 4번째 유입수 q3가 막투과수 P4와 q4의 합이기 때문이다. 일반적으로 위의 피드챔버들은 막투과수를 드로 챔버로 내 보냄으로서 농도가 전 챔버 보다 증가하게 되어 있다. 반면 드로 챔버의 농도는 막투과수가 피드챔버로부터 들어오기 때문에 희석효과로 점점 농도가 낮아 질 수 있다. 어떻게 하면 농도를 유지하느냐가 무 삼투압차의 관건이다. 본 발명에서 이를 유지하는 방법으로 (1)드로챔버에서 체류시간 조절 (2) 외부 삼투압이 큰 물질로 정삼투압에서처럼 희석을 하되 높은 삼투압을 유지하는 방법이다. 여기에 메탄올, 에탄올과 같이 분자량이 적지만 높은 삼투압을 가진 물질을 사용할 수 있다. 에탄올은 94.5%가 1800기압의 삼투압을 가지고 있다. 본 발명에서는 (1)의 방법을 최대한 활용하고자 한다.
C4와 C5는 같은 농도이나 5번째 챔버 유입수 유량인 q5는 q4의 90%를 회수(R=0.9)하면 q4의 1/10이 될 수도 있다.
피드 챔버와 드로우 챔버에서 (1)유체의 체류시간을 동일하게 하기 위해서는 V5를 V4의 약 1/10로 하면 된다.즉 V5/V4를 1/10로 하면 된다; (2) 드로우 챔버의 체류시간을 피드챔버보다 짧게 하기 위해서는 V5/V4를 v4의 1/100로 할 수도 있고 (3) 또 길게 할 수 있게 하기 위해서는 V5/V4를 크게 할 수 있다. 상기 (1)의 경우는 용액이 V4, V5에 머무는 시간이 각각 10h라고 하면 이 때 막을 통과하는 용액(혹은 물)의 양이 P4이라하고 하면 q5는 q5+P4가 된다. 이때 C5의 농도는 C5의 농도는 q5/(q5+P4)C5가 된다. (2)의 경우 체류시간을 1/10로 하면 q5/(q5+1/10P4)C5가 된다. 체류시간의 영향을 받는 것은 P4이기 때문이다. (3)의 경우 체류시간을 10배로 하면 q5/(q5+10P4)C5이 된다. 즉 1의 경우는 통상 1/10정도의 영향을 받는 다고 하면 (2)의 경우는 (1)의 1/10의 영향을, (3)의 경우는 10배의 더 많은 P4를 갖게 된다. 물론 자세히 고려하자면 드로 챔버의 물이 추가되어 농도 희석효과가 생기지만 이는 외부 유압 △P로 역삼투압 상태를 유지할 수 있다. 무삼투압차에 시스템에서 산물의 회수율 (R)을 높이는 방법은 (2)의 경우로 설계상/운전상 문제가 없다면 드로우 챔버의 체류시간을 짧게하여 가능한 한 분리기에서 높은 드로우 용액 농도를 유지함으로써 무삼투압차를 최대한도로 유지할 수 있다.
실시예 5: 무삼투압차 공정의 응용: 해수의 담수화
해수 담수화에서 최고 포화농도는 6.14molal이다. 여기에 해당하는 삼투압은 112기압에 불과하므로 무삼투압차로 변환 할 경우 0.076C3 즉 10bar이내이므로 조그만 유압을 가해도 작은 삼투압차를 쉽게 극복할 수 있다.
실시예 6: 무삼투압차 공정의 응용: VFA의 농축
VFA-Na 혼합유기산에서 초산-Na, 프로피온산-Na, 부칠산-Na의 비율이 6:1:3라고 할 때 최고의 용해도는 물 1000g당 VFA-Na 500g 정도이다. 혼합 분자량을 78이라고 하면 molal(m)수는 6.41m이다. 이때의 삼투압은 120기압 정도일 것이므로 해수담수화와 크게 차이가 나지 않을 것으로 거의 염의 포화상태까지 농축이 가능할 것이다.
실시예 7: 에탄올 농축을 위한 에탄올 재순환율의 결정방법
연료용 에탄올의 경우는 순도가 99.5%까지 필요함으로 이때의 삼투압은 Lewis식(식4)으로 계산하면 무려 6053.2 bar이다. 에탄올 99.0%는 5101.3bar로 아주 높다. 실시예 4에서 C4-C6를 구해보면, P4/q4, P4/q6<<1라고 하면 결국 윗 식은 C3*P4/q5가 된다. C3의 삼투압이 1865bar(95% 에탄올)정도라고 하면 그리고 막에 가할 수 있는 유압이 100기압 정도라고 하면 P4/q5=1/18 정도가 된다. 이는 P4=0.018m3/(m2.d) 라고 하면 q5=0.018x18=0.324m3/m2.d이상이 되면 된다. 재순환율을 높임으로서 P4/q5의 비를 낮출 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 무삼투압차 상태에서 저압으로 수용액을 농축하는 방법은 에너지의 소비가 적고, 추출용매를 사용하지 않아도 최대 용질의 포화 수용액 또는 용질의 농도가 100% 될 때까지 농축할 수 있으며, 별도의 삼투압 유도 용액을 사용하지 않아도 되는 장점이 있다.

Claims (10)

  1. 다음 단계를 포함하는 용질 함유 수용액의 농축방법:
    (a) 역삼투압을 이용하여 농축 대상 용질 함유 수용액을 1차 농축시키는 단계;
    (b) 상기 1차 농축된 용질 함유 수용액을 역삼투압막 또는 정삼투압막으로 구획되어 있는 피드 챔버와 드로우 챔버를 포함하는 무삼투압차 농축기를 이용하여 2차 농축하는 단계;
    (c) 상기 2차 농축된 용질 함유 수용액을 회수하되, 상기 2차 농축된 용질 함유 수용액의 일부를 상기 드로우 챔버로 재순환시켜 피드챔버와 드로우 챔버간의 무삼투압 상태를 형성하는 단계.
  2. 제1항에 있어서, 상기 (b) 단계는,
    (i) 무삼투압차 농축기의 피드 챔버로 상기 1차 농축된 수용액을 이송시키고, 상기 피드 챔버로 이송된 수용액과 동일한 삼투압을 가지는 용액을 드로우 챔버로 투입하여, 피드 챔버와 드로우 챔버간의 무삼투압 상태를 형성하는 단계; 및
    (ii) 무삼투압 상태에서 피드 챔버에 정삼투압막의 경우는 1∼5기압, 역삼투압막의 경우는 5∼250기압의 압력을 가하여 수용액의 물을 드로우 챔버로 이송시킴으로써 수용액을 농축시키는 단계;를 포함하는 것을 특징으로 하는 수용액의 농축방법.
  3. 제1항에 있어서, 상기 (c)단계의 2차 농축된 용질 함유 수용액의 일부를 상기 드로우 챔버로 재순환시키는 단계는 상기 2차 농축된 용질 함유 수용액 중 10∼90 중량 %를 드로우 챔버로 이송시켜, 피드 챔버와 동일한 삼투압을 유지시키고, 이를 다시 역삼투압 분리기로 이송시킨 다음, 수용액중 물을 외부로 배출하고, 농축된 수용액은 상기 무삼투압차 농축기로 이송시키는 단계;를 추가적으로 포함하는 것을 특징으로 하는 수용액의 농축 방법.
  4. 제1항에 있어서, 상기 (a) 단계에서 농축 대상 용질 함유 수용액은 해수(sea water), 기수(brackish water), 세포 대사산물 및 반응액으로 구성된 군으로부터 선택되는 1개 이상인 것을 포함하는 것을 특징으로 하는 수용액의 농축 방법.
  5. 제1항에 있어서, 상기 (c) 단계의 피드 챔버와 드로우 챔버간의 무삼투압 상태를 형성하는 단계는 상기 피드 챔버로 이송된 수용액, 메탄올, 에탄올, 암모니아 카바메이트 함유액, 고 삼투압 폐용액, 염화칼슘 함유액 및 염화마그네슘 함유액으로 구성된 군에서 선택되는 용액을 드로우 챔버로 투입하는 것을 특징으로 하는 수용액의 농축 방법.
  6. 제1항에 있어서, 상기 무삼투압차 농축기의 피드 챔버와 드로우 챔버의 부피비는 100∼1: 1인 것을 특징으로 하는 수용액의 농축 방법.
  7. 제1항에 있어서, 상기 (b) 단계의 무삼투압차 농축기를 이용한 농축은 회분식 또는 연속식 방법으로 수행되는 것을 특징으로 하는 수용액의 농축 방법.
  8. 제1항에 있어서, 상기 피드 챔버 및 드로우 챔버는 다단계로 구성되어 있는 것을 특징으로 수용액의 농축 방법.
  9. 제1항에 있어서, 상기 수용액의 pH는 3∼11, 온도는 물이 액체 상태를 유지하는 온도인 것을 특징으로 하는 수용액의 농축 방법.
  10. 제1항에 있어서, 상기 무삼투압차 농축기에서 농축된 수용액으로부터 용질 및 물을 회수하는 방법은 각각 독립적으로 다단 증발법, 투석증발, 열분해법, 황산법 및 칼슘법으로 구성된 군에서 선택되는 것을 특징으로 하는 수용액의 농축 방법.
PCT/KR2014/000952 2013-02-06 2014-02-04 무삼투압차 상태에서 유압-막공정 법으로 용질 함유 수용액을 고농도로 농축하는 방법 WO2014123339A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/764,975 US9950297B2 (en) 2013-02-06 2014-02-04 Method for concentrating aqueous containing solute into high concentration by hydraulic-membrane process under no difference in osmotic pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0013558 2013-02-06
KR20130013558 2013-02-06

Publications (1)

Publication Number Publication Date
WO2014123339A1 true WO2014123339A1 (ko) 2014-08-14

Family

ID=51299891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000952 WO2014123339A1 (ko) 2013-02-06 2014-02-04 무삼투압차 상태에서 유압-막공정 법으로 용질 함유 수용액을 고농도로 농축하는 방법

Country Status (3)

Country Link
US (1) US9950297B2 (ko)
KR (1) KR102047939B1 (ko)
WO (1) WO2014123339A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520874A (ja) * 2015-07-24 2018-08-02 ラブ・トゥ・マーケット・インコーポレイテッド 溶質含有水溶液を高濃度に濃縮するための浸透圧を用いない逆浸透圧法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140224716A1 (en) 2013-02-08 2014-08-14 Oasys Water, Inc. Osmotic separation systems and methods
AU2016298326B2 (en) 2015-07-29 2022-08-04 Gradiant Corporation Osmotic desalination methods and associated systems
WO2017136048A1 (en) 2016-02-02 2017-08-10 Trevi Systems Inc. Osmotic pressure assisted reverse osmosis process and method of using the same
KR102119485B1 (ko) * 2016-02-19 2020-06-05 주식회사 엘지화학 역삼투를 이용한 염수 농축 방법
CN110636894B (zh) * 2017-01-20 2022-06-03 特雷维系统公司 渗透压辅助的反渗透膜和模块
IL251499B (en) * 2017-04-02 2019-02-28 Efraty Avi Reverse osmosis installation in a closed circuit with a hydraulic arm for desalination with low energy consumption and a high recovery ratio
EP3728615A4 (en) * 2017-12-21 2021-10-06 Genecis Bioindustries Inc. PROCESS FOR THE PRODUCTION OF POLYHYDROXYALCANOATES (PHA) FROM ORGANIC WASTE
AU2019325567A1 (en) 2018-08-22 2021-03-04 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
US20220204364A1 (en) * 2019-03-15 2022-06-30 Seebio Inc. Method for concentrating aqueous solution with low energy by using reverse osmosis and forward osmosis in state in which multiple-no osmotic pressure difference is reduced
JP7106125B2 (ja) * 2019-04-16 2022-07-26 株式会社ササクラ 濃縮システム及び濃縮方法
AU2021383601A1 (en) 2020-11-17 2023-06-08 Gradiant Corporaton Osmotic methods and systems involving energy recovery
CN114752635B (zh) * 2022-04-11 2023-08-22 江南大学 一种基于正渗透技术回收厌氧发酵液中己酸的工艺
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110081518A (ko) * 2010-01-08 2011-07-14 한국과학기술원 바이오매스로부터 유기산을 생산하는 방법
US20120118826A1 (en) * 2009-07-09 2012-05-17 I.D.E. Technologies Ltd. Desalination system
KR20120050897A (ko) * 2010-11-11 2012-05-21 한국과학기술원 정삼투압을 이용한 저농도 발효액의 농축 방법
US20120267307A1 (en) * 2011-04-25 2012-10-25 Mcginnis Robert L Osmotic separation systems and methods
US20120267308A1 (en) * 2011-04-25 2012-10-25 Trevi Systems Inc. Recovery of retrograde soluble solute for forward osmosis water treatment
KR101229482B1 (ko) * 2012-07-12 2013-02-04 한국기계연구원 하이브리드형 해수 담수화 장치 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849184B1 (en) * 2001-12-12 2005-02-01 Hydration Technologies Inc. Forward osmosis pressurized device and process for generating potable water
US8083942B2 (en) * 2004-12-06 2011-12-27 Board of Regents of the Nevada System of Higher Education, on Behalf of the Universary of Nevada, Reno Systems and methods for purification of liquids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120118826A1 (en) * 2009-07-09 2012-05-17 I.D.E. Technologies Ltd. Desalination system
KR20110081518A (ko) * 2010-01-08 2011-07-14 한국과학기술원 바이오매스로부터 유기산을 생산하는 방법
KR20120050897A (ko) * 2010-11-11 2012-05-21 한국과학기술원 정삼투압을 이용한 저농도 발효액의 농축 방법
US20120267307A1 (en) * 2011-04-25 2012-10-25 Mcginnis Robert L Osmotic separation systems and methods
US20120267308A1 (en) * 2011-04-25 2012-10-25 Trevi Systems Inc. Recovery of retrograde soluble solute for forward osmosis water treatment
KR101229482B1 (ko) * 2012-07-12 2013-02-04 한국기계연구원 하이브리드형 해수 담수화 장치 및 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520874A (ja) * 2015-07-24 2018-08-02 ラブ・トゥ・マーケット・インコーポレイテッド 溶質含有水溶液を高濃度に濃縮するための浸透圧を用いない逆浸透圧法
US10953367B2 (en) 2015-07-24 2021-03-23 Lab to Market Inc. Method of osmotic pressure free reverse osmosis for enriching solute-containing solution to high concentration

Also Published As

Publication number Publication date
US20150367285A1 (en) 2015-12-24
KR102047939B1 (ko) 2019-11-22
US9950297B2 (en) 2018-04-24
KR20140100431A (ko) 2014-08-14

Similar Documents

Publication Publication Date Title
WO2014123339A1 (ko) 무삼투압차 상태에서 유압-막공정 법으로 용질 함유 수용액을 고농도로 농축하는 방법
WO2019050281A1 (ko) 에스터 조성물의 제조 시스템 및 이를 이용한 에스터 조성물의 제조 방법
WO2020189999A1 (ko) 다중 무삼투압차 유도 상태에서 역삼투압 및 정삼투압을 이용하여 저에너지로 수용액을 농축하는 방법
US20110318800A1 (en) Integrated mechanical vapor recompression (mvr) and membrane vapor permeation process for ethanol recovery (ethanol dehydration) from fermentation broth
WO2011084002A2 (ko) 바이오매스로부터 유기산을 생산하는 방법
US6716352B1 (en) Method for removing and recovering aromatic amines by using a non-porous membrane
KR101865342B1 (ko) 무삼투압차 상태에서 역삼투압법으로 용질 함유 수용액을 고농도로 농축하는 방법
FI66905B (fi) Foerfarande foer framstaellning av etanol genom kontinuerlig foerjaesning
Shah et al. Pervaporation of pharmaceutical waste streams and synthetic mixtures using water selective membranes
CN104003888A (zh) 2,4-二硝基-6-氯苯胺制备方法
CN106999852B (zh) 用于改进的反应性单体生产的方法
WO2017018764A1 (ko) 무삼투압차 상태에서 역삼투압법으로 용질 함유 수용액을 고농도로 농축하는 방법
CN112321468A (zh) 一种从醚唑类药物合成过程中的废水中分离二甲基亚砜的方法
EP3237370A1 (en) Method and apparatus for purification of dimethyl carbonate using pervaporation
JP7471336B2 (ja) 発酵からケトン及びグリコールを回収する方法
WO2021132869A1 (ko) 특정한 유기화합물 함유 폐수로부터 그 유기화합물의 농축 및 폐수처리를 위한 투과증발막 분리공정
Chen et al. Dehydration of waste cutting oil using a pervaporation process
CN114195720B (zh) 一种依托咪酯的纯化方法
WO2021002708A1 (ko) 디에스터계 조성물의 제조 시스템 및 방법
WO2013183962A1 (ko) 바이오매스 처리를 위한 전처리 과정과 분리 과정의 동시 진행 방법 및 이를 이용하여 정제되는 바이오 케미컬
WO2021060872A1 (ko) 고염 원수 농축 방법
WO2021086086A1 (ko) 개선된 알룰로스의 제조 방법
WO2024049106A1 (ko) 고순도 (메트)아크릴산의 제조방법
AU2019216085B2 (en) Method for preparing natural L-cysteine crystals by continuous chromatography
AU2019216084B2 (en) Method for preparing natural L-cysteine hydrochloride hydrate crystals by continuous chromatography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14764975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14748690

Country of ref document: EP

Kind code of ref document: A1