WO2016035175A1 - 水処理装置及び水処理装置の運転方法 - Google Patents

水処理装置及び水処理装置の運転方法 Download PDF

Info

Publication number
WO2016035175A1
WO2016035175A1 PCT/JP2014/073237 JP2014073237W WO2016035175A1 WO 2016035175 A1 WO2016035175 A1 WO 2016035175A1 JP 2014073237 W JP2014073237 W JP 2014073237W WO 2016035175 A1 WO2016035175 A1 WO 2016035175A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
water
separation membrane
permeate
flow rate
Prior art date
Application number
PCT/JP2014/073237
Other languages
English (en)
French (fr)
Inventor
櫻井 秀明
英夫 鈴木
裕 中小路
茂 吉岡
進 沖野
範明 仙波
茂広 杉山
昌之 江田
飛太 阿部
龍 上戸
鵜飼 展行
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480081210.6A priority Critical patent/CN106659979A/zh
Priority to PCT/JP2014/073237 priority patent/WO2016035175A1/ja
Priority to US15/502,883 priority patent/US10464024B2/en
Priority to JP2016546250A priority patent/JPWO2016035175A1/ja
Priority to CA2957625A priority patent/CA2957625A1/en
Publication of WO2016035175A1 publication Critical patent/WO2016035175A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling

Definitions

  • the present invention relates to a water treatment apparatus and a method for operating the water treatment apparatus.
  • mine wastewater contains pyrite (FeS 2 ), and this pyrite is oxidized to produce SO 4 2 ⁇ .
  • Inexpensive Ca (OH) 2 is used to neutralize mine wastewater. For this reason, the mine wastewater is rich in Ca 2+ and SO 4 2- .
  • the water containing a large amount of these ions is subjected to desalting treatment.
  • a concentrating device for performing desalting treatment for example, a reverse osmosis membrane device, a nanofiltration membrane device, an ion exchange membrane device and the like are known.
  • Patent Document 1 proposes a method of monitoring the reverse osmosis membrane, for example, by using a cell for monitoring the reverse osmosis membrane of the reverse osmosis membrane device.
  • Patent Document 2 proposes a proposal to monitor the deposition on the film surface.
  • Patent Document 2 it is monitored in advance that the deposits are deposited on the membrane surface of the filtration membrane as the raw water (seawater) is concentrated, and it is efficient that the deposits are deposited on the membrane surface of the filtration membrane of the desalination device. Is suppressed.
  • Patent Document 2 there is a proposal of supplying an alkaline agent to the concentrated water supplied to the monitoring separation membrane in order to further promote the deposition of deposits.
  • the RO element membrane surface may be contaminated by mineral scales, microorganisms, colloidal particles, and organic matter during the operation of the reverse osmosis membrane device, and deposits on the membrane surface.
  • the predetermined permeate flow rate and desalination rate cannot be obtained.
  • the standardized permeate flow rate drops by more than 10%
  • the standardized salt permeability increases by more than 10%
  • the standardized differential pressure feedwater
  • the element needs to be cleaned when the pressure on the side (pressure on the concentrated water side) increases by 15% or more (Non-Patent Document 1).
  • the generation mechanism of deposits grows into nano-level crystal nuclei and becomes deposits.
  • the pore size of the reverse osmosis membrane surface of the reverse osmosis membrane device is at a nano level, and if a deposit of sub- ⁇ m or less exists on the membrane surface, the reverse osmosis membrane is blocked.
  • an optical photographing apparatus for example, an optical microscope
  • a photographing apparatus such as an electron microscope is necessary. There is a problem that observation is not possible.
  • the reverse osmosis membrane of the desalination apparatus stores, for example, a plurality of (for example, 5 to 8) spiral membranes in units of 1 m to constitute one filtration membrane vessel.
  • the downsizing of the monitoring device contributes to the downsizing of the desalination equipment. Yes.
  • an adhesive component for example, calcium carbonate, magnesium hydroxide, etc.
  • an adhesive component for example, calcium carbonate, magnesium hydroxide, etc.
  • pH for example, gypsum ( CaSO 4 ), calcium fluoride (CaF 2 ) and the like are not effective and cannot be applied.
  • Non-Patent Document 1 states that it is necessary to clean the element when the permeate flow rate of the reverse osmosis membrane device decreases by 10% or more.
  • a reverse osmosis membrane device has, for example, 5 to 8 elements directly connected in a pressure vessel (vessel), and when two pressure vessels are connected, 10 to 16 elements are directly connected. It will be that.
  • the length of one element in the liquid flow direction is, for example, 1 m.
  • the total length of the film in the liquid flow direction is, for example, 16 m.
  • 10% of the permeate flow rate decreases the element is in a state where the scale is deposited in a considerable length in the liquid flow direction, and the amount of scale adhering is large. Descaling becomes difficult.
  • the reverse osmosis membrane is damaged by the scale deposition on the reverse osmosis membrane, which causes the performance of the membrane to deteriorate. Therefore, in order to clean the attached scale easily, a device for detecting the timing at which the scale starts to deposit on the reverse osmosis membrane with high sensitivity is required.
  • the present invention provides a water treatment apparatus and water that can detect not only the reverse osmosis membrane of a reverse osmosis membrane apparatus but also the start timing of adhesion of deposits of the separation membrane apparatus with a compact apparatus. It is an object of the present invention to provide a method for operating a processing apparatus.
  • the first invention of the present invention for solving the above-mentioned problems is a separation membrane apparatus having a separation membrane for concentrating dissolved components and dispersed components from treated water to obtain permeated water, and the dissolved components and dispersed components are concentrated.
  • a separation membrane apparatus having a separation membrane for concentrating dissolved components and dispersed components from treated water to obtain permeated water, and the dissolved components and dispersed components are concentrated.
  • Provided in the non-permeate water branch line branched from the non-permeate water line for discharging the non-permeate water, and a part of the branched non-permeate water is used as a detection liquid, and the detection liquid is used as a detection permeate and a detection non-permeate water Measures the flow rate of one or both of the first adhering matter detection unit having the first detection separation membrane and the detection permeate water and the detection non-permeate water separated by the first detection separation membrane. And a first detection separation liquid flow rate measuring device.
  • a separation membrane device having a separation membrane for concentrating dissolved components and dispersion components from the treated water to obtain permeated water, and treated water branched from the treated water supply line for supplying the treated water.
  • a second adhering substance detection having a second detection separation membrane that is provided in the branch line and uses a part of the branched water to be treated as a detection liquid and separates the detection liquid into a detection permeate and a detection non-permeate.
  • a second detection separation liquid flow rate measuring device that measures the flow rate of one or both of the permeate water for detection and the non-permeate water for detection separated by the second separation membrane for detection. It is in the water treatment device.
  • a separation membrane device having a separation membrane for concentrating dissolved components and dispersed components from treated water to obtain permeated water, and non-permeated water for discharging non-permeated water in which dissolved components and dispersed components are concentrated.
  • a first detection separation membrane that is provided in a non-permeate water branch line branched from the line and uses a part of the branched non-permeate water as a detection liquid and separates the detection liquid into a detection permeate and a detection non-permeate
  • a first adhering matter detection unit a first detection separation liquid flow rate measuring device for measuring the flow rate of the separation liquid separated by the first detection separation membrane, and a treated water supply line for supplying the treated water
  • a separation membrane for detection which is provided in a branch line of the water to be treated branched from, and uses a part of the branched water to be treated as a detection liquid and separates the detection liquid into permeation water for detection and non-permeation water for detection
  • a second adhering matter detection unit having a separation liquid flow separated by the second detection separation membrane; Certain that the water treatment device according to claim comprising: a second detecting the separated liquid flow rate measuring device for measuring.
  • the separation membrane device is based on a measurement result of the first detection separation liquid flow rate measuring device or the second detection separation liquid flow rate measurement device.
  • the water treatment apparatus includes a control device that performs cleaning of the separation membrane.
  • the separation membrane device is applied to the separation membrane based on the measurement result of the first detection separation liquid flow rate measurement device or the second detection separation liquid flow rate measurement device.
  • the water treatment apparatus includes a control device that performs control to change the operation condition to a condition in which deposits do not adhere.
  • the sixth invention includes a separation membrane device having a separation membrane for concentrating dissolved components and dispersed components from water to be treated to obtain permeated water, and non-permeated water for discharging non-permeated water in which dissolved components and dispersed components are concentrated
  • a first detection separation membrane that is provided in a non-permeate water branch line branched from the line and uses a part of the branched non-permeate water as a detection liquid and separates the detection liquid into a detection permeate and a detection non-permeate
  • a first detection separation liquid flow rate measuring device that measures the flow rate of one or both of the detection permeate water and the detection non-permeate water separated by the first detection separation membrane.
  • a control device that performs control to change the operating condition to a condition in which adhesion of the separation membrane device to the separation membrane does not adhere based on the measurement result of the first detection separation liquid flow rate measurement device. It exists in the water treatment apparatus characterized by providing.
  • the seventh invention is a separation membrane device having a separation membrane for concentrating dissolved components and dispersion components from the treated water to obtain permeated water, and the treated water branched from the treated water supply line for supplying the treated water
  • a second adhering substance detection having a second detection separation membrane that is provided in the branch line and uses a part of the branched water to be treated as a detection liquid and separates the detection liquid into a detection permeate and a detection non-permeate.
  • a second detection separation liquid flow rate measuring device that measures the flow rate of one or both of the detection permeate water and the detection non-permeate water separated by the second detection separation membrane, and the second detection use And a control device that performs control to change operating conditions to a condition in which adhesion of the separation membrane device to the separation membrane does not adhere based on a measurement result of the separation liquid flow rate measurement device.
  • a control device that performs control to change operating conditions to a condition in which adhesion of the separation membrane device to the separation membrane does not adhere based on a measurement result of the separation liquid flow rate measurement device.
  • the eighth invention includes a separation membrane device having a separation membrane that concentrates dissolved components and dispersed components from treated water to obtain permeated water, and non-permeated water that discharges non-permeated water in which dissolved components and dispersed components are concentrated.
  • a first detection separation membrane that is provided in a non-permeate water branch line branched from the line and uses a part of the branched non-permeate water as a detection liquid and separates the detection liquid into a detection permeate and a detection non-permeate
  • a first adhering matter detection unit a first detection separation liquid flow rate measuring device for measuring the flow rate of the separation liquid separated by the first detection separation membrane, and a treated water supply line for supplying the treated water
  • a separation membrane for detection which is provided in a branch line of the water to be treated branched from, and uses a part of the branched water to be treated as a detection liquid and separates the detection liquid into permeation water for detection and non-permeation water for detection
  • a second adhering matter detection unit having a separation liquid flow separated by the second detection separation membrane; Based on the measurement results of the second detection separation liquid flow rate measurement device and the first detection separation liquid flow rate measurement device or the second detection separation liquid flow rate measurement device, the separation membrane of the separation membrane device And
  • the flow rate of the permeated water for detection that has passed through the first separation membrane for detection or the second separation membrane for detection is measured by a permeate flow rate measuring device.
  • the water treatment apparatus is characterized in that it is determined as an initial stage of deposit attachment to the separation membrane of the separation membrane apparatus.
  • a tenth aspect of the present invention is the non-permeate water-side flow rate measuring device according to any one of the first to eighth aspects, wherein the flow rate of the non-permeated water for detection that has passed through the first separation membrane for detection or the second separation membrane for detection is measured.
  • the measurement flow rate becomes a predetermined threshold value or more, it is determined that the separation membrane apparatus is in the initial stage of adhering deposits to the separation membrane.
  • the length of the flow path of the first deposit detection unit is the total length of the separation membrane used in the separation membrane apparatus in the flow direction of the supply liquid. It is in the water treatment apparatus characterized by being 1/10 or less.
  • the length of the flow path of the second deposit detection unit is the total length of the separation membrane used in the separation membrane device in the flow direction of the supply liquid. It is in the water treatment apparatus characterized by being 1/10 or less.
  • a thirteenth aspect of the invention is a water treatment apparatus according to any one of the first to twelfth aspects, further comprising an evaporator that evaporates water of the non-permeated water from the separation membrane device.
  • the 14th invention uses the 1st deposit
  • the deposit cleaning liquid for cleaning the deposit adhering to the separation membrane and the deposit inhibitor for suppressing the adhesion of the deposit or both are selected, and the selected deposit cleaning liquid or the selected
  • the present invention resides in a method for operating a water treatment apparatus, characterized in that a deposit inhibitor is supplied to the separation membrane apparatus.
  • the second adhering matter detection unit of the water treatment device of the second invention when used and the flow rate of the separation liquid changes with respect to a predetermined threshold, the second adhering matter detection unit performs the second detection.
  • the deposit cleaning liquid for cleaning the deposit adhering to the separation membrane and the deposit inhibitor for suppressing the adhesion of the deposit or both are selected, and the selected deposit cleaning liquid or the selected.
  • a sixteenth aspect of the invention is an operation method of a water treatment apparatus according to the fourteenth or fifteenth aspect, wherein the moisture of the non-permeated water from the separation membrane device is evaporated.
  • the water treatment device of the present invention when the water to be treated is treated using a separation membrane device using a separation membrane, it is possible to detect the adhesion start timing of deposits on the separation membrane.
  • FIG. 1 is a schematic diagram of a desalting apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram of a first attached matter detection unit according to the first embodiment.
  • FIG. 3 is a perspective view of the first attached matter detection unit of FIG.
  • FIG. 4 is a partially cutaway perspective view when a spiral type reverse osmosis membrane is used for the first adhering matter detection unit.
  • FIG. 5 is a partially cutaway schematic view of a vessel of a spiral type reverse osmosis membrane device.
  • FIG. 6 is a perspective view of two connected vessels.
  • FIG. 7 is a partially exploded schematic view of the element.
  • FIG. 1 is a schematic diagram of a desalting apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram of a first attached matter detection unit according to the first embodiment.
  • FIG. 3 is a perspective view of the first attached matter detection unit of FIG.
  • FIG. 4 is a partially cutaway perspective view when a spiral type reverse
  • FIG. 8 is a schematic diagram in which the first adhering matter detection unit corresponds to a part of the reverse osmosis membrane device of the present installation.
  • FIG. 9 is a diagram showing a change in flux (m 3 / h / m 2 ) when the length L of the reverse osmosis membrane for detection of the first adhering matter detection unit is 16 mm.
  • FIG. 10 is a diagram showing changes in flux (m 3 / h / m 2 ) when the length L of the reverse osmosis membrane for detection of the first attached matter detection unit is 1000 mm.
  • FIG. 11 is a diagram illustrating an example in which the flow rate changes as the operation time in the first embodiment elapses.
  • FIG. 9 is a diagram showing a change in flux (m 3 / h / m 2 ) when the length L of the reverse osmosis membrane for detection of the first adhering matter detection unit is 16 mm.
  • FIG. 10 is a diagram showing changes in flux
  • FIG. 12 is a schematic diagram of a desalting apparatus according to the second embodiment.
  • FIG. 13 is a schematic diagram of a desalting apparatus according to a third embodiment.
  • FIG. 14 is a schematic diagram illustrating an example of a change in operating conditions of the desalting apparatus according to the third embodiment.
  • FIG. 15 is a schematic diagram of a desalting apparatus according to the fourth embodiment.
  • FIG. 16 is a schematic diagram of a desalting apparatus according to the fifth embodiment.
  • FIG. 1 is a schematic diagram of a desalting apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram of a first attached matter detection unit according to the first embodiment.
  • a reverse osmosis membrane device that is a separation membrane device using a reverse osmosis membrane as a separation membrane will be described as an example, and a desalination treatment device for desalting a dissolved component such as salt will be described.
  • the present invention is not limited to this as long as it is a water treatment device that performs water treatment using a water vapor. As shown in FIG.
  • a desalting apparatus 10 ⁇ / b> A concentrates a dissolved component (also referred to as “adhesive component”) containing ions and organic substances from the water to be treated 11 to obtain permeated water.
  • a non-permeate water branch line L 12 branched from the non-permeate water line L 11 that discharges the non-permeate water 15 in which the dissolved components including ions and organic substances are concentrated.
  • a first adhering matter detection unit 24A having a first reverse osmosis membrane 21A for detecting a part of the permeate 15 as a detection liquid 15a and separating the detection liquid 15a into a detection permeate 22 and a detection non-permeate 23.
  • a first detection separation liquid flow rate measuring device for measuring the flow rate of the detection permeate 22 or the detection non-permeate 23 separated by the first detection reverse osmosis membrane 21A.
  • Side flow meter 41A, first detection non-permeate water side flow meter 41 And the first detection separated liquid flow rate measuring device (first detection permeate flow meter 41A, first detection non-permeate flow meter 41B), the measured flow rate changes with respect to a predetermined threshold value.
  • a determination device 40 is provided that determines that the deposit is in the initial stage of the deposit on the reverse osmosis membrane of the reverse osmosis membrane device 14. In this embodiment, the determination device 40 is provided.
  • the determination device 40 may be installed as necessary.
  • the reverse osmosis membrane device 14 is a device that produces the permeated water 13 from the water to be treated 11, it may be hereinafter referred to as a “permanent reverse osmosis membrane device”.
  • reference numeral 16 is a high-pressure pump for supplying the treated water 11 to the reverse osmosis membrane device 14, 17 is a regulating valve, L 1 is a treated water supply line, L 2 is a permeated water discharge line, and L 3 is A permeate supply line is illustrated.
  • the non-permeate water branch line L 12 branched from the non-permeate water line L 11 from the reverse osmosis membrane device 14 is smaller in scale than the reverse osmosis membrane of the reverse osmosis membrane device 14.
  • a deposit detection unit 24A is provided, and the desalting condition of the first deposit detection unit 24A is adjusted to be the same as the vicinity of the reverse osmosis membrane outlet of the reverse osmosis membrane device 14, and this
  • the reverse permeation membrane side flow rate and pressure of the membrane of the last desalted part of the reverse osmosis membrane device 14 are simulated, and the first detection reverse osmosis membrane 21A grasps the adhering start timing. As a result, it is possible to perform the cleaning process immediately after deposits adhere to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation.
  • the separation liquid separated by the first detection reverse osmosis membrane 21A includes detection permeated water 22 that passes through the first detection reverse osmosis membrane 21A and detection that does not pass through the first detection reverse osmosis membrane 21A. There is non-permeated water 23.
  • the first detecting the separated liquid flow rate measuring device and provided with a first detecting permeate side flowmeter 41A for measuring the flow rate of the detection permeate 22 in detection permeate discharge line L 13, is provided with a first detecting non-permeate water side flowmeters 41B for measuring a flow rate of the detection non-permeate 23 in detecting non-permeate discharge line L 14.
  • the flow rate may be directly measured by a flow meter, or may be indirectly measured by, for example, weight measurement using an electronic balance.
  • a flow meter is used as the flow measuring device.
  • the flow rate of either one or both of the detection permeate 22 and the detection non-permeate 23 is measured by the first detection permeate flow meter 41A and the first detection non-permeate flow meter 41B.
  • the sum of the flow rates of the detection permeated water 22 and the detection non-permeate water 23 is the flow rate of the detection liquid 15a supplied to the first adhering matter detection unit 24A. You may make it obtain
  • the case where the flow rate of the detection permeate 22 is measured by the first detection permeate flow meter 41A will be mainly described.
  • the treated water 11 is, for example, deposits of ions such as organic matter, microorganisms, mineral salts, etc., such as mine wastewater, blowdown water for power plant cooling towers, accompanying water at the time of oil / gas production, brine, and factory wastewater. Or the component which produces
  • a separation membrane for separating dissolved components such as salt from the water 11 to be treated in addition to a reverse osmosis membrane (RO), for example, a nanofilter (NF), a forward osmosis membrane (FO: Forward) Osmosis Membrane) can be exemplified.
  • RO reverse osmosis membrane
  • NF nanofilter
  • FO forward osmosis membrane
  • the separation membrane is changed to a membrane other than the reverse osmosis membrane, the detection separation membrane is also changed to perform detection.
  • the treated water 11 is operated by operating a high pressure pump 16 provided in the treated water supply line L 1 and a regulating valve 44B for adjusting the flow rate provided in the non-permeated water discharge line L 11 from the reverse osmosis membrane device 14.
  • the pressure is increased to a predetermined pressure and introduced into the reverse osmosis membrane device 14 provided with the reverse osmosis membrane.
  • Examples of the deposits attached to the reverse osmosis membrane include inorganic deposits such as calcium carbonate, magnesium hydroxide, calcium sulfate, and silicate, organic deposits derived from natural organic matter and microorganisms, and colloidal components such as silica. Although there are dispersed components including an emulsion such as oil, the material is not limited to these as long as it causes adhesion to the film.
  • the treated water 11 is desalted by the reverse osmosis membrane of the reverse osmosis membrane device 14 to obtain the permeated water 13.
  • the non-permeated water 15 in which dissolved components including ions and organic substances are concentrated in the reverse osmosis membrane is appropriately disposed of as waste, or is used to recover valuable materials in the non-permeated water 15. Is done.
  • a non-permeate water branch line L 12 that branches a part from the non-permeate water line L 11 that discharges the non-permeate water 15 is provided. Then, this non-permeate branch line L 12, the first deposit detection unit having a first detecting reverse osmosis membrane 21A that separates the branched sensing solution 15a in the detection permeate 22 and detecting non-permeate 23 24A is installed.
  • An adjustment valve 44A for adjusting the flow rate is provided, and the high pressure pump 16a and the adjustment valve 44A are operated to adjust the flow rate of the permeated water 22 for detection from the first adhering matter detection unit 24A.
  • the pressure and flow rate of the branched detection liquid 15a are adjusted so that the desalting condition of the first adhering matter detection unit 24A is the same as the vicinity of the outlet of the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation. ing.
  • a pressure gauge 42C is provided in the non-permeate water discharge line L 14 for discharging the non-permeate water 23 for detection, and a regulating valve 44B is provided in the non-permeate water line L 11 of the non-permeate water 15, respectively.
  • FIG. 3 is a perspective view of the first attached matter detection unit of FIG.
  • the first adhering matter detection unit 24A introduces the detection liquid 15a branched from the inlet 24b side of the detection unit main body 24a, and includes a spacer (non-permeate water side) 24c, a spacer ( The first detection reverse osmosis membrane 21A is sandwiched by the permeated water side) 24d. Then, the introduced detection liquid 15a flows along the first detection reverse osmosis membrane 21A (X direction).
  • the detection liquid 15a moves in the direction (Z direction) orthogonal to the detection liquid flow direction (X direction), passes through the first reverse osmosis membrane 21A, and is desalted and detected permeated water. 22 is obtained.
  • the permeated detection water 22 that has permeated becomes a permeate flow (X direction) along the first detection reverse osmosis membrane 21A, and is discharged from the permeate outlet 24e as the detection permeate 22.
  • the length (L) in the flow direction (X direction) of the detection liquid 15a is the length of the flow path of the first attached matter detection unit 24A, and the depth of the first attached matter detection unit 24 in FIG.
  • the length in the direction is W.
  • FIG. 4 is a partially cutaway perspective view when a spiral type reverse osmosis membrane is used for the first deposit detection part.
  • FIG. 4 it is a case where it is set as the spiral-type 1st reverse osmosis membrane 21A for a detection as a detection film
  • the first reverse osmosis membrane 21A for detection is moved in the direction (Z direction) perpendicular to the flow direction of the detection liquid 15a, passes through the membrane, and is desalted to become detection permeated water 22.
  • the permeated water 22 for detection flows toward the central water collecting pipe (Y direction).
  • the spiral reverse osmosis membrane 21 is cut open by the notch, and the internal spacer (permeate water side) 24 d is confirmed.
  • the first adhering matter detection unit 24A in order to secure a flow path that forms a uniform flow (detected liquid flow direction (X direction)) from the inlet 24b to the non-permeated water outlet 24f, for example, resin A spacer (non-permeate water side) 24c is provided. Similarly, on the permeate side, for example, a resin spacer (permeate) is used to secure a flow path that forms a uniform flow (permeate flow direction (X direction)) over the permeate outlet 24e. Water side) 24d is provided.
  • the member is not limited to the spacer as long as it can ensure a uniform flow.
  • the length (L) of the flow path of the first adhering matter detection unit 24A is 1 of the total length of the reverse osmosis membrane device 14 used in the reverse osmosis membrane device 14 in the flow direction of the supply liquid.
  • the length is about / 10 or less, more preferably 1/50 or less, and even more preferably 1/100 or less.
  • the first adhering matter detection unit 24A used in the test example was 16 mm or 1000 mm in length (L) of the flow path.
  • the elements (length, for example, 1 m) of the reverse osmosis membrane device 14 of the permanently installed reverse osmosis membrane device 14 are connected to form one vessel.
  • the membrane length in the flow direction of the supply liquid used in the reverse osmosis membrane device 14 is 16 m, and the channel length is 1000 mm.
  • the permeable membrane is used as the detection membrane
  • the flow path length of the first attached matter detection unit 24A is 1/16 (1/10 or less).
  • the flow path length of the first adhering matter detection unit 24A is 0.016 / 16 (1/100 or less).
  • the first detection reverse osmosis membrane 21A of the first adhering matter detection unit 24A is a membrane that exhibits a reverse osmosis action, and is the same type or a type similar to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation.
  • a separation membrane that exhibits desalting performance is used.
  • the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present invention is constructed by storing a plurality of reverse osmosis membrane elements each having a spiral type reverse osmosis membrane in a pressure vessel.
  • FIG. 5 is a partially cutaway schematic view of a vessel of a spiral type reverse osmosis membrane device.
  • FIG. 6 is a perspective view of the connection of two vessels of FIG.
  • FIG. 7 is a partially exploded schematic view of a spiral type reverse osmosis membrane element.
  • the spiral reverse osmosis membrane element shown in FIG. 7 is an example disclosed in Japanese Patent Application Laid-Open No. 2001-137672, and is not limited thereto.
  • the vessel 100 of the reverse osmosis membrane device is hereinafter referred to as the vessel 100
  • the spiral type reverse osmosis membrane element 101 is hereinafter referred to as the element 101.
  • the vessel 100 is configured by connecting a plurality (for example, 5 to 8) of elements 101 in series and storing them in a cylindrical container body (hereinafter referred to as “container body”) 102.
  • the treated water 11 is introduced as raw water from the raw water supply port 103 on one end side of the container body 102, and the permeated water 13 is taken out from the permeated water outlet 104 on the other end side and the non-permeated water 15 is taken out from the non-permeated water outlet 105.
  • the permeate outlet 104 on the treated water 11 introduction side is closed.
  • Each element 101 in the container main body 102 spirals a bag-like reverse osmosis membrane 12 containing a flow path material 112 around a water collecting pipe 111 by a flow path material (for example, mesh spacer) 114 as shown in FIG. And has a structure in which a brine seal 115 is provided at one end thereof.
  • Each element 101 sequentially guides water to be treated (raw water) 11 having a predetermined pressure supplied from the front brine seal 115 side between the bag-like reverse osmosis membranes 12 by a flow path material (for example, mesh spacer) 114, The permeated water 13 that has permeated through the reverse osmosis membrane 12 by the osmotic action is taken out by the water collecting pipe 111.
  • non-permeated water 15 is also taken out from the rear seal 118 side.
  • the film length in the moving direction of the water to be treated 11 is L.
  • the configuration of the element 101 shown in FIG. 7 is the same as the configuration of the spiral first attached matter detection unit 24A shown in FIG.
  • a collection of a plurality of pressure vessels (for example, 50 to 100) is used as one unit.
  • the number of units is adjusted, and desalination treatment is performed according to the supply amount of the water to be treated 11 to be produced. I am trying to manufacture.
  • the reverse osmosis membrane device 14 Normally, in the operation of the reverse osmosis membrane device 14, it is assumed that there are dissolved components containing predetermined ions and organic substances in the water to be treated 11, and deposits due to dissolved components containing ions adhere to the reverse osmosis membrane.
  • the conditions that are not used are designed as operating conditions. However, due to fluctuations in the water quality of the treated water 11 to be supplied, the concentration of dissolved components including ions and organic substances becomes higher than the design conditions, and it may become a situation in which deposits easily adhere to the reverse osmosis membrane.
  • the permeate flow rate of the permeate 13 from the reverse osmosis membrane device 14 is confirmed with a flow meter, and the reverse osmosis membrane is washed with a threshold when the flow rate of the permeate 13 is reduced to a predetermined ratio.
  • deposits have already been attached to the reverse osmosis membrane over a wide area, making it difficult to clean the reverse osmosis membrane.
  • non-permeated water 15 obtained by concentrating dissolved components including ions and organic substances from reverse osmosis membrane device 14 obtained by filtering permeated water 13 from treated water 11 through a reverse osmosis membrane.
  • the non-permeate water line L 11 to be discharged, and the non-permeate water branch line L 12 branched from the non-permeate water line L 11, and the branched detection liquid 15a are detected as permeate water 22 for detection and non-permeate water 23 for detection.
  • a reverse osmosis membrane provided with a first adhering matter detection unit 24A having a first detection reverse osmosis membrane 21A and a first detection permeate-side flow meter 41A for measuring the flow rate of the detection permeate 22
  • a device monitoring device is installed.
  • FIG. 8 is a schematic diagram in which the first adhering matter detection unit corresponds to a part of the reverse osmosis membrane device of the present installation.
  • the first attached reverse osmosis membrane 21A of the first attached matter detector 24A is used to detect the attached matter attached state, for example, at the end of the reverse osmosis membrane device 14 (for example, an element)
  • the adhering component to the first detection reverse osmosis membrane 21A in the vicinity of the outlet end of the eighth element 101-8 of the elements 101-1 to 101-8) (For example, gypsum) will be simulated.
  • the membrane length L of the first detection reverse osmosis membrane 21A of the first adhering matter detector 24A is set to 16 mm, for example, the state of 16 mm at the final tail portion can be simulated.
  • the first detection reverse osmosis membrane 21A of the first adhering matter detection unit 24A is additionally provided in the reverse osmosis membrane device 14 of the present installation. Therefore, when the length of the reverse osmosis membrane 21A for detection is set to 1000 mm, for example, the length of the reverse osmosis membrane of the reverse osmosis membrane device 14 of this installation is +1000 mm.
  • the length L of the first detection reverse osmosis membrane 21A is shorter, it becomes possible to simulate an extremely short portion of the end portion of the reverse osmosis membrane device 14 of the present installation.
  • This also indicates that, when the first detection reverse osmosis membrane 21A is 16 mm, the gypsum supersaturation degree of the detection liquid 15a of the feed water is 4.7 and the gypsum supersaturation degree of the non-permeated water 15 is also 4 from the test results described later. Therefore, the vicinity of the outlet of the reverse osmosis membrane device 14 of the present installation can be simulated.
  • FIG. 9 is a diagram showing a change in flux (m 3 / h / m 2 ) when the length L of the reverse osmosis membrane for detection of the first adhering matter detection unit is 16 mm.
  • FIG. 10 is a diagram showing changes in flux (m 3 / h / m 2 ) when the length L of the reverse osmosis membrane for detection of the first attached matter detection unit is 1000 mm.
  • 9 and 10 it is a diagram showing the relationship between the elapsed time of operation in the first attached matter detection unit, the amount of permeated water and the supply pressure.
  • the left vertical axis represents flux (m 3 / h / m 2 )
  • the right vertical axis represents supply pressure (MPa)
  • the horizontal axis represents operating time (hours).
  • the detection liquid 15a adjusted so that gypsum adhered as an adhering substance was used.
  • the flux refers to the permeate flow rate per unit area.
  • the supply pressure of the detection liquid 15a to the first adhering matter detection unit 24A is set to 2.0 MPa, for example, and the gypsum supersaturation degree of the detection liquid 15a supplied to the first detection reverse osmosis membrane 21A is 4.7.
  • the results of the degree of decrease in the permeate flow rate due to the adhesion of gypsum deposits to the first detection reverse osmosis membrane 21A with the passage of the operating time were confirmed.
  • FIG. 9 shows a case where the length L of the reverse osmosis membrane for detection of the first adhering matter detection unit 24A is tested at 16 mm, and when the supply pressure is constant at 2.0 MPa, for example, It was confirmed that the behavior of the flux decreased to 50% or less in about 1 hour. At this time, the gypsum saturation of the non-permeating water for detection 23 was 4.7.
  • FIG. 10 shows a case where the length L of the reverse osmosis membrane for detection of the first adhering matter detection unit 24A is 1000 mm.
  • the supply pressure is constant at 2.0 MPa, for example, 10% in about 1 hour. It was confirmed that it was decreasing.
  • the permeated water flow rate in the first detection reverse osmosis membrane 21A is reduced by 10% for an extremely short time (approximately 10 when the length L of the reverse osmosis membrane is 16 mm, for example). It was confirmed that detection was possible in less than a minute).
  • the supersaturation degree is a ratio of gypsum concentration when gypsum is taken as an example, and the state in which gypsum is saturated and dissolved under a certain condition (saturation concentration of gypsum) is “1”.
  • the degree of supersaturation “5” indicates that the concentration is five times higher than the gypsum saturation concentration.
  • a confirmation test of whether or not the permeate flow rate can be recovered by washing the first detection reverse osmosis membrane 21A was performed. Specifically, gypsum was forcibly deposited on the first reverse osmosis membrane for detection 21A, and it was confirmed whether the flow returned to the permeated water flow before deposit deposition after washing. As the gypsum deposition conditions for deposits, the permeated water flow rate was reduced by 10% using the first permeate flow meter 41A for detection. Table 1 shows the operating conditions. Note that a NaCl evaluation solution (NaCl: 2000 mg / L) was used as the supply solution.
  • the driving operation was performed as follows. 1) First, the permeated water amount was 24 ml / h when the pressure condition was 1.18 MPa and the NaCl evaluation liquid was used as the supply liquid. 2) Thereafter, the supply pressure condition is increased to 2.0 MPa, the supply solution is changed from the NaCl evaluation solution to the gypsum supersaturation solution, the scale is forcibly deposited on the membrane, and the permeate flow rate is reduced by 10% in 10 minutes. It was confirmed. 3) Thereafter, the supply liquid was changed from gypsum supersaturated liquid to ion exchange water for washing. 4) After washing, the feed solution was changed from ion-exchanged water to NaCl evaluation solution and operated under the operation conditions of 1) (pressure condition: 1.18 MPa). As a result, the permeated water amount was 24 ml / h.
  • the gypsum deposit can be washed by water washing, and the permeate flow rate before deposit deposition is restored by washing. It was confirmed.
  • FIG. 11 is a diagram illustrating an example of the passage of operation time and the change in the permeate flow rate in the present embodiment.
  • FIG. 11 when there is no change in the scale component concentration in the water to be treated 11, there is no decrease in the flow rate at the first adhering matter detection unit 24A.
  • the attachment of the deposit is started on the first detection reverse osmosis membrane 21 ⁇ / b> A of the first deposit detection unit 24 ⁇ / b> A.
  • a drop in the flow rate at the first permeate flow meter for detection 41A can be confirmed in accordance with the adhesion of this deposit.
  • the reverse osmosis in the reverse osmosis membrane device 14 of this installation determines the initial stage of adhesion of the deposit on the film.
  • the threshold value in the present invention is the rate of change in the flow rate of the detection permeate
  • the predetermined threshold indicates that the rate of decrease in the flow rate of the detection permeate is 10%. ing.
  • the first adhering matter detection unit 24 ⁇ / b> A is used to reduce the flow rate of the detection permeate 22 that is the separated water. It measures with the water side flowmeter 41A, and it is judged by the determination apparatus 40 whether the measured flow volume changed from the predetermined threshold value as a result of this measurement. As a result of this determination, when the value changes from a predetermined threshold value, it is determined that the adhering substance is initially attached to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation. As a result of this determination, the control device 45 sends an instruction to supply the cleaning liquid 51 to the cleaning liquid supply unit 52.
  • the operation of the reverse osmosis membrane device 14 of the present installation is stopped, and then the cleaning liquid 51 is supplied to the treated water supply line L 1 to perform cleaning.
  • this cleaning for example, flushing cleaning, suck back cleaning, or the like can be used. In this cleaning, part of the permeated water 13 can be used.
  • the permeated water flow rate of the permeated water 22 for detection from the first adhering matter detection unit 24A was detected by the first permeated water flow meter 41A for detection, but the non-permeated water 23 for detection was determined.
  • the determination device In 40 it is determined that there is an adhering matter to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation.
  • the controller 45 cleans the reverse osmosis membrane of the reverse osmosis membrane device 14 with the cleaning liquid 51, thereby preventing the performance deterioration due to the adhering matter of the reverse osmosis membrane device 14 of the permanent installation. can do.
  • the reverse osmosis membrane of the reverse osmosis membrane device 14 is installed when the flow rate of the detection permeated water 22 is equal to or lower than a predetermined threshold value using the first adhering matter detection unit 24A.
  • the adhesion of the adhering matter to the reverse osmosis membrane of the reverse osmosis membrane device 14 by supplying the cleaning liquid and cleaning. Can be suppressed.
  • the permeate flow rate (or flux) decreases.
  • the detection permeate flow rate (or flux) is equal to or lower than the threshold value, it is determined that the adhering matter has adhered to the detection reverse osmosis membrane.
  • the permeated water flow rate (or flux) is constant, if deposits adhere to the reverse osmosis membrane, it is necessary to increase the supply pressure of the supply liquid (increase the flux).
  • the supply pressure of the supply liquid is controlled so that the flow rate of the detection separation liquid (detection permeate or detection non-permeate) is constant, and the supply pressure exceeds the threshold, It can also be judged that there was an adherent to the osmotic membrane.
  • FIG. 12 is a schematic view of a desalting apparatus according to the second embodiment.
  • symbol is attached
  • the desalting apparatus 10B analyzes the deposit component adhering to the first detection reverse osmosis membrane 21A of the first deposit detection unit 24A, and responds to the deposit. Cleaning is performed.
  • the adhering substance adheres to the first detection reverse osmosis membrane 21A of the first adhering substance detecting unit 24A, the adhering substance is separately analyzed.
  • an optimal one of the three types of cleaning liquids 51 (first to third cleaning liquids 51A to 51C) selected in advance is selected and used as a cleaning liquid for the reverse osmosis membrane device 14 of this installation.
  • the first to third cleaning liquid supply parts 52 (52A to 52C) are used.
  • Various cleaning liquids 51 are respectively supplied to the first detection reverse osmosis membrane 21A to which the adhering matter has adhered, and the detection permeate flow rate of the first detection reverse osmosis membrane 21A is measured by the first detection permeate-side flow meter 41A. By measuring, the cleaning effect of the deposit on the first detection reverse osmosis membrane 21A is confirmed.
  • the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present invention can be effectively cleaned, and the cleaning time can be shortened and the amount of cleaning liquid used can be reduced.
  • calcium carbonate, magnesium hydroxide, iron hydroxide and the like can be cleaned by using an acidic aqueous solution using hydrochloric acid or the like.
  • Silica, organic substances, etc. can be washed by using an alkaline aqueous solution using sodium hydroxide or the like.
  • the operating conditions may be changed to a condition in which deposits do not adhere to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation.
  • these operations may be performed simultaneously or sequentially.
  • the following can be illustrated as a change content of an operating condition. 1) Before introducing into the reverse osmosis membrane apparatus 14 of this installation, the driving
  • FIG. 13 is a schematic diagram of a desalting apparatus according to a third embodiment.
  • symbol is attached
  • the desalting apparatus 10A of Example 1 the non-permeated water 15 from the reverse osmosis membrane apparatus 14 was used, and the timing at which the attachment of the deposit due to the scale component in the non-permeated water 15 was detected.
  • the desalination treatment apparatus 10C of the present embodiment as shown in FIG. 13, on the front (supply) side of the reverse osmosis membrane apparatus 14, it is caused by deposits or microorganisms due to organic components contained in the treated water 11.
  • a desalination treatment apparatus 10 ⁇ / b> C includes a reverse osmosis membrane apparatus 14 having a reverse osmosis membrane that concentrates dissolved components including ions and organic substances from the treated water 11 to obtain permeated water.
  • the treated water branch line L 21 branched from the treated water supply line L 1 for supplying the treated water 11 is a part of the branched treated water 11 as a detection liquid 11a, and the detection liquid 11a is detected.
  • the second adhering matter detection unit 24B having the second detection reverse osmosis membrane 21B that is separated into the permeation water 22 for detection and the non-permeation water for detection 23, and the separation liquid (detection for detection) separated by the second detection reverse osmosis membrane 21B
  • a second detection separation liquid flow rate measuring device (second detection permeate flow meter 41C, second detection non-permeate flow meter 41D) that measures the flow rate of the permeate 22 and the detection non-permeate 23);
  • Second detection separation liquid flow measuring device (second detection permeate flowmeter 1C, when the measurement flow rate is changed with respect to a predetermined threshold as a result of the measurement by the second non-permeate water flow meter for detection 41D), the adhesion initial stage of the deposit on the reverse osmosis membrane of the reverse osmosis membrane device 14;
  • a determination device 40 for determining.
  • a second permeate-side flow meter 41C for measuring the flow rate of the permeate for detection 22 is provided in the permeate discharge line L 22 for detection, and the flow rate of the non-permeate for detection 23 is measured. It is provided with a second detecting non-permeate water side flowmeters 41D in detecting non-permeate discharge line L 23.
  • the determination device 40 may be installed as necessary.
  • the second detection reverse osmosis membrane 21B may be the same material as the first detection reverse osmosis membrane 21A of the first embodiment, or may be a different material.
  • the water to be treated branch line L 21 branched from the water to be treated supply line L 1, by providing the second adhesion object detecting portion 24B having a second detection reverse osmosis membrane 21B, membrane of the reverse osmosis membrane device 14 It is possible to simulate the adhesion state of the deposit on the leading portion of the element.
  • the determination device 40 It is determined that the reverse osmosis membrane device 14 of the present installation is attached to the reverse osmosis membrane. As a result of this determination, the control device 45 performs cleaning of the reverse osmosis membrane of the reverse osmosis membrane device 14 with the cleaning liquid 51, thereby causing adhesion of organic components of the reverse osmosis membrane device 14 and microorganisms. Performance degradation due to bio-fouling can be prevented.
  • the second adhering matter detection unit 24 ⁇ / b> B is used to reduce the flow rate of the detection permeate 22 that is the separated water. It measures with the water side flowmeter 41C, and the determination apparatus 40 judges whether the measured flow volume changed from the predetermined threshold value as a result of this measurement. As a result of this determination, it is determined that the deposit is in the initial stage of attachment to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation. As a result of the determination, the controller 45 sends an instruction to supply the organic cleaning liquid 51D from the organic cleaning liquid supply unit 52D. By this instruction, the operation of the reverse osmosis membrane device 14 of the present installation is stopped, and then the cleaning liquid 51D for organic matter is supplied to the treated water supply line L 1 for cleaning.
  • the determination device 40 can also determine that the reverse osmosis membrane device 14 is attached to the reverse osmosis membrane. As a result of the determination, the controller 45 cleans the reverse osmosis membrane of the reverse osmosis membrane device 14 with the organic cleaning solution 51D, thereby adhering organic components and microorganisms of the reverse osmosis membrane device 14. It is possible to prevent performance degradation due to biofouling due to the above.
  • the deposits due to organic components and the biofouling derived from microorganisms can be cleaned by using, for example, an organic cleaning solution 51D obtained by adding a surfactant to an aqueous sodium hydroxide solution.
  • the operating conditions may be changed to a condition in which deposits do not adhere to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation.
  • These operations may be performed simultaneously or may be changed sequentially.
  • An operation is performed to reduce the addition amount of bactericides (chlorine bactericides (for example, chloramine, etc.) and agents having oxidation performance such as hydrogen peroxide).
  • An operation for increasing the amount of the organic flocculant added is performed.
  • Change the flow path to pass the organic matter adsorption tower sand filtration, activated carbon adsorption tower, pressurized flotation device (DAF), sterilization filter, etc.).
  • FIG. 14 is a schematic diagram illustrating an example of a change in operating conditions of the desalting apparatus according to the third embodiment.
  • the determination device At 40 it is determined that there is adhesion to the film. As a result of this determination, when cleaning is performed, cleaning is performed by supplying the organic cleaning liquid 51D from the organic cleaning liquid supply unit 52D.
  • the organic matter flocculant supply unit 63 when adjusting the addition amount of the organic matter flocculant 61 to the water to be treated 11, the organic matter flocculant supply unit 63 with respect to the aggregation filtration unit 62. Therefore, the organic substance coagulant 61 is supplied, and the organic substance is removed by supplying the organic substance coagulant 61.
  • the sterilizing agent 64 is supplied from the sterilizing agent supply unit 65 on the downstream side of the coagulation filtration unit 62.
  • the sterilizing agent 64 By reducing the addition amount of the bactericidal agent 64, organic substances derived from microorganisms are reduced.
  • an acid or alkali pH adjuster 67 to be supplied to the pH adjuster 66 on the downstream side of the coagulation filtration unit 62 is used as an acid. Or it is made to supply from the alkali supply part 68, and microorganisms are killed by adjusting pH. Further, by increasing the pH, dissolution / adhesion of organic substances is suppressed.
  • the switching units 71 and 72 that branch the flow path from the water to be treated supply line L 1 are operated, and the bypass passage
  • the treated water 11 is passed through an organic substance adsorption tower 73 interposed in L 31 , and the organic substances in the treated water 11 are adsorbed and removed.
  • a cartridge filter 69 is installed on the upstream side of the reverse osmosis membrane device 14 so as to further filter impurities in the water to be treated 11.
  • reference numeral 75 denotes a pH adjuster, which adjusts the pH of the water to be treated 11, which is raw water, with a pH adjuster (acid or alkali) 67.
  • FIG. 15 is a schematic diagram of a desalting apparatus according to the fourth embodiment.
  • symbol is attached
  • the desalting apparatus 10 ⁇ / b> D of this embodiment uses non-permeated water 15 from the reverse osmosis membrane apparatus 14 of the desalting apparatus 10 ⁇ / b> A of Embodiment 1 and uses this non-permeating water.
  • the first adhering matter detection unit 24A of the present embodiment is used to measure the permeate flow rate of the detection permeate 22 and the decrease in the permeate flow rate is measured by the first permeate flow meter 41A for detection.
  • attachment with the reverse osmosis membrane of the reverse osmosis membrane apparatus 14 of this installation is judged, and the permeation
  • the adhering matter or microorganisms due to organic components in the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation The initial stage of starting biofouling is determined.
  • the cleaning liquid 51 is supplied from the cleaning liquid supply unit 52 by the control device 45, so that the deposits of the reverse osmosis membrane device 14 of the present installation, the deposits due to organic components, or biofouling caused by microorganisms are caused. It is possible to suppress the performance degradation due to. Selection of the cleaning liquid 51 in the present embodiment may be made in advance, or, as in the second embodiment, the attached liquid may be analyzed and the cleaning liquid may be selected each time.
  • cleaning liquid 51 for example, any one of the first to third cleaning liquids 51A to 51C corresponding to the scale component, and an organic that prevents deterioration of performance due to organic component adhesion or biofouling caused by microorganisms.
  • Cleaning liquid 51D can be supplied. Further, in the operation control shown in FIG. 14, in addition to the cleaning of the organic cleaning liquid 51D, other operation control for adding, for example, the organic coagulant 61 may be performed.
  • the most effective cleaning liquid 51 (any one of the first to third cleaning liquids 51A to 51C and the organic cleaning liquid 51D) is applied to the deposit actually attached to the reverse osmosis membrane device 14 of the present installation. It is possible to carry out cleaning by simply selecting the item. Therefore, it is possible to shorten the cleaning time and reduce the amount of cleaning liquid used by effectively cleaning the reverse osmosis membrane device 14 of the present installation.
  • the operating conditions may be changed to a condition in which deposits do not adhere to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present invention.
  • FIG. 16 is a schematic diagram of a desalting apparatus according to the fifth embodiment.
  • the desalting apparatus 10E of the present embodiment is an evaporator that further concentrates the non-permeated water 15 from the reverse osmosis membrane apparatus 14 of the desalting apparatus 10A of the first embodiment. have established 81 non-transparent water line L 11. With this evaporator 81, it is possible to remove moisture in the non-permeated water 15, and it is also possible to recover solids contained in the non-treated water 15.
  • Example 1 by detecting the initial stage of adhesion of the deposits to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation, by performing the cleaning, and changing to operating conditions in which the deposits do not adhere, The stable operation of the reverse osmosis membrane device 14 can be performed. Thereby, the stable operation of the evaporator 81 which further concentrates the non-permeate water 15 installed in the downstream is enabled.
  • the evaporator 81 for example, an evaporation device that evaporates water, a distillation device, a crystallization device, a non-drainage device, and the like can be exemplified.

Abstract

 被処理水11から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、溶解成分や分散成分が濃縮された非透過水15を排出する非透過水ラインL11から分岐した非透過水分岐ラインL12に設けられ、分岐した非透過水の一部を検知液15aとし、該検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用分離膜21Aを有する第1付着物検知部24Aと、第1検知用分離膜21Aで分離した検知用透過水22又は検知用非透過水23のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、を備える。

Description

水処理装置及び水処理装置の運転方法
 本発明は、水処理装置及び水処理装置の運転方法に関するものである。
 例えば鉱山廃水にはパイライト(FeS2)が含まれており、このパイライトが酸化されてSO4 2-を生成する。鉱山廃水を中和するために安価なCa(OH)2が用いられる。このため、鉱山廃水にはCa2+及びSO4 2-が豊富に含まれている。
 また、かん水、下水、工場廃水にもCa2+及びSO4 2-が豊富に含まれていることが知られている。また、冷却塔においては、ボイラなどから排出された高温の排ガスと冷却水との間で熱交換が行われる。この熱交換により冷却水の一部が蒸気となるため、冷却水中のイオンが濃縮される。従って、冷却塔から排出された冷却水(ブローダウン水)は、Ca2+及びSO4 2-などのイオン濃度が高い状態となっている。
 これらのイオンを多量に含む水は、脱塩処理が施される。脱塩処理を実施する濃縮装置としては、例えば逆浸透膜装置、ナノろ過膜装置、イオン交換膜装置等が知られている。
 しかし、これらの装置を用いて脱塩処理する場合、高濃度の陽イオン(例えばカルシウムイオン(Ca2+))と陰イオン(例えば硫酸イオン(SO4 2-))が、その淡水を得る際に、これらのイオンが膜表面で濃縮すると、難溶性鉱物塩である硫酸カルシウム(石膏(CaSO4))の溶解限度を超える場合があり、膜表面に付着物として析出し、透過水の透過流束(フラックス)が低下する、という問題がある。
 このため、従来においては、逆浸透膜を監視する方法として、例えば逆浸透膜装置の逆浸透膜を監視するセルを用いて、目視で判断することで、鉱物塩の結晶生成を検出することの提案がある(特許文献1)。
 また、淡水化装置からの濃縮水の少なくとも一部を、監視用分離膜に透過させ、この監視用分離膜の前後に設けた圧力計によって、濃縮水に含まれる付着物が監視用分離膜の膜面に析出するのを監視することの提案がある(特許文献2)。この提案により、原水(海水)が濃縮されることでろ過膜の膜面に付着物が析出することを予め監視し、淡水化装置のろ過膜の膜面に付着物が析出するのを効率的に抑制している。
 また、特許文献2においては、さらに付着物析出を助長させるために、監視用分離膜に供給する濃縮水にアルカリ性薬剤を供給することの提案がある。
 さらに、逆浸透膜装置の技術マニュアルにおいて、逆浸透膜装置の運転中、ROエレメントの膜表面が、鉱物スケール、微生物、コロイド状粒子、有機物によって汚染されることがあり、堆積物が膜表面に付着し、最終的には所定の透過水流量、脱塩率が得られなくなる。システム始動から最初の48時間の運転を基準として、標準化された透過水流量が10%以上低下した場合、標準化された塩分透過率が10%以上上昇した場合、または標準化された差圧(供給水側の圧力-濃縮水側の圧力)が15%以上増大した場合、エレメントを洗浄する必要がある、との提案がある(非特許文献1)。
特表2009-524521号公報 特開2012-130823号公報
「技術マニュアル」 ダウ ウォーター ソリューション"6.3 Cleaning Requirements"(http://dowac.custhelp.com/app/answers/detail/a_id/3428/kw/manual)
 しかしながら、特許文献1の提案による監視方法においては、付着物(例えば鉱物塩結晶)の生成メカニズムは、ナノレベルの結晶核が成長し、付着物となる。逆浸透膜装置の逆浸透膜表面の細孔サイズはナノレベルであり、サブμm以下の付着物が膜表面に存在すると、逆浸透膜を閉塞させることとなる。このサブμm以下の付着物を目視確認する為には、光学撮影装置(例えば、光学顕微鏡)での撮影では、実質的に困難であり、電子顕微鏡のような撮影装置が必要となり、連続的な観察はできない、という問題がある。
 さらに、目視観察可能な逆浸透膜の表面には、逆浸透膜装置の濃縮水が流れているため、流れる液体を通して逆浸透膜の表面を精度よく連続観察することは実質的に困難である、という問題がある。 
 また、特許文献2の提案では、監視用セルの前後における差圧を検出する必要があるので、流路が付着物で塞がれ、差圧に変化が生じる程度付着物が析出した後でないと判断できないという問題がある。また、付着物の検知にはある程度の大きさ、例えば原水の淡水化装置のろ過膜程度の大きさの監視用装置が必要となり、監視装置が大がかりとなるという問題がある。
 すなわち、淡水化装置の逆浸透膜は例えば1m単位の1本のスパイラル膜を複数本(例えば5~8本)格納して、一つのろ過膜用ベッセルを構成しており、このベッセルを数100本以上連結して原水のろ過を行う場合、監視装置のコンパクト化は、淡水化設備のコンパクト化に寄与するので、可能な限りのコンパクト化を図る付着物を監視する装置の出現が切望されている。
 また、アルカリ性薬剤を供給する場合においては、アルカリ性薬剤を供給することにより析出しやすくなる付着成分(例えば炭酸カルシウム、水酸化マグネシウム等)には有効であるが、pHに依存しない成分(例えば石膏(CaSO4)、フッ化カルシウム(CaF2)等)には効果がなく、適用することができない、という問題がある。
 非特許文献1においては、逆浸透膜装置の透過水流量が10%以上低下した場合にエレメントを洗浄する必要がある、としている。一般に、逆浸透膜装置は、圧力容器(ベッセル)内に例えば5~8本のエレメントが直結されており、また、圧力容器を2本連結した場合には、エレメント例えば10~16本が直結されている事となる。ここで、エレメント1本の液流れ方向の長さは例えば1mであり、例えば8本のエレメントを直結した場合、液流れ方向の膜の総長さは例えば16mとなる。このような状況で、透過水流量の10%が低下した場合には、エレメントには液流れ方向にかなりの長さに、スケールが析出した状態となっており、スケール付着量も多く、洗浄によるスケール除去は困難となる。
 また、逆浸透膜へのスケール析出により、逆浸透膜がダメージを受け、膜の性能低下の原因となる。従って、簡便に付着したスケールを洗浄する為に、逆浸透膜へスケールが析出し始めるタイミングを高感度で検知する装置が必要である。
 本発明は、前記問題に鑑み、逆浸透膜装置の逆浸透膜のみならず、分離膜装置の分離膜の付着物の付着開始のタイミングをコンパクトな装置で検知することができる水処理装置及び水処理装置の運転方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1発明は、被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、溶解成分や分散成分が濃縮された非透過水を排出する非透過水ラインから分岐した非透過水分岐ラインに設けられ、分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、を備えることを特徴とする水処理装置にある。
 第2の発明は、被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、前記被処理水を供給する被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、を備えることを特徴とする水処理装置にある。
 第3の発明は、被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、溶解成分や分散成分が濃縮された非透過水を排出する非透過水ラインから分岐した非透過水分岐ラインに設けられ、分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、前記第1検知用分離膜で分離した分離液の流量を計測する第1検知用分離液流量計測装置と、前記被処理水を供給する被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、前記第2検知用分離膜で分離した分離液の流量を計測する第2検知用分離液流量計測装置と、を備えることを特徴とする水処理装置にある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記第1検知用分離液流量計測装置又は第2検知用分離液流量計測装置の計測の結果に基づいて、前記分離膜装置の前記分離膜への洗浄を実施する制御装置を備えることを特徴とする水処理装置にある。
 第5の発明は、第4の発明において、前記第1検知用分離液流量計測装置又は第2検知用分離液流量計測装置の計測の結果に基づいて、前記分離膜装置の前記分離膜への付着物が付着しない条件に運転条件を変更する制御を実施する制御装置を備えることを特徴とする水処理装置にある。
 第6の発明は、被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、溶解成分や分散成分が濃縮された非透過水を排出する非透過水ラインから分岐した非透過水分岐ラインに設けられ、分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、前記第1検知用分離液流量計測装置の計測の結果に基づいて、前記分離膜装置の前記分離膜への付着が付着しない条件に運転条件を変更する制御を実施する制御装置と、を備えることを特徴とする水処理装置にある。
 第7の発明は、被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、前記被処理水を供給する被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、前記第2検知用分離液流量計測装置の計測の結果に基づいて、前記分離膜装置の前記分離膜への付着が付着しない条件に運転条件を変更する制御を実施する制御装置と、を備えることを特徴とする水処理装置にある。
 第8の発明は、被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、溶解成分や分散成分が濃縮された非透過水を排出する非透過水ラインから分岐した非透過水分岐ラインに設けられ、分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、前記第1検知用分離膜で分離した分離液の流量を計測する第1検知用分離液流量計測装置と、前記被処理水を供給する被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、前記第2検知用分離膜で分離した分離液の流量を計測する第2検知用分離液流量計測装置と、前記第1検知用分離液流量計測装置又は第2検知用分離液流量計測装置の計測の結果に基づいて、前記分離膜装置の前記分離膜への付着が付着しない条件に運転条件を変更する制御を実施する制御装置と、を備えることを特徴とする水処理装置にある。
 第9の発明は、第1乃至8のいずれか一つの発明において、前記第1検知用分離膜又は第2検知用分離膜を透過した検知用透過水の流量を透過水側流量計測装置で計測する場合、計測流量が所定閾値以下となった場合に、前記分離膜装置の前記分離膜への付着物付着初期段階と判断することを特徴とする水処理装置にある。
 第10の発明は、第1乃至8のいずれか一つの発明において、前記第1検知用分離膜又は第2検知用分離膜を透過した検知用非透過水の流量を非透過水側流量計測装置で計測する場合、計測流量が所定閾値以上となった場合に、前記分離膜装置の前記分離膜への付着物付着初期段階と判断することを特徴とする水処理装置にある。
 第11の発明は、第1又は3又は6又は8の発明において、第1付着物検知部の流路の長さは、前記分離膜装置で用いる前記分離膜の供給液流れ方向の総長さの1/10以下であることを特徴とする水処理装置にある。
 第12の発明は、第2又は3又は7又は8の発明において、第2付着物検知部の流路の長さは、前記分離膜装置で用いる前記分離膜の供給液流れ方向の総長さの1/10以下であることを特徴とする水処理装置にある。
 第13の発明は、第1乃至12のいずれか一つにおいて、前記分離膜装置からの前記非透過水の水分を蒸発させる蒸発器を備えることを特徴とする水処理装置にある。
 第14の発明は、第1の発明の水処理装置の第1付着物検知部を用い、前記分離液の流量が所定閾値に対して変化した場合、前記第1付着物検知部の第1検知用分離膜に付着している付着物を洗浄する付着物洗浄液と、付着物の付着を抑制する付着物抑制剤とのいずれか一方又は両方の選定を行い、この選定した前記付着物洗浄液又は前記付着物抑制剤を前記分離膜装置へ供給することを特徴とする水処理装置の運転方法にある。
 第15の発明は、第2の発明の水処理装置の第2付着物検知部を用い、前記分離液の流量が所定閾値に対して変化した場合、前記第2付着物検知部の第2検知用分離膜に付着している付着物を洗浄する付着物洗浄液と、付着物の付着を抑制する付着物抑制剤とのいずれか一方又は両方の選定を行い、この選定した前記付着物洗浄液又は前記付着物抑制剤を前記分離膜装置へ供給することを特徴とする水処理装置の運転方法にある。
 第16の発明は、第14又は15の発明において、前記分離膜装置からの前記非透過水の水分を蒸発させることを特徴とする水処理装置の運転方法にある。
 本発明の水処理装置を用いることにより、分離膜による分離膜装置を用いて被処理水を処理する場合、分離膜への付着物の付着開始タイミングを検知することができる。
図1は、実施例1に係る脱塩処理装置の概略図である。 図2は、実施例1に係る第1付着物検知部の概略図である。 図3は、図2の第1付着物検知部の斜視図である。 図4は、第1付着物検知部にスパイラル型逆浸透膜を用いた場合の一部切欠き斜視図である。 図5は、スパイラル型の逆浸透膜装置のベッセルの一部切欠き概略図である。 図6は、ベッセルを2つ繋いだものの斜視図である。 図7は、エレメントの一部分解概略図である。 図8は、第1付着物検知部が本設の逆浸透膜装置の一部と対応する模式図である。 図9は、第1付着物検知部の検知用の逆浸透膜の長さLを16mmで実施した場合のフラックス(m3/h/m2)変化を示す図である。 図10は、第1付着物検知部の検知用の逆浸透膜の長さLを1000mmで実施した場合のフラックス(m3/h/m2)変化を示す図である。 図11は、実施例1における運転時間の経過に伴い、流量が変化する一例を示す図である。 図12は、実施例2に係る脱塩処理装置の概略図である。 図13は、実施例3に係る脱塩処理装置の概略図である。 図14は、実施例3に係る脱塩処理装置の運転条件変更の一例を示す概略図である。 図15は、実施例4に係る脱塩処理装置の概略図である。 図16は、実施例5に係る脱塩処理装置の概略図である。
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、実施例1に係る脱塩処理装置の概略図である。図2は、実施例1に係る第1付着物検知部の概略図である。以下の実施例では、分離膜として逆浸透膜を用いた分離膜装置である逆浸透膜装置を例にし、例えば塩分等の溶解成分を脱塩処理する脱塩処理装置について説明するが、分離膜を用いて水処理する水処理装置であれば、本発明はこれに限定されるものではない。
 図1に示すように、本実施例に係る脱塩処理装置10Aは、被処理水11からイオンや有機物を含む溶解成分(「付着成分」ともいう)を濃縮し、透過水を得る逆浸透膜を有する逆浸透膜装置14と、イオンや有機物を含む溶解成分が濃縮された非透過水15を排出する非透過水ラインL11から分岐した非透過水分岐ラインL12に設けられ、分岐した非透過水15の一部を検知液15aとし、該検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用逆浸透膜21Aを有する第1付着物検知部24Aと、第1検知用逆浸透膜21Aで分離した分離液である検知用透過水22又は検知用非透過水23の流量を計測する第1検知用分離液流量計測装置(第1検知用透過水側流量計41A、第1検知用非透過水側流量計41B)と、第1検知用分離液流量計測装置(第1検知用透過水側流量計41A、第1検知用非透過水側流量計41B)の計測の結果、計測流量が所定閾値に対して変化した場合に、逆浸透膜装置14の逆浸透膜への付着物の付着初期段階と判断する判定装置40と、を備える。なお、本実施例は、判定装置40を設けているが、判定装置40は必要に応じて設置するようにすればよい。
 ここで、逆浸透膜装置14は被処理水11から透過水13を生産する装置であるので、以下「本設の逆浸透膜装置」という場合もある。
 なお、図1中、符号16は被処理水11を逆浸透膜装置14へ供給する高圧ポンプ、17は調整弁、L1は被処理水供給ライン、L2は透過水排出ライン、L3は透過水供給ラインを図示する。
 本実施例では、本設の逆浸透膜装置14からの非透過水ラインL11から分岐した非透過水分岐ラインL12に本設の逆浸透膜装置14の逆浸透膜よりも規模が小さい第1付着物検知部24Aを設け、この第1付着物検知部24Aの脱塩条件が、本設の逆浸透膜装置14の逆浸透膜の出口近傍と同一となるように調整し、この本設の逆浸透膜装置14の最後の脱塩部分の膜の非透過水側流速と圧力とを模擬し、第1検知用逆浸透膜21Aにおいて、付着物付着開始タイミングを把握するようにしている。これによって、本設の逆浸透膜装置14の逆浸透膜への付着物の付着直後に、洗浄処理を行うことが可能となる。
 ここで、第1検知用逆浸透膜21Aで分離した分離液としては、第1検知用逆浸透膜21Aを透過する検知用透過水22と、第1検知用逆浸透膜21Aを透過しない検知用非透過水23とがある。本実施例では、第1検知用分離液流量計測装置として、検知用透過水22の流量を計測する第1検知用透過水側流量計41Aを検知用透過水排出ラインL13に設けており、検知用非透過水23の流量を計測する第1検知用非透過水側流量計41Bを検知用非透過水排出ラインL14に設けている。
 なお、流量計測装置による流量計測方法としては、流量計により流量を直接的に流量計測してもよいし、例えば電子天秤による重量計測等により間接的に流量を計測するようにしてもよい。以下の実施例については、流量計測装置として流量計を用いた例として説明する。
 そして、第1検知用透過水側流量計41A、第1検知用非透過水側流量計41Bにより、検知用透過水22又は検知用非透過水23のいずれか一方又は両方の流量を計測している。
 ここで、検知用透過水22と検知用非透過水23との流量の総和は、第1付着物検知部24Aへ供給する検知液15aの流量であるので、検知用透過水22の流量を、検知用非透過水23により間接的に求めるようにしてもよい。以下の説明では、検知用透過水22の流量を第1検知用透過水側流量計41Aで計測する場合について、主に説明する。
 ここで、被処理水11は、例えば鉱山廃水、発電プラント冷却塔のブローダウン水、オイル・ガス拙作時の随伴水、かん水、工場廃水等の例えば有機物、微生物、鉱物塩等のイオンの付着物若しくは付着物を生成する成分を含むものである。また、被処理水11として海水を用い、海水淡水化に適用するようにしてもよい。
 この被処理水11から例えば塩分等の溶解成分を分離する分離膜としては、逆浸透膜(RO:Reverse Osmosis Membrane)以外に、例えばナノフィルタ(NF:Nanofiltration Membrane)、正浸透膜(FO:Forward Osmosis Membrane)を例示することができる。
 ここで、分離膜が逆浸透膜以外の他の膜に変更する場合には、検知用の分離膜も同様に変更して検知を行うようにする。
 この被処理水11は、被処理水供給ラインL1に設けた高圧ポンプ16と、逆浸透膜装置14からの非透過水排出ラインL11に設けた流量を調節する調整弁44Bとを操作して、所定圧力まで昇圧され、逆浸透膜を備えた逆浸透膜装置14に導入される。
 また、逆浸透膜に付着する付着物としては、例えば炭酸カルシウム、水酸化マグネシウム、硫酸カルシウム、珪酸塩等の無機系付着物や、天然有機物及び微生物由来の有機系付着物、シリカなどのコロイダル成分、オイル等のエマルションを含む分散成分があるが、膜への付着を生じるものであれば、これらに限定されるものではない。
 この逆浸透膜装置14では、被処理水11は逆浸透膜装置14の逆浸透膜で脱塩され、透過水13を得る。また、この逆浸透膜でイオンや有機物を含む溶解成分が濃縮された非透過水15は、廃棄物として適切に廃棄・処理されるか、非透過水15中の有価物を回収するために使用される。
 本実施例では、この非透過水15を排出する非透過水ラインL11からその一部を分岐する非透過水分岐ラインL12を設けている。
 そして、この非透過水分岐ラインL12に、分岐した検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用逆浸透膜21Aを有する第1付着物検知部24Aを設置している。
 この非透過水分岐ラインL12には、第1付着物検知部24Aの前流側に、高圧ポンプ16aを設けると共に、第1付着物検知部24Aからの検知用非透過水排出ラインL14に、流量を調節する調整弁44Aを設け、これらの高圧ポンプ16aと調整弁44Aとを操作して、第1付着物検知部24Aからの検知用透過水22の流量を調整するようにしている。そして、この第1付着物検知部24Aの脱塩条件が、本設の逆浸透膜装置14の逆浸透膜の出口近傍と同一となるように、分岐した検知液15aの圧力及び流量を調整している。この所定圧力及び流量の確認は、圧力計42A、42B及び流量計43A、43Bにより監視している。
 さらに、調整弁44A又は高圧ポンプ16aのいずれかにより、第1付着物検知部24Aからの検知用透過水22の流量を調整するようにしてもよい。
 なお、検知用非透過水23を排出する検知用非透過水排出ラインL14には圧力計42Cが、非透過水15の非透過水ラインL11には調整弁44Bが各々設けられている。
 図3は、図2の第1付着物検知部の斜視図である。
 図2及び図3に示すように、第1付着物検知部24Aは、検知部本体24aの入口24b側から分岐した検知液15aを導入するもので、スペーサ(非透過水側)24c、スペーサ(透過水側)24dによって、第1検知用逆浸透膜21Aが挟まれている。そして、この第1検知用逆浸透膜21Aに沿って、導入された検知液15aが流れる(X方向)。また、この検知液15aは、検知液流れ方向(X方向)と直交する方向(Z方向)に移動することで、第1検知用逆浸透膜21Aを通過して、脱塩され検知用透過水22が得られる。透過した検知用透過水22は第1検知用逆浸透膜21Aに沿った透過水流れ(X方向)となり、透過水出口24eから検知用透過水22として、排出される。
図3において、検知液15aの流れ方向(X方向)の長さ(L)が、第1付着物検知部24Aの流路の長さであり、第1付着物検知部24の図2の奥行方向の長さがWとなる。
 図4は、第1付着物検知部にスパイラル型逆浸透膜を用いた場合の一部切欠き斜視図である。図4に示すように、第1付着物検知部24Aの検知用膜としてスパイラル型の第1検知用逆浸透膜21Aとした場合であり、第1検知用逆浸透膜21Aの両面から検知液15aが供給され、第1検知用逆浸透膜21Aを検知液15aの流れ方向と直交する方向(Z方向)に移動し、膜を通過して脱塩され検知用透過水22となる。また、スパイラル型の逆浸透膜であるので、検知用透過水22は中心の集水管に向けて流れる(Y方向)。なお、図4中、切欠部によって、スパイラル型の逆浸透膜21を切り開いた状態を示し、内部のスペーサ(透過水側)24dが確認される。
 この第1付着物検知部24Aにおいては、入口24bから非透過水出口24fに亙って一様な流れ(検知液流れ方向(X方向))を形成する流路を確保するために、例えば樹脂製のスペーサ(非透過水側)24cを設けている。また、透過水側においても同様に、透過水出口24eに亙って一様な流れ(透過水流れ方向(X方向))を形成する流路を確保するために、例えば樹脂製のスペーサ(透過水側)24dを設けている。ここで、一様な流れを確保することができる部材であれば、スペーサに限定されるものではない。
 また、第1付着物検知部24Aの流路の長さ(L)は、本設の逆浸透膜装置14で用いる逆浸透膜装置14の逆浸透膜の供給液の流れ方向の総長さの1/10以下程度の長さ、より好ましくは1/50以下の長さ、さらに好ましくは1/100以下の長さとするのがよい。なお、試験例で用いた第1付着物検知部24Aは、その流路の長さ(L)として16mm、1000mmのものを用いた。
 ここで、後述するように、本設の逆浸透膜装置14の逆浸透膜のエレメント(長さ例えば1m)は、8本を繋いで、1本のベッセルとしている。例えばエレメント8本/1ベッセルの場合で、2本のベッセルを直列に繋いだ際には、逆浸透膜装置14で用いる供給液流れ方向の膜長さは16mとなり、流路長さ1000mmの逆浸透膜を検知膜として用いた場合、第1付着物検知部24Aの流路長さは1/16(1/10以下)となる。
 同様に、16mmの逆浸透膜を検知膜として用いた場合、第1付着物検知部24Aの流路長さは0.016/16(1/100以下)となる。
 また、第1付着物検知部24Aの検知膜である第1検知用逆浸透膜21Aの奥行方向の長さW(供給水流れに垂直な方向)を一定とすると、膜長さ(L)が短い程、膜面積は小さくなる。そして、「付着物の付着により膜表面の10%が閉塞=10%の透過水流量低下」となり、膜面積が小さいほど、付着による膜閉塞が早く起こるので、付着による透過水流量の低下を高感度、且つ迅速に検知することが可能となる。
 ここで、第1付着物検知部24Aの第1検知用逆浸透膜21Aとしては、逆浸透作用を奏する膜であり、本設の逆浸透膜装置14の逆浸透膜と同一種類又は類似する種類で脱塩性能を奏する分離膜を用いている。
 本実施例では、本設の逆浸透膜装置14の逆浸透膜は、スパイラル型の逆浸透膜を備えた逆浸透膜エレメントを複数個、圧力容器内に格納したものである。
 ここで、スパイラル状の逆浸透膜の一例を説明する。図5は、スパイラル型の逆浸透膜装置のベッセルの一部切欠き概略図である。図6は、図5のベッセルを2つ繋いだものの斜視図である。図7は、スパイラル型の逆浸透膜エレメントの一部分解概略図である。図7に示すスパイラル型の逆浸透膜エレメントは、特開2001-137672号公報に開示する一例であり、これに限定されるものではない。ここで、逆浸透膜装置のベッセル100は、以下ベッセル100といい、スパイラル型の逆浸透膜エレメント101は、以下エレメント101という。
 図5に示すように、ベッセル100は、複数(例えば5~8)のエレメント101を直列に接続して円筒状の容器本体(以下「容器本体」という)102内に収納して構成される。容器本体102の一端側の原水供給口103から被処理水11が原水として導入され、他端側の透過水取出口104から透過水13、非透過水取出口105から非透過水15が取り出される。なお、図5においては、被処理水11導入側の透過水取出口104は閉塞状態としている。
 図6は、このベッセル100を2本直列に繋いだ場合である。例えばエレメント101の1本を1mとした場合、8本で1ベッセルを構成すると、総流路長(供給液の流れ方向の総長さ)は、8×2=16mの長さとなる。
 容器本体102内の各エレメント101は、例えば図7に示すように集水管111の周囲に、流路材112を内包した袋状の逆浸透膜12を流路材(例えばメッシュスペーサ)114によりスパイラル状に巻回し、その一端にブラインシール115を設けた構造を有する。そして各エレメント101は、前方のブラインシール115側から供給される所定圧力の被処理水(原水)11を流路材(例えばメッシュスペーサ)114により袋状の逆浸透膜12間に順に導き、逆浸透作用により逆浸透膜12を透過した透過水13を集水管111により取り出すものとなっている。また、非透過水15も後方シール118側から取り出すものとなっている。なお、被処理水11の移動方向の膜長さがLである。ここで、図7で示したエレメント101の構成は、図4で示したスパイラル型の第1付着物検知部24Aの構成においても同様である。
 この圧力容器を複数本(例えば50~100本)集合させたものを1ユニットとしており、このユニット数を調整し、処理する被処理水11の供給量に応じて、脱塩処理して生産水を製造するようにしている。
 従来においては、本設の逆浸透膜装置14からの非透過水の少なくとも一部を、監視用分離膜に透過させ、この監視用分離膜の前後に設けた圧力計の差圧によって、非透過水に含まれる付着物が監視用分離膜の膜面に付着するのを監視していた。しかしながら、差圧で確認する場合には、流路が付着物で塞がれ、差圧に変化が生じる程度に付着物が付着した後でないと判断できない、という問題がある。
 また、この差圧で計測する場合は、監視用分離膜の長さが長くないと、精度よく検知できない、という問題がある。
 通常、逆浸透膜装置14の運転においては、被処理水11中に所定のイオンや有機物を含む溶解成分があると想定し、逆浸透膜にイオンを含む溶解成分等に起因する付着物が付着しない条件を運転条件として設計している。しかしながら、供給する被処理水11の水質変動などにより、設計条件よりもイオンや有機物を含む溶解成分濃度が高くなり、逆浸透膜に付着物が付着し易い状況となるようなことがある。このような場合、逆浸透膜装置14からの透過水13の透過水流量を流量計で確認し、透過水13の流量が所定割合まで低下した時点を閾値として、逆浸透膜の洗浄を実施していたが、この時点では、すでに逆浸透膜へ広範囲に付着物が付着しており、逆浸透膜の洗浄が困難となっていた。
 そこで、本実施例では、図1に示すように、被処理水11から逆浸透膜により透過水13をろ過した逆浸透膜装置14からイオンや有機物を含む溶解成分を濃縮した非透過水15を排出する非透過水ラインL11と、この非透過水ラインL11から分岐した非透過水分岐ラインL12に設けられ、分岐した検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用逆浸透膜21Aを有する第1付着物検知部24Aと、検知用透過水22の流量を計測する第1検知用透過水側流量計41Aと、を備えた逆浸透膜装置の付着物監視装置を設置するようにしている。
 図8は、第1付着物検知部が本設の逆浸透膜装置の一部と対応する模式図である。図8に示すように、第1付着物検知部24Aの第1検知用逆浸透膜21Aを用いて付着物付着状態を検知するのは、本設の逆浸透膜装置14の最後尾(例えばエレメント101が8本直列に連結している場合には、エレメント101-1~101-8の8本目のエレメント101-8の出口末端近傍)において、第1検知用逆浸透膜21Aへの付着物成分(例えば石膏)の付着の状況を模擬することとなる。第1付着物検知部24Aの第1検知用逆浸透膜21Aの膜長さLを例えば16mmとする場合には、最終後尾部分の16mmの状態が模擬できることとなる。
 すなわち、第1付着物検知部24Aの第1検知用逆浸透膜21Aは、本設の逆浸透膜装置14に追設された状態となっている。よって、第検知用逆浸透膜21Aの長さが例えば1000mmとする場合には、本設の逆浸透膜装置14の逆浸透膜の長さ+1000mmとなる。
 従って、第1検知用逆浸透膜21Aの長さLが短い程、本設の逆浸透膜装置14の末端部の極めて短い部分の模擬が可能となる。
 これは、後述する試験結果からも、第1検知用逆浸透膜21Aが16mmの場合は、供給水の検知液15aの石膏過飽和度4.7であり、非透過水15の石膏過飽和度も4.7であるので、本設の逆浸透膜装置14の出口近傍を模擬できている。
 ここで、第1検知用逆浸透膜21Aにおける運転の経過と透過水流量及び供給圧力との関係について、図9、図10を用いて説明する。
 図9は、第1付着物検知部の検知用の逆浸透膜の長さLを16mmで実施した場合のフラックス(m3/h/m2)変化を示す図である。図10は、第1付着物検知部の検知用の逆浸透膜の長さLを1000mmで実施した場合のフラックス(m3/h/m2)変化を示す図である。図9及び10において、第1付着物検知部での運転の経過時間と、透過水量及び供給圧力との関係を示す図である。図9及び10中左縦軸はフラックス(m3/h/m2)、右縦軸は供給圧力(MPa)、横軸は運転時間(時間)を示す。本試験例では、付着物として石膏が付着するように調整した検知液15aを用いた。ここで、フラックスとは、単位面積あたりの透過水流量をいう。
 図9及び10では、第1付着物検知部24Aへの検知液15aの供給圧力を例えば2.0MPaとし、第1検知用逆浸透膜21Aに供給する検知液15aの石膏過飽和度を4.7とした条件において、運転時間の経過による第1検知用逆浸透膜21Aへの石膏付着物の付着による透過水流量の低下の度合いの結果を確認したものである。
 図9は、第1付着物検知部24Aの検知用の逆浸透膜の長さLを16mmで試験した場合であり、供給圧力を例えば2.0MPaと一定とする場合、検知用透過水22のフラックスの挙動は、約1時間で50%以下に低下していることが確認された。またこの時、検知用非透過水23の石膏飽和度は4.7であった。
 図10は、第1付着物検知部24Aの検知用の逆浸透膜の長さLを1000mmで実施した場合であり、供給圧力を例えば2.0MPaと一定とする場合、約1時間で10%低下していることが確認された。
 この結果、第1付着物検知部24Aにおいて、第1検知用逆浸透膜21Aにおける透過水流量の10%低下を極めて短時間(逆浸透膜の長さLが、例えば16mmの場合には約10分以下)で検知できることが確認された。
 よって、本実施例に係る第1付着物検知部24Aを用い、1時間以下、好適には10分以下で透過水流量が約10%低下することを迅速に検知することができる。
 ここで、過飽和度とは、例えば石膏を例とすると、ある条件で石膏が飽和溶解している状態(石膏の飽和濃度)を「1」とした場合の、石膏濃度の割合であり、例えば、過飽和度「5」とは、石膏飽和濃度の5倍濃い濃度であることを示している。
 次に、第1検知用逆浸透膜21Aへの洗浄による透過水流量の回復可否の確認試験を行った。
 具体的には、第1検知用逆浸透膜21Aへ強制的に石膏を析出させ、洗浄後、付着物析出前の透過水流量に戻るかを確認した。
 付着物である石膏析出条件としては、第1検知用透過水側流量計41Aを用いて透過水流量が10%低下するときの条件とした。
 表1に運転条件を示す。なお、供給液としては、NaCl評価液(NaCl:2000mg/L)を用いた。
Figure JPOXMLDOC01-appb-T000001
 運転操作は以下のように行った。
1)先ず、圧力条件を1.18MPaとし、供給液としてNaCl評価液を用いた場合の透過水量は24ml/hであった。
2)その後、供給圧力条件を2.0MPaまで増加させると共に、供給液をNaCl評価液から石膏過飽和液に変更し、膜に強制的にスケールを析出させ、10分間で透過水流量10%の低下を確認した。
3)その後、供給液を石膏過飽和液からイオン交換水に変更して洗浄を行った。
4)洗浄後、供給液をイオン交換水からNaCl評価液に変更し、1)の操作条件(圧力条件を1.18MPa)で運転をしたところ、透過水量は24ml/hであった。
 この結果、第1検知用逆浸透膜21Aへの石膏の析出の初期段階においては、水洗浄により石膏付着物の洗浄が可能であり、洗浄を行うことで付着物析出前の透過水流量に戻ることが確認された。
 石膏を洗浄する場合には、純水を用いて洗浄することができることも確認した。よって、本設の逆浸透膜装置14の洗浄においても、透過水13を用いての洗浄が可能となる。これにより洗浄工程におけるコスト低減、及び膜へのダメージ低減が可能となる。
 次に、脱塩処理装置の運転時間の経過による透過水流量の低下の一例について説明する。図11は、本実施例における運転時間の経過と透過水流量の変化の一例を示す図である。図11に示すように、被処理水11中のスケール成分濃度に変化が無い場合には、第1付着物検知部24Aでの流量の低下は無い。そして、被処理水11の水質変動等によって、スケール成分濃度が変化した場合、第1付着物検知部24Aの第1検知用逆浸透膜21Aに付着物の付着が開始される。この付着物の付着に応じて、第1検知用透過水側流量計41Aでの流量の低下を確認することができる。
 そして、図11に示すように、所定閾値(例えば検知液透過水の流量が10%低下した場合を閾値とする)となったことを確認すると、本設の逆浸透膜装置14での逆浸透膜への付着物の付着初期段階と判定装置40で判断する。なお、この判定装置40は必要に応じて設置するようにすればよい。
 ここで、本発明において閾値とは、検知用透過水の流量の変化割合であり、図11の例においては、所定閾値は、検知用透過水の流量の低下率が10%であることを示している。
 そして、図1に示すように、脱塩処理装置10Aの運転する場合において、第1付着物検知部24Aを用いて、分離水である検知用透過水22の流量の低下を第1検知用透過水側流量計41Aで計測し、この計測の結果、計測流量が所定閾値より変化したかどうかを判定装置40により判断する。この判断の結果、所定閾値より変化した場合、本設の逆浸透膜装置14の逆浸透膜への付着物の付着初期段階と判断する。この判断の結果、制御装置45により、洗浄液供給部52に対して、洗浄液51を供給する指示を送る。この指示により、本設の逆浸透膜装置14の運転を停止し、次いで、洗浄液51を被処理水供給ラインL1に供給し洗浄を行う。この洗浄としては、例えばフラッシング洗浄、サックバック洗浄等を用いることができる。なお、この洗浄においても、透過水13の一部を使用することができる。
 この際、洗浄液51として、生産された透過水13の一部13aを透過水供給ラインL3により、洗浄液供給部52へ送って、洗浄処理するようにしている。これにより、薬品による洗浄を回避することができる。
 以上は、第1付着物検知部24Aからの検知用透過水22の透過水流量を第1検知用透過水側流量計41Aにより検知して、判断していたが、検知用非透過水23を用いる場合には、以下のように行う。
 第1付着物検知部24Aからの検知用非透過水23の非透過水流量を第1検知用非透過水側流量計41Bにより検知し、非透過水流量の増加を検知した時点で、判定装置40で本設の逆浸透膜装置14の逆浸透膜への付着物の付着があると判断する。この判断の結果、制御装置45において、本設の逆浸透膜装置14の逆浸透膜の洗浄を洗浄液51により行う事により、本設の逆浸透膜装置14の付着物の付着による性能低下を防止することができる。
 以上により、本実施例によれば、被処理水11を処理する逆浸透膜装置14の逆浸透膜に対して付着物の付着初期段階を検知することが可能となる。
 このように、第1付着物検知部24Aを用いて、検知用透過水22の流量が予め設定しておいた所定閾値以下となった場合に、本設の逆浸透膜装置14の逆浸透膜への付着物の付着初期段階と判断することが出来ると共に、この判断の結果、洗浄液を供給して洗浄を行うことで、本設の逆浸透膜装置14の逆浸透膜への付着物付着を抑制することができる。
 一般に、逆浸透膜へ石膏等の難溶解性物質が付着した場合には、洗浄処理によっては、除去することができないとされているが、本実施例の第1付着物検知部24Aを用いることで、極めて初期の石膏の付着状態を把握することができるので、石膏の結晶が溶解し易い微小な状態での洗浄による除去が可能となる。
 この結果、本設の逆浸透膜装置14の逆浸透膜に対して付着物付着の初期段階での対処が可能となるので、従来のように手遅れになることが無くなると共に、従来のような酸性、アルカリ性洗浄液を用いる必要が無くなり、逆浸透膜の寿命の向上に寄与することができる。
 以上の実施例においては、供給液の供給圧力、供給液流量を一定とした場合、逆浸透膜に付着物が付着すると、透過水流量(又はフラックス)が低下する事から、検知液の供給圧力、供給流量を所定の値とし、検知用透過水流量(またはフラックス)が閾値以下となった場合に、検知用逆浸透膜へ付着物の付着があったと判断している。
 これに対して、透過水流量(又はフラックス)を一定とする場合、逆浸透膜に付着物が付着すると、供給液の供給圧力を上げる(フラックスを上げる)必要がある。
 よって、検知用分離液(検知用透過水、又は検知用非透過水)の流量が一定となるように供給液の供給圧力を制御し、供給圧力が閾値以上となった場合に、検知用逆浸透膜へ付着物の付着があったと判断する事もできる。
 図12は、実施例2に係る脱塩処理装置の概略図である。なお、実施例1と同一部材については、同一符号を付して重複する説明は省略する。図12に示すように、本実施例に係る脱塩処理装置10Bは、第1付着物検知部24Aの第1検知用逆浸透膜21Aに付着した付着物成分を分析して、付着物に応じて、洗浄を実施するものである。
 すなわち、本実施例では、第1付着物検知部24Aの第1検知用逆浸透膜21Aへ付着物が付着した際に、その付着物の分析を、別途している。
 そして、分析の結果、予め選定しておいた例えば3種類の洗浄液51(第1~第3洗浄液51A~51C)のうち、最適なものを選定し、本設の逆浸透膜装置14の洗浄液として、第1~第3洗浄液供給部52(52A~52C)から行うようにしている。
 付着物が付着した第1検知用逆浸透膜21Aに対して各種洗浄液51を各々供給し、第1検知用逆浸透膜21Aの検知用透過水流量を第1検知用透過水側流量計41Aにより計測する事により、第1検知用逆浸透膜21Aの付着物の洗浄効果を確認する。
 検知用透過水流量の計測により、第1検知用逆浸透膜21Aの付着物に対して最も効果のある洗浄条件(洗浄液、温度等)を選定することができる。この選定の結果を本設の逆浸透膜装置14の逆浸透膜に対しての洗浄条件として設定することができる。
 従来では、付着物に対して推奨される洗浄条件(洗浄液、洗浄手順)が定められていたとしても、実際の逆浸透膜への付着物の特定は困難であり、被処理水11の水質からの予測を元に、付着物を想定し、洗浄液を選定したので、適切な洗浄ができない場合があった。
 これに対し、本実施例によれば、実際の付着物に対して各種洗浄液による洗浄性能の評価が可能となる。この評価の結果を本設の逆浸透膜装置14の逆浸透膜に対して反映することで、適切な洗浄を行うことが可能となる。
 この結果、実際に本設の逆浸透膜装置14の逆浸透膜に付着している付着物に対して、最も効果的な洗浄液を簡便に選定する事が可能となる。
 また、本設の逆浸透膜装置14の逆浸透膜の効果的な洗浄が可能となり、洗浄時間の短縮、洗浄液の使用量の削減を図ることができる。
 ここで、付着物として、例えば、炭酸カルシウム、水酸化マグネシウム、水酸化鉄などは、塩酸などを用いた酸性水溶液を用いる事で洗浄可能となる。また、シリカ、有機物などは、水酸化ナトリウムなどを用いたアルカリ性水溶液を用いる事で洗浄可能となる。
 この洗浄の作業と共に、更に本設の逆浸透膜装置14の逆浸透膜に対して、付着物が付着しない条件へ運転条件を変更するようにしてもよい。なお、これらの操作は、同時に行っても良いし、順次行ってもよい。
 運転条件の変更内容としては、以下を例示することができる。
1)本設の逆浸透膜装置14に導入する前において、被処理水11中に供給している付着物抑制剤の添加濃度を増加する運転を行う。
2)本設の逆浸透膜装置14への被処理水11の供給液圧力を下げる運転を行う。
3)本設の逆浸透膜装置14への被処理水11の供給液流量を上げる運転を行う。
 このような付着物が付着しない運転条件に変更することで、脱塩処理装置が安定して脱塩処理を実施することができる。
 また、洗浄液の選定のみならず、同様にして付着物抑制剤の選定を行い、適切な付着物抑制剤の供給を行うようにしてもよい。
 図13は、実施例3に係る脱塩処理装置の概略図である。なお、実施例1と同一部材については、同一符号を付して重複する説明は省略する。
 実施例1の脱塩処理装置10Aの場合では、逆浸透膜装置14からの非透過水15を用い、この非透過水15中のスケール成分による付着物の付着が開始するタイミングを検知していたが、本実施例の脱塩処理装置10Cでは、図13に示すように、逆浸透膜装置14の手前(供給)側において、被処理水11中に含まれる有機成分による付着物又は微生物に起因するバイオファウリングが開始するタイミングを検知している。なお、実施例1の第1付着物検知部24Aと本実施例の第2付着物検知部24Bの構成は同一であるので、その説明は省略する。
 図13に示すように、本実施例に係る脱塩処理装置10Cは、被処理水11からイオンや有機物を含む溶解成分を濃縮し、透過水を得る逆浸透膜を有する逆浸透膜装置14と、被処理水11を供給する被処理水供給ラインL1から分岐した被処理水分岐ラインL21に設けられ、分岐した被処理水11の一部を検知液11aとし、該検知液11aを検知用透過水22と検知用非透過水23とに分離する第2検知用逆浸透膜21Bを有する第2付着物検知部24Bと、第2検知用逆浸透膜21Bで分離した分離液(検知用透過水22、検知用非透過水23)の流量を計測する第2検知用分離液流量計測装置(第2検知用透過水側流量計41C、第2検知用非透過水側流量計41D)と、第2検知用分離液流量計測装置(第2検知用透過水側流量計41C、第2検知用非透過水側流量計41D)の計測の結果、計測流量が所定閾値に対して変化した場合に、逆浸透膜装置14の逆浸透膜への付着物の付着初期段階と判断する判定装置40と、を備える。
 本実施例では、検知用透過水22の流量を計測する第2検知用透過水側流量計41Cを検知用透過水排出ラインL22に設けており、検知用非透過水23の流量を計測する第2検知用非透過水側流量計41Dを検知用非透過水排出ラインL23に設けている。また、実施例1と同様に、判定装置40は必要に応じて設置するようにすればよい。
 なお、第2検知用逆浸透膜21Bは、実施例1の第1検知用逆浸透膜21Aと同じ材質の膜であっても良いし、異なる材質の膜としても良い。
 有機成分の付着や微生物に起因するバイオファウリングは、逆浸透膜装置14の逆浸透膜の被処理水11の供給側において発生する。
 よって、被処理水供給ラインL1から分岐した被処理水分岐ラインL21に、第2検知用逆浸透膜21Bを有する第2付着物検知部24Bを設けることで、逆浸透膜装置14の膜エレメントの先頭部分における付着物の付着状態を模擬することができる。
 本実施例の第2付着物検知部24Bを用いて、検知用透過水22の透過水流量を計測し、透過水流量の低下を第2検知用透過水側流量計41Cにより検知する事により、本設の逆浸透膜装置14の逆浸透膜での有機成分の付着や微生物に起因するバイオファウリングの開始初期段階を検知することができる。
 そして、第2付着物検知部24Bからの検知用透過水22の透過水流量を第2検知用透過水側流量計41Cにより検知し、透過水流量の低下を検知した時点で、判定装置40で本設の逆浸透膜装置14の逆浸透膜への付着があると判断する。この判断の結果、制御装置45において、本設の逆浸透膜装置14の逆浸透膜の洗浄を洗浄液51により行う事により、本設の逆浸透膜装置14の有機成分の付着や微生物に起因するバイオファウリングによる性能低下を防止することができる。
 すなわち、図13に示すように、脱塩処理装置10Bの運転する場合において、第2付着物検知部24Bを用いて、分離水である検知用透過水22の流量の低下を第2検知用透過水側流量計41Cで計測し、この計測の結果、計測流量が所定閾値より変化したかどうかを判定装置40により判断する。この判断の結果、本設の逆浸透膜装置14の逆浸透膜への付着物の付着初期段階と判断する。
 この判断の結果、制御装置45により、有機物用の洗浄液供給部52Dから有機物用の洗浄液51Dを供給する指示を送る。この指示により、本設の逆浸透膜装置14の運転を停止し、次いで、有機物用の洗浄液51Dを被処理水供給ラインL1に供給し洗浄を行う。
 また、第2付着物検知部24Bからの検知用非透過水23の非透過水流量を第2検知用非透過水側流量計41Dにより検知し、非透過水流量の増加を検知した時点で、判定装置40で本設の逆浸透膜装置14の逆浸透膜への付着があると判断することも可能である。この判断の結果、制御装置45において、本設の逆浸透膜装置14の逆浸透膜の洗浄を有機物用の洗浄液51Dにより行う事により、本設の逆浸透膜装置14の有機成分の付着や微生物に起因するバイオファウリングによる性能低下を防止することができる。
 有機成分による付着物、微生物由来のバイオファウリングに対しては、例えば水酸化ナトリウム水溶液に界面活性剤を添加した有機物用の洗浄液51Dを用いることで、洗浄可能となる。
 この洗浄の作業と共に、更に本設の逆浸透膜装置14の逆浸透膜に対して、付着物が付着しない条件へ運転条件を変更するようにしてもよい。なお、これらの操作は、同時に行っても良いし、順次変更するようにしてもよい。
1)殺菌剤(塩素系殺菌剤(例えばクロラミン等)、および過酸化水素などの酸化性能をもつ薬剤)の添加量を減らす運転を行う。
2)有機物用凝集剤の添加量を増加する運転を行う。
3)有機物吸着塔(砂ろ過、活性炭吸着塔、加圧浮上装置(DAF)、除菌フィルタ等)を通すように流路を変更する。
4)逆浸透膜装置14へ供給する被処理水11のpHを上げる運転を行う。
5)有機物用洗浄液を添加する運転を行う。
 このような付着物が付着しない運転条件に変更することで、脱塩処理装置が安定して脱塩処理を実施することができる。
 図14は、実施例3に係る脱塩処理装置の運転条件変更の一例を示す概略図である。
 図14では、第2付着物検知部24Bからの検知用透過水22の透過水流量を第2検知用透過水側流量計41Cにより検知し、透過水流量の低下を検知した時点で、判定装置40で膜への付着があると判断する。この判断の結果、洗浄を実施する場合には、有機物用の洗浄液供給部52Dから有機物用の洗浄液51Dを供給して洗浄を行うようにしている。
 また、本実施例では、図14に示すように、被処理水11への有機物用凝集剤61の添加量を調整する場合には、凝集ろ過部62に対して、有機物用凝集剤供給部63から、有機物用凝集剤61を供給するようにし、有機物用凝集剤61の供給により有機物を除去するようにしている。
 また、被処理水11への殺菌剤64の添加量を調整する場合には、凝集ろ過部62の下流側で、殺菌剤供給部65から殺菌剤64を供給するようにしている。殺菌剤64の添加量を減らすことで、微生物に由来する有機物を減らすようにしている。
 また、逆浸透膜装置14に導入する被処理水11へのpHを調整する場合には、凝集ろ過部62の下流側のpH調整部66に供給する酸又はアルカリのpH調整剤67を、酸又はアルカリ供給部68から供給するようにし、pHを調整することで、微生物を死滅させるようにしている。また、pHを高くすることで、有機物の溶解・付着を抑制するようにしている。
 また、被処理水11中の有機物をさらに除去する場合には、pH調整部66の下流側において、被処理水供給ラインL1から流路を分岐する切替部71、72を操作し、バイパス通路L31に介装した有機物吸着塔73に被処理水11を通過させ、被処理水11中の有機物を吸着除去するようにしている。
 また、カートリッジフィルタ69を逆浸透膜装置14の上流側に設置し、被処理水11中の不純物を更にろ過するようにしている。
 図14中、符号75はpH調整部であり、原水である被処理水11のpHをpH調整剤(酸又はアルカリ)67により調整している。
 図15は、実施例4に係る脱塩処理装置の概略図である。なお、実施例1乃至実施例3と同一部材については、同一符号を付して重複する説明は省略する。
 本実施例では、図15に示すように、本実施例の脱塩処理装置10Dは、実施例1の脱塩処理装置10Aの逆浸透膜装置14からの非透過水15を用い、この非透過水15中のスケール成分による付着物の付着が開始するタイミングと、実施例3の脱塩処理装置10Cの逆浸透膜装置14に供給する前の被処理水11を用い、この被処理水11中の有機成分による付着物又は微生物に起因するバイオファウリングが開始するタイミングとを検知するものである。
 本実施例では、本実施例の第1付着物検知部24Aを用いて、検知用透過水22の透過水流量を計測し、透過水流量の低下を第1検知用透過水側流量計41Aにより検知する事により、本設の逆浸透膜装置14の逆浸透膜での付着物の付着開始の初期段階を判断すると共に、第2付着物検知部24Bを用いて、検知用透過水22の透過水流量を計測し、透過水流量の低下を第2検知用透過水側流量計41Cにより検知する事により、本設の逆浸透膜装置14の逆浸透膜での有機成分による付着物又は微生物に起因するバイオファウリングの開始初期段階を判断するようにしている。
 そして、この判断によって、制御装置45により洗浄液供給部52から洗浄液51を供給することで、本設の逆浸透膜装置14の付着物の付着、有機成分による付着物又は微生物に起因するバイオファウリングによる性能低下を抑制することができる。本実施例での洗浄液51の選定は、予め選定しておくようにしてもよいし、実施例2のように、付着物を分析して洗浄液をその都度選定するようにしてもよい。
 なお、図15においては、洗浄液51としては、例えばスケール成分に対応する第1~第3洗浄液51A~51Cのいずれかと、有機成分の付着や微生物に起因するバイオファウリングによる性能低下を防止する有機用の洗浄液51Dを供給可能としている。さらに、図14に示した運転制御のうち、有機物用の洗浄液51Dの洗浄の他に例えば有機物用凝集剤61等を添加する他の運転制御を実施するようにしてもよい。
 この結果、実際に本設の逆浸透膜装置14に付着している付着物に対して、最も効果的な洗浄液51(第1~第3洗浄液51A~51C、有機物用の洗浄液51Dのいずれか)を簡便に選定して洗浄を実施する事が可能となる。よって、本設の逆浸透膜装置14の効果的な洗浄による洗浄時間の短縮、洗浄液の使用量削減が可能となる。
 さらに、この洗浄の作業と共に、更に本設の逆浸透膜装置14の逆浸透膜に対して、前述したような付着物が付着しない条件へ運転条件を変更するようにしてもよい。
 図16は、実施例5に係る脱塩処理装置の概略図である。なお、実施例1と同一部材については、同一符号を付して重複する説明は省略する。
 本実施例では、図16に示すように、本実施例の脱塩処理装置10Eは、実施例1の脱塩処理装置10Aの逆浸透膜装置14からの非透過水15を更に濃縮する蒸発器81を非透過水ラインL11に設置している。
 この蒸発器81により、非透過水15中の水分を除去することが可能であり、更には非処理水15中に含まれる固体を回収することもできるようにしている。
 実施例1において説明したように、本設の逆浸透膜装置14の逆浸透膜への付着物の付着初期段階を検知し、洗浄の実施、付着物が付着しない運転条件へ変更することで、本設の逆浸透膜装置14の安定運転が可能となる。これにより後流に設置する非透過水15を更に濃縮する蒸発器81の安定運転が可能となる。
 ここで、蒸発器81としては、例えば水分を蒸発させる蒸発装置、蒸留装置、結晶化装置、無排水化装置等を例示することができる。
 10A~10E 脱塩処理装置
 11 被処理水
 11a 検知液
 13 透過水
 14 逆浸透膜装置
 15 非透過水
 15a 検知液
 L11 非透過水ライン
 L12 非透過水分岐ライン
 L21 被処理水分岐ライン
 21A 第1検知用逆浸透膜
 21B 第2検知用逆浸透膜
 22 検知用透過水
 23 検知用非透過水
 24A 第1付着物検知部
 24B 第2付着物検知部
 40 判定装置
 41A 第1検知用透過水側流量計
 41B 第1検知用非透過水側流量計
 41C 第2検知用透過水側流量計
 41D 第2検知用非透過水側流量計
 45 制御装置

Claims (16)

  1.  被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、
     溶解成分や分散成分が濃縮された非透過水を排出する非透過水ラインから分岐した非透過水分岐ラインに設けられ、分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、
     前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、を備えることを特徴とする水処理装置。
  2.  被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、
     前記被処理水を供給する被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、
     前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、を備えることを特徴とする水処理装置。
  3.  被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、
     溶解成分や分散成分が濃縮された非透過水を排出する非透過水ラインから分岐した非透過水分岐ラインに設けられ、分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、
     前記第1検知用分離膜で分離した分離液の流量を計測する第1検知用分離液流量計測装置と、
     前記被処理水を供給する被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、
     前記第2検知用分離膜で分離した分離液の流量を計測する第2検知用分離液流量計測装置と、を備えることを特徴とする水処理装置。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記第1検知用分離液流量計測装置又は第2検知用分離液流量計測装置の計測の結果に基づいて、
     前記分離膜装置の前記分離膜への洗浄を実施する制御装置を備えることを特徴とする水処理装置。
  5.  請求項4において、
     前記第1検知用分離液流量計測装置又は第2検知用分離液流量計測装置の計測の結果に基づいて、
     前記分離膜装置の前記分離膜への付着物が付着しない条件に運転条件を変更する制御を実施する制御装置を備えることを特徴とする水処理装置。
  6.  被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、
     溶解成分や分散成分が濃縮された非透過水を排出する非透過水ラインから分岐した非透過水分岐ラインに設けられ、分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、
     前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、
     前記第1検知用分離液流量計測装置の計測の結果に基づいて、前記分離膜装置の前記分離膜への付着が付着しない条件に運転条件を変更する制御を実施する制御装置と、を備えることを特徴とする水処理装置。
  7.  被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、
     前記被処理水を供給する被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、
     前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、
     前記第2検知用分離液流量計測装置の計測の結果に基づいて、前記分離膜装置の前記分離膜への付着が付着しない条件に運転条件を変更する制御を実施する制御装置と、を備えることを特徴とする水処理装置。
  8.  被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、
     溶解成分や分散成分が濃縮された非透過水を排出する非透過水ラインから分岐した非透過水分岐ラインに設けられ、分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、
     前記第1検知用分離膜で分離した分離液の流量を計測する第1検知用分離液流量計測装置と、
     前記被処理水を供給する被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、
     前記第2検知用分離膜で分離した分離液の流量を計測する第2検知用分離液流量計測装置と、
     前記第1検知用分離液流量計測装置又は第2検知用分離液流量計測装置の計測の結果に基づいて、前記分離膜装置の前記分離膜への付着が付着しない条件に運転条件を変更する制御を実施する制御装置と、を備えることを特徴とする水処理装置。
  9.  請求項1乃至8のいずれか一つにおいて、
     前記第1検知用分離膜又は第2検知用分離膜を透過した検知用透過水の流量を透過水側流量計測装置で計測する場合、
     計測流量が所定閾値以下となった場合に、前記分離膜装置の前記分離膜への付着物付着初期段階と判断することを特徴とする水処理装置。
  10.  請求項1乃至8のいずれか一つにおいて、
     前記第1検知用分離膜又は第2検知用分離膜を透過した検知用非透過水の流量を非透過水側流量計測装置で計測する場合、
     計測流量が所定閾値以上となった場合に、前記分離膜装置の前記分離膜への付着物付着初期段階と判断することを特徴とする水処理装置。
  11.  請求項1又は3又は6又は8において、
     第1付着物検知部の流路の長さは、前記分離膜装置で用いる前記分離膜の供給液流れ方向の総長さの1/10以下であることを特徴とする水処理装置。
  12.  請求項2又は3又は7又は8において、
     第2付着物検知部の流路の長さは、前記分離膜装置で用いる前記分離膜の供給液流れ方向の総長さの1/10以下であることを特徴とする水処理装置。
  13.  請求項1乃至12のいずれか一つにおいて、
     前記分離膜装置からの前記非透過水の水分を蒸発させる蒸発器を備えることを特徴とする水処理装置。
  14.  請求項1の水処理装置の第1付着物検知部を用い、
     前記分離液の流量が所定閾値に対して変化した場合、
     前記第1付着物検知部の第1検知用分離膜に付着している付着物を洗浄する付着物洗浄液と、付着物の付着を抑制する付着物抑制剤とのいずれか一方又は両方の選定を行い、この選定した前記付着物洗浄液又は前記付着物抑制剤を前記分離膜装置へ供給することを特徴とする水処理装置の運転方法。
  15.  請求項2の水処理装置の第2付着物検知部を用い、
     前記分離液の流量が所定閾値に対して変化した場合、
     前記第2付着物検知部の第2検知用分離膜に付着している付着物を洗浄する付着物洗浄液と、付着物の付着を抑制する付着物抑制剤とのいずれか一方又は両方の選定を行い、この選定した前記付着物洗浄液又は前記付着物抑制剤を前記分離膜装置へ供給することを特徴とする水処理装置の運転方法。
  16.  請求項14又は15において、
     前記分離膜装置からの前記非透過水の水分を蒸発させることを特徴とする水処理装置の運転方法。
PCT/JP2014/073237 2014-09-03 2014-09-03 水処理装置及び水処理装置の運転方法 WO2016035175A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480081210.6A CN106659979A (zh) 2014-09-03 2014-09-03 水处理装置及水处理装置的运行方法
PCT/JP2014/073237 WO2016035175A1 (ja) 2014-09-03 2014-09-03 水処理装置及び水処理装置の運転方法
US15/502,883 US10464024B2 (en) 2014-09-03 2014-09-03 Water treatment device and operating method for water treatment device
JP2016546250A JPWO2016035175A1 (ja) 2014-09-03 2014-09-03 水処理装置及び水処理装置の運転方法
CA2957625A CA2957625A1 (en) 2014-09-03 2014-09-03 Water treatment device and operating method for water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073237 WO2016035175A1 (ja) 2014-09-03 2014-09-03 水処理装置及び水処理装置の運転方法

Publications (1)

Publication Number Publication Date
WO2016035175A1 true WO2016035175A1 (ja) 2016-03-10

Family

ID=55439276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073237 WO2016035175A1 (ja) 2014-09-03 2014-09-03 水処理装置及び水処理装置の運転方法

Country Status (5)

Country Link
US (1) US10464024B2 (ja)
JP (1) JPWO2016035175A1 (ja)
CN (1) CN106659979A (ja)
CA (1) CA2957625A1 (ja)
WO (1) WO2016035175A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520209A (zh) * 2017-03-14 2019-11-29 海水淡化科技有限公司 用于预防污垢的集成反渗透和膜清洁系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210023504A1 (en) * 2017-08-21 2021-01-28 A. O. Smith Corporation Membrane element and filter cartridge
EP3673979A4 (en) * 2017-09-25 2020-10-21 FUJIFILM Corporation FILTRATION DEVICE, FILTRATION SYSTEM AND FILTRATION PROCESS
CN108854557A (zh) * 2017-11-15 2018-11-23 上海屹屹环境科技有限公司 一种ro膜专用剂的使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286445A (ja) * 1997-04-17 1998-10-27 Kurita Water Ind Ltd 膜分離装置
JP2008253953A (ja) * 2007-04-09 2008-10-23 Nitto Denko Corp 膜分離方法および膜分離装置
JP2009524521A (ja) * 2006-01-24 2009-07-02 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 逆浸透膜を監視する方法およびシステム
JP2010082546A (ja) * 2008-09-30 2010-04-15 Japan Organo Co Ltd 水処理装置および水処理方法
JP2012130823A (ja) * 2010-12-18 2012-07-12 Mitsubishi Heavy Ind Ltd 淡水化装置、膜の監視方法および淡水化装置の運転方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054050A (en) * 1998-07-21 2000-04-25 Texaco Inc. Process for removing organic and inorganic contaminants from refinery wastewater streams employing ultrafiltration and reverse osmosis
US7186331B2 (en) * 2001-03-06 2007-03-06 Sasol Technology (Pty) Limited Monitoring unit for monitoring the condition of a semi-permeable membrane
US20050067341A1 (en) * 2003-09-25 2005-03-31 Green Dennis H. Continuous production membrane water treatment plant and method for operating same
JP5345344B2 (ja) 2008-06-20 2013-11-20 オルガノ株式会社 スケール防止剤の供給管理方法および供給管理装置
FR2933969B1 (fr) * 2008-07-21 2011-11-11 Degremont Installation de dessalement d'eau par osmose inverse
SG11201403845TA (en) * 2011-12-23 2014-10-30 Abb Technology Ltd A method and a system for monitoring and control of fouling and and optimization thereof of two side membrane fouling process
CN108884433B (zh) * 2016-03-30 2022-03-18 东丽株式会社 利用膜组件进行的微生物培养液的过滤方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286445A (ja) * 1997-04-17 1998-10-27 Kurita Water Ind Ltd 膜分離装置
JP2009524521A (ja) * 2006-01-24 2009-07-02 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 逆浸透膜を監視する方法およびシステム
JP2008253953A (ja) * 2007-04-09 2008-10-23 Nitto Denko Corp 膜分離方法および膜分離装置
JP2010082546A (ja) * 2008-09-30 2010-04-15 Japan Organo Co Ltd 水処理装置および水処理方法
JP2012130823A (ja) * 2010-12-18 2012-07-12 Mitsubishi Heavy Ind Ltd 淡水化装置、膜の監視方法および淡水化装置の運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520209A (zh) * 2017-03-14 2019-11-29 海水淡化科技有限公司 用于预防污垢的集成反渗透和膜清洁系统
EP3595799A4 (en) * 2017-03-14 2021-01-27 Desalitech Ltd INTEGRATED REVERSE OSMOSIS AND MEMBRANE CLEANING SYSTEMS FOR POLLUTION PREVENTION

Also Published As

Publication number Publication date
JPWO2016035175A1 (ja) 2017-04-27
US10464024B2 (en) 2019-11-05
CA2957625A1 (en) 2016-03-10
CN106659979A (zh) 2017-05-10
US20170232395A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6395844B2 (ja) 水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法
US8137539B2 (en) Method and system for increasing recovery and preventing precipitation fouling in pressure-driven membrane processes
JP5433633B2 (ja) 正浸透膜を用いた海水淡水化システム
JP6189205B2 (ja) 濃縮装置のスケール検知装置及び方法、水の再生処理システム
AU2015244268B2 (en) Osmotic separation systems and methods
JP6269241B2 (ja) 正浸透処理システム
JP2015042385A (ja) 淡水化システム
JP2008229418A (ja) 工業用水の処理方法および処理装置
JP5757109B2 (ja) 水処理方法及び水処理システム
WO2016035175A1 (ja) 水処理装置及び水処理装置の運転方法
Alshami et al. RO system scaling with focus on the concentrate line: Current challenges and potential solutions
JP2016016384A (ja) 浸透膜モジュールの評価装置及び評価方法
JP2014161795A (ja) 水処理システム
ES2935276T3 (es) Sistema y procedimientos para la eliminación de incrustaciones
JP6468384B1 (ja) 水処理装置
AU2004294839B2 (en) Method and system for increasing recovery and preventing precipitation fouling in pressure-driven membrane processes
JP2020099870A (ja) 水処理システム及びその運転方法
JP2021041374A (ja) 濃縮システム
IL176044A (en) Method and system for increasing recovery and preventing precipitation fouling in pressure driven membrane processes
MXPA06006504A (es) Metodo y sistema para incrementar la recuperacion y evitar las incrustaciones por la recipitacion en procesos de membrana por gradiente de presion
CHE-SP12 et al. REPORT ON REVESRE OSMOSIS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546250

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2957625

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901379

Country of ref document: EP

Kind code of ref document: A1