KR20160054230A - 압력지연삼투 기술을 이용한 해수담수화 시스템 - Google Patents

압력지연삼투 기술을 이용한 해수담수화 시스템 Download PDF

Info

Publication number
KR20160054230A
KR20160054230A KR1020140153543A KR20140153543A KR20160054230A KR 20160054230 A KR20160054230 A KR 20160054230A KR 1020140153543 A KR1020140153543 A KR 1020140153543A KR 20140153543 A KR20140153543 A KR 20140153543A KR 20160054230 A KR20160054230 A KR 20160054230A
Authority
KR
South Korea
Prior art keywords
pro
pressure
facility
supplied
brine
Prior art date
Application number
KR1020140153543A
Other languages
English (en)
Inventor
여인호
박용균
오영기
김동익
Original Assignee
지에스건설 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스건설 주식회사 filed Critical 지에스건설 주식회사
Priority to KR1020140153543A priority Critical patent/KR20160054230A/ko
Publication of KR20160054230A publication Critical patent/KR20160054230A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

본 발명은 압력지연삼투 기술을 이용한 해수담수화 시스템에 관한 것이다. 구체적으로, 본 발명의 일 실시예에 따르면, 해수를 공급받아서 압력을 높이는 제 1 압력교환장치 및 제 2 압력교환장치, 압력이 높아진 해수를 공급받아서 역삼투막을 통해 염분이 여과된 생성수를 생산하고, 농축 염수는 상기 제 2 압력교환장치로 전달하는 SWRO 설비, 상기 제 2 압력교환장치에서 배출되는 상기 농축 염수를 PRO 염수로서 공급받고, 외부로부터 PRO 원수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 1 PRO 설비, 및 상기 제 1 PRO 설비에서 배출되는 PRO 염수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 2 PRO 설비를 포함하는 압력지연삼투 기술을 이용한 해수담수화 시스템이 제공될 수 있다.

Description

압력지연삼투 기술을 이용한 해수담수화 시스템{SEE WATER DESALINATION SYSTEM USING PRESSURE-RETARDED OSMOSIS}
본 발명은 압력지연삼투 기술을 이용한 해수담수화 시스템에 관한 것이다.
먹는 물 또는 관개용수 등의 수요가 지속적으로 늘어나면서, 해수 담수화 기술의 중요성이 증대되고 있다. 또한, 지속적인 인구 증가 및 관련 산업의 성장 등의 이유로 경제적으로 실현 가능하고 규모가 큰 해수 담수화 기술은 특히 중요하다.
멤브레인 기반의 담수화 공정은 열적 담수화 공정에 비하여 에너지 소모가 적기는 하지만 여전히 높은 수준이고, 친환경적이고 경제적으로 실현 가능한 담수화 공정을 위해서는 에너지 소모율이 지금보다 더 낮아질 필요가 있다.
이에, 에너지 소모량이 적은 담수화 방법으로, 정삼투 및 직접 삼투 공정에서 발생되는 유체 에너지를 적용한 기술을 포함하는 몇 가지 방법들이 개발되어 왔다. 정삼투 기술은 이론적으로 에너지 소모가 없는 매커니즘을 갖지만, 이를 실제적으로 담수화 공정에 적용한 사례는 찾아볼 수가 없다.
정삼투 기술을 담수화 공정에 적용하는 데 있어서 연속적이고 실용적인 공정을 위해서는 유도 용액으로부터 물을 뽑아내는 기술 및 유도 용액의 회수 기술이 중요하지만, 이러한 기술들은 아직까지 미비한 문제점이 있다.
한편, 압력지연삼투(PRO : pressure retarded osmosis) 공정 기술은 에너지를 회수하거나 생산할 수 있는 기술로서 각광받고 있다(Statkraft Osmotic Power Pilot Plant, Norway). 그러나, PRO 공정 기술의 상업화를 위해서는 최대 에너지 회수 혹은 생성을 위한 혁신적인 기술 개발이 요구되는 실정이다.
삼투 프로세스의 구동력은 반투과막에 마주하는 두 개의 수용액 사이의 삼투 압력의 차이이다. 수용액의 삼투압은 반트 호프(Van't Hoff) 관계식에 의해 계산될 수 있다.
π = θ.v.c.R.T.
여기서, v는 용질의 담수화 동안 발생된 이온의 개수이고, θ는 삼투 계수이며, c는 모든 용질의 농도(moles/l)이고, R은 보편 기체 상수(0.083145 l.bar/moles.K)이며, T는 절대 온도(K)이다.
삼투압 차이에 의해 반투과막을 통과하는 유수량은 다음 식(McCutcheon and Elimelech, 2007)으로서 주어진다.
Jw = A(πD,b - πF,b)
여기서, Jw는 반투과막을 통과하는 유수량이고, A는 반투과막의 순수 투과성능 계수이며, πD,b 및 πF,b는 각각 추출 및 공급 시의 벌크 삼투압이다.
PRO는 두 개의 수용액의 염도 차이에 대한 혼합의 깁스 자유 에너지(Gibbs free energy of mixing)를 이용하여 에너지(파워)를 발생하거나 회수하기 위해 사용된다(Sandler, S. I., 1999, Chemical Engineering Thermodynamics, 3rd ed.; Wiley).
-ΔGmix = RT{[Σxiln(γixi)]M - θA[Σxiln(γixi)]A-θB[Σxiln(γixi)]B}
여기서, xi는 용액내의 시약(species) i의 몰분율이고, R은 기체 상수이며, T는 온도이고, γ는 시약의 활동도 계수이다.
PRO 시스템에 있어서, 일정한 유체압이 고염도 수용액에 가해지며, 저염도 수용액으로부터 계속해서 물이 침투하는 반면, 두 용액의 삼투압 차이는 인가된 유체압보다 더 높다. 고염도 수용액의 압력은 용액의 체적 플럭스가 증가하는 동안에 혼합 깁스 자유 에너지로부터 발생되는 추가 에너지에 의해 보존된다.
Yip 및 Elimelch (2012) 에 의하면, 일정한 압력 PRO 프로세스에서 뽑아낼 수 있는 최고 에너지는 해수 및 강물이 추출 및 공급 용액으로 각각 사용될 때, 0.75 kWh/m3이다. 그러므로 압력 및 체적의 관점에서 볼 때, 추출된 혼합 깁스 자유 에너지는 프로세스를 위한 에너지를 발생하거나 압력을 회수하는데 사용될 수 있을 것이다.
에너지 생산 방식에 있어서, 수용액의 압력 및 체적 플럭스를 이용하여 전력을 생산하기 위해 수차 터빈이 이용될 수 있다. 이 때 최신 펠톤(Pelton) 터빈의 효율이 92%에 이를 수 있다 하더라도, 평균 효율은 일반적으로 90% 정도 수준이다.
압력 회수 방식에 있어서, PRO 프로세스로부터 추출된 혼합 깁스 자유 에너지를 담수화 공정에서의 압력 회수에 적용한 사례는 아직까지 없다. 최근의 역삼투 해수담수화 공정에서는 함수(brine)에 의해 압력을 회수하고 RO 공정에 들어가기 전에 해수를 예비적으로 가압하기 위해 압력교환장치(pressure exchangers)가 적용 된다. 이를 통해 RO 공정을 위해 해수에 예비적으로 가압할 때 필요한 에너지를 최대 60%까지 절약할 수 있다. 등가압력교환장치(isobaric pressure exchangers)와 같은 최근의 압력교환장치들은 효율이 최대 97%에 이른다. 따라서, 멤브레인 기반의 해수담수화 기술에서는 압력 회수 방식이 에너지 생산 방식보다 높은 효율을 자랑하므로, 더 나은 대안이 될 수 있다.
본 발명의 실시예는 PRO 설비를 적용하여 에너지 효율이 높은 압력지연삼투 기술을 이용한 해수담수화 시스템을 제공하고자 한다.
본 발명의 일 측면에 따르면, 해수를 공급받아서 압력을 높이는 제 1 압력교환장치; 상기 제 1 압력교환장치에서 압력이 높아진 해수 중 적어도 일부를 공급받아서 압력을 높이는 제 2 압력교환장치; 상기 제 1 압력교환장치 및 상기 제 2 압력교환장치에서 압력이 높아진 해수를 공급받아서 역삼투막을 통해 염분이 여과된 생성수를 생산하고, 농축 염수는 상기 제 2 압력교환장치로 전달하는 SWRO 설비; 상기 제 2 압력교환장치에서 배출되는 상기 농축 염수를 PRO 염수로서 공급받고, 외부로부터 PRO 원수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 1 PRO 설비; 및 상기 제 1 PRO 설비에서 압력 지연 삼투 공정을 거친 후 배출되는 PRO 염수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 2 PRO 설비를 포함하고, 상기 제 1 압력교환장치는 상기 제 2 PRO 설비에서 배출되는 PRO 생산수를 공급받아서, 상기 PRO 생산수의 압력을 해수로 전달하고, 상기 제 2 압력교환장치는 상기 SWRO 설비로부터 공급받은 상기 PRO 염수의 압력을 해수로 전달하여 가압하는 압력지연삼투 기술을 이용한 해수담수화 시스템이 제공될 수 있다.
또한, 상기 제 1 PRO 설비 및 상기 제 2 PRO 설비는, 압력 지연 삼투 공정을 위한 반투과막을 제공하는 PRO 막 모듈이 적어도 하나 이상 내부에 제공되는 PRO 베셀을 포함하는 압력지연삼투 기술을 이용한 해수담수화 시스템이 제공될 수 있다.
또한, 상기 제 1 PRO 설비에서 압력 지연 삼투 공정을 거친 후 배출되는 PRO 원수가 상기 제 2 PRO 설비로 공급되고, 상기 제 1 PRO 설비의 압력 지연 삼투 공정을 거친 후 상기 PRO 베셀의 후반부로부터 배출되는 상기 PRO 염수가 상기 제 2 PRO 설비로 투입되는 압력지연삼투 기술을 이용한 해수담수화 시스템이 제공될 수 있다.
또한, 외부로부터 공급되는 PRO 원수가 상기 제 2 PRO 설비로 공급되고, 상기 제 1 PRO 설비의 압력 지연 삼투 공정을 거친 후 상기 PRO 베셀의 후반부로부터 배출되는 상기 PRO 염수가 상기 제 2 PRO 설비로 투입되는 압력지연삼투 기술을 이용한 해수담수화 시스템이 제공될 수 있다.
또한, 상기 제 1 PRO 설비로 투입된 상기 PRO 염수 중 적어도 일부가 상기 제 1 PRO 설비의 상기 PRO 베셀의 전반부로부터 상기 제 1 압력교환장치로 전달되어 해수로 압력을 전달하는 압력지연삼투 기술을 이용한 해수담수화 시스템이 제공될 수 있다.
또한, 외부로부터 공급되는 PRO 원수가 상기 제 2 PRO 설비로 공급되고, 상기 제 1 PRO 설비의 압력 지연 삼투 공정을 거친 후 상기 PRO 베셀의 후반부로부터 배출되는 상기 PRO 염수가 상기 제 1 압력교환장치로 전달되어 해수로 압력을 전달하고, 상기 제 1 PRO 설비로 투입된 상기 PRO 염수 중 적어도 일부가 상기 제 1 PRO 설비의 상기 PRO 베셀의 전반부로부터 상기 제 2 PRO 설비로 투입되는 압력지연삼투 기술을 이용한 해수담수화 시스템이 제공될 수 있다.
또한, 외부로부터 공급되는 PRO 원수가 상기 제 2 PRO 설비로 공급되는 압력지연삼투 기술을 이용한 해수담수화 시스템이 제공될 수 있다.
한편, 본 발명의 다른 측면에 따르면, 외부로부터 공급받은 해수 중 일부를 공급받아서 압력을 높이는 압력교환장치; 외부로부터 공급받은 해수 중 나머지를 공급받아서 압력을 높이는 압력조절장치; 상기 압력교환장치 및 상기 압력조절장치에서 압력이 높아진 해수를 공급받아서 역삼투막을 통해 염분이 여과된 생성수를 생산하고, 농축 염수는 상기 압력교환장치로 전달하는 SWRO 설비; 상기 압력교환장치에서 배출되는 상기 농축 염수를 PRO 염수로서 공급받고, 외부로부터 PRO 원수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 1 PRO 설비; 상기 제 1 PRO 설비에서 압력 지연 삼투 공정을 거친 후 배출되는 PRO 염수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 2 PRO 설비; 및 상기 제 2 PRO 설비에서 배출되는 PRO 생산수를 공급받아서, 가용 에너지를 생산하는 에너지 생산 장치를 포함하고, 상기 압력교환장치는 상기 SWRO 설비로부터 공급받은 상기 PRO 염수의 압력을 해수로 전달하여 가압하는 압력지연삼투 기술을 이용한 해수담수화 시스템이 제공될 수 있다.
본 발명의 실시예에 따르면, PRO와 같은 삼투 프로세스를 SWRO와 같은 담수화 프로세스에 적용하는 방법을 제공함으로써, 압력 법칙에 따른 혼합 깁스 자유 에너지의 추출에 의해 SWRO 프로세스의 에너지 소모를 줄일 수 있다는 효과가 있다.
또한, PRO 설비를 다단으로 연결하여, 담수화 과정에서 회수되는 에너지의 회수 효율을 극대화할 수 있다는 효과가 있다.
도 1은 본 발명의 제 1 실시예에 따른 해수담수화 시스템을 도시한 블록도이다.
도 2는 본 발명의 제 2 실시예에 따른 해수담수화 시스템을 도시한 블록도이다.
도 3은 도 2의 제 1 PRO 모듈과 제 2 PRO 모듈의 연결 구조를 설명하는 개념도이다.
도 4는 도 3의 제 1 변형예를 도시한 개념도이다.
도 5는 도 3의 제 2 변형예를 도시한 개념도이다.
도 6은 도 3의 제 3 변형예를 도시한 개념도이다.
도 7은 도 3의 제 4 변형예를 도시한 개념도이다.
도 8은 도 3의 제 5 변형예를 도시한 개념도이다.
도 9는 도 3의 제 6 변형예를 도시한 개념도이다.
도 10은 본 발명의 제 3 실시예에 따른 해수담수화 시스템을 도시한 블록도이다.
이하에서는 본 발명의 사상을 구현하기 위한 구체적인 실시예에 대하여 도면을 참조하여 상세히 설명하도록 한다. 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
도 1은 본 발명의 제 1 실시예에 따른 담수화 시스템을 도시한 블록도이다.
도 1을 참조하면, 본 발명의 제 1 실시예에 따른 해수담수화 시스템(1)은 염분을 포함하는 해수를 공급받아서 담수화 처리를 통해 담수로 전환하는 공정을 수행한다. 공급받은 해수는 전처리를 위해 DAF 설비(110) 및 UF 설비(120)로 제공되어 담수화를 위한 사전 처리가 수행된다. DAF 설비(110)는 원수 중의 조류나 가벼운 비중의 입자를 분리하여 제거하는 처리 공정을 수행하는 설비이고, UF 설비(120)는 한외여과 방식의 막 분리 공정을 수행하는 설비로서, 반투막을 이용하여 용액내의 물질의 크기에 따라 분리하는 방법으로 원수를 여과하여 1차적으로 불순물을 제거하는 공정을 수행한다. DAF 공정과 UF 공정은 당 업계에서 주지의 기술 상식에 해당하므로, 상세한 공정 설명은 생략하겠다.
본 실시예에서는 담수화를 위해 해수를 사전 처리하는 공정으로서 DAF 공정과 UF 공정을 거치는 경우를 예로 들어 설명하나, 이외에도 본 발명의 사상을 해치지 않는 범위 내에서 자유롭게 변형이 가능하며, 사전 처리 공정을 위한 DAF 설비(110) 및 UF 설비(120)는 임의로 치환, 변경 및 생략이 가능하다.
사전 처리를 통해 조류 등의 불순물이 제거된 제 1 염수(2)가 제 1 압력교환장치(130)에 유입되어 압력을 전달받아서 가압된다. 제 1 염수(2)가 제 1 압력교환장치(130)를 거쳐 가압된 제 2 염수(3)는 멀티웨이 밸브에 의해 제 3 염수(4) 및 제 4 염수(5)로 분리되고, 제 4 염수(5)는 제 2 압력교환장치(140)로 유입된다. 제 2 압력교환장치(140)에서 가압된 제 4 염수(5)는 제 2 압력조절장치(160), 가령, 부스터 펌프에 의해 한층 더 가압될 수 있다.
여기서, 압력교환장치란 두 액체의 흐름이 서로 섞이지 않도록 하면서, 압력이 큰 측의 액체 흐름에서부터 압력이 작은 측의 액체 흐름으로 압력을 전달하는 장치를 말한다. 이러한 압력교환장치의 일 예가 공개특허공보 제2014-0092836호에 개시된다.
제 3 염수(4)는 고압 펌프와 같은 제 1 압력조절장치(150)에서 가압된 후, 제 2 압력조절장치(160)에 의해 승압된 제 4 염수(5)와 합류하여, 역삼투 유입액(6)으로서 SWRO 설비(170)로 유입된다. SWRO 설비(170)는 역삼투법에 의해 해수를 담수화하는 설비로서, 삼투압 이상의 물리적인 압력을 가하여 역삼투 유입액(6) 중 염분 등의 용질은 거의 투과시키지 않고 물만 투과가 가능한 역삼투막을 포함한다.
SWRO 설비(170)를 거쳐서 담수화된 역삼투 유입액(6)은 저염도의 음용 가능한 생성수(9)로서 외부로 배출되어, 별도로 마련되는 후처리 과정을 거쳐서 음용, 관개 또는 산업용과 같은 다른 용도로 활용될 수 있다.
한편, SWRO 설비(170)에서 생성수(9)가 여과되고 농축된 고압의 농축 염수(10)는 제 2 압력교환장치(140)로 유입되어 제 4 염수(5)로 압력을 전달하게 된다. 제 2 압력교환장치(140)에서 제 4 염수(5)에 압력을 전달하면서 감압된 농축 염수(10)는 부스터 펌프 등의 제 3 압력조절장치(180)에서 소정 압력으로 가압될 수 있다. 제 3 압력조절장치(180)에 의해 가압된 농축 염수(10)는 염도가 높은 유도 용액으로서 삼투 공정을 위한 PRO 막을 포함하는 PRO 설비(190)로 투입되어 압력 지연 삼투 공정에 사용되므로, PRO 염수(11)라고 호칭하겠다.
또한, 1차 하수처리수, 2차 하수처리수, 3차 하수처리수, 염수(brackish water), 지면수 및 표면수 중 어느 하나 이상을 포함하는 PRO 원수(12)가 압력 지연 삼투 공정에 적절한 수질, 수량, 압력 및 체적 흐름율로 전처리된 후에 PRO 설비(190)로 공급된다.
전처리된 PRO 원수(12)는 PRO 설비(190)에 공급 용액으로서 공급되고, PRO 설비(190)로 투입된 유도 용액과 공급 용액은 PRO 설비(190) 내의 PRO 막을 사이에 두고 서로 만나고, 유도 용액과 공급 용액 사이의 염도차에 의해 공급 용액으로부터 유도 용액으로 물이 유출되어 유도 용액의 체적 흐름율이 증가한다. PRO 설비(190)의 구체적인 구성에 대해서는 후술하겠다.
PRO 설비(190) 내의 PRO 막을 통해 PRO 원수(12)로부터 빠져나가는 추출수는 염도가 매우 낮으며, PRO 염수(11)와 혼합되면서 두 용액 사이의 염도차에 의해 혼합 깁스 자유 에너지가 생성되며, 이렇게 생성된 혼합 깁스 자유 에너지에 의해 PRO 염수(11)의 압력이 유지된다.
PRO 설비(190)로부터 배출되는 PRO 생산수(13)는 PRO 염수(11)에 비하여 체적 흐름율은 증가하는 반면에 상대적으로 압력은 유지된다. PRO 생산수(13)는 PRO 설비(190)로부터 배출된 후 제 1 압력교환장치(130)로 유입되며, 제 1 염수(2)로 압력을 전달하여 제 1 염수(2)를 가압하게 된다. 제 1 염수(2)로 압력을 전달한 후 PRO 생산수(13)는 압력이 낮아지게 되고, 제 1 압력교환장치(130)에서 배출된 후 별도의 처리 또는 프로세스를 거칠 수 있다.
한편, PRO 원수(12)가 PRO 설비(190)에서 압력 지연 삼투 공정을 거치면서 추출수를 잃고 농축된 기수(brackish water)는 PRO 농축수(14)로서 외부의 저장 탱크 등으로 수송되어 저장되거나, 별도의 후처리 또는 프로세스를 거쳐 활용될 수 있다.
상술한 바와 같은 본 실시예에 따른 해수담수화 시스템에 따르면, PRO 설비(190)에서 압력 지연 삼투 공정을 거쳐 배출되는 PRO 생산수(13)는 제 1 압력교환장치(130)로 유입되어 담수화 처리가 이루어질 제 1 염수(2)으로 압력을 전달하게 되는데, 이때 에너지 전환 효율이 95% 이상이 된다. 통상적으로 펠톤 터빈 등과 같은 에너지 전환 설비를 이용하여 해수 담수화 과정에서 발생되는 농축 염수의 압력을 전기 에너지 생산에 사용하는 경우에 에너지 전환 효율이 80%에 못미친다는 점을 고려할 때, 에너지 전환 효율을 크게 향상시킬 수 있다는 효과가 있다.
한편, 상술한 제 1 실시예의 경우, PRO 설비(190)로부터 배출되는 PRO 농축수(14)를 시스템의 외부로 배출하여 별도로 활용되도록 구성되는데, 이로 인해 PRO 농축수(14)의 압력에 따른 에너지를 시스템의 외부로 방출하여 결과적으로 시스템 전체의 에너지 효율을 악화시키는 결과를 가져오게 된다.
이러한 제 1 실시예의 문제점을 개선하기 위해, 후술하는 제 2 실시예가 제안된다. 후술하는 제 2 실시예는 제 1 실시예와 비교하였을 때 PRO 설비가 2단으로 구성된다는 점에서 차이가 있으므로, 차이점을 위주로 설명하며, 동일한 설명 및 도면부호는 원용하겠다.
도 2는 본 발명의 제 2 실시예에 따른 해수담수화 시스템을 도시한 블록도이고, 도 3은 도 2의 제 1 PRO 모듈과 제 2 PRO 모듈의 연결 구조를 설명하는 개념도이다.
도 2 및 도 3을 참조하면, 본 발명의 제 2 실시예에 따른 해수담수화 시스템(1')에 포함되는 PRO 설비(190)는 제 1 PRO 설비(192)와 제 2 PRO 설비(194)가 직렬로 연결된 2단 구성을 갖는다. 농축 염수(10)가 제 3 압력조절장치(180)에서 가압된 PRO 염수(11)는 제 1 PRO 설비(192)로 전달되어 1차적으로 압력 지연 삼투 공정이 이루어지고, 제 1 PRO 설비(192)에서 배출되는 농축수 및 생산수는 제 2 PRO 설비(194)로 투입되어 2차적으로 압력 지연 삼투 공정이 이루어진다.
여기서, PRO 설비(190)의 내부 구조에 대해 설명하면, PRO 설비(190)의 내부에는 복수 개가 병렬로 배치되는 PRO 베셀(196)과, PRO 베셀(196) 내부에 배치되는 PRO 막 모듈(198)이 제공된다. PRO 베셀(196)은 일 예로 내부가 중공인 원통형 구조로 구성되어, 병렬로 배치된 복수 개의 PRO 베셀(196)이 서로 공통되는 배관으로 연결되도록 구성될 수 있다.
PRO 막 모듈(198)은 각각의 PRO 베셀(196) 내부에 하나 이상이 직렬로 연결되어 배치될 수 있으며, 일 예로 PRO 공정용 막이 나선형으로 말려서 배치되어 표면적이 극대화 될 수 있도록 구성될 수 있다. PRO 막 모듈(198)은 각각의 PRO 베셀(196) 내부에 한 개가 제공될 수도 있고, 복수 개가 연결되어 제공되는 것도 가능하다. PRO 막 모듈(198)이 각각의 PRO 베셀(196)에 복수 개 연결되어 제공되는 경우, 유도 용액이 공급되는 PRO 베셀(196)의 입구 측에 가깝게 배치된 PRO 막 모듈(198)부터 유도 용액이 배출되는 PRO 베셀(196)의 출구 측에 가깝게 배치된 PRO 막 모듈(198)의 순서로 압력 지연 삼투 공정이 수행된다. 본 명세서에서는 PRO 베셀(196)의 입구 측을 전반부(196a), 출구 측을 후반부(196b)라고 호칭하겠다.
PRO 막 모듈(198)을 중심으로 일측 면에는 유도 용액(PRO 염수(11))이 접촉하고, 타측 면에는 공급 용액(PRO 원수(12))이 접촉하여 압력 지연 삼투 공정이 진행된다. 이때, PRO 설비(190) 내부에 제공되는 모든 PRO 베셀(196)의 입구 측에 연결된 공통 배관을 통해 유도 용액이 동시에 공급되고, 모든 PRO 베셀(196)의 출구 측에 연결된 공통 배관을 통해 동시에 배출되도록 구성된다. 또한, 공급 용액은 각각의 PRO 베셀(196)의 일 측에 형성된 원수 공급구를 통해 공급되어, 각각의 PRO 베셀(196) 내부를 유동하면서 압력 지연 삼투가 진행되고, 각각의 PRO 베셀(196)의 타측에 형성된 원수 배출구를 통해 배출된다.
본 실시예에서는 PRO 설비(190)의 내부에 원통형의 PRO 베셀(196)이 복수 개 병렬로 배치되고, PRO 베셀(196)의 내부에 하나 또는 복수 개의 PRO 막 모듈(198)이 직렬로 연결된 경우를 예로 들어 설명하나, 이는 일 예에 불과하고, 압력 지연 삼투 공정이 수행되는 PRO 설비(190)의 구체적인 구성은 본 발명의 사상을 해치지 않는 범위 내에서 자유롭게 변형이 가능하다.
또한, 본 실시예에서는 PRO 설비(190)가 2단으로 제공되는 경우를 예로 들어 설명하나, 이는 일 예에 불과하고, PRO 설비(190)는 3단 이상으로 직렬 연결되어 제공되는 것도 가능하다.
제 1 PRO 설비(192)의 PRO 베셀(196)의 전반부(196a)로 PRO 염수(11)가 유도 용액으로서 공급되고, PRO 베셀(196)의 원수 공급구로 PRO 원수(12)가 공급 용액으로서 공급되어, PRO 막 모듈(198)를 사이에 두고 접촉하면서 압력 지연 삼투가 이루어질 수 있다. 압력 지연 삼투는 유도 용액이 PRO 베셀(196)의 전반부(196a)에서 후반부(196b)로 유동하면서 점진적으로 이루어질 수 있으며, 이에 따라 전반부(196a) 쪽의 유도 용액의 농도가 후반부(196b) 쪽의 유도 용액의 농도보다 높게 된다.
압력 지연 삼투 공정을 거쳐서 제 1 PRO 설비(192)의 PRO 베셀(196)의 출구 측으로 배출되는 유도 용액은 다시 제 2 PRO 설비(194)의 PRO 베셀(196)의 전반부(196a)로 유입되고, 제 1 PRO 설비(192)에서 원수 배출구를 통해 배출되는 농축된 공급 용액은 다시 제 2 PRO 설비(194)의 PRO 베셀(196)의 원수 공급구로 공급되어 재차 압력 지연 삼투 공정이 진행된다.
제 2 PRO 설비(194)로 투입된 공급 용액은 2차적으로 압력 지연 삼투 공정이 진행된 후 배출되는 PRO 농축수(14)는 외부의 저장 탱크 등으로 수송되어 저장되거나, 별도의 후처리 또는 프로세스를 거쳐 활용될 수 있다. 또한, 제 2 PRO 설비(194)에서 배출되는 PRO 생산수(13)는 상술한대로 제 1 압력교환장치(130)로 투입되어 제 1 염수(2)로 압력을 전달하는데 사용된다.
이상과 같은 본 실시예에 따른 해수담수화 시스템(1')은, 에너지 생성을 위한 PRO 공정이 2단 또는 그 이상으로 수행되므로, 유도 용액과 공급 용액 사이의 염도차를 최대한 활용하여 에너지를 회수하는 것이 가능하고, 이에 따라 에너지의 회수 효율을 극대화할 수 있다는 효과가 있다.
한편, 본 실시예에 따른 해수담수화 시스템(1')의 다단으로 제공되는 PRO 설비(190)는 연결 방법에 있어서 여러가지 변형예가 가능하다. 이하에서는 이러한 변형예들에 대하여 도면을 참조하여 설명하겠다.
도 4는 도 3의 제 1 변형예를 도시한 개념도이다.
도 4를 참조하면, 제 1 변형예의 PRO 설비(190)는, PRO 원수(12)가 공급 용액으로서 제 1 PRO 설비(192)의 원수 공급구와 제 2 PRO 설비(194)의 원수 공급구에 동시에 공급되고, 제 1 PRO 설비(192)에서 원수 배출구를 통해 배출되는 농축된 공급 용액도 제 2 PRO 설비(194)의 원수 공급구로 공급되도록 구성된다. 이러한 제 1 변형예에 따르면, 제 2 실시예에 비하여 제 2 PRO 설비(194)로 공급되는 공급 용액의 염도가 더 낮아지므로, 제 2 PRO 설비(194)에서의 염도차가 더 커져서 삼투 효율이 높아진다는 장점이 있다.
도 5는 도 3의 제 2 변형예를 도시한 개념도이다.
도 5를 참조하면, 제 2 변형예의 PRO 설비(190)는, PRO 원수(12)가 공급 용액으로서 제 1 PRO 설비(192)의 원수 공급구와 제 2 PRO 설비(194)의 원수 공급구에 동시에 공급되고, 대신 제 1 PRO 설비(192)에서 원수 배출구를 통해 배출되는 농축된 공급 용액은 제 2 PRO 설비(194)로 공급되지 않고 PRO 농축수(14)와 함께 외부로 배출되도록 구성된다. 이러한 제 2 변형예에 따르면, 제 1 변형예에 비하여 배출되는 PRO 농축수(14)의 염도는 낮아지지만, 유도 용액이 2단계의 공정을 거치면서 접촉하는 공급 용액의 염도가 일정하게 되므로, 공정 효율이 안정적으로 운용될 수 있다는 장점이 있다.
도 6은 도 3의 제 3 변형예를 도시한 개념도이다.
도 6을 참조하면, 제 3 변형예의 PRO 설비(190)는, 제 1 PRO 설비(192)의 후반부(196b) 측에 배치된 PRO 막 모듈(198)로부터 제 2 PRO 설비(194)의 PRO 베셀(196)의 입구 측으로 유도 용액이 전달되는 라인이 연결되고, 제 1 PRO 설비(192)의 전반부(196a) 측에 배치된 PRO 막 모듈(198)에서부터 제 1 압력교환장치(130)로 유도 용액이 전달되도록 라인이 연결되어, 제 2 PRO 설비(194)에서 제 1 압력교환장치(130)로 전달되는 PRO 생산수(13)와 제 1 PRO 설비(192)의 전반부(196a) 측에 배치된 PRO 막 모듈(198)에서 배출되는 유도 용액이 합류하여 제 1 압력교환장치(130)로 전달되도록 구성된다는 점에 특징이 있다. 제 1 압력교환장치(130)로 전달된 제 1 PRO 설비(192)의 유도 용액과 제 2 PRO 설비(194)의 PRO 생산수(13)는 제 1 염수(2)로 압력을 전달하는데 사용된다. 이러한 제 3 변형예에 따르면, 제 1 압력교환장치(130)에서 제 1 염수(2)로 전달되는 유량을 늘여서 제 1 압력교환장치(130)를 통해 전달되는 염도차 에너지를 늘릴 수 있다는 장점이 있다.
도 7은 도 3의 제 4 변형예를 도시한 개념도이다.
도 7을 참조하면, 제 4 변형예의 PRO 설비(190)는, 상술한 제 3 변형예의 PRO 설비(190)의 구성에서 제 1 PRO 설비(192)의 원수 배출구 쪽에서 배출되는 공급 용액이, 제 2 PRO 설비(194)의 원수 공급구로 투입되는 PRO 원수(12)와 합류하여 제 2 PRO 설비(194)의 공급 용액으로서 공급된다는 점에 특징이 있다. 이러한 제 4 변형예에 따르면, 제 3 변형예에 비하여 제 1 PRO 설비(192)에서 배출되는 공급 용액을 한번 더 재활용하여 담수의 활용률이 좋아진다는 장점이 있다.
도 8은 도 3의 제 5 변형예를 도시한 개념도이다.
도 8을 참조하면, 제 5 변형예의 PRO 설비(190)는, 상술한 제 3 변형예의 PRO 설비(190)의 구성에서 제 1 PRO 설비(192)의 전반부(196a) 측에 배치된 PRO 막 모듈(198)에서 제 2 PRO 설비(194)의 전반부(196a)로 라인을 연결하여 유도 용액이 투입되도록 구성되고, 제 1 PRO 설비(192)의 후반부(196b) 측에 배치된 PRO 막 모듈(198)로부터 제 1 압력교환장치(130)로 유도 용액이 흐르는 라인이 연결되어, 1 PRO 설비(192)의 후반부(196b) 측에 배치된 PRO 막 모듈(198) 내의 유도 용액이 제 1 염수(2)로 압력을 전달하는데 사용되도록 구성된다. 이러한 제 5 변형예에 따르면, 제 4 변형예에 비하여 전반부(196a) 측에 배치된 PRO 막 모듈(198) 내의 유도 용액의 염도가 후반부(196b) 측에 배치된 PRO 막 모듈(198) 내의 유도 용액의 염도보다 높으므로, 염도가 높은 전반부(196a) 측 유도 용액을 제 2 PRO 설비(194)로 공급하여, 제 3 변형예와 비교하였을 때 제 2 PRO 설비(194)의 공정 효율이 더 좋아진다는 장점이 있다.
도 9는 도 3의 제 6 변형예를 도시한 개념도이다.
도 9를 참조하면, 제 6 변형예의 PRO 설비(190)는, 상술한 제 5 변형예의 PRO 설비(190)의 구성에서 제 1 PRO 설비(192)의 원수 배출구 쪽에서 배출되는 공급 용액이, 제 2 PRO 설비(194)의 원수 공급구로 투입되는 PRO 원수(12)와 합류하여 제 2 PRO 설비(194)의 공급 용액으로서 공급된다는 점에 특징이 있다. 이러한 제 6 변형예에 따르면, 제 5 변형예에 비하여 제 1 PRO 설비(192)에서 배출되는 공급 용액을 한번 더 재활용하여 담수의 활용률이 좋아진다는 장점이 있다.
한편, 본 발명의 제 3 실시예에 따른 해수담수화 시스템(1'')에 대하여 도 10을 참조하여 설명하겠다. 도 10은 본 발명의 제 3 실시예에 따른 해수담수화 시스템을 도시한 블록도이다.
본 실시예는 제 2 실시예와 비교하였을 때, 제 1 압력교환장치(130) 대신 에너지 발생 장치(132)를 포함한다는 점에서 제 2 실시예와 차이가 있으므로, 이러한 차이점을 위주로 설명하고, 동일한 설명 및 도면부호는 제 2 실시예를 원용하겠다. 참고로, 본 실시예에서 압력교환장치는 한 개뿐이므로, 제 2 실시예에서 제 2 압력교환장치(140)로 호칭하여 설명했던 것을 압력교환장치(140)로 호칭하여 설명하겠다.
본 실시예에 따른 해수담수화 시스템(1'')은, 제 2 PRO 설비에서 배출되는 PRO 생산수(13)가 에너지 발생 장치(132)로 전달되어 전기 에너지 등과 같은 가용 에너지가 생산된다. 여기서, 에너지 발생 장치(132)의 예로는 펠톤 터빈(Pelton Turbine)을 들 수 있으나, 본 발명의 사상이 이에 한정되는 것은 아니다.
또한, 외부로부터 공급되는 제 1 염수(2)는 곧바로 제 3 염수(4) 및 제 4 염수(5)로 분기되어 제 1 압력조절장치(150) 및 제 2 압력교환장치(140)로 각각 투입되도록 구성된다.
이상과 같은 구성을 갖는 본 실시예에 따른 해수담수화 시스템(1'')에 따르면, 압력 지연 삼투 과정에서 배출되는 PRO 생산수(13)에 포함된 에너지를 전기 에너지 등과 같은 가용 에너지로 전환하는 것이 가능하므로, 담수화 공정과 함께 가용 에너지의 생산도 가능해진다는 장점이 있다. 그러나 상술한 바와 같이, 에너지 효율의 측면에서는 상술한 제 2 실시예에 비하여 다소 떨어질 수 있다는 단점도 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 예를 들어 당업자는 각 구성요소의 재질, 크기 등을 적용 분야에 따라 변경하거나, 실시형태들을 조합 또는 치환하여 본 발명의 실시예에 명확하게 개시되지 않은 형태로 실시할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것으로 한정적인 것으로 이해해서는 안되며, 이러한 변형된 실시예는 본 발명의 특허청구범위에 기재된 기술사상에 포함된다고 하여야 할 것이다.
1, 1', 1'': 해수담수화 시스템 110: DAF 설비
120: UF 설비 130: 제 1 압력교환장치
140: 제 2 압력교환장치 150: 제 1 압력조절장치
160: 제 2 압력조절장치 170: SWRO 설비
180: 제 3 압력조절장치 190: PRO 설비
192: 제 1 PRO 설비 194: 제 2 PRO 설비
196: PRO 베셀 198: PRO 막 모듈

Claims (8)

  1. 해수를 공급받아서 압력을 높이는 제 1 압력교환장치;
    상기 제 1 압력교환장치에서 압력이 높아진 해수 중 적어도 일부를 공급받아서 압력을 높이는 제 2 압력교환장치;
    상기 제 1 압력교환장치 및 상기 제 2 압력교환장치에서 압력이 높아진 해수를 공급받아서 역삼투막을 통해 염분이 여과된 생성수를 생산하고, 농축 염수는 상기 제 2 압력교환장치로 전달하는 SWRO 설비;
    상기 제 2 압력교환장치에서 배출되는 상기 농축 염수를 PRO 염수로서 공급받고, 외부로부터 PRO 원수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 1 PRO 설비; 및
    상기 제 1 PRO 설비에서 압력 지연 삼투 공정을 거친 후 배출되는 PRO 염수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 2 PRO 설비를 포함하고,
    상기 제 1 압력교환장치는 상기 제 2 PRO 설비에서 배출되는 PRO 생산수를 공급받아서, 상기 PRO 생산수의 압력을 해수로 전달하고,
    상기 제 2 압력교환장치는 상기 SWRO 설비로부터 공급받은 상기 PRO 염수의 압력을 해수로 전달하여 가압하는 압력지연삼투 기술을 이용한 해수담수화 시스템.
  2. 제 1 항에 있어서,
    상기 제 1 PRO 설비 및 상기 제 2 PRO 설비는,
    압력 지연 삼투 공정을 위한 반투과막을 제공하는 PRO 막 모듈이 적어도 하나 이상 내부에 제공되는 PRO 베셀을 포함하는 압력지연삼투 기술을 이용한 해수담수화 시스템.
  3. 제 2 항에 있어서,
    상기 제 1 PRO 설비에서 압력 지연 삼투 공정을 거친 후 배출되는 PRO 원수가 상기 제 2 PRO 설비로 공급되고,
    상기 제 1 PRO 설비의 압력 지연 삼투 공정을 거친 후 상기 PRO 베셀의 후반부로부터 배출되는 상기 PRO 염수가 상기 제 2 PRO 설비로 투입되는 압력지연삼투 기술을 이용한 해수담수화 시스템.
  4. 제 2 항에 있어서,
    외부로부터 공급되는 PRO 원수가 상기 제 2 PRO 설비로 공급되고,
    상기 제 1 PRO 설비의 압력 지연 삼투 공정을 거친 후 상기 PRO 베셀의 후반부로부터 배출되는 상기 PRO 염수가 상기 제 2 PRO 설비로 투입되는 압력지연삼투 기술을 이용한 해수담수화 시스템.
  5. 제 4 항에 있어서,
    상기 제 1 PRO 설비로 투입된 상기 PRO 염수 중 적어도 일부가 상기 제 1 PRO 설비의 상기 PRO 베셀의 전반부로부터 상기 제 1 압력교환장치로 전달되어 해수로 압력을 전달하는 압력지연삼투 기술을 이용한 해수담수화 시스템.
  6. 제 2 항에 있어서,
    외부로부터 공급되는 PRO 원수가 상기 제 2 PRO 설비로 공급되고,
    상기 제 1 PRO 설비의 압력 지연 삼투 공정을 거친 후 상기 PRO 베셀의 후반부로부터 배출되는 상기 PRO 염수가 상기 제 1 압력교환장치로 전달되어 해수로 압력을 전달하고,
    상기 제 1 PRO 설비로 투입된 상기 PRO 염수 중 적어도 일부가 상기 제 1 PRO 설비의 상기 PRO 베셀의 전반부로부터 상기 제 2 PRO 설비로 투입되는 압력지연삼투 기술을 이용한 해수담수화 시스템.
  7. 제 3 항, 제 5 항 및 제 6 항 중 어느 한 항에 있어서,
    외부로부터 공급되는 PRO 원수가 상기 제 2 PRO 설비로 공급되는 압력지연삼투 기술을 이용한 해수담수화 시스템.
  8. 외부로부터 공급받은 해수 중 일부를 공급받아서 압력을 높이는 압력교환장치;
    외부로부터 공급받은 해수 중 나머지를 공급받아서 압력을 높이는 압력조절장치;
    상기 압력교환장치 및 상기 압력조절장치에서 압력이 높아진 해수를 공급받아서 역삼투막을 통해 염분이 여과된 생성수를 생산하고, 농축 염수는 상기 압력교환장치로 전달하는 SWRO 설비;
    상기 압력교환장치에서 배출되는 상기 농축 염수를 PRO 염수로서 공급받고, 외부로부터 PRO 원수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 1 PRO 설비;
    상기 제 1 PRO 설비에서 압력 지연 삼투 공정을 거친 후 배출되는 PRO 염수를 공급받아서 압력 지연 삼투 공정이 수행되는 제 2 PRO 설비; 및
    상기 제 2 PRO 설비에서 배출되는 PRO 생산수를 공급받아서, 가용 에너지를 생산하는 에너지 생산 장치를 포함하고,
    상기 압력교환장치는 상기 SWRO 설비로부터 공급받은 상기 PRO 염수의 압력을 해수로 전달하여 가압하는 압력지연삼투 기술을 이용한 해수담수화 시스템.

KR1020140153543A 2014-11-06 2014-11-06 압력지연삼투 기술을 이용한 해수담수화 시스템 KR20160054230A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140153543A KR20160054230A (ko) 2014-11-06 2014-11-06 압력지연삼투 기술을 이용한 해수담수화 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140153543A KR20160054230A (ko) 2014-11-06 2014-11-06 압력지연삼투 기술을 이용한 해수담수화 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160155939A Division KR101817685B1 (ko) 2016-11-22 2016-11-22 압력지연삼투 기술을 이용한 해수담수화 시스템

Publications (1)

Publication Number Publication Date
KR20160054230A true KR20160054230A (ko) 2016-05-16

Family

ID=56109012

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140153543A KR20160054230A (ko) 2014-11-06 2014-11-06 압력지연삼투 기술을 이용한 해수담수화 시스템

Country Status (1)

Country Link
KR (1) KR20160054230A (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221462A1 (ko) * 2020-04-29 2021-11-04 지에스건설 주식회사 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221462A1 (ko) * 2020-04-29 2021-11-04 지에스건설 주식회사 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
KR20210133631A (ko) * 2020-04-29 2021-11-08 지에스건설 주식회사 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Similar Documents

Publication Publication Date Title
KR101817685B1 (ko) 압력지연삼투 기술을 이용한 해수담수화 시스템
KR101560698B1 (ko) 삼투 에너지 회수가 가능한 멤브레인 기반의 담수화 장치 및 방법
US9382135B2 (en) Seawater desalination process
US10427957B2 (en) Osmotic separation systems and methods
CN203269703U (zh) 新型膜法海水淡化制取淡水和制盐原料系统
US10758869B2 (en) Fluid purification by forward osmosis, ion exchange and re-concentration
WO2012102677A1 (en) Method and apparatus for recovering water from a source water
KR102423788B1 (ko) 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
EP1993956A1 (en) System for energy recovery and reduction of deposits on the membrane surfaces in (variable power and variable production) reverse osmosis desalination systems
CN114096342A (zh) 脱盐盐水浓缩系统及方法
WO2013134710A1 (en) Methods for osmotic concentration of hyper saline streams
CN103787462A (zh) 低能耗海水淡化工艺及其装置
KR20160054230A (ko) 압력지연삼투 기술을 이용한 해수담수화 시스템
AU2017285386B2 (en) Pressure-exchange assisted closed circuit desalination systems for continuous desalination of low energy and high recovery under fixed flow and variable pressure conditions
TW201309597A (zh) 海水淡化系統以及海水淡化方法
KR20170069614A (ko) 염수 담수화 시스템
KR101489853B1 (ko) 초고염도수의 삼투 에너지 회수가 가능한 담수화 시스템 및 방법
Frenkel Planning and design of membrane systems for water treatment
WO2022059737A1 (ja) 海水淡水化システム
Liberman Simultaneous power recovery of gauge and osmotic pressure from brine of SWRO desalination plants
JP2004290894A (ja) 海洋深層水脱塩処理システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
A107 Divisional application of patent