JP2016505093A - 固相薄膜電池用の膜を少なくとも1層成膜する方法、その成膜方法に用いるプラズマ粉体噴射装置、及び固相薄膜電池 - Google Patents

固相薄膜電池用の膜を少なくとも1層成膜する方法、その成膜方法に用いるプラズマ粉体噴射装置、及び固相薄膜電池 Download PDF

Info

Publication number
JP2016505093A
JP2016505093A JP2015551234A JP2015551234A JP2016505093A JP 2016505093 A JP2016505093 A JP 2016505093A JP 2015551234 A JP2015551234 A JP 2015551234A JP 2015551234 A JP2015551234 A JP 2015551234A JP 2016505093 A JP2016505093 A JP 2016505093A
Authority
JP
Japan
Prior art keywords
plasma
powder
substrate
layer
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015551234A
Other languages
English (en)
Inventor
ネッテスハイム,シュテファン
フォルステル,クラウス
コルツェク,ダリウシュ
Original Assignee
マシネンファブリック ラインハウゼン ゲーエムベーハー
マシネンファブリック ラインハウゼン ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マシネンファブリック ラインハウゼン ゲーエムベーハー, マシネンファブリック ラインハウゼン ゲーエムベーハー filed Critical マシネンファブリック ラインハウゼン ゲーエムベーハー
Publication of JP2016505093A publication Critical patent/JP2016505093A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Secondary Cells (AREA)

Abstract

プラズマ粉体噴射法により、固相薄膜電池(100)用の膜を少なくとも1層(32)成膜する方法を提供する。また、固相薄膜電池(100)に用いる基板(33)上に、膜を少なくとも1層(32)成膜するためのプラズマ粉体噴射装置(1)を提供する。前記プラズマ粉体噴射装置は、エネルギ源(15)を用いてプラズマガス流(13)を発生させるプラズマ発生領域(10)、及び前記プラズマガス流(13)中に配置した少なくとも1つの混合化領域(20)を有する。また、前記方法を用いて製造した固相薄膜電池(100)を提供する。【選択図】図5

Description

本発明は、プラズマ粉体噴射法により、固相薄膜電池用の膜を少なくとも1層成膜する方法に係る。また、本発明は、固相薄膜電池に用いる基板上に膜を少なくとも1層成膜するためのプラズマ粉体噴射装置に係る。前記プラズマ粉体噴射装置は、エネルギ源によってプラズマガス流を発生させるプラズマ発生領域、及び前記プラズマガス流中に配置される少なくとも1つの混合化領域を有する。さらに、本発明は、前記方法によって製造される固相薄膜電池に係る。
固相電池は、多様な用途において、既存の製品に組み込まれる高性能、安価、安全な1次及び2次電池に求められる要件を満たすことができる。固相電池は、高いサイクル安定性、低い自己放電性、安全性及び低毒性という特性をもつ。装置の小型化が進むにしたがい、構造柔軟性を有し、高容量または高出力密度を有する、より小型化した固相電池が必要になっている。固相電池はエレクトロモビリティー用途、例えば、マイクロエレクトロメカニカルシステム(MEMS)、RFIDタグの電子部品、様々な無線センサ、スマートクレジッドカード、携帯電気機器、機能性衣類などの自律的マイクロシステムに使用できる。
一般的な固相薄膜電池は、リチウムまたはナトリウムなどの軽アルカリ金属によって、好適にエネルギを化学的に蓄積する。例えば、リチウム元素(Li)に化学的に保存されたエネルギは、Li−アニオンへの発熱的酸化反応を経て、電気エネルギとして使用できる。
Figure 2016505093


固相薄膜電池は、電解質で物理的に分離されたカソード及びアノードから構成される。固相薄膜電池を充電または放電する間、互いに反対方向に2つの流れ、つまり、イオン流及び電荷をバランスするための補償電流が常に発生する。使用者は、こうした補償電流由来の電力並びに電池電圧を使用できる。また、電解質はイオン流を伝導するが、他方、電子の流れは遮断する。この結果、アノードとカソードが電気的に接続している場合にだけ、電子流が流れる。一方、電子流が流れない場合、イオン流(クーロン)が抑制され、化学的にエネルギが蓄積される。
放電時において、Liはアノードで酸化されてLiとなる。アノードからカソードへと電圧勾配がある場合、イオンはカソードへと拡散する。一方、充電時では、この逆の過程が起きる。カソードに拡散するイオンは、充電時にカソード材料にインターカレーション(挿入)し、一方、放電時にはデインターカレーション(脱挿入)する。好適なインターカレーション材料は、例えば、リチウム化コバルトジオキシド(LiCoO)のような遷移金属酸化物の結晶層から構成される。LiCoOからなるカソードは、充電過程及び放電過程において以下の反応を行なう。なお、ローマ数字は酸化度を示す。
Figure 2016505093


容積または比蓄電容量(Wh/ccmまたはWh/gで測定)を増加するために、カソード層の容積を増加できる。薄膜電池の予測基礎表面積は、通常その用途に応じて決まるため、カソード、電解質及びアノードから構成される層システム毎のカソード容積は、膜厚によってのみ増加することができる。一方、カソード層の厚さが増すにしたがい層システムの電気伝導度及びイオン伝導度は減少する。従って、カソード層及び電解質層は、可能な限り薄く、且つ欠損箇所がないように作製しなければならない。前記の層厚が薄くなるにしたがい、さらに、カソードと電解質との間の界面並びに電解質とアノードとの間の界面が広くなるにしたがい、層システムのイオン伝導度は良好になる。
自動化量産では、連続的に移動する製造ラインで薄膜電池の製造工程を全て実施することが推奨される。従って、最も遅いサブプロセスによって、製造に要するサイクルタイムが決まる。製造コストは、製造サイクルタイムに直接相関する。カソードの被覆プロセスは、しばしば、この製造サイクルタイムの制約要因となる。
充電式2次電池に求められる性能は、カソード材料のインターカレーション能が多数のインターカレーション・デインターカレーションサイクルにわたり保持されること、並びに、こうしたサイクルに伴う機械的応力に耐えられることである。カソード層の電気化学的特性は、層の結晶構造、化学量論的組成、並びに結晶性、粒径分布及び多孔性などによって決定される。
特許文献1には、充電式固相多セル電池が開示される。個々のセルは、リチウムインターカレーション材料からなるカソード層、リチウムホスホラスオキシニトリド(LIPON)からなる電解質層、及びリチウムからなるアノード層を有する。数個のセルを直列または並列に接続して構成することで、様々な電流量、電圧量及び容量を有する電池を製造できる。また、電池のエネルギ容量は、カソード層及びアノード層の層厚によって増加できる。
特許文献2には、薄膜バッテリー製造方法及び薄膜バッテリー製造装置が開示される。先ず、網状基材が、複数の被覆装置を通って自動的に移動する。被覆装置では、固相薄膜電池の層に典型的な順番で、全ての層が基材上に連続的に被覆される。前記層を構成するために、マスクを用いることができる。また、網状基板を被覆した電池を捲回することができる。網状基板はベルトコンベア上に配置することが好適である。被覆工程を行う間、前記ベルトコンベアを連続移動させるため、個々の被覆装置の長さを、それぞれの層の被覆時間と適合させている。
また、特許文献3では、リチウム−遷移金属酸化物からなる薄膜の結晶化方法を教示している。第1工程では、リチウム−遷移金属酸化物からなる薄膜を、例えば、HFマグネトロンスパッタリング源を利用して、基板上に気相蒸着させる。第2工程では、前記薄膜材料の結晶化度、表面平滑度及び電気化学的安定性を高めるために、前記薄膜を酸素ガスプラズマまたは不活性ガスプラズマで後処理する。
また、特許文献4の翻訳である特許文献5では、300℃未満の融点または分解温度をもつ基板を含む薄膜エネルギ蓄積装置を開示する。1台以上のDCマグネトロンスパタッリング源によって、LIPONなどの様々な材料やリチウムインターカレーション材料を基板上に成膜する。同様にして、1つ以上の補助材料源を前記基板方向に向け、活性化した補助材料を前記成膜層に衝突させることで、結晶サイズ及び結晶配向性について結晶成長を制御する。
特許文献6では、金属酸化物薄膜を成膜するプラズマ支援工法、こうして製造した素材、及び前記素材を有する電池を開示する。成膜素材の多孔性及び組成、並びに基板への付着性を向上させるために、材料を粉体ではなく水溶液としてプラズマ発生装置に注入する。なお、プラズマ中の高い酸素含有量のために、前記素材の粒子は酸化される。
また、特許文献7では、プラズマジェットを用いて表面処理または表面被覆を行う装置並びに方法を開示する。プラズマジェットは、1台以上のプラズマ発生装置を用いて発生させ、前記プラズマ発生装置に接続した1つ以上の反応チャンバーに注入され、続いて、エアゾールと十分に混合される。プラズマで活性化したエアゾールは基板上に堆積する。なお、プラズマによる不必要な物理的または化学的過程で、基板が損傷するのを防ぐために、反応チャンバーからプラズマが漏れ出ないよう、及び基板にプラズマが直接触れないように、前記反応容器内にプラズマを注入する。
また、特許文献8では、薄膜電池用電気化学層の製造装置及び製造方法を開示する。処理チャンバー内にディスペンサーを設置する。ディスペンサーの活性化チャンバー内で前駆体混合物をプラズマ点火する。前駆体混合物は、液体搬送媒体中の前駆体粒子からなる溶液、懸濁液、またはスラリーから構成される。前記前駆体混合物は、コバルト、ニッケル、マグネシウムまたはこれら金属の硝酸塩、あるいはリチウムから構成される。プラズマ化した前駆体混合物は、混合化領域中で、酸素及び前駆体粒子に熱エネルギを与える燃焼ガスと混合する。前駆体混合物と酸素は反応チャンバー内で反応し、基板上に堆積する電気化学的に活性なナノ結晶を形成する。特に、ナノ結晶を炭素で包み込むために混炭素含有ガスを合する。また、ナノ結晶を含有するガス流にポリマー結合剤を供給し、ナノ結晶及びポリマー結合剤からなる層を形成する。
ここで、現状技術の欠点として、一般的に成膜速度の制約が挙げられる。物理的蒸着(PVD)、熱的蒸着またはスパッタリングなどの方法では、高々数nm/sの成膜速度しか得られず、且つ、10−4mbar未満の、好適には10−6mbar未満の減圧度をもつ高価な真空システムが必要である。製造工程では、先ず、カソード材料を化学反応で製造するか、または固体標的から取り出す。上記の成膜技術では、加工速度が制約され、または形成層の化学量論的組成や構造形態が不安定になる。特に、積層電池の場合、層の特性に再現性がないことは問題であり、不合格品が増加する結果になる。
米国特許第5,612,152号明細書 米国特許第5,445,906号明細書 ドイツ特許出願公報第10053733B4号明細書 欧州特許出願公報第1305838B1号明細書 ドイツ特許出願公報第60126779T2号明細書 フランス特許出願公報第2729400号明細書 国際公開第2009/033522号 米国特許出願公報第2011/0045206A1号明細書
本発明の目的は、固相薄膜電池に用いる、薄くて機械的に安定な層を成膜する方法を提供することである。前記方法は、迅速性、高い費用効果、単純、高信頼性、柔軟性を有する製造工程と組み合わせられる。この目的は、本発明の請求項1の方法によって実現可能である。
また、本発明の別の目的は、固相薄膜電池に用いる薄膜を製造するためのプラズマ粉体噴射装置を提供することである。前記プラズマ粉体噴射装置は、迅速性、高い費用効果、高信頼性をもち且つ自動化可能な方法であって、固相薄膜電池の全層を成膜できる。この目的は、本発明の請求項14の装置によって実現可能である。
さらに、本発明の目的は、機械的に安定で、製造方法が単純かつ高い費用効果を有し、長寿命で高性能な固体薄膜電池を提供することである。この目的は請求項21の固相薄膜電池によって実現可能である。
本発明の製造方法を用い、固相薄膜電池またはスーパーコンデンサーに用いる膜を、少なくとも1層成膜することができる。本発明によれば、成膜層には、蓄電体、アノード、カソード、電解質、電子セパレーターまたは外周保護皮膜が含まれる。また、薄膜電池中、同種の膜からなる複数の層を成膜できる。本発明の製造方法による膜は、プラズマ粉体噴射装置で電気化学的に活性化されて基板上に堆積された粉体粒子からなる。なお、プラズマ粉体噴射装置は、プラズマ発生領域と、この領域から空間的に離れた少なくとも1つの混合化領域とを有する。
先ず、点火ガスをプラズマ発生領域に導入し、点火ガス流にエネルギを与えてプラズマガス流を発生させる。本発明では、点火ガス流はガス状の反応物質を含むが、液状または固体状の前駆体物質は含まれない。続いて、粉体エアゾール流を発生させる。本発明の粉体エアゾール流は、キャリアガス中に分散させた、固体集合状態の粉体粒子から主に構成される。つまり、キャリアガス貯蔵部から粉体貯蔵部へとキャリアガスが流され、粉体貯蔵部中の粉体粒子を運搬する気流となる。このキャリアガス流を用いて粉体エアゾール流を発生させる。続いて、減圧下の粉体エアゾールラインを通して、粉体貯蔵部から粉体エアゾール流を取り出し、少なくとも1つの混合化領域へと導入する。さらに、プラズマ発生領域から供給されたプラズマガス流も、前記混合化領域へと導入する。このようにして、プラズマガス流と粉体エアゾール流とを互いに混合し、プラズマ粉体エアゾールを調製する。
次に、このプラズマ粉体エアゾールを、前記の少なくとも1つの混合化領域から導出される気流に乗せて、被覆化領域に配置した基板方向に導入する。プラズマ粉体エアゾール流に分散した粉体粒子を、被覆化領域に配置した基板上に層状に堆積する。なお、粉体粒子はプラズマの作用により変質する。ここで、キャリアガスの流入で、正確量の粉体粒子が取り出されるように、粉体粒子のマスフローdM/dt及び粉体粒子とキャリアガスとの混合比を一定の値に設定する。Mは粉体エアゾール流で運搬される粉体粒子の質量を表し、tは時間を表す。こうして、被覆工程に必要な通常時間内に収まる粉体粒子の取り出し時間中、粉体エアゾール流は一定に保たれる。あるいは別法として、マスフローdM/dt(t)及び/または粉体エアゾール流中のキャリアガスと粉体粒子との混合比を、粉体粒子の取り出し時間中、任意の所望値に調節してもよい。
また、前記方法では、処理過程用に必要温度まで加熱する装置に、粉体エアゾール流を導入する工程を有してもよい。同様に、基板ホルダの基板加熱器によって、基板を加熱してもよい。また、本発明の方法は、プラズマ粉体噴射装置及び/または基板或いは基板ホルダを移動させるために、移動システムを用いてもよい。このようにして、プラズマ粉体噴射装置と基板を、一次元または三次元において相対的に移動させることができる。さらに、この移動には、1または2つの空間角度をもつ傾斜移動も含まれる。こうして、プラズマ粉体噴射装置を移動させて、任意の軌道に沿わせながら、二次元または三次元の形状を有する基板表面を被覆する。
また、基板表面とプラズマ粉体エアゾール流とがなす角度を調節し、基板表面の凹部にも被覆できる。さらに、プラズマ粉体噴射装置と基板との距離を調節できる。なお、前記の距離は、プラズマ粉体エアゾール流の軟化性、被覆化領域の大きさ、単位面積あたりの基板に前記エアゾール流で運ばれる単位面積あたりの熱流量、及び被覆速度、或いは被覆化領域全体での被覆速度の速度勾配によって決まる。
例えば、平らな基板では、プラズマ粉体噴射装置を相対的に動かすことで、曲線状またはらせん状の軌道に沿わせながら被覆する表面の全域または一部を被覆できる。軌道を調整したり及び/または粉体粒子の供給を中断したりして、任意の形状の層を被覆できる。また、移動システムで位置制御できる静電化部材またはパターン化部材を、基板の上または基板を覆うプラズマ粉体エアゾール流中に導入して、堆積層を形成する。前記パターン化部材は、基板を覆うスクリーンや基板上のマスクであって、リソグラフ法で形成する。
本発明の方法は、基板が導入されている被覆チャンバー内で実施する。つまり、プラズマ粉体噴射装置を被覆チャンバー内部または外部に設置し、被覆チャンバーと液体連通させる。被覆工程は不活性ガス雰囲気下で行う。特に、吸引ポンプで被覆チャンバー内を負圧にし、減圧下または真空条件下で被覆を行う。
また、本発明の方法の変形形態では、少なくとも1つの混合化領域に、補助材料を導入してもよい。補助材料及び/または粉体エアゾール流を、少なくとももう1つ別の混合化領域に導入してもよい。この結果、異なる混合化領域に、異なる材料が供給される。少なくとももう1つ別の混合化領域は、プラズマ粉体エアゾール流内に配置され、且つ、プラズマ粉体噴射装置の内部または外部に配置される。補助材料は、例えば、炭素をプラズマ支援堆積するための炭素含有ガスであるか、または、他の粉体エアゾールである。前記別の粉体エアゾールの粉体粒子は、第1の混合化領域に導入した粉体粒子に比べて、異なる化学的、電気化学的または構造的組成を有する。第1の混合化領域に導入された粉体粒子は、1種類以上の補助材料によって一部または全体が被覆されるか、或いは完全に包み込まれる。混合化領域での処理条件は、例えば、プラズマ特性、温度及び/または圧力、或いはガス分圧比によって調節できる。
固相薄膜電池のアノード層またはカソード層を調製するために、本発明の粉体粒子を、イオンの吸蔵に適したインターカレーション材料で作製する。固相薄膜電池は、リチウムイオンなどのアルカリ金属イオンをインターカレーションする電池が好ましい。なお、粉体粒子は、例えば、1種類以上の遷移金属のリチウム化酸化物から構成される。また、本発明の別の方法では、層形成に用いる粉体粒子を、プラズマ粉体エアゾール流中で熱的に活性化してもよい。なお、プラズマ粉体エアゾール流中の粉体粒子については、その化学量論的組成及び粒径分布は変化しない。粒径分布に応じて、粉体粒子流は、固体部分及び基板への衝突時に突然凝固する溶融部分を含有するので、この結果、強固な結合を形成する。形成された層の多孔性は、粒子の粒径分布や、温度及び圧力依存的な基板上での拡散性によって専ら決まる。例えば、拡散性は、成膜速度、基板温度、または粉体粒子が基板に衝突する速度によって決まる。つまり、基板温度や衝突速度が増大し、成膜速度が低下するにしたがい、基板上に粉体粒子が配列される時間が増大し、層密度が増大する。層の多孔性によって、イオンがカソード層中でインターカレーション及びデインターカレーションするサイクル間に起きる力学的応力が減少する。また、層の多孔性は、有効表面積を増加させるため、電池のイオン伝導性を増加させる。
点火ガス流及び/またはキャリアガス流は、処理条件下、アルゴンまたは窒素などの1種類以上の化学的不活性ガスで構成されるのが好ましい。また、酸素流、水素流及び/または炭素含有ガス流の部分流は、流量調整器で制御して混合する。水素は、例えば、還元剤として作用する。本発明では、水素または炭素含有ガスなどの燃焼ガスの酸化を制御して、プラズマ粉体エアゾール流をさらに加熱できる。本発明の典型的な、窒素及び水素から構成したガスでは、通常、水素の割合は全ガス流の10重量%未満、好適には3〜7重量%である。相応して、窒素及び水素の流量は、それぞれ10〜25sccmの範囲内に設定する。一般的に、少なくとも1つの混合化領域中の全圧は、約0.5〜2.5barに設定する。
また、本発明では、粉体粒子の電気化学的特性に応じて、粉体粒子を熱で活性化する。このために、プラズマ粉体エアゾール流の温度を、例えば、プラズマ発生領域中のエネルギ、プラズマ発生領域中に含まれるガスの全圧、及び各ガスの分圧比に応じて設定する。また、基板加熱器またはプラズマ粉体エアゾールの温度調節器によって、プラズマ粉体エアゾール流温度を調節できる。本発明によれば、様々な温度及びガス分圧を、様々な混合化領域で設定できる。同時に、酸素過剰雰囲気下で酸素と混合させ、LiCoOなどの化学量論的組成または酸化物粉体粒子の化学量論比を達成できる。なお、LiCoO粉体粒子中の酸素欠損は、イオン伝導性及びリチウムイオンのインターカレーション能を減少させ、電池の性能を低下させる結果となる。
本発明の一実施形態では、リチウムコバルトジオキサイドの粉体粒子は、HT相で熱的に変化する。このため、少なくとも1つの混合化領域中の混合温度を、350℃〜750℃の範囲に設定する。粉体粒子あたりの平均入熱量及び粉体粒子の化学量論的組成を調節するために、ガスの全圧及び分圧を前記混合温度と均衡させる。酸素分圧に対して混合温度を調節する度合は、HT相中で高比率の欠損リチウムコバルトジオキシドを得るために特に不可欠である。併せて、240℃未満、例えば、200℃に基板温度を保持する。
また、本発明では、固相薄膜電池に用いる基板上に少なくとも1つの層の膜を成膜するプラズマ粉体噴射装置を有する。プラズマ粉体噴射装置は、プラズマ発生領域と、プラズマガス流を発生させるエネルギ源と、プラズマガス流内に設置した少なくとも1つの混合化領域とを有する。本発明によれば、プラズマ発生領域は、少なくとも1つの混合化領域から空間的に離れて設置される。特に、本発明のプラズマ粉体噴射装置では、ただ1種類の点火ガスが、プラズマ発生領域中に導入される。この結果、もっぱら点火ガス流からプラズマが点火する。こうして発生したプラズマガス流は、プラズマ発生領域から少なくとも1つの混合化領域へと流される。
一方、粉体エアゾール流は、少なくとも1つの粉体エアゾール供給ラインを通って、少なくとも1つの混合化領域へと導入される。こうして、プラズマガス流及び粉体エアゾール流は互いに混合し、少なくとも1つの混合化領域中でプラズマ粉体エアゾール流となる。なお、粉体エアゾールが、プラズマ発生領域に流れ込むことはない。この結果、プラズマ発生領域を汚染、破損または電気ショートしないで、プラズマ粉体噴射装置によって、摩耗され、伝導性を有する粉体が調製される。
また、本発明の一実施形態では、少なくとも1つの粉体エアゾール供給ラインが、粉体エアゾール流に使う温度調節器に割り当てられる。同様に、プラズマ粉体噴射装置に対面するように、基板ホルダに基板が設置される。基板ホルダは、基板温度を調節する基板加熱器を有する。また、プラズマ粉体噴射装置には、プラズマ粉体噴射装置と基板ホルダの間の相対的な移動を制御する移動システムが割り当てられる。
また、本発明の好適な実施形態中、少なくとも1つの混合化領域は、第1混合化領域及び少なくとも1つの第2混合化領域を有する。前記の第1混合化領域と第2混合化領域とは、空間的に互いに離れており、プラズマ粉体噴射装置内部に設置される。また、少なくとも1つの第2混合化領域には、プラズマ粉体噴射装置の外部に配置される少なくとも1つの混合化領域が含まれる。さらに、少なくとも1つの粉体エアゾール供給ラインを通して、各混合化領域に補助材料が供給される。
また、本発明には固相薄膜電池が含まれる。この固相薄膜電池には、請求項1から13の何れか1項の方法によって、粉体粒子から少なくとも1層の膜が成膜される。特に、本発明では、機械的に安定で、電気化学的に活性な層が、結合剤などの添加材を使用することなく、活性化粉体粒子から製造される。同様に、前記層の潜在的汚染物質となる補助材料を使用することなく、前記層を製造できる。
カソード層は、例えば、LiCoO、LiNiCo1−x−yMn、LiFePO、LiMn、LiNiO、LiFeSiO、LiMnSiO、LiVOSiO、TiS、TiOS、またはNa(POから構成される。
本発明の方法は、インターカレーション材料中に埋め込まれたリチウムのリチウム含有量xが、安定範囲未満の値にならないように実施する。リチウム含有量が安定範囲未満の値となった場合、インターカレーション材料のインターカレーション能が不可逆的に低下し、リチウムイオン電池の容量を低下させる結果となる。LiCoOの場合、安定範囲は、例えば、0.5<x≦1である。また、電気化学的に特に優れた結晶構造をもつ粉体粒子を使用してもよい。例えば、粉体貯蔵部中、LiCoO結晶からなる粉体粒子は、HT相において存在する。りょう面体晶構造に基づき、HT−LiCoOは、リチウムイオンの伝導性及び貯蔵性において、特に好適なインターカレーション移動能を有する。上記手法の特に優れた利点は、粒径分布について粉体粒子を事前に選別し、品質を検査し、粒径分布または化学量論的組成を変えないで粉体粒子を層として成膜する以前に、必要に応じて粉体粒子を再選別できることである。この結果、不合格品を減少できる。
また、本発明のアノード層は、カソード層と同じ材料、または純粋リチウムから構成される。ここで、カソード層及び/またはアノード層は、マトリックスを有していてもよい。こうしたマトリックスによって、インターカレーションサイクルで応力を受けたアノード層を安定化でき、アノード層の導電性及び/またはイオン伝導性を向上できる。例えば、前記マトリックスは、ポリマー、グラファイト、フラーレン、カーボンナノチューブ、チタン酸リチウム、シリコン及び/またはスズなどの補助材料で構成される。
また、電解質層はアモルファス状のリチウムホスホラスオキシニトリド(LiPO、つまりLIPON)で構成される。なお、本発明の方法により、LIPON粉体粒子から電解質層を製造してもよい。
或いは別法として、窒素含有プラズマガス流中のリン酸リチウムを反応させて、電極材料を調製できる。リチウムイオンは伝導するが、電子を遮断するLIPONなどの材料を用いると、カソードとアノードとを電気的に絶縁する隔離層が不要になる。
また、薄膜電池のカソード層及びアノード層は、蓄電体を有してもよい。この蓄電体は、例えば、アルミニウム、銅、銀、ニッケル、ナノワイア、カーボンナノチューブ、グラファイト、または導電性ポリマーで構成される。なお、前記カソード層及びアノード層自体を、蓄電体として設計してもよい。
他の方法と比較した場合、40℃から90℃未満という低い基板温度のために、成膜層の機械的安定性及び結合力と併せて、本発明の方法は、ステンレススチールホイル、マイカ(MICA)、半導体ウエファ、ガラス、ポリマー膜、布、または紙などの様々な基板材料に好適である。
さらに、本発明の薄膜電池を、電子回路基板(PCB)またはマイクロメカニカルシステム(MEM)構成単位上に直接形成し、切り換えレベルでこれら部材と電気的に接続してもよい。上記方法は、柔軟性をもつ基板上に、柔軟性をもつ薄膜電池を製造するのに好適である。
本発明によれば、薄膜電池の典型的な層厚は、カソード層またはアノード層では、1μmから500μmの範囲であるが、好適には10μmから100μmの範囲である。電解質層では、0.1μmから10μmの範囲であるが、好適には1μmである。蓄電体では0.5μmから100μmの範囲であるが、好適には50μmである。
本発明の方法の特に優れた利点は、先行技術に比べて、高い堆積速度をもつことである。本発明の堆積速度は、一般的に3〜5g/minであり、2〜10g/minも可能である。また、層厚に関し、被覆速度を、典型的に100μm/sから数百μm/sで実施できる。また、成膜過程のプラズマ粉体噴射装置と基板との相対移動速度は、例えば、3〜15mmの距離で、100〜200mm/sである。
本発明によれば、噴射流または一定量の噴射流を、プラズマ粉体噴射装置の開口部に発生できる。また、プラズマ発生領域と混合化領域との間にある点火ガス導入口、及び/または、混合化領域中の粉体エアゾール供給ライン同士の接続部分でも、発生できる。
以下、本発明に係る、固相薄膜電池用の少なくとも1層の膜を成膜する方法及び装置の実施形態を、添付の図面を参照しながら説明する。なお、以下に例示する具体的な実施形態は、本発明の範囲を何ら限定するものではない。
固相薄膜電池の層構成を示す模式断面図である。 構築した層構造を有する固相薄膜電池の一実施形態を示す模式断面図である。 プラズマ粉体噴射装置を用いて、固相薄膜電池用の少なくとも1層の膜を成膜する方法を示す模式図である。 本発明のプラズマ粉体噴射装置の一実施形態を示す模式断面図である。 本発明のプラズマ粉体噴射装置の別の実施形態を示す模式断面図である。 本発明のプラズマ粉体噴射装置のさらに別の実施形態を示す模式断面図である。
図面中、同じまたは同等の部品については、同じ参照符号を用いる。
図1は、現在の技術において、1層1層構築して作製した固相薄膜電池100の基本構造を示す。基板33上にカソード層102が成膜され、続いて電解質層103、さらにアノード層104が成膜されている。電解質層はイオン伝導性をもち、カソード層102とアノード層104との間をイオン流が流れる
固相薄膜電池100の充電過程では、イオン流はカソード層102の中でイオンのインターカレーションを起こし、相応してアノード層104からイオンのデインターカレーションを起こす。一方、放電過程では、この逆が起きる。また、電解質層103は電子の導電性において絶縁体であり、アノード層102とカソード層104とを電気的に絶縁する。
一方、アノード層102とカソード層104が電気的に接続されている場合、イオン電流は静電的に抑制され、電荷バランス用に補償電流が流れる。使用者は、この補償電流による電力及び電池電圧を利用できる。前記電力の損失を減らすために、アノード層102とカソード層104とを、低い電気境界面抵抗を有する導電性をもつ蓄電体33及び105によって被覆する。なお、図1では、基板33自体が、カソード層104の蓄電体として機能している。
本発明によれば、固相薄膜電池100の電池容量は、より大きな層厚Dをもつカソード層102の容積増大によって増加できる。しかし、膜厚Dは、力学的応力によって技術的な制約をうける。この力学的応力は、イオンがインターカレーション及びデインターカレーションするとき、インターカレーション材料の容積変化を起こすことで発生する。固体薄膜電池100の安定性及び耐久性は、カソード層102の多孔性を調節し、力学的応力を減らすことで向上できる。また、補償電流及び電池電圧を増すために、少なくともイオン伝導連続層110を、並列及び/または直列に電気的に接続する。
図2は、構築した層構造を有する固相薄膜電池100の別の実施形態を示す模式断面図である。本実施形態では、蓄電体101を電気的絶縁体である基板33の上に配置する。図1と比較すると、層102、層103及び層104が、電気的絶縁保護層106によって、全表面にわたり覆われる。一方、蓄電体101及び105の表面の一部は、接続用に、層106で覆われていない。図2が示すように、固体薄膜電池100中、二次元または三次元構造をもつ層32を、本発明の方法を用いて製造できる。同様に、三次元形状をもつ基板33を被覆すこともできる。
図3は、本発明において、プラズマ粉体噴射装置1を用いて固体薄膜電池100用の膜を少なくとも1層32成膜する方法を示す概略図である。先ず、プラズマ発生領域10に点火ガス流12を導入し、エネルギ11を与え、点火ガス流12を点火してプラズマガス流13とする。次に、プラズマガス流13は、プラズマ発生領域10と空間的に離れた混合化領域20に流入する。また、粉体供給部40で、粉体粒子及びキャリアガス41から粉体エアゾール流44を生成し、混合化領域20のプラズマガス流13に供給する。この結果、プラズマ粉体エアゾール流34を発生させる。プラズマ粉体エアゾール流34は、混合化領域20から被覆化領域30に配置された基板33方向に流れ出る。
こうして、プラズマ粉体エアゾール流34中で変質された粉体粒子からなる層32が、基板33上に堆積する。なお、プラズマ点火時には、数万K(ケルビン)の高い点火温度T10が、プラズマ発生領域10で発生する。
混合化領域20はプラズマ発生領域10と空間的に離れているので、プラズマ発生領域10とは独立して、1000℃未満の低い混合温度T20を設定できる。同様にして、基板温度T33も独立して調節できる。また、粉体粒子がプラズマ発生領域10中に入り込むのを防止するために、点火圧力P10を、混合化領域20の混合圧力P20よりも高く設定する。また、全ての気流が先に述べたように流れるように、混合圧力P20を、粉体供給部40の供給圧力P40よりも低く設定し、被覆化領域30の被覆圧力P30よりも高く設定する。なお、圧力P10、P20、P30及びP40は、静圧力及び/または動圧力として理解される。また、被覆後の基板33は、その後の工程で、焼成、焼き戻し、プラズマ処理を行うことができる。
図4は、本発明のプラズマ粉体噴射装置1及び基板ホルダ39の一実施形態を示す模式断面図である。プラズマ粉体噴射装置1を用いて、固相薄膜電池100に用いる基板33の上に、少なくとも1つの層32を成膜する。プラズマ粉体噴射装置1及び基板ホルダ39はともに被覆化チャンバー31内に配置される。
先ず、吸引ポンプ60により、プラズマ粉体噴射装置1内に位置する混合化領域20に対し、負圧ΔPを被覆チャンバー31内に発生させる。次に、点火ガス注入口18を通してプラズマ発生領域10に、点火ガス流13を導入する。これによって、エネルギ源15から供給されるエネルギ11でプラズマ点火し、プラズマガス流13を発生させる。エネルギ源としては、例えば、電圧源が挙げられる。この電圧源から、プラズマ粉体噴射装置1、基板33及び/または被覆化チャンバー31の電位に対し、連続またはパルスDC電圧及び/またはAC電圧を活性化電極16にかける。
プラズマガス流13は、プラズマ発生領域10から、空間的に離れた混合化領域20へと流入する。なお、粉体エアゾール流44が供給時に通過可能なラインとなる少なくとも1つの粉体エアゾール供給ライン47が、混合化領域20に割り当てられている。プラズマガス流13と粉体エアゾール流44は混合化領域20で混合され、プラズマ粉体エアゾール流34になる。このプラズマ粉体エアゾール流34は、プラズマ粉体噴射装置1の開口部28を通って基板方向に流入し、プラズマ粉体エアゾール流34中に含まれる粉体粒子が層32として堆積する。
また、前記粉体粒子の少なくとも物理的性質は、熱で変質させることができる。例えば、粉体粒子を表面的に融解し、その結晶構造を変更できる。粉体粒子がプラズマ粉体エアゾール流34に混在している間、粉体粒子の変質に必要な温度及び熱流を与えるため、プラズマ粉体エアゾール流34の圧力、ガス分圧比及び温度の組み合わせを調節できる。
エネルギ源15を用いて、前記熱流を供給及び制御する。マスフロー制御器u0...un、またはv0...vkによって、点火ガス流12またはキャリアガス流41のガス成分の圧力を制御する。前記ガス成分は、各貯蔵部12、12l、12nまたは42、42l、42kにおいて保持される。さらに、圧力及び流量を制御するために、点火ガス注入口18、粉体エアゾール供給ライン47及び/または開口部28において、噴射流を制御してもよい。また、粉体エアゾール供給ライン47が割り当てられた装置46により、粉体エアゾール流44の温度を調節できる。なお、基板ホルダ39は基板加熱器36を有してもよい。
また、温度を上げるために、プラズマ粉体噴射装置1内のO及びHなどのガス混合物を制御発熱反応に用いてもよい。一方、プラズマ粉体エアゾール流34の原位置温度を限定するために、所定の温度閾値以上だけで吸熱反応するガスまたはガス混合物を導入してもよい。本発明では、プラズマ粉体噴射装置1への液体導入は行わないので、液体蒸発による熱エネルギの損失はない。さらに、基板33方向に流れるガスまたはプラズマ流や、光照射によって基板温度T33を変えることもできる。
また、移動システム50によって、プラズマ粉体噴射装置1と基板ホルダ39との相対移動を制御できる。例えば、ベルトコンベア50または回転装置50の上に基板ホルダ39を設置してもよい。また、プラズマ粉体噴射装置1及び/または基板ホルダ39を、少なくともx軸のx方向、y軸のy方向及び/またはz軸のz方向に沿って、自由に移動または回転運動を行える移動システム50に、堅く接続してもよい。
相対移動によって、三次元形状を有する層構造体32を、基板33上に堆積できる。さらに、パターン化部材37をプラズマ粉体エアゾール流34中に導入し、基板33を部分的に遮蔽または覆うことができる。また、移動システム50によって、パターン化部材37を固定し、または可動化してもよい。
図5及び図6は、本発明のプラズマ粉体噴射装置1の別の実施形態を示す模式断面図である。図5のプラズマ粉体噴射装置1では、少なくとも1つの混合化領域20は、第1混合化領域20A及び少なくとも1つの第2混合化領域20Bを有する。ここで、前記の第1混合化領域20A及び少なくとも1つの第2混合化領域20Bとは、プラズマ粉体噴射装置1内で互いに離れた位置に配置される。
また、図6のプラズマ粉体噴射装置1では、少なくとも1つの混合化領域20は、第1混合化領域20A及び少なくとも1つの第2混合化領域20Bを、互いに離れた位置に有する。この結果、少なくとも1つの第2混合化領域20Bの少なくとも1つ以上の混合化領域20Cが、プラズマ粉体噴射装置1の外部に配置される。
なお、補助材料44A、44B及び44Cは、少なくとも1つの粉体エアゾール供給ライン47、47B及び47Cを介して、混合化領域20、20A、20B及び20Cにそれぞれ導入される。
1 プラズマ粉体噴射装置
10 プラズマ発生領域
11 エネルギ
12 点火ガス流
13 プラズマガス流
14 点火ガス貯蔵部
15 エネルギ源
16 電極
18 点火ガス注入口
20 混合化領域
24 プラズマ粉体エアゾール
28 開口部
30 被覆化領域
31 被覆化チャンバー
32 層
33 基板
34 プラズマ粉体エアゾール流
36 基板加熱器
37 マスク
38 距離
39 基板ホルダ
40 粉体供給部
41 キャリアガス流
42 キャリアガス貯蔵部
42l 第1キャリアガス貯蔵部
42k 第kキャリアガス貯蔵部
43 粉体貯蔵部
44 粉体エアゾール流
46 装置
47 粉体エロゾル供給ライン
48 粉体粒子
49 プラズマ粉体供給ライン
50 移動システム
60 吸引ポンプ
70 制御部
71 マスフロー制御器
100 固相薄膜電池
101 蓄電体
102 カソード層
103 電解質層
104 アノード層
105 蓄電体
110 連続層
P10 点火圧
P20 混合圧力
P30 被覆圧力
P40 供給圧力
T10 点火温度
T20 混合温度
T33 基板温度
D 層厚
v 点火ガス供給装置
v0 マスフロー制御器
v1 第1マスフロー制御器
vk 第kマスフロー制御器
u キャリアガス供給装置
u0 マスフロー制御器
u1 第1マスフロー制御器
un 第nマスフロー制御器
x x−軸
y y−軸
z z−軸

Claims (13)

  1. プラズマ発生領域(10)及び前記領域(10)から空間的に離れた少なくとも1つの混合化領域(20)を有するプラズマ粉体噴射装置(1)を用いて、固相薄膜電池(100)用の膜を少なくとも1層(32)成膜する方法であって、前記方法は、
    前記プラズマ発生領域(10)内で点火ガス流(12)からプラズマガス流(13)を発生させる工程、
    粉体エアゾール流(44)中、粉体粒子(48)のマスフロー速度dM/dt並びに前記粉体粒子(48)とキャリアガス(42)との混合比が、取り出し時間中一定に保持されるように、前記キャリアガス(42)を粉体貯蔵部(43)の中に注入して前記粉体粒子(48)を取り出し、キャリアガス貯蔵部から供給されるキャリアガス流(41)及び前記粉体貯蔵部(43)から取り出される前記粉体粒子(48)から前記粉体エアゾール流(44)を生成する工程、
    プラズマ粉体エアゾール(24)を生成するために、前記粉体エアゾール流(44)及び前記プラズマガス流(13)を前記の少なくとも1つの混合化領域(20)に導入する工程、
    前記の少なくとも1つの混合化領域(20)から供給されるプラズマ粉体エアゾール流(34)を被覆化領域(30)に配置した基板(33)方向に流入させる工程、
    前記の少なくとも1つの混合化領域(20)及び/または前記プラズマ粉体エアゾール流(34)及び/または前記被覆化領域(30)内で外面的に溶融または結晶構造が変化した粉体粒子(48)からなる層(32)を前記基板(33)上に堆積する工程を有する。
  2. 前記粉体エアゾール流(34)を、処理制御のために必要温度に加温する装置に通すことを特徴とする、請求項1に記載の方法。
  3. 基板ホルダ(39)の基板加熱器(36)によって前記基板(33)が加熱されることを特徴とする、請求項1または請求項2に記載の方法。
  4. 前記プラズマ粉体噴射装置(1)と前記基板(33)との距離(38)及び/または相対移動を、調節システム(50)が制御すること特徴とする、請求項1から請求項3の何れか一項に記載の方法。
  5. 前記基板(33)上に構造化層(32)を成膜するために、前記調節システム(50)を用いて、前記プラズマ粉体エアゾール流(34)中、前記基板(33)上または上方にパターン化部材(37)を配置すること特徴とする、請求項1から請求項4の何れか一項に記載の方法。
  6. 前記プラズマ粉体エアゾール流(34)が導入される被覆化チャンバー(31)内に前記基板(33)を配置し、吸引ポンプ(60)を用いて前記被覆化チャンバー(31)内に、前記混合化領域(20)に対し負圧(ΔP)を発生させること特徴とする、請求項1から請求項5の何れか一項に記載の方法。
  7. 前記少なくとも1つの混合化領域(20)及び/または少なくとももう一つの混合化領域(20A、20B)内で、補助材料(24A、24B)を前記プラズマ粉体エアゾール流(34)中に導入し、前記補助材料(24A、24B)で少なくとも部分的に前記粉体粒子(48)を被覆することを特徴とし、前記の少なくとももう一つの混合化領域(20A、20B)は前記プラズマ粉体噴射装置の内部または外部で且つ前記プラズマ粉体エアゾール流(34)中に配置されること特徴とする、請求項1から請求項6の何れか一項に記載の方法。
  8. カソード層(102)を形成する前記粉体粒子(48)が、専ら1種類以上の遷移金属のリチオ化酸化物から構成されること特徴とする、請求項1から請求項7の何れか一項に記載の方法。
  9. 前記プラズマ粉体エアゾール流(34)中で、熱的に活性化する粉体粒子(48)から化学量論的組成及び粒径分布を変化させることなく前記層(32)が形成され、前記層(32)の多孔性が前記粉体粒子(48)の堆積速度、基板温度(T33)及び/または粒径分布によって調節されること特徴とする、請求項8に記載の方法。
  10. 前記点火ガス流(12)及び/または前記キャリアガス流(42)は、酸素、水素及び/または炭素含有ガス混合気体を混合した、化学的不活性ガスまたは窒素から構成されること特徴とする、請求項8または請求項9に記載の方法。
  11. 前記粉体粒子(43)の電気化学的特性は熱的に活性化され、及び/または、前記点火ガス流(12)及び/または前記キャリアガス流(42)中、酸素との混合により、前記粉体粒子(48)の酸化物が化学量論的に得られること特徴とする、請求項10に記載の方法。
  12. 基板温度(T33)を240℃未満に及び/または少なくとも1つの混合化領域(20)中の混合温度(T20)を350℃から750℃の範囲に設定し、前記混合温度(T20)に応じて酸素分圧及び全圧(P20)を調節し、リチウムコバルトジオキサイドからなる前記粉体粒子(48)を高温相で熱変換することを特徴とする、請求項11に記載の方法。
  13. 固相薄膜電池(100)であって、粉体粒子(48)からなる少なくとも1層の膜(32)が、請求項1から請求項12の何れか一項に記載の方法によって製造されることを特徴とする固相薄膜電池(100)。
JP2015551234A 2013-01-07 2013-12-20 固相薄膜電池用の膜を少なくとも1層成膜する方法、その成膜方法に用いるプラズマ粉体噴射装置、及び固相薄膜電池 Pending JP2016505093A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013100084.3A DE102013100084A1 (de) 2013-01-07 2013-01-07 Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie
DE102013100084.3 2013-01-07
PCT/IB2013/061225 WO2014106792A2 (de) 2013-01-07 2013-12-20 Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie

Publications (1)

Publication Number Publication Date
JP2016505093A true JP2016505093A (ja) 2016-02-18

Family

ID=50000051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015551234A Pending JP2016505093A (ja) 2013-01-07 2013-12-20 固相薄膜電池用の膜を少なくとも1層成膜する方法、その成膜方法に用いるプラズマ粉体噴射装置、及び固相薄膜電池

Country Status (8)

Country Link
US (1) US20150311497A1 (ja)
EP (1) EP2941492A2 (ja)
JP (1) JP2016505093A (ja)
KR (1) KR20150106897A (ja)
CN (1) CN104919075A (ja)
DE (1) DE102013100084A1 (ja)
HK (1) HK1210505A1 (ja)
WO (1) WO2014106792A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073777A (ja) * 2017-10-17 2019-05-16 岩谷産業株式会社 混合ガスおよびそれを用いた溶射皮膜の形成方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015201930A1 (de) * 2015-02-04 2016-08-04 Bayerische Motoren Werke Aktiengesellschaft Festkörper-Energiespeicherzelle mit konstanten Volumen
KR102585447B1 (ko) 2015-05-20 2023-10-06 시온 파워 코퍼레이션 전극용 보호층
DE102016103174B4 (de) * 2016-02-23 2019-10-31 Reinhold Riemensperger Verfahren zur Herstellung einer Schichtstruktur an einem Oberflächenbereich eines Bauelements
US10879527B2 (en) * 2016-05-20 2020-12-29 Sion Power Corporation Protective layers for electrodes and electrochemical cells
RU2645421C1 (ru) * 2016-09-16 2018-02-21 Александр Алексеевич Семенов Способ нанесения металлического порошкового покрытия на поверхность металлических подложек
RU2667571C1 (ru) * 2017-10-03 2018-09-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ повышения износостойкости деталей центробежного насоса
US10668511B2 (en) * 2018-03-20 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method of cleaning process chamber
US11735722B2 (en) 2019-04-10 2023-08-22 Global Graphene Group, Inc. Method of producing conducting polymer network-enabled particulates of anode active material particles for lithium-ion batteries
US11916223B2 (en) 2019-05-09 2024-02-27 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing conducting polymer network-protected cathode material particulates
US20200365902A1 (en) * 2019-05-14 2020-11-19 Nanotek Instruments, Inc. Conducting polymer network-based cathode-protecting layer for lithium metal secondary battery
KR20230023215A (ko) * 2021-08-10 2023-02-17 이창훈 세라믹 코팅 시스템 및 방법
CN115224368B (zh) * 2022-08-16 2023-12-19 西安交通大学 固态电解质与锂负极一体化电池组件、锂固态电池及制备方法
DE102022209709A1 (de) 2022-09-15 2024-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zur ausbildung von einer metallschicht auf einer oberfläche eines festen, ionenleitenden substrats und mit dem verfahren herstellbares substrat

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316665A (ja) * 1996-03-29 1997-12-09 Toshiba Corp 耐熱部材及び耐熱部材の品質評価方法
JP2011169314A (ja) * 2010-01-25 2011-09-01 Hitachi Ltd セラミックアブレーダブルコーテイングを有するガスタービン用シュラウド
WO2012026952A1 (en) * 2010-08-24 2012-03-01 Applied Materials, Inc. In-situ synthesis and deposition of battery active lithium materials by spraying

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569520A (en) 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5445906A (en) 1994-08-03 1995-08-29 Martin Marietta Energy Systems, Inc. Method and system for constructing a rechargeable battery and battery structures formed with the method
FR2729400B1 (fr) * 1995-01-18 1997-04-04 Univ Paris Curie Procede et dispositif pour deposer une couche mince d'oxyde metallique, materiau ainsi obtenu, et element de pile a combustible incluant ce materiau
WO2001073883A2 (en) 2000-03-24 2001-10-04 Cymbet Corporation Low-temperature fabrication of thin-film energy-storage devices
KR100341407B1 (ko) 2000-05-01 2002-06-22 윤덕용 플라즈마 처리에 의한 리튬전이금속 산화물 박막의 결정화방법
DE10212052B4 (de) * 2002-03-19 2004-05-06 Leoni Ag Verfahren zur Herstellung einer elektrochemischen Energiequelle
DE202007019184U1 (de) * 2007-09-11 2010-12-30 Maschinenfabrik Reinhausen Gmbh Vorrichtung zur Behandlung oder Beschichtung von Oberflächen
TWI530582B (zh) 2009-08-24 2016-04-21 應用材料股份有限公司 利用電漿噴塗之電池活性鋰材料的原位沉積
CN102327855A (zh) * 2011-08-11 2012-01-25 湖南丰源业翔晶科新能源股份有限公司 一种改善锂离子电池正极用铝箔粘接性能的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316665A (ja) * 1996-03-29 1997-12-09 Toshiba Corp 耐熱部材及び耐熱部材の品質評価方法
JP2011169314A (ja) * 2010-01-25 2011-09-01 Hitachi Ltd セラミックアブレーダブルコーテイングを有するガスタービン用シュラウド
WO2012026952A1 (en) * 2010-08-24 2012-03-01 Applied Materials, Inc. In-situ synthesis and deposition of battery active lithium materials by spraying

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073777A (ja) * 2017-10-17 2019-05-16 岩谷産業株式会社 混合ガスおよびそれを用いた溶射皮膜の形成方法

Also Published As

Publication number Publication date
WO2014106792A4 (de) 2014-10-30
HK1210505A1 (en) 2016-04-22
DE102013100084A1 (de) 2014-07-10
CN104919075A (zh) 2015-09-16
WO2014106792A3 (de) 2014-09-12
WO2014106792A2 (de) 2014-07-10
EP2941492A2 (de) 2015-11-11
US20150311497A1 (en) 2015-10-29
KR20150106897A (ko) 2015-09-22

Similar Documents

Publication Publication Date Title
JP2016505093A (ja) 固相薄膜電池用の膜を少なくとも1層成膜する方法、その成膜方法に用いるプラズマ粉体噴射装置、及び固相薄膜電池
JP7280933B2 (ja) リチウム二次電池の負極の作製方法
JP6999217B2 (ja) 複合膜、その製造方法、それを含んだ負極構造体及びリチウム二次電池
JP6045260B2 (ja) 蓄電装置
JP6134533B2 (ja) 二次電池
JP6050106B2 (ja) 非水二次電池用シリコン負極の製造方法
KR101088263B1 (ko) 전지용 전극판 및 그것을 이용하는 리튬이차전지
JP2007005267A (ja) 常温溶融塩を用いたリチウムイオン二次電池およびその製造方法
CN102473902A (zh) 锂离子电池用负极及其制造方法以及锂离子电池
CN107226455A (zh) 一种铌改性钴酸锂正极材料的制备方法
JP2008204835A (ja) 電気化学素子とその電極の前処理方法および製造方法、前処理装置
Nwanna et al. An overview of the application of atomic layer deposition process for lithium‐ion based batteries
CN100466340C (zh) 非水电解质二次电池
KR101551682B1 (ko) 전극 및 전극 활물질의 제조방법
KR20170032905A (ko) 탄소 나노튜브-기반 리튬 이온 배터리
JP2010049968A (ja) 固体電解質二次電池
US20100285362A1 (en) Li-ION BATTERY WITH SELECTIVE MODERATING MATERIAL
JP2005243371A (ja) 正極とそれを用いた捲回型電気化学素子
CN113097481A (zh) 具有核壳结构的锂离子电池正极材料及锂离子电池
KR100587220B1 (ko) 카본을 도포한 실리콘 분말의 제조 방법 및 이를 이용한리튬이차전지
KR102682363B1 (ko) 리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지
KR20240081095A (ko) 전고체 전지용 황화물계 고체전해질의 제조방법
KR20240081094A (ko) 전고체 전지용 황화물계 고체전해질의 제조장치
CN112886101A (zh) 金属-空气电池和制造金属-空气电池的方法
KR20200090058A (ko) 리튬이차전지용 음극 활물질 및 이를 포함한 리튬이차전지

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181113