DE102013100084A1 - Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie - Google Patents

Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie Download PDF

Info

Publication number
DE102013100084A1
DE102013100084A1 DE102013100084.3A DE102013100084A DE102013100084A1 DE 102013100084 A1 DE102013100084 A1 DE 102013100084A1 DE 102013100084 A DE102013100084 A DE 102013100084A DE 102013100084 A1 DE102013100084 A1 DE 102013100084A1
Authority
DE
Germany
Prior art keywords
plasma
powder
substrate
mixing area
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102013100084.3A
Other languages
English (en)
Inventor
Stefan Nettesheim
Klaus Forster
Dariusz Korzec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Reinhausen GmbH
Original Assignee
Reinhausen Plasma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reinhausen Plasma GmbH filed Critical Reinhausen Plasma GmbH
Priority to DE102013100084.3A priority Critical patent/DE102013100084A1/de
Priority to CN201380069694.8A priority patent/CN104919075A/zh
Priority to EP13824032.0A priority patent/EP2941492A2/de
Priority to KR1020157021219A priority patent/KR20150106897A/ko
Priority to JP2015551234A priority patent/JP2016505093A/ja
Priority to PCT/IB2013/061225 priority patent/WO2014106792A2/de
Publication of DE102013100084A1 publication Critical patent/DE102013100084A1/de
Priority to US14/793,113 priority patent/US20150311497A1/en
Priority to HK15111328.3A priority patent/HK1210505A1/xx
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung zumindest einer Schicht (32) für feststoffbasierte Dünnschichtbatterien (100) durch Plasma-Pulver-Sprühen. Ferner betrifft die Erfindung einen Plasma-Pulver-Sprüher (1) zur Herstellung zumindest einer Schicht (32) für feststoffbasierte Dünnschichtbatterien (100) auf einem Substrat (33). Der Plasma-Pulver-Sprüher umfasst einen Plasmaerzeugungsbereich (10), in dem vermittels einer Energiequelle (15) ein Plasmagasstrom (13) erzeugt werden kann, und mindestens einen Mischbereich (20), der sich im Plasmagasstrom (13) befindet. Die Erfindung umfasst auch eine nach einem erfindungsgemäßen Verfahren hergestellte festkörperbasierte Dünnschichtbatterie (100).

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung zumindest einer Schicht für feststoffbasierte Dünnschichtbatterien durch Plasma-Pulver-Sprühen. Ferner betrifft die Erfindung einen Plasma-Pulver-Sprüher zur Herstellung zumindest einer Schicht für feststoffbasierte Dünnschichtbatterien auf einem Substrat. Der Plasma-Pulver-Sprüher umfasst einen Plasmaerzeugungsbereich, in dem vermittels einer Energiequelle ein Plasmagasstrom erzeugt werden kann, und mindestens einen Mischbereich, der sich im Plasmagasstrom befindet. Die Erfindung umfasst auch eine nach einem erfindungsgemäßen Verfahren hergestellte festkörperbasierte Dünnschichtbatterie.
  • Festkörperbasierte Batterien können in einer Vielzahl von Anwendungsgebieten den Bedarf nach leistungsstarken, billigen, sicheren und in bestehende Produkte integrierbare Primär- und Sekundärbatterien decken. Sie zeichnen sich durch hohe Zyklenfestigkeit, geringe Selbstentladung, Sicherheit und geringe Toxizität aus. Die fortschreitende Miniaturisierung erfordert immer kleinere Batterien mit flexibler Architektur bei gleichzeitig hoher volumetrischer bzw. spezifischer Leistungsdichte. Festkörperbasierte Batterien können beispielsweise in autonomen Mikrosystemen wie mikroelektromechanischen Systemen (MEMS), elektronischen Bauteilen über RFID-Tags, verschiedensten drahtlosen Sensoren, intelligenten Kreditkarten, tragbaren elektrische Geräten, funktionalisierten Bekleidungsstücken bis hin zu Elektromobilitätsanwendungen eingesetzt werden. Eine typische festkörperbasierte Dünnschichtbatterie speichert Energie chemisch, vorzugsweise in niederwertigen Alkalimetallen wie Lithium oder Natrium. Die z.B. in elementaren Lithium(Li) chemisch gespeicherte Energie kann durch eine exotherme Oxidation zu Li+-Anion als elektrische Energie genutzt werden: Li ⇋ Li+ + e.
  • Eine feststoffbasierte Dünnschichtbatterie besteht aus einer Kathode und einer Anode, die körperlich von einem Elektrolyten getrennt werden. Beim Laden oder Entladen einer feststoffbasierten Dünnschichtbatterie fließen stets zwei einander entgegengerichtete Ströme, ein Ionenstrom und ein elektrischer Kompensationsstrom zum Ladungsausgleich. Die sich aus diesem Kompensationsstrom und der Batteriespannung ergebende elektrische Leistung kann von einem Verbraucher genutzt werden. Der Elektrolyt ist leitfähig bezüglich des Ionenstroms und isolierend bezüglich des Elektronenstroms. Folglich kann ein Elektronenstrom nur fließen, wenn Anode und Kathode elektrisch verbunden werden. Wenn kein Elektronenstrom fließen kann, ist der Ionenstrom Coulombunterdrückt, so dass die Energie chemisch gespeichert bleibt.
  • Beim Entladevorgang wird Li in der Anode zu Li+oxidiert. Wenn von Anode zu Kathode ein elektrochemisches Potentialgefälle besteht, diffundieren die Ionen in die Kathode. Beim Ladevorgang läuft der Prozess in Gegenrichtung ab. Die in die Kathode diffundierten Ionen werden beim Ladevorgang im Kathodenmaterial interkalliert und beim Entladevorgang entsprechend deinterkalliert. Ein geeignetes Interkallationsmaterial besteht z.B. aus kristallinen Schichten eines Oxids von Übergangsmetallen wie lithiiertem Kobaltdioxid (LiCoO2). In einer Kathode aus LiCoO2 läuft beim Ladevorgang bzw. Entladevorgang folgende Reaktion ab, wobei die römischen Ziffern die Oxidationsstufe angeben: Li+ICo+IIIO –II / 2 ⇋ Li +I / 1-xCo +III / 1-xCo +IV / xO –II / 2 + Li+I + xe–I.
  • Um die volumetrische oder spezifische Speicherkapazität (gemessen in Wh/ccm bzw. Wh/g) zu steigern, kann das Volumen der Kathodenschicht erhöht werden. Da die projizierte Grundfläche der Dünnschichtbatterie meist durch ihre Anwendung festgelegt ist, kann das Kathodenvolumen pro Schichtsystem aus Kathode, Elektrolyt und Anode nur über die Schichtdicke erhöht werden. Mit steigender Dicke der Kathodenschicht sinkt anderseits die elektrische und Ionenleitfähigkeit des Schichtsystems. Die Kathodenschicht und auch die Elektrolytschicht sind daher möglichst dünn und zudem defektstellenfrei aufzutragen. Je dünner die Schichtdicke und je größer die Grenzflächen zwischen Kathode und Elektrolyt sowie zwischen Elektrolyt und Anode pro Volumeneinheit, umso besser ist tendenziell die Ionenleitfähigkeit des Schichtsystems.
  • In der automatisierten Serienfertigung empfiehlt es sich, alle Produktionsschritte einer Dünnschichtbatterie auf einem kontinuierlich laufenden Produktionsband durchzuführen. Folglich begrenzt der langsamste Teilprozess die Taktzahl der Produktion. Die Produktionskosten korrelieren direkt mit der Taktzahl. Die Auftragung der Kathode ist oft ein begrenzender Faktor für die Taktzahl.
  • Ein Erfordernis für wiederaufladbare Sekundarbatterien ist, dass die Fähigkeit zur Interkallation des Kathodenmaterials über viele Interkallations- und Deinterkallationszyklen erhalten bleibt und dem damit einhergehenden mechanischen Stress standhält. Die elektrochemischen Eigenschaften einer Kathodenschicht werden v.a. durch ihre Kristallstruktur, chemische Stöchiometrie, Morphologie, wie Kristallinität, Korngrößenverteilung und die Porosität der Schicht bestimmt.
  • In der Patentschrift US 5,612,152 wird eine wiederaufladbare feststoffbasierte Multizellenbatterie offenbart. Die einzelnen Zellen umfassen eine Kathodenschicht aus einem Lithiuminterkallationsmaterial, eine Elektrolytschicht aus Lithium-Phosphor-Oxynitrid (LIPON) und eine Anodenschicht aus Lithium. Durch Strukturierung und serielle oder parallele Verschaltung mehrerer Zellen können Batterien mit verschiedenen Batteriestromstärken, -spannungen und -kapazitäten hergestellt werden. Der Energiegehalt der Batterie kann auch durch die Dicke der Kathoden- und Anodenschichten gesteigert werden.
  • Die Patentschrift US 5,445,906 betrifft eine Methode und ein System zur Herstellung einer Dünnschichtbatterie. Ein netzartiges Substrat wird automatisiert durch eine Vielzahl von Beschichtungsstationen gefahren. Auf dem Substrat werden in den Beschichtungsstationen sukzessive die Schichten der für festkörperbasierte Dünnschichtbatterien typischen Schichtsequenz aufgebracht. Zur Strukturierung der Schichten können Masken eingesetzt werden. Insbesondere kann das batteriebeschichtete Netzsubtrat aufgerollt werden. Vorzugsweise ist das Netzsubstrat auf einem Transportband angeordnet. Damit sich das Transportband während der Beschichtungsprozesse kontinuierlich bewegen kann, wird die Länge der einzelnen Beschichtungsstationen an die Beschichtungszeit der jeweiligen Schicht angepasst.
  • In der Patentschrift DE 100 53 733 B4 wird ein Verfahren zur Kristallisation einer Dünnschicht aus einem Lithium-Übergangsmetalloxid vorgeschlagen. In einem ersten Schritt wird eine Dünnschicht aus einem Lithium-Übergangsmetalloxid auf einem Substrat z.B. vermittels einer HF-Magnetron-Sputterquelle aufgedampft. In einem anschließenden Schritt wird die Dünnschicht mit einem Sauerstoff- oder Edelgasplasma nachbehandelt, um den Kristallisationsgrad, die Oberflächenglätte und elektrochemische Beständigkeit des Dünnschichtmaterials zu erhöhen.
  • Die Übersetzung DE 601 26 779 T2 der Patentschrift EP 1 305 838 B1 beschreibt eine Dünnschichtenergiespeichervorrichtung auf einem Substrat mit einer Schmelz- bzw. Degradationstemperatur unter 300°C sowie ein Verfahren zu deren Herstellung. Auf dem Substrat können verschiedene Materialien wie LIPON oder Lithium-Interkallationsmaterialien aus einer oder mehreren DC-Magnetron-Sputterquellen abgeschieden werden. Desgleichen können eine oder mehrere Hilfsquellen auf das Substrat gerichtet und die Materialschicht mit energetisierten Hilfsstoffen mit Energie beaufschlagt werden, so dass das Kristallwachstum bezüglich Kristallitgröße und Kristallorientierung gesteuert werden kann.
  • In der Patentanmeldung US 2011/0045206 A1 wird ein Verfahren und eine Vorrichtung zur Herstellung einer elektrochemischen Schichteiner Dünnschichtbatterie offenbart. In einer Prozesskammer wird ein Dispenser angeordnet. In einer Aktivierungskammer des Dispensers wird aus einem Precursorgemisch ein Plasma gezündet. Das Precursorgemisch umfasst eine Lösung, Suspension oder Aufschlämmung von Precursorpartikeln in einem flüssigen Trägermedium. Das Precursorgemisch kann insbeondere Kobalt, Nickel, Magnesium, deren Nitrate oder Lithium enthalten. Das plasmafizierte Precursorgemisch wird in einem Mischbereich mit Sauerstoff und einem kombustiblen Gas gemischt, die zusätzliche thermische Energie in die Precursorpartikel einträgt. In einer Reaktionskammer reagieren das Precursorgemisch und der Sauerstoff zu elektrochemisch aktiven Nanokristallen, die auf einem Substrat abgeschieden werden. Insbesondere ist die Beimischung eines kohlenstoffhaltigen Gases zur Umhüllung der Nanokristalle mit Kohlenstoff vorgesehen. Ferner wird dem Gasstrom, in dem die Nanokristalle enthalten sind, ein Polymerbinder zugeführt, um eine Schicht aus Nanokristallen und Polymerbinder zu erzeugen.
  • Ein Nachteil des Standes der Technik ist die typischerweise begrenzte Abscheiderate. Methoden wie physikalische Gasphasenabscheidung (PVD), thermisches Aufdampfen oder Sputtern liefern Abscheideraten von nur wenigen nm/s und erfordern aufwendige Vakuumanlagen mit einem Basisdruck der unter 10–4mbar oder vorzugsweise sogar unter < 10–6 mbar. Insbesondere wird das Kathodenmaterial erst beim Herstellungsverfahren durch chemische Reaktionhergestellt oder aus einem soliden Target entnommen. Solche Abscheidetechniken begrenzen die Prozessgeschwindigkeit oder sind bezüglich der erzielten Schichtstöchiometrie und -morphologie unsicher. Zumal bei gestackten Batterien ist die mangelnde Reproduzierbarkeit der Schichteigenschaften von Nachteil und erhöht den Produktionsausschuss.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung dünner und mechanisch stabiler Schichtenfür feststoffbasierte Dünnfilmbatterien zu schaffen, das schnell, kostengünstig, einfach, zuverlässig, automatisierbar, flexibel in einen Produktionsprozess integrierbar ist.
  • Diese Aufgabe wird durch ein Verfahrengelöst, das die Merkmale des Anspruchs 1 umfasst.
  • Eine weitere Aufgabe der Erfindung ist einen Plasma-Pulver-Sprüher zur Herstellung dünner Schichten für feststoffbasierte Dünnfilmbatterien zu schaffen, mit dem schnell, kostengünstig, zuverlässig, automatisierbar und die Schichten für eine feststoffbasierte Dünnfilmbatterie hergestellt werden können.
  • Diese Aufgabe wird durch eine Vorrichtung gelöst, die die Merkmale des Anspruchs 14 umfasst.
  • Ebensoist es die Aufgabe der Erfindung, eine langzeitleistungsfähige, mechanisch stabile undeinfach und kostengünstig herzustellende festkörperbasierte Dünnschichtbatterie zu schaffen.
  • Diese Aufgabe wird durch eine festkörperbasierte Dünnschichtbatterie gelöst, die die Merkmale des Anspruchs 21 umfasst.
  • Das erfindungsgemäße Verfahren dient der Herstellung zumindest einer Schicht für feststoffbasierte Dünnschichtbatterien oder auch Superkondensatoren. Erfindungsgemäß herstellbare Schichttypen können die Stromkollektoren, die Anode, die Kathode, den Elektrolyten, den elektronischen Separator oder eine schützende Außenbeschichtung umfassen. In Dünnschichtbatterien können mehrere Schichten gleichen Schichttyps erfindungsgemäß hergestellt werden. Die erfindungsgemäß hergestellten Schichten bestehen aus Pulverpartikeln, die vermittels eines Plasma-Pulver-Sprühers aufbereitet oder elektrochemisch aktiviert und auf einem Substrat abgeschieden werden. Der Plasma-Pulver-Sprüher umfasst einen Plasmaerzeugungsbereich und mindestens einen örtlich davon getrennten Mischbereich.
  • Zunächst wird ein Zündgasstrom in den Plasmaerzeugungsbereich eingelassen. Aus dem Zündgasstrom wird durch Beaufschlagung mit Energie ein Plasmagasstrom erzeugt. Erfindungsgemäß besteht der Zündgasstrom aus gasförmigen Ausgangsstoffen, nicht jedoch flüssigen oder festen Ausgangsstoffen.
  • Ferner wird ein Pulver-Aerosolstrom erzeugt. Ein Pulver-Aerosol im Sinne der Erfindung umfasst ausschließlich in einem Trägergas dispergierte Pulverpartikel festen Aggregatszustandes. Der Pulver-Aerosolstrom kann in bevorzugter Weise erzeugt werden, in dem Trägergasstrom aus einem Trägergasreservoir in ein Pulverreservoir strömt und darin enthaltene Pulverpartikel mitführt. Der Pulver-Aerosolstrom wird dem Pulverreservoir dann beispielsweise über eine gegenüber ihm unter Unterdruck stehende Pulver-Aerosol-Zuleitung entnommen und in mindestens einen der Mischbereiche eingebracht. Ferner wird in diesem Mischbereich der Plasmagasstrom aus dem Plasmaerzeugungsbereich eingeleitet.
  • Dadurch mischen sich Plasmagasstrom und Pulver-Aerosolstrom, so dass ein Plasma-Pulver-Aerosol entsteht.
  • Das Plasma-Pulver-Aerosol wird in einem Strom aus dem mindestens einen Mischbereich ausgeleitet und auf ein Substrat gerichtet, das in einem Beschichtungsbereich angeordnet ist. Die im Plasma-Pulver-Aerosolstrom dispergierten Pulverpartikel werden so im Beschichtungsbereich als Schicht auf dem Substrat abgeschieden. Unter Einwirkung des Plasmas werden die Pulverpartikel modifiziert.
  • Insbesondere können die Pulverpartikel unter dosierter Beimischung von Trägergas in das Pulverreservoir derart dosiert entnommen werden, dass im Pulver-Aerosolstrom ein konstanter Massenstrom an Pulverpartikeln dM/dt und ein konstantes Mischungsverhältnis von Pulverpartikeln und Trägergas eingestellt wird, wobei M die Masse der im Pulver-Aerosolstrom transportierten Pulverpartikel und t die Zeit bezeichnet. Der Pulver-Aerosolstrom wird zumindest über einen Entnahmezeitraum, der auf den typischen Zeitskalen des Beschichtungsprozesses liegt, konstant gehalten. Alternativ können über den Entnahmezeitraum auch beliebige Soll-MassenflussprofiledM/dt(t) und/oder Mischungsverhältnisse zwischen Trägergas und Pulverpartikeln im Pulver-Aerosolstrom kontrolliert eingeregelt werden.
  • Das Verfahren kann ferner vorsehen, den Pulver-Aerosolstrom durch eine Einrichtung zu führen, die ihn auf eine für die Prozessführung erforderliche Temperatur bringt. Ebenso kann das Substrat durch einen Substratheizer eines Substrathalters geheizt werden.
  • Das erfindungsgemäße Verfahren kann zudem ein Verstellsystem nutzen, um dem der Plasma-Pulver-Sprüher und/oder das Substrat bzw. der Substrathalter zu bewegen. Eine so bewirkte Relativbewegung zwischen Plasma-Pulver-Sprüher und Substrat kann in einer oder allen drei Raumrichtungen erfolgen und Verkippungen bezüglich einem oder beiden Raumwinkeln einschließen. Dadurch kann der Plasma-Pulver-Sprüher entlang beliebiger Trajektorien die Oberfläche von Substraten beliebiger zwei- oder dreidimensionaler Topographien überfahren und beschichten. Ebenso kann der Einfallwinkel des Plasma-Pulver-Aerosolstroms bezüglich der Oberfläche eingestellt werden, um beispielsweise Vertiefungen im Substrat flächendeckend zu beschichten. Insbesondere kann der Abstand zwischen dem Plasma-Pulver-Sprüher und dem Substrat eingestellt werden. Dieser Abstand bestimmt durch die Aufweitung des Plasma-Pulver-Aerosolstroms die Größe des Beschichtungsbereiches, den davon eingetragenen Wärmestrom in das Substrat pro Flächeneinheit und die Beschichtungsrate bzw. einen Gradienten der Beschichtungsrate über dem Beschichtungsbereich.
  • Beispielsweise kann ein flaches Substrat durch eine Relativbewegung des Plasma-Pulver-Sprühers entlang einer Mäander-oder Spiraltrajektorie ganz- oder teilflächig beschichten. Durch angepasste Trajektorien und/oder Unterbrechung der Zufuhr von Pulverpartikeln lassen sich auch beliebig geformte Schichten auftragen. Zusätzlich kann ein statisches oder ebenfalls vom Verstellsystem verstellbares Strukturierungselementin den Plasma-Pulver-Aerosolstrom auf oder über dem Substrat eingebracht werden, um die abgeschiedene Schicht zu strukturieren. Das Strukturierungselement kann eine Blende über oder eine Maske auf dem Substrat sein oder durch lithographische Methoden erzeugt werden.
  • Das erfindungsgemäße Verfahren kann auch in einer Beschichtungskammer, in die das Substrat eingebracht wird, durchgeführt werden. Der Plasma-Pulver-Sprüher kann hierfür innerhalb oder außerhalb der Beschichtungskammer angeordnet werden und mit ihr fluide verbunden sein. Der Beschichtungsprozess kann so unter Schutzgasatmosphäre geführt werden. Insbesondere kann in der Beschichtungskammer vermittels einer Saugpumpe ein Unterdruck gegenüber dem Mischbereich erzeugt werden, so dass die Beschichtung unter Niederdruck oder Vakuumbedingungen erfolgt.
  • Gemäß einer Variante des erfindungsgemäßen Verfahrens kann in den mindestens einen Mischbereich zusätzlich je ein Zusatzmaterial eingebracht werden. Inmindestens einem weiteren Mischbereich kann auch je ein Zusatzmaterial und/oder ein Pulver-Aerosolstrom zugeführt werden. So können verschiedene Mischbereiche mit unterschiedlichen Materialien beschickt werden. Der mindestens eine weitere Mischbereich liegt im Plasma-Pulver-Aerosolstrom und kann innerhalb oder außerhalb des Plasma-Pulver-Sprühers liegen. Das Zusatzmaterial kann beispielsweise ein kohlenstoffhaltiges Gas zur plasmagestützen Gasphasenabscheidung von Kohlenstoff oder ein weiteres Pulver-Aerosol sein, dessen Pulverpartikel eine andere chemische, elektrochemische oder strukturelle Zusammensetzung als die im ersten Mischbereich eingebrachten Pulverpartikel haben. Die im ersten Mischbereich eingebrachten Pulverpartikel können so teilweise mit einem oder mehreren Zusatzmaterialien beschichtet oder ganz umhüllt werden. Die Verfahrensbedingungen in den Mischbereichen können z.B. durch die Plasmaeigenschaften, die Temperatur und/oder den Druck bzw. die Partialdruckverhältnisse eingestellt werden.
  • Zur Herstellung einer Anoden- oder Kathodenschicht einer festkörperbasierten Dünnfilmbatterie bestehen die Pulverpartikel erfindungsgemäß aus einem für die Einlagerung von Ionen geeigneten Interkallationsmaterial. Bevorzugt beruht die festkörperbasierten Dünnfilmbatterie auf der Interkallation von Alkalimetallionen wie Lithiumionen. Die Pulverpartikel bestehen z.B. aus einem lithiierten Oxid eines oder mehrerer Übergangsmetalle.
  • Gemäß einer erfindungsgemäßen Verfahrensführung werden die Pulverpartikel, aus denen die Schicht aufgebaut wird, im Plasma-Pulver-Aerosolstrom thermisch aktiviert. Ferner werden die Pulverpartikel im Plasma-Pulver-Aerosolstrom bezüglich ihrer chemischen Stöchiometrie und ihrer Partikelgrößenverteilung nicht verändert. Der Partikelstrom enthält aufgrund der Partikelgrößenverteilung feste und geschmolzene Anteile, die beim Auftreffen auf dem Substrat schockartig erstarren und so einen festen Verbund bilden. Die Porosität der Schicht wird wesentlich von der Partikelgrößenverteilung der Pulverpartikel sowie ihrer temperatur-und druckabhängigen Diffusivität auf dem Substrat bestimmt. Die Diffusivität kann z.B. durch die Abscheiderate, die Substrattemperatur oder die Auftreffgeschwindigkeit der Pulverpartikel auf dem Substrateingestellt werden. Je höher die Substrattemperatur oder die Auftreffgeschwindigkeit und desto geringer die Abscheiderate, desto mehr Zeit bleibt den Pulverpartikeln pro Volumeneinheit zur Umordnung auf dem Substrat und desto tendenziell dichter wird die Schicht. Die Porosität der Schicht kann den mechanischen Stress reduzieren, der beispielsweise während der Interkallations- und Deinterkallationszyklen von Ionen in einer Kathodenschicht entsteht. Ferner kann sie durch Erhöhung der effektiven Oberfläche die Ionenleitfähigkeit der Batterie erhöhen.
  • Der Zündgasstrom und/oder der Trägergasstrom bestehen bevorzugt aus bei Prozessbedingungen einem oder mehreren chemisch inerten Gasen wie Argon oder Stickstoff. Zusätzlich können über Flussregler dosierte Teilströme an Sauerstoff, Wasserstoff und/oder eines kohlenstoffhaltigen Gases beigemischt werden. Wasserstoff kann beispielsweise als Reduktionsmittel fungieren. Durch die kontrollierte Oxidierung kombustibler Gase, wie Wasserstoff oder den kohlenstoffhaltigen Gasen, wird erfindungsgemäß der Plasma-Pulver-Aerosolstrom zusätzlich beheizt. In einem typischen erfindungsgemäßen Formiergas aus Stickstoff und Wasserstoff liegt der Wasserstoffanteil üblicherweise unter 10 Gewichtsprozent des Gesamtgasflusses, bevorzugt jedoch zwischen 3 und 7 Gewichtsprozent. Dementsprechend liegen die Flussraten von z.B. Stickstoff und Wasserstoff je im Bereich von 10–25 sccm. Typischerweise liegt der im zumindest einen Mischbereich eingestellte Gesamtdruck bei 0,5–2,5 bar.
  • Gemäß der Erfindung können insbesondere die Pulverpartikel thermisch bezüglich ihrer elektrochemischen Eigenschaften aktiviert werden. Dazu wird die Temperatur im Plasma-Pulver-Aerosolstrom beispielsweise durch Modulieren der im Plasmaerzeugungsbereich eingekoppelten Energie, den Gesamtdruck und die Verhältnisse der Partialdrücke der darin enthaltenen Gase eingestellt. Ferner kann die Temperatur durch den Substratheizer oder die Einrichtung zur Temperierung des Plasma-Pulver-Aerosols beeinflusst werden. Erfindungsgemäß lassen sich so in verschiedenen Mischbereichen unterschiedliche Temperaturen und Partialdruckverhältnisse einstellen. Gleichzeitig kann das chemische Stöchiometrie bzw. das chemische stöchiometrische Verhältnis von oxidischen Pulverpartikeln wie LixCoO2durch Beimischung von Sauerstoff, in einer Atmosphäre mit Sauerstoffüberschuss, erhalten werden. Sauerstofffehlstellen in LixCoO2-Pulverpartikeln vermindern Ionenleitfähigkeit und Fähigkeit zur Interkallation von Lithiumionen und folglich die Batterieleistung. In einer Ausführungsform des erfindungsgemäßen Verfahrens werden Pulverpartikel aus Lithimkobaltdioxid thermisch in die HT-Phase verändert. Dazu wird in mindestens einem Mischbereich eine Mischtemperatur im Bereich von 350°C bis 750°C eingestellt. Zur Einstellung des mittleren Wärmeeintrags pro Pulverpartikel und der chemischen Stöchiometrie der Pulverpartikel werden der Gesamtdruck sowie die Partialdrücke auf die Mischtemperatur abgestimmt. Besonders wesentlich für die Erzielung eines hohen Anteils an defektstellenarmen Lithimkobaltdioxidin der HT-Phase ist das Verhältnis vom Mischtemperatur und dem Partialdruck des Sauerstoffs. Gleichzeitig wird die Substrattemperatur unter 240°C, beispielsweise bei 200°C gehalten.
  • Die Erfindung umfasst des Weiteren einen Plasma-Pulver-Sprüher zur Herstellung zumindest einer Schicht auf einem Substratfür feststoffbasierte Dünnschichtbatterien. Er umfasst einen Plasmaerzeugungsbereich und eine Energiequelle zur Erzeugung eines Plasmagasstroms sowie mindestens einen Mischbereich, der innerhalb des Plasmagasstroms liegt. Erfindungsgemäß ist der Plasmaerzeugungsbereich daher vom mindestens einen Mischbereich örtlich getrennt. Insbesondere ist beim erfindungsgemäßen Plasma-Pulver-Sprüher dem Plasmaerzeugungsbereich lediglich ein Zündgasstrom zuführbar. Folglich wird ein Plasma ausschließlich aus dem Zündgasstrom gezündet. Der so erzeugte Plasmagasstrom strömt vom Plasmaerzeugungsbereich hin zum mindestens einen Mischbereich. Dem mindestens einen Mischbereich ist über je mindestens eine Pulver-Aerosol-Zuleitung ein Pulver-Aerosolstrom zuführbar. Im mindestens einen Mischbereich mischen sich der Plasmagasstrom und der Pulver-Aerosolstrom zu einem Plasma-Pulver-Aerosolstrom. Insbesondere gelangt kein Pulver-Aerosol in den Plasmaerzeugungsbereich. So können auch abrasive oder leitfähige Pulver im Plasma-Pulver-Sprüher verarbeitet werden, ohne ihn zu verschmutzen, zubeschädigen oder elektrisch kurzzuschließen. Gemäß einer erfindungsgemäßen Ausführungsform kann die mindestens eine Pulver-Aerosol-Zuleitung eine Einrichtung zum Einstellen einer Temperatur des Pulver-Aerosolstroms zugeordnet sein. Ebenso kann das Substrat gegenüber dem Plasma-Pulver-Sprüher auf einem Substrathalter mit einem Substratheizer zur Einstellung einer Substrattemperatur angeordnet sein.
  • Dem Plasma-Pulver-Sprüher kann ferner ein Verstellsystem zur Erzeugung einer Relativbewegung zwischen dem Plasma-Pulver-Sprüher und dem Substrathalter zugeordnet sein.
  • In einer besonderen Ausführungsformen der Erfindung umfasst der mindestens eine Mischbereich einen ersten Mischbereich und mindestens einen zweiten Mischbereich, die im örtlich voneinander getrennt und innerhalb des Plasma-Pulver-Sprühers angeordnet sind. Zusätzlich kann der mindestens eine zweite Mischbereich mindestens einen weiteren Mischbereich umfassen, der außerhalb des Plasma-Pulver-Sprühers angeordnet ist. Ferner kann jedem Mischbereich über die jeweilige mindestens eine Pulver-Aerosol-Zuleitung ein Zusatzmaterial zuführbar sein.
  • Die Erfindung umfasst ferner eine festkörperbasierte Dünnschichtbatterie, in der zumindest eine Schicht aus Pulverpartikeln durch ein Verfahren nach einem der Ansprüche 1 bis 13 hergestellt ist. Insbesondere können erfindungsgemäß mechanisch stabile und elektrochemisch aktive Schichten aus bezüglich ihrer elektrochemischen Eigenschaften aktivierten Pulverpartikeln und unter Verzicht auf Additive, wie z.B. Bindungsstoffe, hergestellt werden. Ebenso kann auf Hilfsstoffe verzichtet werden, die potenzielle Verunreinigungen für die Schichten darstellen.
  • Die Kathodenschicht kann beispielsweise aus LixCoO2, LiNixCo1-x-yMnyO2, LixFePO4, LixMn2O4, LixNiO2, LixNiCoO2, Li2FeSiO4, Li2MnSiO4, orLi2VOSiO4, TiS2, TiOS oder Na5V2(PO4)2F3bestehen. Das erfindungsgemäße Verfahren wird vorzugsweise so geführt, dass der Lithiumgehalt x des im Interkallationsmaterial eingelagerten Lithiums der Stabilitätsbereich nicht unterschreitet. Fällt der der Lithiumgehalt unter den Stabilitätsbereich, verringert sich die Interkallationsfähigkeit des Interkallationsmaterials irreversibel und folglich auch die Kapazität der Dünnfilmbatterie. Bei LixCoO2 liegt der Stabilitätsbereich z.B. bei 0.5 < x =< 1. Ferner können Pulverpartikel mit einer elektrochemisch besonders vorteilhaften Kristallstruktur verwendet werden. Beispielsweise können die Pulverpartikel im Pulverreservoir aus LixCoO2-Kristalliten überwiegend in der HT-Phase vorliegen. HT-LixCoO2hataufgrund seiner rhomboedrischen Schichtstruktur eine besonders günstige Interkallationskinetik fürdie Leitung und Speicherung von Lithiumionen. Ein besonderer Vorteil des Verfahrens besteht darin, dass die Pulverpartikel aus bezüglich ihrer Partikelgrößenverteilung vorausgewählt und auf ihre Qualität überprüft und ggf. nachselektiert werden können, bevor sie im Wesentlichen ohne Änderung der Partikelgrößenverteilung oder Stöchiometrie als Schicht abgeschieden werden. So kann der Produktionsausschuss reduziert werden.
  • Die erfindungsgemäßen Anodenschichten können aus den gleichen Materialien bestehen wie die Kathodenschichten oder aus reinem Lithium bestehen. Kathoden- und/oder Anodenschicht können ferner eine Matrix umfassen. Eine solche Matrix kann die von den Interkallationszyklen strapazierte Anodenschicht strukturell stabilisieren oder ihre elektrische und/oder Ionenleitfähigkeit erhöhen. Die Matrix kann z.B. aus Zusatzmaterialien wie Polymeren, Graphit, Buckyballs, Kohlenstoffnanoröhren, Lithiumtitanat, Silikon und/oder Zinn bestehen.
  • Die Elektrolytschicht kann aus amorphen Lithiumphosphoroxynitrid (LixPOyN2 oder „LIPON“) bestehen. Sie kann durch ein erfindungsgemäßes Verfahren direkt aus LIPON-Pulverpartikeln hergestellt werden. Alternativ kann das Elektrodenmaterial durch Reaktion vom z.B. oder aus z.B. Lithiumphosphat in einem stickstoffhaltigen Plasmagasstrahl synthetisiert werden. Die Verwendung eines Materials wie LIPON, das leitfähig bezüglich Lithiumionen und isolierend bezüglich Elektronen ist, macht eine zusätzliche Separatorschicht zur elektrischen Trennung von Kathoden- und Anodenschicht entbehrlich.
  • Ferner können die Kathoden- und Anodenschichten der Dünnfilmbatterie Stromkollektoren umfassen. Sie können z.B. aus Aluminium, Kupfer, Silber, Nickel, Nanowires, Kohlenstoffnanoröhrchen, Graphit oder leitfähigen Polymeren bestehen. Die Kathoden- oder Anodenschicht kann auch selbst als Stromkollektor ausgebildet sein.
  • Durch die im Vergleich zu anderen Verfahren niedrige Substrattemperatur von 240°C bis unter 90°C bei gleichzeitiger mechanischer Stabilität und Haftkraft der abgeschiedenen Schichten eignet sich das erfindungsgemäße Verfahren für eine Vielzahl von Substratmaterialien wie Edelstahlfolien, Glimmer (MICA), Halbleiterwafern, Gläsern, Polymerfolien, Textilien oder Papier. Ferner können erfindungsgemäße Dünnfilmbatterien direkt auf elektronischen Schaltplatinen (PCB) oder mikromechanischen System/(MEMS)-Bausteinen strukturiert und direkt auf Schaltungsebene elektrisch mit ihnen verbunden werden. Auch zur Herstellung von flexiblen Dünnfilmbatterien auf flexiblen Substraten ist das Verfahren geeignet.
  • Die typischen Schichtdicken einer erfindungsgemäßen Dünnschichtbatterie betragen bei den Kathoden- oder Anodenschichten zwischen 1 µm und 500 µm, typischerweise jedoch 10 µm bis 100 µm, bei den Elektrolytschichten 0,1 µm bis 10 µm, typischerweise jedoch 1 µm, und bei den Stromkollektoren 0,5 µm und 100 µm, typischerweise jedoch 50 µm.
  • Ein besonderer Vorteil des erfindungsgemäßen Verfahrens ist seine, verglichen mit dem Stand der Technik, hohe Abscheiderate. Typische Abscheideraten liegen zwischen 3 bis 5 g/min oder sogar 2–10 g/min. Auf die Schichtdicke bezogen, können typische Beschichtungsraten von 100 µm/s bis einigen 100 µm/s erreicht werden. Die Vorschubgeschwindigkeit der Relativbewegung zwischen Plasma-Pulver-Sprüher und Substrat beträgt beim Abscheideprozess z.B. 100 bis 200 mm/s, bei einem Abstand im Bereich von 3–15 mm.
  • Gemäß der Erfindung können an der Öffnung des Plasma-Pulver-Sprühers, am Zündgaseinlass, zwischen dem Plasmaerzeugungsbereich und einem Mischbereich und/oder an den Einmündungen der Pulver-Aerosol-Zuleitungen in einen Mischbereich Düsen oder dosierbare Düsen ausgebildet sein.
  • Nachfolgend sind erfindungsgemäße Ausführungsformen des Verfahrens und der Vorrichtung zur Herstellung zumindest einer Schicht für feststoffbasierte Dünnschichtbatterien anhand der beigefügten Zeichnungen näher beschrieben.
  • Diese beispielhaft konkretisierten Ausführungsformen sind nicht als Einschränkung für den Umfang der Erfindung zu werten.
  • Es zeigen:
  • 1 eine schematische Schnittansicht eines Schichtsystems einer festkörperbasierten Dünnschichtbatterie;
  • 2 eine schematische Schnittansicht durch eine Ausführungsform einer festkörperbasierte Dünnschichtbatterie mit strukturiertem Schichtaufbau;
  • 3 eine schematische Darstellung eines erfindungsgemäßen Verfahrens zur Herstellung zumindest einer Schicht für feststoffbasierte Dünnschichtbatterienvermittels eines Plasma-Pulver-Sprühers;
  • 4 eine schematische Schnittansicht einer Ausführungsform deserfindungsgemäßen Plasma-Pulver-Sprühers; und
  • 5 eine schematische Schnittansicht einer weiterer Ausführungsform des erfindungsgemäßen Plasma-Pulver-Sprühers; und
  • 6 eineschematische Schnittansicht einer anderen Ausführungsform des erfindungsgemäßen Plasma-Pulver-Sprühers.
  • In den Zeichnungen werden für gleiche oder gleich wirkende Elemente der Erfindung identische Bezugszeichen verwendet.
  • 1 zeigt den prinzipiellen Aufbau einer schichtweise aufgebauten feststoffbasierten Dünnschichtbatterie 100 gemäß dem Stand der Technik. Auf einem Substrat 33 wird eine Kathodenschicht 102 gefolgt von einer Elektrolytschicht 103 und einer Anodenschicht 104 aufgebracht. Die Elektrolytschicht ist ein Ionenleiter, so dass ein Ionenstrom zwischen Kathodenschicht 102 und Anodenschicht 104 fließen kann. Beim Ladevorgang der feststoffbasierten Dünnschichtbatterie 100 bewirkt der Ionenstrom eine Interkallation von Ionen in der Kathodenschicht 102 und entsprechend ihre Deinterkallation aus der Anodenschicht 104 bzw. vice versa für den Entladevorgang. Gleichzeitig ist die Elektrolytschicht 103 ein Isolator in Bezug auf die Elektronenleitung, so dass sie die Anodenschicht 102 und die Kathodenschicht 104 elektrisch trennt. Ein Ionenstrom wird elektrostatisch unterdrückt, wenn Anodenschicht 102 und die Kathodenschicht 104 anderweitig elektrisch verbunden sind, so dass zum Ladungsausgleich ein elektrischer Kompensationsstrom fließen kann. Die sich aus diesem Kompensationsstrom und der Batteriespannung ergebende elektrische Leistung kann von einem Verbraucher genutzt werden. Zur möglichst verlustfreien Aufnahme dieser Leistung können die Anodenschicht 102 und die Kathodenschicht 104 jeweils von einem elektrisch leitfähigen Stromkollektor 33 und 105 mit geringem elektrischem Grenzflächenwiderstand beschichtet werden. In 1 fungiert das Substrat 33 selbst als Stromkollektor der Kathodenschicht 104.
  • Die Kapazität der feststoffbasierten Dünnschichtbatterie 100 kann erfindungsgemäß erhöht werden, indem das Volumen der Kathodenschicht 102 durch eine größere Schichtdicke D erhöht wird. Technisch wird die Schichtdicke D jedoch durch den mechanischen Stress begrenzt, der mit der Volumenänderung des Interkallationsmaterials bei Ioneninterkallation und -deinterkallation einhergeht. Stabilität und Lebensdauer der feststoffbasierten Dünnschichtbatterie 100 können erhöht werden, indem der mechanische Stress durch eine poröse Ausgestaltung der Kathodenschicht 102 reduziert wird. Zur Erhöhung des Kompensationsstromes bzw. der Batteriespannung können zumindest die ionenleitende Schichtfolge 110 elektrisch parallel und/oder seriell verschaltet werden. 2 zeigt eine schematische Schnittansicht durch eine weitere Ausführungsform einer festkörperbasierte Dünnschichtbatterie 100 mit strukturiertem Schichtaufbau. In dieser Ausführungsform wird ein Stromkollektor 101 auf einem elektrisch isolierenden Substrat 33 vorgesehen. Die bezüglich 1 vorbeschriebenen Schichten 102, 103 und 104 werden vollflächig von einer elektrisch isolierenden Schutzschicht 106 überdeckt. Die Stromkollektoren 101 und 105 liegen zum Zwecke der elektrischen Kontaktierung teilflächig frei. 2 illustrieret, dass durch das erfindungsgemäße Verfahren beliebig zwei- oder dreidimensional strukturierter Schichten 32 von festkörperbasierten Dünnschichtbatterie 100 hergestellt werden können. Ebenso können Substrate 33 mit beliebiger dreidimensionaler Topographie beschichtet werden. 3 zeigt eine schematische Darstellung eines erfindungsgemäßen Verfahrens zur Herstellung zumindest einer Schicht 32 für feststoffbasierte Dünnschichtbatterien 100 vermittels eines Plasma-Pulver-Sprühers 1. In einen Plasmaerzeugungsbereich 10 wird ein Zündgasstrom 12 eingeleitet und mit Energie 11 beaufschlagt, so dass aus dem Zündgasstrom 12 ein Plasmagasstrom 13 gezündet wird. Der Plasmagasstrom 13 strömt in einen örtlich vom Plasmaerzeugungsbereich 10 getrennten Mischbereich 20. Des Weiteren wird in einem Pulverdosierer 40 aus einem Pulver 23 und einem Trägergas 42 ein Pulver-Aerosolstrom 44 erzeugt und dosiert in den Plasmagasstrom 13 im Mischbereich 20 eingeleitet. Dadurch wird ein Plasma-Pulver-Aerosolstroms 34 erzeugt, der aus dem Mischbereich 20 auf in einem Beschichtungsbereich 30 angeordnetes Substrat 33 gerichtet wird. Mithin wird auf dem Substrat 33 eine Schicht 32 aus Pulverpartikeln, die im Plasma-Pulver-Aerosolstrom 34 die modifiziert werdenkönnen, abgeschieden. Bei Plasmazündung können im Plasmaerzeugungsbereich 10 hohe Zündtemperaturen T10 bis zu einigen 10.000 K auftreten. Indem der Mischbereich 20 örtlich vom Plasmaerzeugungsbereich 10 getrennt wird, kann dort eine wesentlich tiefere Mischtemperatur T20 unter 1.000°C unabhängig eingestellt werden. Analog kann auch eine Substrattemperatur T33 unabhängig eingestellt werden. Um zu verhindern, dass Pulverpartikel in den Plasmaerzeugungsbereich 10 gelangen, kann dort ein höherer Zünddruck P10 eingestellt werden als der Mischdruck P20 im Mischbereich 20. Damit die Ströme wie vorangegangen beschrieben fließen, ist der Mischdruck P20 niedriger bzw. höher einzustellen als der Dosierdruck P40 im Pulverdosierer 40 bzw. der Beschichtungsdruck P30 im Beschichtungsbereich 30. P10, P20, P30 und P40 verstehen sich als statische und/oder dynamische Drücke. Das beschichtete Substrat 33 kann in einem nachfolgenden Schritt gesintert, getempert oder plasmabehandelt werden.
  • 4 zeigt eine schematische Schnittansicht einer Ausführungsform des erfindungsgemäßen Plasma-Pulver-Sprühers 1 zur Herstellung zumindest einer Schicht 32 auf einem Substrat 33 für feststoffbasierte Dünnschichtbatterien 100 und eines Substrathalters 39, die beide in einer Beschichtungskammer 31 angeordnet sind. Durch eine Saugpumpe 60 kann in der Beschichtungskammer 31 ein Unterdruck ∆P gegenüber einem im Plasma-Pulver-Sprüher 1 verorteten Mischbereich 20 erzeugt werden.
  • In einem Plasmaerzeugungsbereich 10 wird über einen Zündgaseinlass 18 ein Zündgasstrom 13 eingelassen. Aus diesem ist durch Beaufschlagung mit Energie 12 aus einer Energiequelle 15 ein Plasmagasstrom 13 zündbar. Die Energiequelle kann z.B. eine elektrische Spannungsquelle sein. Die elektrische Spannungsquelle kann z.B. eine kontinuierliche oder gepulste Gleich- und/oder Wechselspannung an einer aktiven Elektrode 16 gegen das Potential des Plasma-Pulver-Sprühers 1, des Substrats 33 und/oder der Beschichtungskammer 31 erzeugen.
  • Der Plasmagasstrom 13 strömt vom Plasmaerzeugungsbereich 10 in einen örtlich davon getrennten Mischbereich 20. Dem Mischbereich 20 ist mindestens eine Pulver-Aerosol-Zuleitung 47 zugeordnet, durch die ein Pulver-Aerosolstrom 44 zuführbar ist. Der Plasmagasstrom 13 und der Pulver-Aerosolstrom 44 mischen sich im Mischbereich zu einem Plasma-Pulver-Aerosolstrom 34, der über eine Öffnung 28 des Plasma-Pulver-Sprühers 1 auf ein Substrat gerichtet werden kann, so dass darin enthaltene Pulverpartikel als Schicht 32 abgeschieden werden.
  • Dabei können die Pulverpartikel thermisch zumindest in ihrer physikalischen Beschaffenheit modifiziert. Beispielsweise können die Pulverpartikel oberflächlich angeschmolzen oder in ihrer Kristallstruktur geändert werden. Um zur Modifikation der Pulverpartikel notwendige Temperaturen und Wärmeströme während ihrer Verweildauer im Plasma-Pulver-Aerosol 34 zu beaufschlagen, kann eine Kombination aus Druck bzw. das Partialdruckverhältnis und Temperatur im Plasma-Pulver-Aerosol 34 eingeregelt werden. DerWärmestrom wird im Wesentlichen von der Energiequelle 15 gespeist und geregelt. Massenflussregler u0, ..., un bzw. v0, ..., vk der Gaskomponenten des Zündgasstroms 11 bzw. des Trägergasstroms 42 regeln die Druckverhältnisse. Die Gaskomponenten werden in jeweiligen Reservoirs 12, 121, ..., 12n bzw. 42, 421, ..., 42k vorgehalten. Zusätzlich können im Zündgaseinlass 18, in den Pulver-Aerosol-Zuleitungen 47 und/oder in der Öffnung 28 Düsen zur Druck- und Strömungsregulierung ausgebildet sein. Der Wärmeeintrag in die Pulverpartikel hängt auch von der Geometrie des Plasma-Pulver-Sprühers 1, vom Unterdruck ∆P und vom Abstand 38 von Plasma-Pulver-Sprühers 1 und Substrat 33 ab. Zusätzlich kann die Temperatur des Pulver-Aerosolstroms 44 durch eine jeder Pulver-Aerosol-Zuleitung 47 zugeordneten Einrichtung 46 eingestellt werden. Ferner kann ein Substrathalter 39 einen Substratheizer 36 umfassen. Zur Temperaturerhöhung kann auch ein Gasgemisch wie O2 und H2 im Plasma-Pulver-Sprüher 1 zu einer kontrollierten exothermen Reaktion gebracht werden. Zur Begrenzung der lokalen Temperatur im Plasma-Pulver-Aerosolstrom 34 kann ein Gas oder Gasgemisch eingebracht werden, das ab einer spezifischen Schwelltemperatur endotherm reagiert. Erfindungsgemäß wird auf Einleitung von Flüssigkeiten in den Plasma-Pulver-Sprüher 1 verzichtet, um keine thermische Energie an ihre Verdampfung zu verlieren. Weiterhin kann die Substrattemperatur T33 auf das Substrat 33 gerichtete Gas- oder Plasmaströme oder durch Bestrahlung mit Licht beeinflusst werden.
  • Ferner kann ein Verstellsystem 50 eine Relativbewegung zwischen dem Plasma-Pulver-Sprüher 1 und dem Substrathalter 33 erzeugen. Beispielsweise kann der Substrathalter 39 auf einem Transportband 50 oder an einer Drehvorrichtung 50 angeordnet sein. Plasma-Pulver-Sprüher 1 und/oder Substrathalter 33 können auch starr mit einer Verstellvorrichtung 50 verbunden sein, die eine beliebige Translationen bzw. Rotationen entlang bzw. um zumindest der x-Achse x, y-Achse y und/oder z-Achse z ausführen kann. Durch die Relativbewegung sind auf Substraten 33 auch mit dreidimensionaler Topographie strukturierte Schichten 32 abscheidbar. Zusätzlich kann ein Strukturierungselement 37 in den Plasma-Pulver-Aerosolstrom 34 eingebracht werden, um das Substrat 33 teilweise von ihm abzuschatten oder abzudecken. Das Strukturierungselement 37 statisch oder durch das Verstellsystem 51 verstellbar ausgebildet sein.
  • 5 und 6 zeigen schematische Schnittansichten weiterer Ausführungsformen des erfindungsgemäßen Plasma-Pulver-Sprühers 1. Beim in 5 dargestellten Plasma-Pulver-Sprüher 1 umfasst der mindestens eine Mischbereich 20 einen ersten Mischbereich 20A und mindestens einen zweiten Mischbereich 20B, die im örtlich voneinander getrennt und innerhalb des Plasma-Pulver-Sprühers 1 angeordnet sind.
  • Beim in 6 dargestellten Plasma-Pulver-Sprüher 1 umfasst der mindestens eine Mischbereich 20 mindestens einen ersten Mischbereich 20A und mindestens einen zweiten Mischbereich 20B, die im örtlich voneinander getrennt sind, wobei mindestens ein weiterer Mischbereich 20C des mindestens einen zweiten Mischbereichs 20B außerhalb des Plasma-Pulver-Sprühers 1 angeordnet ist. Den Mischbereichen 20, 20A, 20B, 20C ist jeweils über je mindestens eine Pulver-Aerosol-Zuleitung 47, 47B, 47C ein Zusatzmaterial 44A, 44B, 44C zuführbar.
  • Bezugszeichenliste
  • 1
    Plasma-Pulver-Sprüher
    10
    Plasmaerzeugungsbereich
    11
    Energie
    12
    Zündgasstrom
    13
    Plasmastrom
    14
    Zündgasreservoir
    15
    Energiequelle
    16
    Elektrode
    18
    Zündgaseinlass
    20
    Mischbereich
    24
    Plasma-Pulver-Aerosol
    28
    Öffnung
    30
    Beschichtungsbereich
    31
    Beschichtungskammer
    32
    Schicht
    33
    Substrat
    34
    Plasma-Pulver-Aerosolstrom
    36
    Substratheizer
    37
    Maske
    38
    Abstand
    39
    Substrathalter
    40
    Pulverdosierer
    41
    Trägergasstrom
    42
    Trägergasreservoir
    421
    erstes Trägergasreservoir
    42k
    k-tes Trägergasreservoir
    43
    Pulverreservoir
    44
    Pulver-Aerosolstrom
    46
    Einrichtung
    47
    Pulver-Aerosol-Zuleitung
    48
    Pulverpartikel
    49
    Plasma-Pulver-Zuleitung
    50
    Verstellsystem
    60
    Saugpumpe
    70
    Steuereinheit
    71
    Massenflusssteuerung
    100
    feststoffbasierten Dünnschichtbatterie
    101
    Stromkollektor
    102
    Kathodenschicht
    103
    Elektrolytschicht
    104
    Anodenschicht
    105
    Stromkollektor
    110
    Schichtfolge
    P10
    Zünddrück
    P20
    Mischdruck
    P30
    Beschichtungsdruck
    P40
    Dosierdruck
    T10
    Zündtemperatur
    T20
    Mischtemperatur
    T33
    Substrattemperatur
    D
    Schichtdicke
    v
    Dosiersysteme des Zündgases
    v0
    Massenflussregler
    v1
    erster Massenflussregler
    vk
    k-terMassenflussregler
    u
    Dosiersystem des Trägergases
    uo
    Massenflussregler
    u1
    erster Massenflussregler
    un
    n-terMassenflussregler
    x
    x-Achse
    y
    y-Achse
    z
    z-Achse
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 5612152 [0008]
    • US 5445906 [0009]
    • DE 10053733 B4 [0010]
    • DE 60126779 T2 [0011]
    • EP 1305838 B1 [0011]
    • US 2011/0045206 A1 [0012]

Claims (21)

  1. Verfahren zur Herstellung zumindest einer Schicht (32) für feststoffbasierte Dünnschichtbatterien (100) vermittels eines Plasma-Pulver-Sprühers (1) mit einem Plasmaerzeugungsbereich (10) und mit mindestens einem örtlich davon getrennten Mischbereich (20), umfassend die Schritte: • Erzeugen eines Plasmagasstroms (13) aus einem Zündgasstrom (12) im Plasmaerzeugungsbereich (10); • Erzeugen eines Pulver-Aerosolstroms (44) aus einem Trägergasstrom (21) aus einem Trägergasreservoir (26) und Pulverpartikeln (23) aus einem Pulverreservoir (27); • Einbringen des Pulver-Aerosolstroms (44) und des Plasmagasstroms (13) in denmindestens einen Mischbereich (20), so dass ein Plasma-Pulver-Aerosol (24) entsteht; • Richten eines Plasma-Pulver-Aerosolstroms (34) aus dem mindestens einen Mischbereich (20) auf ein in einem Beschichtungsbereich (30) angeordnetes Substrat (33); und • Abscheiden einer Schicht (32) auf dem Substrat (33) aus modifizierten Pulverpartikeln (23), die im mindestens einen Mischbereich (20) und/oder im Plasma-Pulver-Aerosolstroms (34) und/oder im Beschichtungsbereich (30) modifiziert werden.
  2. Verfahren nach Anspruch 1, wobei die Pulverpartikel (23) unter Beimischung von Trägergas (12) in das Pulverreservoir (43) derart entnommen werden, dass im Pulver-Aerosolstrom (44) über einen Entnahmezeitraum hinweg ein konstanter Massenstrom dM/dt an Pulverpartikeln (23) und ein konstantes Mischungsverhältnis von Pulverpartikeln (23) und Trägergas (42) eingestellt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, wobei der Pulver-Aerosolstrom (34) durch eine Einrichtung geführt wird, die ihn auf eine für die Prozessführung erforderliche Temperatur bringt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Substrat (33) durch einen Substratheizer (36) eines Substrathalters (39) geheizt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei über ein Verstellsystem (50) ein Abstand (38) und/oder eine Relativbewegung zwischen dem Plasma-Pulver-Sprüher (1) und dem Substrat (33) eingestellt werden.
  6. Verfahren nach einem der Ansprüche 1 bis 6, wobei zum Abscheiden strukturierter Schichten (32) auf dem Substrat (33) ein Strukturierungselement (37) statisch oder durch das Verstellsystem (50) verstellbar in den Plasma-Pulver-Aerosolstrom (34) auf oder über dem Substrat (33) eingebracht wird.
  7. Verfahren nach einem der Ansprüche 1 bis 7, wobei das Substrat (33) in einer Beschichtungskammer (31), in der der Plasma-Pulver-Aerosolstrom (34) eingebracht wird, angeordnet wird, und wobei in der Beschichtungskammer (31) mit einer Saugpumpe (60) ein Unterdruck (∆P) gegenüber dem Mischbereich (20) erzeugt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 8, wobei im mindestens einen Mischbereich (20) und/oder in mindestens einem weiteren Mischbereich (20A, 20B) je ein Zusatzmaterial (24A, 24B) in den Plasma-Pulver-Aerosolstrom (34) eingebracht wird, so dass die Pulverpartikel (23) zumindest teilweise mit Zusatzmaterial (24A, 24B) beschichtet werden, wobei der mindestens eine weitere Mischbereich (20A, 20B) innerhalb oder außerhalb des Plasma-Pulver-Sprühers (1) und im Plasma-Pulver-Aerosolstrom (34) liegt.
  9. Verfahren nach Anspruch 12, wobei die Pulverpartikel (23) zur Herstellung einer Kathodenschicht (102) im Wesentlichen aus einem lithiierten Oxid eines oder mehrerer Übergangsmetalle bestehen.
  10. Verfahren nach Anspruch 9, wobei die Schicht (32) aus Pulverpartikeln (23) aufgebaut wird, die im Plasma-Pulver-Aerosolstrom (34) thermisch aktiviert und bezüglich ihrer chemischen Stöchiometrie und ihrer Partikelgrößenverteilung nicht verändert werden, und wobei die Porosität der Schicht (32) durch die Abscheiderate, die Substrattemperatur (T33) und/oder die Partikelgrößenverteilung der Pulverpartikel (23) eingestellt wird.
  11. Verfahren nach einem der Ansprüche 9 bis 10, wobei der Zündgasstrom (12) und/oder der Trägergasstrom (42) aus einem chemisch inerten Gas oder Stickstoff mit Beimischungen von Sauerstoff, Wasserstoff und/oder eines kohlenstoffhaltigen Gases bestehen.
  12. Verfahren nach Anspruch 11, wobei die Pulverpartikel (23) thermisch bezüglich ihrer elektrochemischen Eigenschaften aktiviert werden, und/oder wobei die chemische Stöchiometrie von oxidischen Pulverpartikeln (23) durch Beimischung von Sauerstoff in den Zündgasstrom (12) und/oder den Trägergasstrom (42) erhalten wird.
  13. Verfahren nach Anspruch 12, wobei bei einer Substrattemperatur (T33) unter 240°C und/oder einer Mischtemperatur (T20) in mindestens einem Mischbereich (20) im Bereich von 350°C bis 750°C und einem auf die Mischtemperatur (T20) abgestimmten Partialdrücken von Sauerstoff und Gesamtdruck (P20) Pulverpartikel (23) aus Lithimkobaltdioxid thermisch in seine Hochtemperatur-Phase verändert werden.
  14. Plasma-Pulver-Sprüher (1) zur Herstellung zumindest einer Schicht (32) auf einem Substrat (33) für feststoffbasierte Dünnschichtbatterien (100) mit einem Plasmaerzeugungsbereich (10) zur Erzeugung eines Plasmagasstroms (13), mit mindestens einem Mischbereich (20) im Plasmagasstrom (13) und mit einer Energiequelle (15), dadurch gekennzeichnet, • dass der Plasmaerzeugungsbereich (10) vom mindestens einen Mischbereich (20) örtlich getrennt ist, wobei dem Plasmaerzeugungsbereich (10) lediglich ein Zündgasstrom (12) zuführbar ist; und • dass dem mindestens einen Mischbereich (20) je mindestens eine Pulver-Aerosol-Zuleitung (47) zur Zuführung eines Pulver-Aerosolstroms (44) zugeordnet ist, so dass ein Plasma-Pulver-Aerosolstrom (34) erzeugbar ist.
  15. Plasma-Pulver-Sprüher (1) nach Anspruch 14, wobeider mindestens einen Pulver-Aerosol-Zuleitung (47) eine Einrichtung (46) zum Einstellen einer Temperatur des Pulver-Aerosolstroms (44) zugeordnet ist.
  16. Plasma-Pulver-Sprüher (1) nach Anspruch 14 oder 15, wobei das Substrat (33) gegenüber dem Plasma-Pulver-Sprüher (1) auf einem Substrathalter (39) mit einem Substratheizer (36) zur Einstellung einer Substrattemperatur angeordnet ist.
  17. Plasma-Pulver-Sprüher (1) nach Anspruch 16 mit einem Verstellsystem (50) zur Erzeugung einer Relativbewegung zwischen dem Plasma-Pulver-Sprüher (1) und dem Substrathalter (33).
  18. Plasma-Pulver-Sprüher (1) nach einem der Ansprüche 14 bis 17, wobei der mindestens eine Mischbereich (20) einen ersten Mischbereich (20A) und mindestens einen zweiten Mischbereich (20B) umfasst, die im örtlich voneinander getrennt und innerhalb des Plasma-Pulver-Sprühers (1) angeordnet sind.
  19. Plasma-Pulver-Sprüher (1) nach den Ansprüchen 14 bis 17, wobei der mindestens eine Mischbereich (20) einen ersten Mischbereich (20A) und mindestens einen zweiten Mischbereich (20B) umfasst, die im örtlich voneinander getrennt sind, wobei mindestens ein weiterer Mischbereich (20C) des mindestens einen zweiten Mischbereichs (20B) außerhalb des Plasma-Pulver-Sprühers (1) angeordnet ist.
  20. Plasma-Pulver-Sprüher (1) nach einem der Ansprüche 14 oder 19, wobei dem mindestens einen Mischbereich (20, 20A, 20B, 20C) über die jeweilige mindestens eine Pulver-Aerosol-Zuleitung (47, 47B, 47C) ein Zusatzmaterial (44A, 44B, 44C) zuführbar ist.
  21. Festkörperbasierte Dünnschichtbatterie (100), in der zumindest eine Schicht (32) aus Pulverpartikeln (23) durch ein Verfahren nach einem der Ansprüche 1 bis 13 hergestellt ist.
DE102013100084.3A 2013-01-07 2013-01-07 Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie Withdrawn DE102013100084A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102013100084.3A DE102013100084A1 (de) 2013-01-07 2013-01-07 Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie
CN201380069694.8A CN104919075A (zh) 2013-01-07 2013-12-20 制造基于固体的薄膜电池的至少一层的方法、其等离子体粉末喷枪和基于固体的薄膜电池
EP13824032.0A EP2941492A2 (de) 2013-01-07 2013-12-20 Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie
KR1020157021219A KR20150106897A (ko) 2013-01-07 2013-12-20 고체-기반 박막 배터리의 적어도 하나의 층을 제조하기 위한 방법과, 이를 위한 플라스마-분말-스프레이 및 고체-기반 박막 배터리
JP2015551234A JP2016505093A (ja) 2013-01-07 2013-12-20 固相薄膜電池用の膜を少なくとも1層成膜する方法、その成膜方法に用いるプラズマ粉体噴射装置、及び固相薄膜電池
PCT/IB2013/061225 WO2014106792A2 (de) 2013-01-07 2013-12-20 Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie
US14/793,113 US20150311497A1 (en) 2013-01-07 2015-07-07 Method for producing at least one layer of a solid -based thin-film battery, plasma powder sprayer therefor, and solid-based thin film battery
HK15111328.3A HK1210505A1 (en) 2013-01-07 2015-11-17 Method for producing at least one layer of a solid-based thin-film battery, plasma powder sprayer therefor, and solid-based thin-film battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013100084.3A DE102013100084A1 (de) 2013-01-07 2013-01-07 Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie

Publications (1)

Publication Number Publication Date
DE102013100084A1 true DE102013100084A1 (de) 2014-07-10

Family

ID=50000051

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013100084.3A Withdrawn DE102013100084A1 (de) 2013-01-07 2013-01-07 Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie

Country Status (8)

Country Link
US (1) US20150311497A1 (de)
EP (1) EP2941492A2 (de)
JP (1) JP2016505093A (de)
KR (1) KR20150106897A (de)
CN (1) CN104919075A (de)
DE (1) DE102013100084A1 (de)
HK (1) HK1210505A1 (de)
WO (1) WO2014106792A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015201930A1 (de) * 2015-02-04 2016-08-04 Bayerische Motoren Werke Aktiengesellschaft Festkörper-Energiespeicherzelle mit konstanten Volumen
US20200290095A1 (en) * 2018-03-20 2020-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming process film
DE102022209709A1 (de) 2022-09-15 2024-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zur ausbildung von einer metallschicht auf einer oberfläche eines festen, ionenleitenden substrats und mit dem verfahren herstellbares substrat

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461372B2 (en) 2015-05-20 2019-10-29 Sion Power Corporation Protective layers for electrochemical cells
DE102016103174B4 (de) * 2016-02-23 2019-10-31 Reinhold Riemensperger Verfahren zur Herstellung einer Schichtstruktur an einem Oberflächenbereich eines Bauelements
CN109155441B (zh) * 2016-05-20 2022-11-01 锡安能量公司 用于电极和电化学电池的保护层
RU2645421C1 (ru) * 2016-09-16 2018-02-21 Александр Алексеевич Семенов Способ нанесения металлического порошкового покрытия на поверхность металлических подложек
RU2667571C1 (ru) * 2017-10-03 2018-09-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ повышения износостойкости деталей центробежного насоса
JP6985097B2 (ja) * 2017-10-17 2021-12-22 岩谷産業株式会社 混合ガスおよびそれを用いた溶射皮膜の形成方法
US11735722B2 (en) 2019-04-10 2023-08-22 Global Graphene Group, Inc. Method of producing conducting polymer network-enabled particulates of anode active material particles for lithium-ion batteries
US11916223B2 (en) 2019-05-09 2024-02-27 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing conducting polymer network-protected cathode material particulates
US20200365902A1 (en) * 2019-05-14 2020-11-19 Nanotek Instruments, Inc. Conducting polymer network-based cathode-protecting layer for lithium metal secondary battery
KR20230023215A (ko) * 2021-08-10 2023-02-17 이창훈 세라믹 코팅 시스템 및 방법
CN115224368B (zh) * 2022-08-16 2023-12-19 西安交通大学 固态电解质与锂负极一体化电池组件、锂固态电池及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445906A (en) 1994-08-03 1995-08-29 Martin Marietta Energy Systems, Inc. Method and system for constructing a rechargeable battery and battery structures formed with the method
FR2729400A1 (fr) * 1995-01-18 1996-07-19 Univ Paris Curie Procede et dispositif pour deposer une couche mince d'oxyde metallique, materiau ainsi obtenu, et element de pile a combustible incluant ce materiau
US5612152A (en) 1994-01-12 1997-03-18 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
DE10053733B4 (de) 2000-05-01 2004-08-05 Korea Advanced Institute Of Science & Technology Verfahren zur Kristallisation einer Dünnschicht aus Lithium-Übergangsmetall-Oxid
EP1305838B1 (de) 2000-03-24 2007-02-21 Cymbet Corporation Herstellung bei niedriger temperatur von dünnschicht- energiespeichervorrichtungen
WO2009033522A1 (de) * 2007-09-11 2009-03-19 Maschinenfabrik Reinhausen Gmbh Verfahren und vorrichtung zur behandlung oder beschichtung von oberflachen
US20110045206A1 (en) 2009-08-24 2011-02-24 Applied Materials, Inc. In-situ deposition of battery active lithium materials by plasma spraying

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3372185B2 (ja) * 1996-03-29 2003-01-27 株式会社東芝 耐熱部材
DE10212052B4 (de) * 2002-03-19 2004-05-06 Leoni Ag Verfahren zur Herstellung einer elektrochemischen Energiequelle
JP5490736B2 (ja) * 2010-01-25 2014-05-14 株式会社日立製作所 セラミックアブレーダブルコーテイングを有するガスタービン用シュラウド
KR101741447B1 (ko) * 2010-08-24 2017-05-30 어플라이드 머티어리얼스, 인코포레이티드 스프레잉에 의한 배터리 활성 리튬 재료들의 인­시츄 합성 및 증착
CN102327855A (zh) * 2011-08-11 2012-01-25 湖南丰源业翔晶科新能源股份有限公司 一种改善锂离子电池正极用铝箔粘接性能的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612152A (en) 1994-01-12 1997-03-18 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5445906A (en) 1994-08-03 1995-08-29 Martin Marietta Energy Systems, Inc. Method and system for constructing a rechargeable battery and battery structures formed with the method
FR2729400A1 (fr) * 1995-01-18 1996-07-19 Univ Paris Curie Procede et dispositif pour deposer une couche mince d'oxyde metallique, materiau ainsi obtenu, et element de pile a combustible incluant ce materiau
EP1305838B1 (de) 2000-03-24 2007-02-21 Cymbet Corporation Herstellung bei niedriger temperatur von dünnschicht- energiespeichervorrichtungen
DE60126779T2 (de) 2000-03-24 2007-12-13 Cymbet Corp., Elk River Herstellung bei niedriger temperatur von dünnschicht- energiespeichervorrichtungen
DE10053733B4 (de) 2000-05-01 2004-08-05 Korea Advanced Institute Of Science & Technology Verfahren zur Kristallisation einer Dünnschicht aus Lithium-Übergangsmetall-Oxid
WO2009033522A1 (de) * 2007-09-11 2009-03-19 Maschinenfabrik Reinhausen Gmbh Verfahren und vorrichtung zur behandlung oder beschichtung von oberflachen
US20110045206A1 (en) 2009-08-24 2011-02-24 Applied Materials, Inc. In-situ deposition of battery active lithium materials by plasma spraying

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015201930A1 (de) * 2015-02-04 2016-08-04 Bayerische Motoren Werke Aktiengesellschaft Festkörper-Energiespeicherzelle mit konstanten Volumen
US20200290095A1 (en) * 2018-03-20 2020-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming process film
US11666950B2 (en) * 2018-03-20 2023-06-06 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming process film
DE102022209709A1 (de) 2022-09-15 2024-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zur ausbildung von einer metallschicht auf einer oberfläche eines festen, ionenleitenden substrats und mit dem verfahren herstellbares substrat

Also Published As

Publication number Publication date
KR20150106897A (ko) 2015-09-22
CN104919075A (zh) 2015-09-16
WO2014106792A2 (de) 2014-07-10
WO2014106792A4 (de) 2014-10-30
WO2014106792A3 (de) 2014-09-12
US20150311497A1 (en) 2015-10-29
JP2016505093A (ja) 2016-02-18
HK1210505A1 (en) 2016-04-22
EP2941492A2 (de) 2015-11-11

Similar Documents

Publication Publication Date Title
DE102013100084A1 (de) Verfahren zur herstellung zumindest einer schicht einer feststoffbasierten dünnschichtbatterie, plasma-pulver-sprüher hierfür und feststoffbasierte dünnschichtbatterie
DE102018109462A1 (de) Passivierung von sulfid-, oxid-, und oxysulfid-glaselektrolytschichten für lithium-metall-batterien
EP3357111B1 (de) Verfahren zur substratbeschichtung mit partikeln und vorrichtung zur ausführung des verfahrens
US20210408523A1 (en) Anode for all solid-state secondary battery, all solid-state secondary battery including the anode, and method of manufacturing the anode
US8927068B2 (en) Methods to fabricate variations in porosity of lithium ion battery electrode films
CN111201634B (zh) 无烯烃隔板的锂离子电池
DE112017003085T5 (de) Grenzflächenschicht für verbesserte Lithiummetallzyklisierung
US20110129732A1 (en) Compressed powder 3d battery electrode manufacturing
DE112014006664T5 (de) Herstellungsverfahren für Lithiumbatterien unter Verwendung mehrerer Düsen für atmosphärisches Plasma
CN109562342A (zh) 锂离子电池材料
US8808405B2 (en) Method of forming a solid state cathode for high energy density secondary batteries
US20120064225A1 (en) Spray deposition module for an in-line processing system
EP4228047A1 (de) Festkörpersekundärbatterie und herstellungsverfahren dafür
US20060062904A1 (en) Long cycle life elevated temperature thin film batteries
WO2017108625A1 (de) Verfahren zur herstellung einer batteriezelle
Lafont et al. Electrostatic spray pyrolysis of LiNi0. 5Mn1. 5O4 films for 3D Li-ion microbatteries
WO2013152906A1 (de) Elektrochemischer energiespeicher und verfahren zum herstellen desselben
DE112017003346T5 (de) Reinigung und Abscheidung von niedrigschmelzendem Metall
EP2445050A1 (de) Element zur erzeugung von elektrizität und dieses enthaltende batterie mit wasserfreiem elektrolyt
EP3308417A1 (de) Verfahren zur herstellung nanostrukturierter schichten
Cho et al. Control of AlPO4-nanoparticle coating on LiCoO2 by using water or ethanol
JP2002260656A (ja) 電池材料の製造方法
EP3758105A1 (de) Verfahren zur lithiierung von elektroden von lithiumbasierten elektrischen energiespeicherelementen sowie mit dem verfahren hergestelltes elektrisches energiespeicherelement
WO2015158607A1 (de) Lipon oder lipson festelektrolyt-schichten und verfahren zur herstellung solcher schichten
EP2772972A1 (de) Elektrodenmaterial, elektrode und sekundärbatterie

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Free format text: FORMER OWNER: REINHAUSEN PLASMA GMBH, 93057 REGENSBURG, DE

Effective date: 20141117

R082 Change of representative

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

Effective date: 20141117

R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: C23C0004120000

Ipc: C23C0004134000

R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee