JP2016195164A - 薄膜キャパシタ - Google Patents
薄膜キャパシタ Download PDFInfo
- Publication number
- JP2016195164A JP2016195164A JP2015073957A JP2015073957A JP2016195164A JP 2016195164 A JP2016195164 A JP 2016195164A JP 2015073957 A JP2015073957 A JP 2015073957A JP 2015073957 A JP2015073957 A JP 2015073957A JP 2016195164 A JP2016195164 A JP 2016195164A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- curvature
- dielectric thin
- lower electrode
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
【課題】特性劣化を抑制可能な薄膜キャパシタを提供する。【解決手段】 この薄膜キャパシタにおいては、下部電極4の凸部4bの先端部は、曲率中心C1a,C1bが、この凸部4bの内部に位置する曲率半径R1の角部を有している。ここで、曲率半径R1、及び、誘電体薄膜5の厚みtdは、以下の関係式:0.4×td≦R1≦20×tdを満たしている。曲率半径R1が誘電体薄膜5の厚みtdの0.4倍を下回ると、アンテナ効果が高くなり、誘電体薄膜5に電界が集中して、素子使用中に誘電体薄膜の内部欠陥が生じる。曲率半径R1が誘電体薄膜5の厚みtdの20倍を上回ると、アンテナ効果は低くなるが、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合が生じる。【選択図】図9
Description
本発明は、縦断面が凹凸構造を有する薄膜キャパシタに関するものである。
電子部品としての薄膜キャパシタは、例えば特許文献1に記載されている。また、トレンチキャパシタは、半導体集積化技術において、単位面積当たりの表面積が増加するように、立体的な構造を有しており、メモリを構成するキャパシタの高容量化を達成する構造として考案された(特許文献2参照)。また、このような立体的な構造を、メモリ以外の電子部品に応用しようとする試みもある(特許文献3)。
しかしながら、電子部品として凹凸構造を有することで小型化した薄膜キャパシタにおいては、薄膜キャパシタの特性が容易に劣化することがある。
本発明は、このような課題に鑑みてなされたものであり、特性劣化を抑制可能な薄膜キャパシタを提供することを目的とする。
上述の課題を解決するため、第1の薄膜キャパシタは、基板と、前記基板の主表面上に形成された絶縁層と、前記絶縁層上に形成された下部電極と、前記下部電極を被覆する誘電体薄膜と、前記誘電体薄膜上に形成された上部電極と、を備え、前記下部電極は、前記基板の厚み方向に沿った縦断面が、凹凸構造を有し、前記上部電極は、前記基板の厚み方向に沿った縦断面が、凹凸構造を有し、前記下部電極の凸部間の隙間に、前記上部電極の前記下部電極側へ突出した凸部が位置し、XYZ三次元直交座標系を設定し、前記主表面をXY平面とし、前記下部電極の複数の凸部が並ぶ方向をX軸方向とした場合、XZ平面内において、前記下部電極の前記凸部の先端部は、曲率中心が、この凸部の内部に位置する曲率半径R1の角部を有し、曲率半径R1、及び、前記誘電体薄膜の厚みtdは、以下の関係式:0.4×td≦R1≦20×tdを満たしていることを特徴とする。
この薄膜キャパシタによれば、曲率半径R1が誘電体薄膜の厚みtdの0.4倍を下回ると、アンテナ効果が高くなり、誘電体薄膜に電界が集中して、素子使用中に誘電体薄膜の内部欠陥が生じる。曲率半径R1が誘電体薄膜の厚みtdの20倍を上回ると、アンテナ効果は低くなるが、前記凸部の角部が必要以上になだらかになり、角部の面内方向において誘電体薄膜の面内方向に加わる応力が大きくなることから、誘電体薄膜の結晶粒界などにクラックが導入されやすくなるという不具合が生じる。また、前記角部における電極の結晶粒界密度が、電界が集中しやすい程度に粗くなるため、前記下部電極の結晶粒界に起因する電界の集中が生じやすくなる傾向もある。
第2の薄膜キャパシタは、XZ平面内において、前記下部電極の前記凸部の基端部は、曲率中心が、この凸部の外部に位置する曲率半径R2の角部を有し、曲率半径R2、及び、前記誘電体薄膜の厚みtdは、以下の関係式:0.4×td≦R2≦20×tdを満たしていることを特徴とする。
下部電極の基端部間の凹部は、上部電極の下向きの凸部の先端部と対向している。したがって、下部電極と上部電極に挟まれた誘電体薄膜に対する電界の影響は、下部電極における凸部の先端部においても、基端部においても同様に生じる。
すなわち、基端部側においても、曲率半径R2が誘電体薄膜の厚みtdの0.4倍を下回ると、アンテナ効果が高くなり、誘電体薄膜に電界が集中して、素子使用中に誘電体薄膜の内部欠陥が生じる。曲率半径R2が誘電体薄膜の厚みtdの20倍を上回ると、アンテナ効果は低くなるが、角部において誘電体薄膜の面内方向に加わる応力が大きくなり誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合が生じる。
上述の曲率半径の満たす条件は、XZ平面内においてのみ成立するわけではなく、角部への形状による電界集中という観点からすれば、YZ平面内における角部の周辺においても、同様に生じる。
そこで、第3の薄膜キャパシタは、YZ平面内において、前記下部電極の前記凸部の先端部は、曲率中心が、この凸部の内部に位置する曲率半径R3の角部を有し、曲率半径R3、及び、前記誘電体薄膜の厚みtdは、以下の関係式:0.4×td≦R3≦20×tdを満たしていることを特徴とする。
これにより、上記の通り、YZ平面内においても、曲率半径R3が誘電体薄膜の厚みtdの0.4倍を下回ると、アンテナ効果が高くなり、誘電体薄膜に電界が集中して、素子使用中に誘電体薄膜の内部欠陥が生じる。曲率半径R3が誘電体薄膜の厚みtdの20倍を上回ると、アンテナ効果は低くなるが、角部において誘電体薄膜の面内方向に加わる応力が大きくなり誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合が生じる。
同様に、YZ平面内においては、凸部の基端部においても、XZ平面の場合と同様の構造を有することで、同様の作用効果が生じる。
すなわち、第4の薄膜キャパシタは、YZ平面内において、前記下部電極の前記凸部の基端部は、曲率中心が、この凸部の外部に位置する曲率半径R4の角部を有し、曲率半径R4、及び、前記誘電体薄膜の厚みtdは、以下の関係式:0.4×td≦R4≦20×tdを満たしていることを特徴とする。
これにより、上記の通り、YZ平面内においても、曲率半径R4が誘電体薄膜の厚みtdの0.4倍を下回ると、アンテナ効果が高くなり、誘電体薄膜に電界が集中して、素子使用中に誘電体薄膜の内部欠陥が生じる。曲率半径R4が誘電体薄膜の厚みtdの20倍を上回ると、アンテナ効果は低くなるが、角部において誘電体薄膜の面内方向に加わる応力が大きくなり誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合が生じる。
なお、第5の薄膜キャパシタにおいては、上述のR1の値に関しては、以下の関係式:0.5×td≦R1≦10×tdを満たしていることが更に好ましい。この場合、上記のR1の範囲よりの場合よりも、更に、誘電体薄膜の内部欠陥が抑制され、また、角部における誘電体薄膜の面内方向への応力により誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合も減少する。
第6の薄膜キャパシタは、以下の関係式:0.5×td≦R2≦10×tdを満たしていることを特徴とする。この場合、上記のR1の範囲よりの場合よりも、更に、誘電体薄膜の内部欠陥が抑制され、また、角部における誘電体薄膜の面内方向への応力により誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合も減少する。
第7の薄膜キャパシタにおいては、前記絶縁層は、応力調整層であり、この応力調整層のヤング率は、前記基板のヤング率よりも高く、且つ、前記下部電極のヤング率よりも高いことを特徴とする。応力調整層のヤング率が他よりも相対的に高い場合には、下部電極の機械的な歪が抑制され、したがって、誘電体薄膜の機械的破壊が抑制される。内部欠陥が僅かに生じた状態であっても、誘電体薄膜に、機械的な応力がかかると、これが劣化し、不良品になる確率が高くなるが、応力調整層のヤング率が高い場合には、下部電極を介した誘電体薄膜への応力伝達は抑制され、薄膜キャパシタの特性劣化を抑制することができる。
なお、上述のいずれの薄膜キャパシタの条件も、組み合わせることができる。
本発明の薄膜キャパシタによれば、特性劣化を抑制することが可能である。
以下、実施の形態に係る薄膜キャパシタについて説明する。なお、同一要素には、同一符号を用いることとし、重複する説明は省略する。また、XYZ三次元直交座標系を設定し、基板の厚み方向をZ軸方向とする。
図1は、実施形態に係る薄膜キャパシタの縦断面構成を示す図である。なお、図5は、薄膜キャパシタの分解斜視図であるが、構造を明瞭に説明するため、下地層や保護膜などの図1における一部の記載を省略している。以下の説明においては、図1及び図5を適宜参照する。
この薄膜キャパシタは、基板1と、基板1の主表面(XY平面)上に形成された絶縁層2(応力調整層2)と、応力調整層2上に下地層3を介して形成された下部電極4と、下部電極4を被覆する誘電体薄膜5と、誘電体薄膜5上に形成された上部電極6とを備えている。
薄膜キャパシタの主要部は、下部電極4と、上部電極6と、これらの間に位置する誘電体薄膜5によって構成されている。
下部電極4は、基板1の主表面と平行に延びた共通電極部分4aと、共通電極部分4aから、基板1から離れる方向に突出して延びた複数の凸部4bとを備えている。同様に、上部電極6は、基板1の主表面と平行に延びた共通電極部分6aと、共通電極部分6aから、基板1に近づく方向に突出して延びた複数の凸部6bとを備えている。また、上部電極6は、外部端子との接続電極が接触するためのコンタクト部6cを有している。
下部電極4は、基板1の厚み方向に沿った縦断面(XZ面)が、凹凸構造を有しており、櫛歯形状を有している。同様に、上部電極6は、基板1の厚み方向に沿った縦断面(XZ面)が、凹凸構造を有し、櫛歯形状を有している。下部電極4の凸部4b間の隙間に、上部電極6の下部電極側へ突出した凸部6bが位置し、櫛歯が対向して噛み合うような構造になっているこの構造は、縦断面においては、トレンチ構造であり、単位面積当たりの容量を増加させている。
この薄膜キャパシタは、上部電極6を被覆する保護膜7と、応力調整層2上に形成されたダミー電極4Dと、下部電極4の共通電極部分4a上に形成され、これに接触した下部コンタクト電極6Dとを備えている。ダミー電極4Dは、下部電極の共通電極部分4aと同時に形成され、下部コンタクト電極6Dは、上部電極6と同時に形成される。
薄膜キャパシタの図面左側の部分において、ダミー電極4D上には、誘電体薄膜5、上部電極6のコンタクト部6c、及び、第1接続電極8aが位置している。一方、薄膜キャパシタの図面右側部分において、下部電極4の共通電極部分4a上には、誘電体薄膜5に設けられた開口を介して、共通電極部分4aに接触した下部コンタクト電極6D、及び、第2接続電極8bが位置している。ダミー電極4Dは、下部電極4の共通電極部分4aと同じ厚みである。
また、保護膜7に設けられた第1コンタクトホールHa内に、第1接続電極8aは位置しており、保護膜7に設けられた第2コンタクトホールHb、第2接続電極8bは位置している。
この構造の場合、ダミー電極4Dは、下部電極4の共通電極部分4aと同じ厚みであるため、第1接続電極8aと第2接続電極8bの厚み方向の高さを概ね等しくすることが可能であり、フラットな構造の薄膜キャパシタを形成することができる。
第1接続電極8a上には、コンタクト電極及び/又はアンダーバンプメタル9aが接触して位置しており、第2接続電極8b上には、コンタクト電極及び/又はアンダーバンプメタル9bが接触して位置している。これえええらのアンダーバンプメタル9a,9b上にはバンプ10a,10bがそれぞれ配置される。
図2は、薄膜キャパシタの製造工程を説明するための図である。
まず、図2(A)のように、基板1を用意する。基板材料としては、絶縁体や半導体を用いることができるが、本例では、加工と処理の容易性に鑑みて、基板材料としてSiを用いる。
次に、図2(B)のように、基板1上に応力調整層2を形成する。形成法には、材料に応じて、スパッタ法、蒸着法、CVD(化学的気相成長)法などがある。本例では、応力調整層2として、シリコン窒化物(SiNx)(xは適当な自然数であり、主としてSi3N4など)を用いるので、形成法としてはシリコン窒化物をターゲットとするスパッタ法を用いる。
しかる後、図2(C)のように、応力調整層2上に下地層3を形成し、続いて、応力調整層2上に、下部電極の初期の共通電極部分4aを形成する。これらの形成法には、スパッタ法、蒸着法やメッキ法などがある。下地層3及び初期の共通電極部分4a(下部電極)は、共に、銅(Cu)を主成分(原子百分率が50%以上)として含有しており、必要に応じて、下地層3にはCrなどの接着強度を高める材料を混入することができる。
次に、図2(D)のように、初期の共通電極部分4a及び下地層3をフォトリソグラフィ―により、パターニングし、一部分を本体部分から分離して、これをダミー電極4Dとする。すなわち、エッチングをして除去する部分が開口したマスクを初期の共通電極部分4a上に形成し、マスクを介してエッチングをした後、当該マスクを除去する。このエッチングには、ウエットエッチングの他、Arミリング法、又は、RIE(反応性イオンエッチング)法などのドライエッチング法を用いることができる。銅のウエットエッチングには、過酸化水素水などを用いることができる。
次に、図2(E)のように、複数の凸部4bからなる櫛歯の部分を共通電極部分4a上に形成する。複数の凸部4bはフォトリソグラフィ―によりパターニングする。すなわち、凸部4bとなるメッキ層を成長させる部分が開口したマスクを共通電極部分4a上に形成し、このマスクの開口内に凸部4bを成長させた後、当該マスクを除去する。或いは、凸部4bとなるメッキ層を共通電極部分4a上に形成し、共通電極部分4a上にマスクを形成し、マスクの開口をエッチングすることで、凸部4bを残留させ、しかる後、当該マスクを除去する。なお、凸部4bは、後述のように、角部が丸くなるように処理を行う。
次に、図2(F)のように、下部電極4上及びダミー電極4D上に誘電体薄膜5を形成する。本例の誘電体薄膜5は、Al2O3であるが、MgOやSiO2などの他の誘電体を用いてもよい。誘電体薄膜5の形成法には、スパッタ法や、CVD法、或いはALD(原子層堆積)法が挙げられる。例えば、アルミナをターゲットとするスパッタ法を用いることができるが、本例では、Al原料であるTMA(トリメチルアルミニウム)と、O原料であるH2Oを交互に基板表面上に供給するALD法を用いる。
次に、図2(G)のように、誘電体薄膜5の一部分に、フォトリソグラフィ―技術を用いて、コンタクトホールHを形成する。形成には、ドライエッチング又ウエットエッチンンを用いることが可能である。ドライエッチングとしてArミリングを用いることも可能である。
しかる後、図2(H)のように、フォトグラフィー技術を用いて、誘電体薄膜上にマスクを形成し、このマスクの開口を介して、上部電極6及び下部コンタクト電極6Dを誘電体薄膜5上に同時に形成する。誘電体薄膜5の一部分はコンタクトホールによって開口しているので、下部電極4の一部は、下部コンタクト電極6Dに接続され、上部電極6の残余の部分は、下部電極及び誘電体薄膜と共に、キャパシタの本体部分を形成する。形成においては、スパッタ法、蒸着法又はメッキ法を用いることができる。上部電極6は、銅(Cu)を主成分(原子百分率が50%以上)として含有している。
次に、図2(I)のように、全体を保護膜7で被覆し、フォトグラフィー技術を用いて、保護膜7上にマスクを形成し、マスクに2か所の開口を作製し、これらの開口内をエッチングすることで、コンタクトホールHa及びHbを形成する。保護膜7は絶縁材料であればよいが、本例では樹脂材料(ポリイミド)を採用する。形成にはスピンコータ等による塗布法を用いることができる。次に、これらのコンタクトホール内に、第1接続電極8a及び第2接続電極8bを埋め込む。第1接続電極8a及び第2接続電極8bの材料が銅(Cu)を主成分とする場合、これらの形成法には、蒸着法、スパッタ法又はメッキ法などを用いることができる。
第1接続電極8a及び第2接続電極8b上に、導電性のパッドとなるアンダーバンプメタル9a及びアンダーバンプメタル9bを設ける。これらはコンタクト電極として機能させることもできるし、異なる材料を用いて、コンタクト電極上に更にアンダーバンプメタルを設けることができる。アンダーバンプメタル9a,9b上には、バンプ10a,10bがそれぞれ配置される。アンダーバンプメタル又はコンタクト電極の材料としては、Cu、Ni、Auを用いることができる。これらは各材料毎に、積層したり、混合して用いることができる。好適には、Cu上にNi及びAuのメッキを施すことができる。
なお、下部電極4の構造としては、縦断面が凹凸構造を有するものであれば、様々なものが考えられる。また、上述の薄膜キャパシタは、単一のウェハ上に複数形成することができ、個別又は所望のグループごとにダイシングして分離して使用できる。
図3は、様々な下部電極4及びダミー電極4Dの平面図である。なお、図1におけるキャパシタの出力取り出し電極(バンプ10a,10b)は、X軸方向の離間している。
図3(A)の構造の場合、下部電極4は、+Z軸方向に向かって突出し、Y軸方向に沿って延びた複数の凸部4bを有している。凸部4bの間は凹溝が形成される。ベースとなる共通電極部分4aは、おおむね長方形である。また、ダミー電極4Dは、共通電極部分4aからは離間している。
図3(B)の構造の場合、下部電極4は、+Z軸方向に向かって突出し、XY平面内においてドット状に二次元的に配置された複数の凸部4bを有している。凸部4bの間は凹部の空間が形成される。ベースとなる共通電極部分4aは、おおむね長方形である。また、ダミー電極4Dは、共通電極部分4aからは離間している。
図3(C)の構造の場合、下部電極4は、+Z軸方向に向かって突出し、X軸方向に沿って延びた複数の凸部4bを有している。凸部4bの間は凹溝が形成される。ベースとなる共通電極部分4aは、おおむね長方形である。また、ダミー電極4Dは、共通電極部分4aからは離間している。
図4は、様々な上部電極及び下部コンタクト電極の平面図である。
図4(A)の構造の場合、上部電極6は、−Z軸方向に向かって突出し、Y軸方向に沿って延びた複数の凸部6bを有しており、これらは凸部4bの間に位置している。凸部6bの間は+Z軸方向に窪んだ凹溝が形成され、凸部4bを収容している。ベースとなる共通電極部分6aは、おおむね長方形であるが、コンタクト部6cは共通電極部分6aの一端から−X軸方向に延びており、下部コンタクト電極6Dは、共通電極部分6aからは離間している。
図4(B)の構造の場合、上部電極6は、−Z軸方向に向かって突出し、複数の凸部4bの周囲を埋める凸部4bを有している。凸部6bの間は、凸部4bを収容するための+Z軸方向に窪んだ凹部の空間が形成される。ベースとなる共通電極部分6aは、おおむね長方形であるが、コンタクト部6cは共通電極部分6aの一端から−X軸方向に延びており、下部コンタクト電極6Dは、共通電極部分6aからは離間している。
図4(C)の構造の場合、上部電極6は、−Z軸方向に向かって突出し、X軸方向に沿って延びた複数の凸部6bを有しており、これらは凸部4bの間に位置している。凸部6bの間は+Z軸方向に窪んだ凹溝が形成され、凸部4bを収容している。ベースとなる共通電極部分6aは、おおむね長方形であるが、コンタクト部6cは共通電極部分6aの一端から−X軸方向に延びており、下部コンタクト電極6Dは、共通電極部分6aからは離間している。
図6は、変形した実施形態に係る薄膜キャパシタの縦断面構成を示す図である。
図6の示した構造は、図1に示したものと比較して、上部電極6の厚みが厚くなり、第1接続電極を兼用することで、保護膜7内に形成される上部電極6上に、直接、コンタクト電極及び/又はアンダーバンプメタル9aを形成した構造である。その他の構造は、図1に示したものと同一である。
次に、上述の各要素の材料について説明する。
下部電極4は、主成分としてCuを含んでいる。なお、下部電極4は、銅が100(atm%)であるとする。上部電極6も、主成分としてCuを含んでいる。これらは同一の材料から構成することもできるし、異なる材料から構成することもできる。本例では、同一の材料であり、同一の物性を有しているものとする。基板1はSiからなり、応力調整層2はシリコン窒化物からなる。
この場合、基板1のヤング率ESS、応力調整層2のヤング率ESC、及び、下部電極4のヤング率ELEは、以下の関係式を満たしている。
関係式:
ELE<ESC、
ESS<ESC、
ELE<ESC、
ESS<ESC、
この薄膜キャパシタによれば、応力調整層2が、これら3つの要素の中で、最も軟らかい下部電極4よりも、下部電極4を支持するための基板1よりも硬いため(ヤング率が高い)、下部電極4の変形が抑制され、これに隣接する誘電体薄膜5の当該変形に伴う損壊、及び、これに伴う特性劣化を抑制することができる。
誘電体薄膜5は、Al2O3からなるが、他の誘電体材料(絶縁体材料)を用いることもできる。Al2O3のヤング率は、370である。ヤング率の低い順番に並べると、Cu、Si、SiNx、Al2O3は、この順番であり、誘電体薄膜のヤング率が高い場合、その破損を抑制する場合には、本発明は、より効果がある。各要素の特性データは、図7の図表に示す通りである。
また、電極材料として、Cuを用いたが、これには、例えば、図7に示す金属材料を混入させてもよい。すなわち、Au、Ag、Al、Ni,Cr,Ti、Taからなる金属グループから選択されるいずれか1種又は複数種を、Cuに混合してもよい。下部電極と上部電極の材料が同一であれば、製造は簡略化できるが、これらは異ならせてもよい。
また、基板を構成する材料として、図7に示すように、Siの他に、GaAs、SiC、Ge又はGaを用いることができる。
誘電体薄膜の材料として、図7に示すように、SiNx、AiN、SiO2、ZrO2、ガラス、ポリエチレン、ポリスチレン、ポリイミド、ポリエチレンテレフタレート(PET)、又は、エポキシ樹脂を用いることもできる。なお、これらの誘電体は、保護膜の材料としても用いることができる。
また、基板1の線膨張係数αSS、応力調整層2の線膨張係数αSC、及び、下部電極4の線膨張係数αLEは、以下の関係を満たすことが好ましい。
関係式:
αSC<αLE、
αSC<αSS、
αSC<αLE、
αSC<αSS、
この場合、基板または下部電極に熱膨張が生じても、応力調整層の線膨張係数が小さいため、基板または下部電極の熱膨張が抑制されるという理由により、温度変化による下部電極の変形が減少し、これに隣接する誘電体薄膜の損壊、及び、これに伴う特性劣化を抑制することができる。
第3の薄膜キャパシタにおいては、基板の熱伝導率λSS、応力調整層の熱伝導率λSC、及び、下部電極の熱伝導率λLEは、以下の関係を満たすことが好ましい。
関係式:
λSC<λSS、
λSC<λLE、
λSC<λSS、
λSC<λLE、
この場合、基板または下部電極に温度変化が生じても、応力調整層の熱伝導率が小さいため、基板と下部電極の熱伝導が抑制され線膨張の発生が抑制されるという理由により、温度変化による下部電極の変形が減少し、これに隣接する誘電体薄膜の損壊、及び、これに伴う特性劣化を抑制することができる。特に、相対的に容積の大きな基板における温度変化の影響が下部電極に伝わらない、という観点の効果が大きい傾向がある。
図8は、下部電極の凸部の先端部の角部を丸くする工程を説明するための薄膜キャパシタの断面構成(XZ平面)を示す図である。
図2(E)において、下部電極の凸部4bを形成する場合、凸部4bの先端部を丸くする処理を行う。図8(A)では、まず、フォトリソグラフィ―によってパターニングされたマスクMを平坦な共通電極部分4a上に形成した後、マスクMの開口パターン内に、凸部4bを形成させる。この形成には、メッキ法やスパッタ法を用いることができるが、ここではメッキ法を用いて、金属を成長させるものとする。凸部4bの頂面は、平坦であるが、頂面から深部に向けて、頂面を丸くする加工を行う。例えば、Ar等の希ガスを頂面に衝突させて、頂面を丸くする方法(スパッタ法、ミリング法)や、頂面をドライエッチング又はウエットエッチングすることで、頂面を丸くする方法などが挙げられる。すなわち、凸部頂面の外周部分が、中央部分よりも多く除去されることにより、頂面のXZ断面における輪郭が、上に凸の弧を描くような形状になる(図8(B))。
なお、金属は適当な酸によりエッチングすることができる。例えば、銅のエッチング液としては、硫酸や過酸化水素系エッチング溶液が良く知られており、プラズマなどを用いたドライエッチングとしては、単に希ガスで金属原子をスパッタすることによってもエッチングすることはできるが、炭化水素系のガスやハロゲンガスを用いたり、これに酸素を含有させることで、銅の酸化を利用しながら、エッチングを行う手法も数多く知られている。
この処理の後、レジストからなるマスクMを有機溶剤などで除去し(図8(C))、凸部4bの側面を露出させる。また、凸部4bの側面を露出させた後、凸部4bを構成する金属材料が軟化する温度で、これを加熱し、表面を平滑化してもよい。
図9は、下部電極の凸部の断面構成(XZ平面)を示す図である。
以上のようにして、エッチングを行った場合、エッチング時に露出していた頂面の部分は、XZ平面内において、凸部の頂面の外縁部に位置する角部が円弧を描くように変形する。もちろん、YZ平面内においても、頂面は、当該角部が円弧を描くように変形する。なお、凸部4bをXZ平面又はYZ平面に垂直な方向から見た場合、角部の変形の度合いは左右対称である。図9においては、これらの角部の円弧の曲率中心をC1a、C1bとして示しているが、これらの曲率中心は凸部4bの内側に位置している。
XZ平面内において、1つの凸部4bの有するパラメータの条件は、以下の通りである。なお、下部電極の凸部4b上の形成される誘電体薄膜5(図2参照)の厚みをtdとする。
まず、角部の曲率半径R1は、0.4×td≦R1≦20×tdを満たしている。本例の場合、誘電体薄膜5の厚みtd=140nmなので、範囲を絶対値で表現すると、56nm≦R1≦2800nmとなる。
この薄膜キャパシタによれば、曲率半径R1が誘電体薄膜の厚みtdの0.4倍を下回ると、アンテナ効果が高くなり、誘電体薄膜に電界が集中して、素子使用中に誘電体薄膜の内部欠陥が生じる。曲率半径R1が誘電体薄膜の厚みtdの20倍を上回ると、アンテナ効果は低くなるが、角部において誘電体薄膜の面内方向に加わる応力が大きくなり誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合が生じる。
更に好ましくは、角部の曲率半径R1は、0.5×td≦R1≦10×tdを満たしている。この範囲を絶対値で表現すると、70nm≦R1≦140nmとなる。この場合、上記のR1の範囲の場合よりも、更に、誘電体薄膜の内部欠陥が抑制され、また、角部における誘電体薄膜の面内方向への応力により誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合も減少する。
なお、誘電体薄膜の厚みtdは一定であるため、上部電極6の下に向けた凸部は、下部電極の凸部4b間の凹部の形状に沿っており、上部電極の凸部6b間の上に凹んだ凹部は、下部電極の凸部4bの形状に沿っている(図1参照)。
次に、凸部4bに隣接する凹部の底面からの高さH(4b)と、共通電極部分4aの高さ(厚み)H(4a)がパラメータとして挙げられる。一例としては、H(4b)=8μmに設定し、H(4a)=2μmに設定する。凸部4bのXZ平面内における幅をW(4b)とし、凸部4bのXZ平面内におけるアスペクト比AR=H(4b)/W(4b)が高いほど、凸部4bは突出し、延びた指のような形状となる。アスペクト比AR=H(4b)/W(4b)の好ましい範囲は、0.3≦AR≦10となる。ARが下限を下回ると、凸部4bの頂部において誘電体薄膜の面内方向への応力が生じ誘電体薄膜にクラックが導入されやすくなったり、頂部において電極の結晶粒界に起因する電界の集中が生じたりするためであり、上限を超えると凸部4b自体がアンテナとなってその頂部に電界の集中を生じ、誘電体薄膜の材料によっては誘電体薄膜の破壊が生じる場合があるからである。
XZ平面内において、凸部4bの基端部の角部は、滑らかではなく、不連続に折れ曲がっているが、これを滑らかに丸くする方法を採用することもできる。
図10は、下部電極の凸部の先端部及び基端部の角部を丸くする工程を説明するための薄膜キャパシタの断面構成(XZ平面)を示す図である。
図2(E)において、下部電極の凸部4bを形成する場合、凸部4bの先端部を丸くする処理を行う。図10(A)では、まず、フォトリソグラフィ―によってパターニングされたマスクMを平坦な共通電極部分4a上に形成した後、マスクMの開口パターン内に、凸部4bを形成させる。この形成には、メッキ法やスパッタ法を用いることができるが、ここではメッキ法を用いて、金属を成長させるものとする。凸部4bの頂面は、平坦である。
次に、レジストからなるマスクMを有機溶剤などで除去し、凸部4bの側面を露出させる(図10(B))。
しかる後、凸部4bの全ての露出面に対して、角部を丸くする加工を行う。例えば、Ar等の希ガスを頂面に衝突させて、頂面の外縁の角部、及び、基端部の角部を丸くする方法(スパッタ法、ミリング法)や、これらをドライエッチング又はウエットエッチングすることで、これらの角部を丸くする方法などが挙げられる。すなわち、凸部頂面の外周部分が、中央部分よりも多く除去されることにより、頂面のXZ断面における輪郭が、上に凸の弧を描くような形状になる(図10(B))。また、凸部基端部の角部(空間)の近傍及び側面が、徐々に除去されることにより、凸部基端部のXZ断面における輪郭が、裾野を引く弧を描くような形状になる(図10(C))。
なお、金属は適当な酸によりエッチングすることができる。例えば、銅のエッチング液としては、硫酸や過酸化水素系エッチング溶液が良く知られており、プラズマなどを用いたドライエッチングとしては、単に希ガスで金属原子をスパッタすることによってもエッチングすることはできるが、炭化水素系のガスやハロゲンガスを用いたり、これに酸素を含有させることで、銅の酸化を利用しながら、エッチングを行う手法も数多く知られている。
また、図10(B)及び/又は図10(C)の工程の前工程及び/又は後工程において、凸部4bを構成する金属材料が軟化する温度で、これを加熱し、表面を平滑化してもよい。
図11は、下部電極の凸部の断面構成(XZ平面)を示す図である。
図11の凸部は、図9に示した凸部と比較して、凸部の基端部の角部の形状が滑らかに凹んでいる点のみが異なり、残りの要素は同一である。また、パラメータの範囲と作用効果も図9の場合と同一である。基端部について説明すると、図2(E)におけるエッチングにおいて、エッチング時に露出していた露出面の全体がエッチングされ、凸部の基端部に位置する角部が、裾野を引く円弧を描くように変形する。もちろん、YZ平面内においても、基端部は、裾野引く円弧を描くように変形する。なお、凸部4bをXZ平面又はYZ平面に垂直な方向から見た場合、角部の変形の度合いは左右対称である。図11においては、基端部の両方の角部の円弧の曲率中心をC2a、C2b、C2c、C2dとして示しているが、これらの曲率中心は凸部4bの外側(凹部内)に位置している。
XZ平面内において、1つの凸部4bの有する基端部のパラメータの条件は、以下の通りである。
まず、凸部4bの基端部の左右の角部の曲率半径R2(凸部4bの両側に位置する凹部の底部における曲率半径)は、0.4×td≦R2≦20×tdを満たしている。本例の場合、誘電体薄膜5の厚みtd=140nmなので、範囲を絶対値で表現すると、56nm≦R2≦2800nmとなる。
この薄膜キャパシタによれば、曲率半径R2が誘電体薄膜の厚みtdの0.4倍を下回ると、アンテナ効果が高くなり、誘電体薄膜に電界が集中して、素子使用中に基端部近傍の誘電体薄膜の内部欠陥が生じる。曲率半径R2が誘電体薄膜の厚みtdの20倍を上回ると、アンテナ効果は低くなるが、角部において誘電体薄膜の面内方向に加わる応力が大きくなり誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合が生じる。
更に好ましくは、角部の曲率半径R2は、0.5×td≦R2≦10×tdを満たしている。この範囲を絶対値で表現すると、70nm≦R2≦140nmとなる。この場合、上記のR2の範囲の場合よりも、更に、誘電体薄膜の内部欠陥が抑制され、また、角部における誘電体薄膜の面内方向への応力により誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合も減少する。
なお、誘電体薄膜の厚みtdは一定であるため、上部電極6の下に向けた凸部は、下部電極の凸部4b間の凹部の形状に沿っており、上部電極の凸部6b間の上に凹んだ凹部は、下部電極の凸部4bの形状に沿っている(図1参照)。
図12は、下部電極の凸部の断面構成(YZ平面)を示す図である。
図12の断面(YZ断面)は、図11の断面(XZ断面)に垂直な断面である。凸部4bのY軸方向長は、Y軸方向長よりも長いが、基本的なアール形状は、図11に示したものと同一である。
図2(E)におけるエッチングにおいて、エッチング時に露出していた露出面の全体がエッチングされ、凸部4bの先端部の角部が円弧を描くように変形し、基端部に位置する角部が、裾野を引く円弧を描くように変形する。角部の変形の度合いは左右対称である。図12においては、先端部の両方の角部の円弧の曲率中心をC3a、C3bとして示しているが、これらの曲率中心は凸部4bの内部に位置している。また、基端部の両方の角部の円弧の曲率中心をC4a、C4bとして示しているが、これらの曲率中心は凸部4bの外側に位置している。
YZ平面内において、1つの凸部4bの有する基端部のパラメータの条件は、以下の通りである。
まず、凸部4bの先端部の左右の角部の曲率半径R3は、0.4×td≦R3≦20×tdを満たしている。本例の場合、誘電体薄膜5の厚みtd=140nmなので、範囲を絶対値で表現すると、56nm≦R2≦2800nmとなる。
この薄膜キャパシタによれば、曲率半径R3が誘電体薄膜の厚みtdの0.4倍を下回ると、アンテナ効果が高くなり、誘電体薄膜に電界が集中して、素子使用中に先端部近傍の誘電体薄膜の内部欠陥が生じる。曲率半径R3が誘電体薄膜の厚みtdの20倍を上回ると、アンテナ効果は低くなるが、角部において誘電体薄膜の面内方向に加わる応力が大きくなり誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合が生じる。
更に好ましくは、角部の曲率半径R3は、0.5×td≦R3≦10×tdを満たしている。この範囲を絶対値で表現すると、70nm≦R3≦140nmとなる。この場合、上記のR3の範囲の場合よりも、更に、誘電体薄膜の内部欠陥が抑制され、また、角部における誘電体薄膜の面内方向への応力により誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合も減少する。
まず、凸部4bの基端部の左右の角部の曲率半径R4は、0.4×td≦R4≦20×tdを満たしている。本例の場合、誘電体薄膜5の厚みtd=140nmなので、範囲を絶対値で表現すると、56nm≦R4≦2800nmとなる。
この薄膜キャパシタによれば、曲率半径R4が誘電体薄膜の厚みtdの0.4倍を下回ると、アンテナ効果が高くなり、誘電体薄膜に電界が集中して、素子使用中に基端部近傍の誘電体薄膜の内部欠陥が生じる。曲率半径R4が誘電体薄膜の厚みtdの20倍を上回ると、アンテナ効果は低くなるが、角部において誘電体薄膜の面内方向に加わる応力が大きくなり誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合が生じる。
更に好ましくは、角部の曲率半径R4は、0.5×td≦R4≦10×tdを満たしている。この範囲を絶対値で表現すると、70nm≦R4≦140nmとなる。この場合、上記のR4の範囲よりの場合よりも、更に、誘電体薄膜の内部欠陥が抑制され、また、角部における誘電体薄膜の面内方向への応力により誘電体薄膜にクラックが導入されやすくなったり、角部において電極の結晶粒界に起因する電界の集中が生じたりするという不具合も減少する。
また、凸部4bのYZ平面内におけるY軸方向の長さをL(4b)とする。凸部4bのYZ平面内におけるアスペクト比AR’=H(4b)/L(4b)には、特に、制限はないが、高さH(4b)が高ければ、単位面積当たりの容量が大きくなり、長さL(4b)が大きいほど、Y軸方向の機械的強度が高くなる。また、凸部4bをY軸方向に沿って、ドット上に複数並べることも可能であり、この場合、長さL(4b)は小さくなり、単位面積当たりの容量は増加する。
図13は、実施例及び比較例における角部の形状と評価結果の関係を示す図表である。
実施例1〜実施例22と、比較例1〜比較例4が示されている。TYPE1は、図9に示すように、角部を丸くする箇所が先端部のみの場合、TYPE2は、図11に示すように、角部を丸くする箇所が先端部のみならず、基端部にも及ぶ場合を示している。
共通電極部分4a及び凸部4bはCuからなり、メッキ法で成長させ、これのエッチングには、塩化第二鉄の5重量%水溶液を用い、誘電体薄膜5としてはALD法によって形成されたアルミナを用い、この上にCuからなる上部電極をスパッタ法で形成した。
なお、H(4a)=2μm、H(4b)=8μm、W(4b)=4μm、L(4b)=112μm、td=140nmである。
単一のチップ内に、上述の複数の薄膜キャパシタを形成し、各薄膜キャパシタの耐性について、測定した。製造したそれぞれの薄膜キャパシタのY軸方向長(幅)は0.1mm、X軸方向長(長さ)は0.4mmである。同一のSiウェハ上に、各例のサンプルを1000個ずつ形成した。ウエハ(基板)の厚みは2mm、応力調整層の厚みは1μm、上部電極と下部電極との間に挟まれる誘電体薄膜の材料はALD法で作製されるAl2O3、厚さは140nm(1400Å)である。上部電極と下部電極の材料は同一の材料とし、これらの共通電極部分の厚み同一(2μm)であり、凹凸構造のピッチは4μm、それぞれの凹凸構造における凸部の高さHは(8μm)、上部電極を被覆する保護膜の材料はポリイミドであり、保護膜内を通る接続電極、接続電極の終端に位置するコンタクト電極又はアンダーバンプメタルはCu上にNi及びAuのメッキを施してなる。これらの各電極は、めっき法を用いて作成した。
これらのサンプルを、各実験例毎に、1000個ずつ作製し、湿度85%。温度85℃の環境下で、電圧30Vを連続的に上下の電極間に印加した。環境試験24時間後に、絶縁抵抗が1011Ω以上のものを正常品とし、絶縁抵抗が1011Ω未満のものを不良品とした。
各例の曲率半径R1、R1、R3及びR4は、ほぼ等しくなるように、エッチングを行った。エッチングには塩化第二鉄の5重量%水溶液を用い、エッチング時間は、45秒〜100秒とした。基板厚み方向のエッチングレートは、エッチング剤の温度、エッチング時間の調整、あるいは、超音波等による加圧、等の手段により、厚み方向に垂直な方向のエッチングレートはエッチング剤の水溶液濃度の調整により、制御することができる。TYPE1及びTYPE2を含む実施例1〜実施例22においては、少なくとも、先端部の角部の曲率半径R1、R3が、0.4×td≦R1≦20×td、0.4×td≦R3≦20×tdを満たしている。この場合、1000個のサンプル中619個〜978個が、正常品となる結果となった。比較例1〜4の場合、24時間後には、正常品の個数が500個以下となった。したがって、実施例は、比較例よりも優れていることが分かる。
また、TYPE1は、実施例1、2、5、7、9、11、13、15、20、21、22であり、TYPE2は、実施例3,4、6、8、10、12、14、16、17、18、19である。比較例1〜5は、TYPE1した。
TYPE2(実施例3,4,6,8,10,12,14,16,17,18)の場合、それぞれ同一の曲率半径を有するTYPE1(実施例1、2、5、7、9、11、13、15、21、21、22)の薄膜キャパシタよりも、正常品の割合が増加している。したがって、TYPE2は、TYPE1と比較して、優れていることが分かる。
また、実施例5〜16の場合(0.5×td≦曲率半径≦10×td)、正常品の個数が、760個〜945個である。これは、実施例1〜4、実施例17〜22の場合(0.4×td≦曲率半径≦0,45×td、12.1×td≦曲率半径≦20.6×td)の正常品の個数(619個〜756個)場合よりも、正常品の個数が多い。したがって、曲率半径は、(0.5×td≦曲率半径≦10×td)であることが、更に好ましい。
以上、説明したように、凹凸構造を有する薄膜キャパシタにおいては、単位体積中の電極対向面積を大きくする構造であるため、容量を増加させることができる。一方、電極が細分化されるため強度が低下し、実装時の温度上昇や、実使用時の環境によって発生する機械的な力が誘電体層に伝わり、破壊される虞がある。本実施形態では、この破壊を抑制している。下部電極の凹凸構造としては、縦断面の形状が、櫛歯或いはスリット状の下部電極、又は、ピン又は穴からなる形状の下部電極を用いることができ、下部電極と上部電極の構造は互いに置換させることも可能である。
以上のように、上述の所定の条件を満たすことにより、誘電体薄膜への応力蓄積を抑制し、特性劣化を抑制することができる。
1…基板、4…下部電極、5…誘電体薄膜、6…上部電極。
Claims (7)
- 基板と、
前記基板の主表面上に形成された絶縁層と、
前記絶縁層上に形成された下部電極と、
前記下部電極を被覆する誘電体薄膜と、
前記誘電体薄膜上に形成された上部電極と、
を備え、
前記下部電極は、前記基板の厚み方向に沿った縦断面が、凹凸構造を有し、
前記上部電極は、前記基板の厚み方向に沿った縦断面が、凹凸構造を有し、
前記下部電極の凸部間の隙間に、前記上部電極の前記下部電極側へ突出した凸部が位置し、
XYZ三次元直交座標系を設定し、
前記主表面をXY平面とし、
前記下部電極の複数の凸部が並ぶ方向をX軸方向とした場合、
XZ平面内において、前記下部電極の前記凸部の先端部は、曲率中心が、この凸部の内部に位置する曲率半径R1の角部を有し、
曲率半径R1、及び、前記誘電体薄膜の厚みtdは、以下の関係式:
0.4×td≦R1≦20×td
を満たしていることを特徴とする薄膜キャパシタ。 - XZ平面内において、前記下部電極の前記凸部の基端部は、曲率中心が、この凸部の外部に位置する曲率半径R2の角部を有し、
曲率半径R2、及び、前記誘電体薄膜の厚みtdは、以下の関係式:
0.4×td≦R2≦20×td
を満たしていることを特徴とする請求項1に記載の薄膜キャパシタ。 - YZ平面内において、前記下部電極の前記凸部の先端部は、曲率中心が、この凸部の内部に位置する曲率半径R3の角部を有し、
曲率半径R3、及び、前記誘電体薄膜の厚みtdは、以下の関係式:
0.4×td≦R3≦20×td
を満たしていることを特徴とする請求項1又は2に記載の薄膜キャパシタ。 - YZ平面内において、前記下部電極の前記凸部の基端部は、曲率中心が、この凸部の外部に位置する曲率半径R4の角部を有し、
曲率半径R4、及び、前記誘電体薄膜の厚みtdは、以下の関係式:
0.4×td≦R4≦20×td
を満たしていることを特徴とする請求項1乃至3のいずれか一項に記載の薄膜キャパシタ。 - 以下の関係式:
0.5×td≦R1≦10×td
を満たしていることを特徴とする請求項1乃至4のいずれか一項に記載の薄膜キャパシタ。 - 以下の関係式:
0.5×td≦R2≦10×td
を満たしていることを特徴とする請求項1乃至5のいずれか一項に記載の薄膜キャパシタ。 - 前記絶縁層は、応力調整層であり、
この応力調整層のヤング率は、前記基板のヤング率よりも高く、且つ、前記下部電極のヤング率よりも高いことを特徴とする請求項1乃至6のいずれか一項に記載の薄膜キャパシタ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015073957A JP2016195164A (ja) | 2015-03-31 | 2015-03-31 | 薄膜キャパシタ |
US15/083,649 US20160293334A1 (en) | 2015-03-31 | 2016-03-29 | Thin film capacitor |
CN201610192511.7A CN106024387B (zh) | 2015-03-31 | 2016-03-30 | 薄膜电容器 |
TW105110106A TW201643909A (zh) | 2015-03-31 | 2016-03-30 | 薄膜電容器 |
EP16163266.6A EP3076450A1 (en) | 2015-03-31 | 2016-03-31 | Thin film capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015073957A JP2016195164A (ja) | 2015-03-31 | 2015-03-31 | 薄膜キャパシタ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016195164A true JP2016195164A (ja) | 2016-11-17 |
Family
ID=57323648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015073957A Pending JP2016195164A (ja) | 2015-03-31 | 2015-03-31 | 薄膜キャパシタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016195164A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019058922A1 (ja) * | 2017-09-19 | 2019-03-28 | 株式会社村田製作所 | キャパシタ |
JPWO2019021817A1 (ja) * | 2017-07-25 | 2019-11-14 | 株式会社村田製作所 | キャパシタ |
US11158456B2 (en) | 2018-06-27 | 2021-10-26 | Taiyo Yuden Co., Ltd. | Trench capacitor |
-
2015
- 2015-03-31 JP JP2015073957A patent/JP2016195164A/ja active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019021817A1 (ja) * | 2017-07-25 | 2019-11-14 | 株式会社村田製作所 | キャパシタ |
WO2019058922A1 (ja) * | 2017-09-19 | 2019-03-28 | 株式会社村田製作所 | キャパシタ |
CN110914973A (zh) * | 2017-09-19 | 2020-03-24 | 株式会社村田制作所 | 电容器 |
JPWO2019058922A1 (ja) * | 2017-09-19 | 2020-03-26 | 株式会社村田製作所 | キャパシタ |
US10903309B2 (en) | 2017-09-19 | 2021-01-26 | Murata Manufacturing Co., Ltd. | Capacitor |
CN110914973B (zh) * | 2017-09-19 | 2023-05-30 | 株式会社村田制作所 | 电容器 |
US11158456B2 (en) | 2018-06-27 | 2021-10-26 | Taiyo Yuden Co., Ltd. | Trench capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3076450A1 (en) | Thin film capacitor | |
JP7022365B2 (ja) | 貫通電極基板及びその製造方法 | |
CN107094002A (zh) | 声波谐振器及其制造方法 | |
US11810820B2 (en) | Through electrode substrate, method of manufacturing through electrode substrate, and mounting substrate | |
JP2016195164A (ja) | 薄膜キャパシタ | |
JP6392532B2 (ja) | 圧電振動片、圧電振動子、および圧電振動片の製造方法 | |
JP2006185935A (ja) | キャパシタ部品 | |
JP2016195160A (ja) | 薄膜キャパシタ | |
JP2016195161A (ja) | 薄膜キャパシタ | |
JPH03285338A (ja) | ボンディングパッド | |
US9748165B2 (en) | Packaging structure | |
JP5399888B2 (ja) | 音叉型屈曲水晶振動素子 | |
JP4453711B2 (ja) | 薄膜部品及び製造方法 | |
US7518296B2 (en) | Piezoelectric resonator with short-circuits preventing means | |
KR101983148B1 (ko) | 압전 진동자용 압전편 및 그 제조 방법 | |
JP6852415B2 (ja) | 貫通電極基板及び貫通電極基板を備える実装基板並びに貫通電極基板の製造方法 | |
JP3991304B2 (ja) | 圧電振動片および圧電振動子 | |
JP3603571B2 (ja) | 圧電素子およびその製造方法 | |
JP2011023468A (ja) | 可変容量素子 | |
JP7307898B2 (ja) | 貫通電極基板及びその製造方法 | |
JP2010130294A (ja) | 音響波共振子 | |
JP2007081267A (ja) | 半導体装置およびその製造方法 | |
US11271074B2 (en) | Capacitor and method for manufacturing the same | |
KR102460449B1 (ko) | 고주파 캐패시터 및 이의 제조방법 | |
JP2010016240A (ja) | インダクタとその製造方法 |