JP2016169626A - 多気筒内燃機関の制御装置 - Google Patents

多気筒内燃機関の制御装置 Download PDF

Info

Publication number
JP2016169626A
JP2016169626A JP2015048430A JP2015048430A JP2016169626A JP 2016169626 A JP2016169626 A JP 2016169626A JP 2015048430 A JP2015048430 A JP 2015048430A JP 2015048430 A JP2015048430 A JP 2015048430A JP 2016169626 A JP2016169626 A JP 2016169626A
Authority
JP
Japan
Prior art keywords
fuel
ignition
injection
engine
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015048430A
Other languages
English (en)
Other versions
JP6311629B2 (ja
Inventor
鈴木 裕介
Yusuke Suzuki
裕介 鈴木
小島 進
Susumu Kojima
進 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015048430A priority Critical patent/JP6311629B2/ja
Priority to CN201610135834.2A priority patent/CN105971752B/zh
Priority to US15/066,085 priority patent/US9863389B2/en
Priority to DE102016104354.0A priority patent/DE102016104354B4/de
Publication of JP2016169626A publication Critical patent/JP2016169626A/ja
Application granted granted Critical
Publication of JP6311629B2 publication Critical patent/JP6311629B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0825Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to prevention of engine restart failure, e.g. disabling automatic stop at low battery state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/004Generation of the ignition spark
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/06Reverse rotation of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

【課題】着火始動制御において自着火を抑制して、その後の機関の始動を早期に行う制御装置を提供。【解決手段】制御装置は、自動停止制御の開始後に再始動要求が発生した場合に、膨張行程にある気筒の前記燃料噴射弁から燃料を噴射させる第1噴射と第1噴射によって噴射された燃料を点火するための点火動作を行う。加えて、制御装置は、圧縮行程にある気筒の前記燃料噴射弁から燃料を噴射させる第2噴射と第2噴射によって噴射された燃料を点火するための点火動作を行う。そして、制御装置は、第2噴射の後に前記圧縮行程にある気筒のクランク角が圧縮上死点を超えることができない始動不良が発生した又は同始動不良が発生するであろうと判定した場合には同圧縮行程にある気筒の前記燃料噴射弁から燃料を再噴射させる第3噴射を行う。【選択図】図3

Description

本発明は、多気筒内燃機関(以下、単に、「機関」と称される場合がある。)を自動的に停止し且つ自動的に再始動する機能を有する制御装置に関する。
従来から、機関を搭載する車両の燃費の改善及び同車両から排出される排ガスの量の削減等を目的として、所定の自動停止条件が成立すると機関の運転(回転)を自動的に停止する自動停止制御を行う制御装置が知られている。
このような制御装置は、アクセルペダル操作がなされた場合或いはブレーキ操作が解除された場合等のように機関の再始動要求が発生すると、機関を自動的に再始動させる。この場合、制御装置は、再始動要求が発生した時点における機関回転速度に応じて、例えば、(1)通常制御、(2)着火始動制御、及び(3)スタータ始動制御、の何れかを行って、機関を再始動させる。
ところで、着火始動制御は、機関回転速度が完全には「0」に到っていないが、通常制御(圧縮行程への燃料噴射及び点火)によっては機関の再始動が困難な程度にまで低下しているときに行われる。着火始動制御によれば、圧縮行程にある気筒(以下、「圧縮行程気筒」と称される場合がある。)がその気筒の上死点を乗り越えられるように、膨張行程にある気筒(以下、「膨張行程気筒」と称される場合がある。)において燃料噴射及び点火を行う。更に、着火始動制御においては、この膨張行程気筒に対する燃料噴射及び点火を少なくとも1回以上実施し、それに加え、機関の回転が速やかに上昇するように、圧縮行程気筒に対しても順次燃料噴射を行い、同気筒が圧縮上死点に到達した後に点火を行うべく、イグナイタへの通電を開始する。
ところで、着火始動制御においては、膨張行程気筒に対して燃料噴射及び点火を行ったにもかかわらず、圧縮行程気筒がその気筒の上死点を乗り越えられず、その結果、機関が逆回転(逆転)を始める場合が生じる。即ち、始動不良が発生する場合がある。このとき、既に燃焼噴射がなされた圧縮行程気筒においてイグナイタへの通電の遮断が行われると、同気筒が未だ圧縮行程にあるにも拘わらず燃料が燃焼し、機関の逆回転を助長してしまう虞がある。そこで、従来の制御装置の一つは、機関が逆回転し始めた場合、既に燃料噴射が行われた圧縮行程気筒での点火の実行を延期するとともにスタータを駆動し、その圧縮行程気筒が圧縮上死点を乗り越えて膨張行程に到った時点にて点火を行うようになっている(例えば、特許文献1を参照。)。
特許第5456088号公報
しかしながら、上述したように圧縮行程気筒での点火を遅延した場合であっても、圧縮行程気筒に対して噴射された燃料を含む混合気は圧縮行程気筒内に留まっており、その結果、長時間に亘り燃焼室壁面から受熱して高温になっている。そのため、機関の回転方向が揺り返しにより正回転に変化してその混合気が圧縮されたとき、その混合気が自着火し、再び逆回転が発生して始動開始が遅れるという問題があった。更に、このような自着火は、揺り返しによって機関が正回転した場合のみでなく、スタータにより機関が正回転させられる場合にも発生することが判明した。
本発明は、上述した課題に対処するために為されたものである。即ち、本発明の目的は、着火始動制御において始動不良が発生した場合であっても、膨張行程気筒に対して噴射された燃料を含む混合気の自着火を抑制して、その後の機関の始動を早期に行うことが可能な制御装置を提供することにある。
本発明による多気筒内燃機関の制御装置(以下、「本発明装置」と称される場合がある。)は、燃焼室に燃料を直接噴射する燃料噴射弁と、前記燃焼室に点火用火花を発生させる点火装置と、を各気筒に備える多気筒内燃機関に適用される。
本発明装置は、所定の自動停止条件が成立した場合に前記燃料噴射弁からの燃料の噴射を停止して前記機関の回転を停止させる自動停止制御を実行する制御部を備える。
更に、その制御部は、前記自動停止制御の開始後に再始動要求が発生した場合、以下に述べる着火始動制御を実行して前記機関を再始動させる。
即ち、着火始動制御は、前記自動停止制御の開始後に再始動要求が発生した場合に、
(1)膨張行程にある気筒の前記燃料噴射弁から燃料を少なくとも1回以上噴射させる第1噴射を行い次いで前記点火装置を用いて同膨張行程にある気筒の燃焼室に同第1噴射によって噴射された燃料を点火するための点火用火花を発生させ、且つ、
(2)圧縮行程にある気筒の前記燃料噴射弁から燃料を噴射させる第2噴射を行い、次いで同気筒が上死点を乗り越えた時点以降に、同第2噴射によって噴射された燃料を点火するための点火用火花を、前記点火装置を用いて発生させる、
制御である。
このように、制御部は、圧縮行程気筒が圧縮上死点を乗り越えることができるように膨張行程気筒における燃料噴射(第1噴射)及び点火によって膨張行程気筒内の混合気を燃焼させる。更に、制御部は、圧縮行程気筒が圧縮上死点を乗り越えた後に始動トルク(再始動に必要なトルク)を発生することができるように、その圧縮行程気筒においても燃料噴射(第2噴射)を行って、同気筒が上死点を乗り越えた時点以降において燃料を点火・燃焼させるべく、混合気を形成する必要がある。
しかしながら、前述したように、圧縮行程気筒に第2噴射を行った後、その圧縮行程気筒が上死点を乗り越えられない始動不良が発生する場合、第2噴射により形成された混合気が圧縮行程気筒の燃焼室内に長い時間留まるので、その混合気の温度が高くなる。そのため、機関が逆転した後に正転したとき、或いは、スタータにより機関が正転させられたとき、その混合気が圧縮されて自着火する虞がある。
そこで、前記制御部は、
前記第2噴射の後に前記圧縮行程にある気筒のクランク角が圧縮上死点を超えることができない始動不良が発生した又は同始動不良が発生するであろうと判定した場合には、同圧縮行程にある気筒において混合気の自着火を抑制するように、より好ましくは同圧縮行程にある気筒において混合気の自着火が発生しないように、同圧縮行程にある気筒の前記燃料噴射弁から燃料を再噴射させる第3噴射を行う。
この第3噴射によって噴射された燃料により、圧縮行程気筒内に形成される混合気が過剰にリッチ(過濃、オーバーリッチ)となるので、仮に、機関が逆転した後に正転して或いはその後のスタータを用いたクランキングによって同混合気が圧縮された場合であっても、その混合気の自着火が抑制される。その結果、その混合気の自着火燃焼による更なる機関の逆転が抑制されるので、機関の始動を早期に行うことができる。
本発明装置の一態様において、
前記点火装置は、
一次コイル、二次コイル及び点火プラグを含み、前記一次コイルの通電及び同通電の遮断により前記二次コイルに生じた高電圧を前記点火プラグの電極部に印加することにより前記点火用火花を発生するように構成され、
前記制御部は、
前記始動不良が発生した又は同始動不良が発生するであろうと判定した時点において前記第2噴射によって噴射された燃料を点火するための前記点火用火花を発生させるために前記一次コイルの通電を既に開始していた場合、前記第3噴射を行った時点から所定時間後に同一次コイルの通電を遮断するように構成されている。
これによれば、第3噴射により噴射された燃料が十分に気化して第2噴射により噴射された燃料に基づいて形成された混合気と十分に混合した時点にて一次コイルの通電が遮断され得る。そのような時点においては、点火用火花が発生しても着火し難い「十分に過濃な混合気」が圧縮行程気筒内に形成されている。その結果、点火用火花による燃焼が発生し難いので、機関の更なる逆転が発生し難い。その結果、その後の機関の始動を早期に行うことができる。更に、一次コイルの通電をできるだけ早期に遮断できるので、点火装置の保護を図ることができる。
本発明装置の一態様において、前記制御部は、
前記始動不良が発生した又は同始動不良が発生するであろうと判定した場合、前記機関に備えられているスタータにより前記機関をクランキングするとともに前記燃料噴射弁から燃料を噴射し且つ前記点火装置の発生する点火用火花により同噴射された燃料に点火して同機関を再始動させるスタータ始動制御を行う。
これにより、着火始動制御による始動が成功しない場合であっても、スタータを用いて機関を早期に再始動させることができる。
この場合、前記制御部は、更に、
前記スタータ始動制御の実行後に前記機関が始動を完了した後、前記第3噴射を行った履歴がある場合には同履歴がない場合に比べて前記燃料噴射弁から噴射される燃料の量を所定期間に亘り少なくするように構成されている。
前記第3噴射により圧縮行程気筒内には過濃な混合気が形成されているので、スタータ始動制御がなされた場合には排気通路に設けられた触媒に過濃な混合気が流入し、それにより、触媒の状態が過剰なリッチ状態(即ち、もはや未燃物を浄化できない状態)に到る虞がある。従って、上記構成のように、前記第3噴射を行った履歴がある場合には同履歴がない場合に比べて前記燃料噴射弁から噴射される燃料の量を所定期間に亘り少なくする。この結果、触媒の状態が過剰なリッチ状態とならないから、機関から排出される未燃物が触媒により浄化される。その結果、大気中に排出される未燃物の量を低減することができる。
本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
図1は本発明の実施形態に係る「多気筒内燃機関の制御装置」及び同制装置が適用される多気筒内燃機関の概略図である。 図2は図1に示した点火装置の回路図である。 図3は図1に示した電子制御ユニットの着火始動制御における作動を説明するための図である。 図4は図1に示したCPUが実行するルーチンを示したフローチャートである。 図5は図1に示したCPUが実行するルーチンを示したフローチャートである。 図6は図1に示したCPUが実行するルーチンを示したフローチャートである。 図7は図1に示したCPUが実行するルーチンを示したフローチャートである。 図8は図1に示したCPUが実行するルーチンを示したフローチャートである。
以下、本発明の実施形態に係る「多気筒内燃機関の制御装置(以下、「本装置」と称される場合がある。)について説明する。
(構成)
本装置は、図1に示した内燃機関(機関)10に適用される。機関10は、多気筒(本例においては、直列4気筒)・4サイクル・ピストン往復動型・筒内噴射(直噴)・火花点火式・ガソリン燃料・エンジンである。
機関10は、シリンダブロック、シリンダブロックロワーケース及びオイルパン等を含むシリンダブロック部20、シリンダブロック部20の上に固定されるシリンダヘッド部30、シリンダブロック部20に空気を供給するための吸気システム40、並びに、シリンダブロック部20からの排ガスを外部に放出するための排気システム50を備えている。
シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23及びクランクシャフト24を備えている。ピストン22は、シリンダ21内を往復動する。ピストン22の往復動は、コンロッド23を介してクランクシャフト24に伝達され、これにより、クランクシャフト24が回転するようになっている。シリンダ21、ピストン22及びシリンダヘッド部30は、燃焼室(気筒)25を形成している。
シリンダブロック部20は、スタータモータ(単に、「スタータ」とも称される。)26を備えている。スタータ26は、後述するエンジンECU(電子制御ユニット)80の指示に応答して作動して、クランクシャフト24に取り付けられた図示しないリングギアを回転させるようになっている。即ち、スタータ26はクランキングを実行する。
シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、燃焼室25に連通した排気ポート33、排気ポート33を開閉する排気弁34、燃焼室25内の燃料に点火する点火装置35、及び、燃焼室25に燃料を直接噴射する燃料噴射弁39を備えている。
点火装置35は、点火プラグ36、点火プラグ36に与える高電圧を発生するイグニッションコイル37及びイグナイタ38を含む。点火プラグ36の電極部(点火用の火花発生部)は燃焼室25の上部の中央部において燃焼室25に露出している。
図2に示したように、イグニッションコイル37の一次側コイル37aは、フューズ及びイグニッションスイッチ79を介して車両のバッテリBatに接続されている。イグニッションコイル37の二次側コイル37bは、その一端が一次側コイル37aに接続されるとともに他端が点火プラグ36に接続されている。イグナイタ38はスイッチング素子(パワートランジスタ)38aと、駆動回路38bと、を含んでいる。駆動回路38bは、ECU80からの制御信号に応答してスイッチング素子38aを導通状態に設定し、一次側コイル37aを通電する。駆動回路38bは、エンジンECU80からの制御信号に応答してスイッチング素子38aを導通状態から非導通状態へと変更する。即ち、一次側コイル37aの通電を遮断する。このとき、二次側コイル37bに高電圧が発生し、その高電圧が点火プラグ36に印加される。その結果、点火プラグ36の電極部から点火用火花が発生する。
再び図1を参照すると、燃料噴射弁39は、その燃料噴射孔が燃焼室25内に露出するようにシリンダヘッド部30に配設されている。燃料噴射弁39は、ECU80の指示に応答して開弁し、燃焼室25に燃料を直接噴射する。
吸気システム40は、吸気ポート31に連通したインテークマニホールド41、インテークマニホールド41に連通したサージタンク42、及び、サージタンク42に一端が接続された吸気管43を備えている。吸気ポート31、インテークマニホールド41、サージタンク42及び吸気管43は、吸気通路を構成している。
更に、吸気システム40は、エアフィルタ44及びスロットル弁45を備えている。スロットル弁45は、吸気管43に回転可能に支持されている。スロットル弁アクチュエータ45aは、DCモータからなり、ECU80の指示に応答してスロットル弁45を駆動することにより、スロットル弁45の開度を変更する。
排気システム50は、排気ポート33に連通するエキゾーストマニホールド51及びエキゾーストマニホールド51に接続された排気管52を備えている。排気ポート33、エキゾーストマニホールド51及び排気管52は、排気通路を構成している。
更に、排気システム50は、三元触媒(三元触媒装置、排気浄化触媒)53を備えている。三元触媒53は、排気管52に配設されていて、流入するガスの空燃比が理論空燃比であるとき、HC、CO、H等の未燃成分を酸化するとともにNOx(窒素酸化物)を還元する機能を有する。三元触媒53は、酸素を吸蔵(貯蔵)する酸素吸蔵機能を有し、この酸素吸蔵機能により、空燃比が理論空燃比から偏移したとしても未燃成分及びNOxを浄化することができる。
機関10はフューエルポンプシステム62を備えている。フューエルポンプシステム62は、図示しない「低圧ポンプ、高圧ポンプ及び燃圧調整用の電磁弁」を含む。フューエルポンプシステム62は、図示しない燃料タンクからフューエルポンプによって燃料を汲み上げ、ECU80の指示に応答して燃料の圧力を目標燃圧に調整した上でその燃料を燃料噴射弁39に供給する。
ECU80は、周知のマイクロコンピュータを含む電子回路であり、CPU、ROM、RAM、バックアップRAM及びインターフェース等を含む。ECU80は、以下に述べるセンサ類と接続されていて、これらのセンサからの信号を受信する(入力される)。
エアフローメータ71:これは、吸気管43を通過して機関10に吸入される空気の質量流量(吸入空気量Ga)を測定し、この吸入空気量Gaを表す信号を出力する。
スロットルポジションセンサ72:これは、スロットル弁45の開度(スロットル弁開度TA)を検出し、このスロットル弁開度TAを表す信号を出力する。
水温センサ73:これは、機関10を冷却する冷却水の温度(冷却水温THW)を測定し、この冷却水温THWを表す信号を出力する。
クランク角度センサ74:これは、クランクシャフト24が一定角度(例えば、10[deg])回転する毎に1つのパルス信号を発生する。ECU80は、このクランク角度センサ74及び図示しないカムポジションセンサからの信号に基づいて、所定の気筒の圧縮上死点を基準とした機関10のクランク角度(絶対クランク角度)を取得する。更に、ECU80は、クランク角度センサ74からの信号に基づいて、機関回転速度NEを取得する。
燃圧センサ75:これは、燃料噴射弁39に供給される燃料の圧力(燃圧PF)を測定し、この燃圧PFを表す信号を出力する。
アクセル操作量センサ76:これは、アクセルペダル91の操作量Accpを検出し、この操作量Accpを表す信号を出力する。
ブレーキスイッチ77:これは、ブレーキペダル92の操作を検出し、ブレーキペダル92が操作されたことを表す信号を出力する。
車速センサ78:これは、機関10が搭載された車両の速度(車速SPD)を測定し、この車速SPDを表す信号を出力する。
イグニッションスイッチ79:これは、機関10を作動させたり機関10の作動を停止させたりするために運転者によって操作されるスイッチであり、そのオン・オフ状態を表す信号をECU80に送出する。
更に、ECU80は、各種アクチュエータ(スロットル弁アクチュエータ45a、点火装置35及び燃料噴射弁39等)に指示(駆動)信号を送出する。
(本装置の作動の概要)
<自動停止及び自動再始動制御>
本装置は、所定の自動停止条件が成立すると、燃料噴射弁39からの燃料の噴射を停止して機関10の回転を停止させる自動停止制御を実行する。このとき、本装置は、イグニッションコイル37の一次側コイル37aへの通電(及び遮断)を停止する。従って、点火も停止される。
本例における自動停止条件は、以下の条件の総てが成立した場合に成立する。
(1)ブレーキペダル92が踏み込まれていること(操作されていること)。
(2)アクセルペダル91が踏み込まれていないこと(操作されていないこと)。
(3)車速SPDが所定速度SPDth以下であること。
自動停止制御が開始された後、再始動要求が発生したとき、本装置は、その時点の機関回転速度NEに応じて以下の何れかの制御を実行することにより、機関10を始動(再始動)させる。なお、本例において、再始動要求は、自動停止制御の開始後においてアクセルペダル91が踏み込まれ始めたとき発生する。
(1)再始動要求が発生した時点の機関回転速度NEが第1閾値速度NE1よりも高い場合(NE>NE1)、本装置は通常制御(通常運転始動制御)を実行して機関10を再始動させる。通常制御は、圧縮行程後半において燃料噴射を行い、圧縮上死点近傍において点火を行う「通常運転中の制御」である。従って、通常制御によっては、スタータモータ26は駆動されない。
(2)再始動要求が発生した時点の機関回転速度NEが第1閾値速度NE1以下であり且つ第2閾値速度NE2よりも高い場合(NE2<NE≦NE1)、本装置は着火始動制御を実行して機関10を再始動させる。着火始動制御は、再始動要求の発生時点において「膨張行程前半(例えば、圧縮上死点後クランク10[deg]乃至30[deg]の間)にある気筒」又は「再始動要求の発生後に最初に膨張行程前半を迎える気筒」において、膨張行程前半に燃料噴射を行い、その直後の時点において点火を行う制御である。以下、「再始動要求の発生時点において膨張行程前半にある気筒」又は「再始動要求の発生後に最初に膨張行程前半を迎える気筒」を「膨張行程気筒」と称する場合がある。更に、その膨張行程気筒が膨張行程にある期間において圧縮行程にある気筒を「圧縮行程気筒」と称する場合がある。なお、着火始動制御によっては、スタータモータ26は駆動されない。
(3)再始動要求が発生した時点の機関回転速度NEが第2閾値速度NE2以下である場合(NE≦NE2)、本装置は機関回転速度NEが第3閾値速度NE3(NE<NE3<NE2)まで低下するのを待ってスタータ始動制御を実行して機関10を再始動させる。スタータ始動制御は、スタータ26を作動させることにより機関10をクランキングしながら、圧縮行程後半において燃料噴射を行い、圧縮上死点近傍において点火を行う制御である。
<着火始動制御における再噴射>
本装置の特徴の一つは、上述した着火始動制御において、始動不良が発生した場合に圧縮行程気筒において燃料を再噴射する点にある。以下、図3の(A)及び(B)を参照しながら、この点について説明する。なお、機関10は4気筒エンジンであるが、図3の(A)及び(B)においては、点火順序が隣り合う第1気筒と第3気筒に着目している。
図3の(A)は、自動停止制御が実行されている際に発生した再始動要求に基づき、着火始動制御が行われ、その結果、始動不良が発生することなく再始動に成功した場合の例を示している。
この例においては、再始動要求が発生した時点以降において最初に膨張行程前半を迎える気筒(即ち、膨張行程気筒)は第1気筒である。そこで、本装置は、第1気筒の膨張行程前半において第1気筒に対して燃料を噴射し、次いで、その燃料を点火する。この燃料噴射は、便宜上、第1噴射と称呼される。
更に、本装置は、始動トルク(機関10の再始動を実現するために必要なトルク)を十分に得るため、その時点で圧縮行程にある第3気筒(圧縮行程気筒)に対し、圧縮行程後半にて燃料を噴射し、第3気筒のクランク角が圧縮上死点後の圧縮上死点近傍にあるときにその燃料を点火する。この燃料噴射は、便宜上、第2噴射と称呼される。これにより、機関回転速度NEが上昇して行く。なお、図示していないが、第3気筒の次に圧縮行程を迎える第4気筒及び第2気筒等においても圧縮行程後半の燃料噴射及び圧縮上死点近傍での点火が実行される。
図3の(B)は、図3の(A)と同様、自動停止制御が実行されている際に発生した再始動要求に基づいて着火始動制御が行われたが、第3気筒が圧縮上死点を乗り越えることができず、その結果、始動不良が発生した場合の例を示している。
この例において、第3気筒に対する第2噴射及び第3気筒のイグニッションコイル37の一次側コイル37aへの通電(on)開始までは、図3(A)に示した例と同じである。しかしながら、この例においては、第2噴射の後に始動不良が発生している。そのため、機関10は逆転及び正転を繰り返しながら、次第にその回転を停止する。なお、この機関10の逆転及び正転の繰り返しを「揺り返し」とも称する。
ところで、「始動不良が発生したと判定した時点」においては、第2噴射が既に実行されている。そのため、第3気筒(圧縮行程気筒)内には第2噴射により噴射された燃料が残留し、その燃料によって混合気が形成されている。この混合気は第3気筒の気筒壁面から受熱し高温となり、更に、機関10が逆転した後の正転により圧縮されて行く。この結果、何らの対策もしない場合、その混合気が自着火し、それにより次の逆転が助長されてしまう虞がある。
そこで、本装置は、「始動不良が発生したと判定した時点」において圧縮行程気筒に対して第2噴射が既に実行されていた場合、その圧縮行程気筒に対して再度の燃料噴射(再噴射)を行う。この再度の燃料噴射は、便宜上「第3噴射」と称呼される。
この第3噴射により噴射された燃料により、圧縮行程気筒(この場合、第3気筒)に形成される混合気が過濃(オーバーリッチ)となる。これらのことから、圧縮行程気筒の混合気が、機関10の逆転の後の正転時に圧縮されたとしても、混合気の自着火が抑制される。よって、再度の逆転が助長されることが抑制されるので、揺り返しが長く継続することが抑制される。その結果、スタータ始動制御を早期に開始して機関10を早期に再始動させることができる。
加えて、本装置は、「始動不良が発生したと判定した時点」において圧縮行程気筒(この場合、第3気筒)の一次側コイル37aへの通電(on)が開始されている場合、第3噴射の終了時点(又は、第3噴射の開始時点)から所定時間Tdが経過したとき、この一次側コイル37aへの通電を遮断(off)する。この結果、火花が発生するが、圧縮行程気筒(この場合、第3気筒)に形成される混合気が過濃(オーバーリッチ)となっているので、その混合気は着火し難い。よって、再度の逆転が助長されることが抑制されるので、揺り返しが長く継続することが抑制される。その結果、スタータ始動制御を早期に開始して機関10を早期に再始動させることができる。更に、一次側コイル37aへの通電が長時間に及ぶことが回避されるので、図2に示した「フューズ」(Fuse)及び/又は「パワートランジスタ38aを含むイグナイタ(点火回路)39」を保護することができる。
<着火始動制御における再噴射後の燃料の減量>
ところで、上述した第3噴射が行われた場合、過濃(オーバーリッチ)な混合気が排気通路へと排出される。一般には、着火始動制御が開始される前の自動停止制御中において触媒53には多量の空気(酸素を含むガス)が流入するので、触媒53は酸素過剰状態にある。よって、第3噴射により形成された過濃な混合気に含まれる未燃成分は触媒53により浄化される。
しかし、場合により触媒53がその未燃成分を浄化できない場合に備え、本装置は、第3噴射を行った後のスタータ始動制御による始動完了後において、燃料噴射量を所定機関に亘り通常時よりも減量する。これにより、触媒53内の雰囲気がオーバーリッチ(酸素不足)とならないので、第3噴射により形成された過濃な混合気に含まれる未燃成分を確実に浄化することができる。以上が、本装置の概要である。
(具体的作動)
次に、本装置の具体的作動について説明する。本装置のECU80のCPU(以下、単に「CPU」と称呼する。」は、所定時間が経過する毎に図4にフローチャートにより示したルーチンを実行するようになっている。このルーチンにより、自動停止制御が開始される。
所定のタイミングになると、CPUはステップ400から処理を開始してステップ410に進み、現時点において機関10が運転中であるか否かを判定する。即ち、CPUは、機関運転フラグXopの値が「1」であるか否かを判定する。機関運転フラグXopは、その値が「1」であるとき機関10が運転中(始動後であって自動停止制御開始前)であることを示す。機関運転フラグXopは、その値が「0」であるとき機関10が自動停止中(自動停止制御開始後であって再始動完了前)であることを示す。機関運転フラグXopの値が「0」である場合、CPUはステップ410にて「No」と判定してステップ495に進み、本ルーチンを一旦終了する。
機関運転フラグXopの値が「1」である場合、CPUはステップ410にて「Yes」と判定してステップ420に進み、上述した自動停止条件が成立しているか否かを判定する。より具体的には、CPUは停止条件成立フラグXstpの値が「1」であるか否かを判定する。停止条件成立フラグXstpの値は、CPUが図示しないルーチンを実行することにより、上述した自動停止条件が成立したときに「1」に設定され、上述した再始動要求が発生したときに「0」に設定される。停止条件成立フラグXstpの値が「0」である場合、CPUはステップ420にて「No」と判定してステップ495に進み、本ルーチンを一旦終了する。従って、この場合、後述する自動停止制御は実行されない。
これに対し、停止条件成立フラグXstpの値が「1」である場合、CPUはステップ420にて「Yes」と判定し、以下に述べるステップ430乃至ステップ470の処理を順に行い、ステップ495に進んで本ルーチンを一旦終了する。これにより、自動停止制御が実行される。
ステップ430:CPUは、燃料噴射弁39に対する指示信号の送出を停止することにより、燃料噴射を停止する。
ステップ440:CPUは、点火装置35(イグナイタ38)への指示信号の送出を停止することにより、各気筒の一次側コイル37aを非通電状態に維持し、もって、点火を停止する。
ステップ450:CPUは、機関運転フラグXopの値を「0」に設定する。
ステップ460:CPUは、通常運転フラグXtujoの値を「0」に設定する。通常運転フラグXtujoの値は、後述するように、通常運転制御が実行されている場合に「1」に設定される。
ステップ470:CPUは、再始動要求フラグXstreqの値を「0」に設定する。再始動要求フラグXstreqの値は、CPUが図示しないルーチンを実行することによって、上述した再始動要求が発生したと判定されたときに「1」に設定される。
更に、CPUは、所定時間が経過する毎に図5にフローチャートにより示したルーチンを実行するようになっている。このルーチンにより、機関10の再始動を行うために実行される制御が決定される。
所定のタイミングになると、CPUはステップ500から処理を開始してステップ505に進み、現時点において機関10の運転が停止中である(自動停止制御が実行中である)か否かを判定する。即ち、CPUは、機関運転フラグXopの値が「0」であるか否かを判定する。機関運転フラグXopの値が「1」である場合、CPUはステップ505にて「No」と判定し、ステップ595に進んで本ルーチンを一旦終了する。
これに対し、機関運転フラグXopの値が「0」である場合(自動停止制御が実行されている場合)、CPUはステップ505にて「Yes」と判定してステップ510に進み、再始動要求が発生しているか否かを判定する。より具体的に述べると、CPUは、再始動要求フラグXstreqの値が「1」であるか否かを判定する。
いま、再始動要求が発生していて、再始動要求フラグXstreqの値が「1」に設定されていると仮定する。この場合、CPUはステップ510にて「Yes」と判定してステップ515に進み、機関回転速度NEが第1閾値速度NE1よりも大きいか否かを判定する。
機関回転速度NEが第1閾値速度NE1より大きい場合、CPUはステップ515にて「Yes」と判定してステップ520に進み、上述した通常制御による始動(通常運転始動)を実行するように、通常運転フラグXtujoの値を「1」に設定する。通常制御については後に図8を参照しながら詳述する。その後、CPUはステップ525に進んで再始動要求フラグXstreqの値を「0」に設定し、ステップ595に進んで本ルーチンを一旦終了する。この結果、再始動要求が発生した時点の機関回転速度NEが第1閾値速度NE1より大きい場合、通常制御によって機関10が再始動される。
一方、再始動要求が発生した時点の機関回転速度NEが第1閾値速度NE1以下である場合、CPUはステップ515にて「No」と判定してステップ530に進み、機関回転速度NEが第2閾値速度NE2より大きいか否かを判定する。第2閾値速度NE2は0よりも大きく、第1閾値速度NE1よりも小さい。
機関回転速度NEが第2閾値速度NE2より大きい場合、CPUはステップ530にて「Yes」と判定してステップ535に進み、上述した着火始動制御を実行するように、着火始動制御フラグXchの値を「1」に設定する。着火始動制御については後に図6を参照しながら詳述する。その後、CPUはステップ525を経由して本ルーチンを一旦終了する。この結果、再始動要求が発生した時点の機関回転速度NEが第1閾値速度NE1以下であり且つ第2閾値速度NE2より大きい場合、着火始動制御によって機関10が再始動される。
一方、再始動要求が発生した時点の機関回転速度NEが第2閾値速度NE2以下である場合、CPUはステップ530にて「No」と判定してステップ540に進み、機関回転速度NEが第3閾値速度NE3より小さいか否かを判定する。第3閾値速度NE3は0よりも大きく、第2閾値速度NE2よりも小さい。
機関回転速度NEが第3閾値速度NE3以上である場合、CPUはステップ540にて「No」と判定してステップ595に直接進み、本ルーチンを一旦終了する。この結果、次に本ルーチンが実行されると、CPUはステップ505乃至ステップ515、ステップ530及びステップ540と進む。その結果、CPUは、機関回転速度NEが第3閾値速度NE3未満になるまで待機する。
そして、機関回転速度NEが第3閾値速度NE3未満になると、CPUはステップ540にて「Yes」と判定してステップ545に進み、上述したスタータ始動制御を実行する。その後、CPUは、ステップ550に進んでバックアップ再始動フラグXbkupstartの値を「0」に設定し、ステップ525を経由して本ルーチンを一旦終了する。この結果、機関回転速度NEが第3閾値速度NE3未満になったとき、スタータ始動制御によって機関10が再始動される。
ところで、CPUがステップ510の処理を実行する時点において、再始動要求フラグXstreqの値が「0」に設定されている(再始動要求が発生していていない)場合、CPUはそのステップ510にて「No」と判定してステップ555に進み、バックアップ再始動フラグXbkupstartの値が「1」であるか否かを判定する。このフラグXbkupstartの値が「0」であれば、CPUはステップ555にて「No」と判定して本ルーチンを一旦終了する。これに対し、フラグXbkupstartの値が「1」であれば、CPUはステップ555にて「Yes」と判定してステップ540に進む。その結果、機関回転速度NEが第3閾値速度NE3未満になると、スタータ始動制御によって機関10が再始動される。このステップ555からステップ540及びステップ545への流れについては後述する。
次に、上述した着火始動制御の詳細について説明する。CPUは、所定時間が経過する毎に図6にフローチャートにより示したルーチンを実行するようになっている。従って、所定のタイミングになると、CPUは図6のステップ600から処理を開始してステップ602に進み、着火始動制御フラグXchの値が「1」であるか否かを判定する。着火始動制御フラグXchの値が「1」でなければ、CPUはステップ602にて「No」と判定し、ステップ695に進んで本ルーチンを一旦終了する。
これに対し、着火始動制御フラグXchの値が「1」であると、CPUはステップ602にて「Yes」と判定してステップ604に進み、現時点が膨張行程気筒の膨張行程前半(本例では、圧縮上死点後のクランク角10[deg]乃至30[deg]の間)であるか否か、即ち、膨張行程気筒の燃料噴射タイミングであるか否かを判定する。
現時点が膨張行程気筒の燃料噴射タイミングである場合、CPUはステップ604にて「Yes」と判定し、ステップ606にて膨張行程気筒の燃料噴射弁39から第1所定量の燃料を少なくとも1回以上噴射させる。これにより、図3に示した第1噴射が実行される。次いで、CPUはステップ608において膨張行程気筒のイグニッションコイル37の一次側コイル37aに通電する。その後、CPUはステップ610に進む。これに対し、現時点が膨張行程気筒の燃料噴射タイミングでない場合、CPUはステップ604にて「No」と判定し、ステップ610に直接進む。
CPUは、ステップ610にて現時点が膨張行程気筒の点火タイミング(本例では、圧縮上死点後のクランク角40°乃至45°の間)であるか否かを判定する。
現時点が膨張行程気筒の点火タイミングである場合、CPUはステップ610にて「Yes」と判定し、ステップ612にて膨張行程気筒の一次側コイル37aの通電を遮断する。その結果、膨張行程気筒の点火プラグ36の電極部から点火用火花が発生し、その火花により第1噴射により噴射された燃料により形成された混合気が着火・燃焼する。その後、CPUはステップ614に進む。これに対し、現時点が膨張行程気筒の点火タイミングでない場合、CPUはステップ610にて「No」と判定し、ステップ614に直接進む。
CPUは、ステップ614にて、現時点のクランク角が圧縮行程気筒の圧縮上死点前A[deg](例えば、圧縮上死点前クランク角(BTDC)10[deg])であるか否かを判定する。
現時点のクランク角が圧縮行程気筒の圧縮上死点前A[deg]である場合、CPUはステップ614にて「Yes」と判定し、ステップ616にて圧縮行程気筒の燃料噴射弁39から第2所定量の燃料を噴射させる。これにより、図3に示した第2噴射が実行される。その後、CPUはステップ618に進む。これに対し、現時点のクランク角が圧縮行程気筒の圧縮上死点前A[deg]でない場合、CPUはステップ614にて「No」と判定し、ステップ618に直接進む。
CPUは、ステップ618にて、現時点のクランク角が圧縮行程気筒の圧縮上死点前B[deg](例えば、BTDC 5[deg])であるか否かを判定する。
現時点のクランク角が圧縮行程気筒の圧縮上死点前B[deg]である場合、CPUはステップ618にて「Yes」と判定し、ステップ620にて圧縮行程気筒の一次側コイル37aの通電を開始する。その後、CPUはステップ622に進む。これに対し、現時点のクランク角が圧縮行程気筒の圧縮上死点前B[deg]でない場合、CPUはステップ618にて「No」と判定し、ステップ622に直接進む。
CPUは、ステップ622にて、現時点のクランク角が圧縮行程気筒の圧縮上死点後C[deg](例えば、ATDC 5[deg])であるか否かを判定する。
ところで、第1噴射による燃料の燃焼により着火始動が順調に進行すると、圧縮行程気筒はその圧縮上死点を乗り越え、機関10は正転する。そのため、所定のタイミングにおいて圧縮行程気筒のクランク角は圧縮上死点後C[deg]に到達する。この場合、CPUはステップ622にて「Yes」と判定してステップ624に進み、圧縮行程気筒の一次側コイル37aの通電を遮断する。その結果、圧縮行程気筒の点火プラグ36の電極部から点火用火花が発生し、その火花により第2噴射により噴射された燃料により形成された混合気が着火・燃焼する。その後、CPUはステップ626に進んで着火始動制御フラグXchの値を「0」に設定するとともに、バックアップ再始動フラグXbkupstartの値を「1」に設定し、ステップ695に進んで本ルーチンを一旦終了する。これにより、着火始動制御による機関10の再始動が行われる。
これに対し、第1噴射による燃料を燃焼させたにも拘わらず着火始動が順調に進行せず、圧縮行程気筒がその圧縮上死点を乗り越えられない場合、即ち、始動不良が発生する場合がある。CPUは、この始動不良の判定を短い時間間隔にて行っている。より具体的に述べると、CPUは、第1噴射実行後に以下の何れかの状態が発生したか否かを監視し、何れかの状態が発生したことを検出した場合、始動不良が発生したと判定する。
(状態1)機関回転速度NEが正の値から負の値となる状態。即ち、機関10の回転が正転方向から逆転方向へと反転した状態。
(状態2)機関回転速度NEが「0」である状態が所定時間継続した状態。
(状態3)機関回転速度NEが正の値から負の値となる状態が機関回転速度NEの単位時間あたりの変化量から予測された状態。
このような始動不良は圧縮行程気筒がその上死点を乗り越えられない場合に生じるので、始動不良が発生したとの判定は「圧縮行程気筒のクランク角が圧縮行程気筒の圧縮上死点後C[deg]に到達する前の時点」に行われる。
即ち、圧縮行程気筒のクランク角が圧縮上死点後C[deg]に到達する前の時点においてCPUがステップ622の処理を行うと、CPUはそのステップ622にて「No」と判定してステップ628に進み、始動不良が発生した又は発生すると予測されるとの判定がなされたか否かを判定する。この時点において、そのような判定がなされていなければ、CPUはステップ628にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。
これに対し、始動不良が発生した又は発生すると予測されるとの判定がなされていると、CPUはステップ628にて「Yes」と判定してステップ630に進み、圧縮行程気筒に対する燃料噴射(即ち、ステップ616の処理による第2噴射)が既に実行済みであるか否かを判定する。このとき、第2噴射が既に実行済みでなければ、CPUはステップ630にて「No」と判定しステップ634に直接進む。
これに対し、CPUがステップ630の処理を実行する時点において第2噴射が既に実行済みであると、CPUはそのステップ630にて「Yes」と判定してステップ632に進み、第3所定量の燃料を圧縮行程気筒に対して圧縮行程気筒の燃料噴射弁39から噴射(再噴射)する。即ち、CPUは図3の(B)に示した第3噴射を実行する。この結果、圧縮行程気筒の混合気が第3噴射により噴射された燃料の気化潜熱によって冷却されるとともに同燃料によって過濃な混合気となる。そのため、この時点以降において機関10の回転方向が正転に転じて圧縮行程気筒の混合気が圧縮されたとしても、その混合気の自着火が抑制される。従って、機関10の逆転及び揺り返しの助長が抑制される。その後、CPUはステップ634に進む。
CPUは、ステップ634にて、圧縮行程気筒の一次側コイル37aの通電が既に開始されているか否かを判定する。即ち、現時点までにおいてステップ620の処理が実行されているか否かを判定する。圧縮行程気筒の一次側コイル37aの通電が既に開始されていない場合、CPUはステップ634にて「No」と判定し、ステップ640に直接進む。
これに対し、圧縮行程気筒の一次側コイル37aの通電が既に開始されている場合、CPUはステップ634にて「Yes」と判定してステップ636に進み、ステップ632の処理による燃料の再噴射(第3噴射)の終了時点から所定時間Tdが経過したか否かを判定する。この所定時間Tdは、第3噴射により噴射された燃料が十分に気化し、第2噴射により噴射された燃料によって形成された混合気と十分に混合するのに要する時間に設定されている。第3噴射の終了時点から所定時間Tdが経過していない場合、CPUはステップ636にて「No」と判定しステップ640に直接進む。なお、CPUはステップ636において、第3噴射の開始時点から所定時間(Td+α)が経過したか否かを判定してもよい。即ち、CPUは、ステップ636において、第3噴射を行った時点(第3噴射開始時点又は第3噴射終了時点)から所定時間が経過したか否かを判定する。
これに対し、第3噴射の終了時点から所定時間Tdが経過していると、CPUはステップ636にて「Yes」と判定してステップ638に進み、圧縮行程気筒の一次側コイル37aの通電を遮断する。この結果、圧縮行程気筒において点火用火花が発生するが、混合気が過濃であるので、その混合気は着火・燃焼し難い。従って、機関10の逆転及び揺り返しが助長され難い。その後、CPUはステップ640に進む。
CPUは、ステップ640にて、バックアップ再始動フラグXbkupstartの値を「1」に設定し、ステップ642にて着火始動制御フラグXchの値を「0」に設定する。その後、CPUはステップ695に進んで、本ルーチンを一旦終了する。以上が、着火始動制御の詳細である。
ところで、ステップ626又はステップ640において、バックアップ再始動フラグXbkupstartの値が「1」に設定された後、CPUが図5のステップ555に進むと、CPUはそのステップ555にて「Yes」と判定してステップ540に進む。従って、着火始動制御により機関10の再始動が成功しない場合であっても、機関回転速度NEが第3閾値速度NE3未満になるとスタータ始動制御が実行され、その結果、機関10は再始動される。
更に、CPUは、所定時間が経過する毎に図7にフローチャートにより示した「始動完了判定ルーチン」を実行するようになっている。従って、所定のタイミングになると、CPUは図7のステップ700から処理を開始してステップ710に進み、機関運転フラグXopの値が「0」であるか否かを判定する。機関運転フラグXopの値が「0」でなければ(即ち、機関10が運転中であれば)、CPUはステップ710にて「No」と判定し本ルーチンを一旦終了する。
これに対し、機関運転フラグXopの値が「0」であると(即ち、機関10が自動停止制御開始後であって再始動完了前であれば)、CPUはステップ710にて「Yes」と判定してステップ720に進み、再始動要求フラグXstreqの値が「1」から「0」になった後であるか否かを判定する。図5のステップ510及びステップ525から理解されるように、再始動要求が発生して再始動要求フラグXstreqの値が「1」に設定された後に何等かの始動制御(ステップ520、ステップ535及びステップ545を参照。)がなされると再始動要求フラグXstreqの値は「0」に戻される。従って、ステップ720は、何等かの始動制御がなされたか否かを判定するステップである。
再始動要求発生後において何らかの始動制御がなされていなければ、CPUはステップ720にて「No」と判定し、本ルーチンを一旦終了する。一方、再始動要求発生後において何らかの始動制御がなされていると、CPUはステップ720にて「Yes」と判定してステップ730に進み、機関回転速度NEが始動判定回転速度(本例では、第1閾値速度NE1)よりも大きいか否かを判定する。機関回転速度NEが始動判定回転速度NE1以下であると、CPUはステップ730にて「No」と判定し、本ルーチンを一旦終了する。
これに対し、機関回転速度NEが始動判定回転速度NE1よりも大きいと、CPUはステップ730にて「Yes」と判定し、以下に述べるステップ740乃至ステップ760の処理を順に行い、ステップ770に進む。
ステップ740:CPUは、機関運転フラグXopの値を「1」に設定する。即ち、CPUは機関10の再始動が完了し、機関10が通常運転されている状態に移行したと判定する。
ステップ750:CPUは、通常運転フラグXtujoの値を「1」に設定する。この結果、後述する図8のルーチンによる通常制御が実行される(図8のステップ805での「Yes」との判定を参照。)。
ステップ760:CPUは、バックアップ再始動フラグXbkupstartの値を「0」に設定する。
次に、CPUはステップ770に進むと、直前の始動制御(より具体的には、着火始動制御)において圧縮行程気筒に対する燃料の再噴射(即ち、第3噴射)がなされた履歴があるか否かを判定する。このとき、第3噴射がなされていなければ、CPUはステップ770にて「No」と判定し、本ルーチンを一旦終了する。
これに対し、第3噴射がなされていると(なされた履歴があると)、CPUはステップ770にて「Yes」と判定してステップ780に進み、燃料減量フラグXdecの値を「1」に設定する。この結果、後述する図8のルーチンによって、燃料噴射量が減少させられる(図8のステップ815乃至ステップ825を参照。)。その後、CPUはステップ795に進み、本ルーチンを一旦終了する。
更に、CPUは、所定時間が経過する毎に図8にフローチャートにより示した「通常制御ルーチン」を実行するようになっている。従って、所定のタイミングになると、CPUは図8のステップ800から処理を開始してステップ805に進み、通常運転フラグXtujoの値が「1」であるか否かを判定する。通常運転フラグXtujoの値が「1」でなければ、CPUはステップ805にて「No」と判定し本ルーチンを一旦終了する。
これに対し、通常運転フラグXtujoの値が「1」であると、CPUはステップ805にいて「Yes」と判定してステップ810に進み、「機関回転速度NE及び機関負荷の代用値としてのアクセルペダル操作量Accp」をルックアップテーブルMapQFtgt(NE,Accp)に適用することにより、目標噴射量QFtgtを取得する。
次に、CPUはステップ815に進み、燃料減量フラグXdecの値が「1」であるか否かを判定する。燃料減量フラグXdecの値が「1」でなければ、CPUはステップ815にて「No」と判定し、ステップ830以降に直接進む。
これに対し、燃料減量フラグXdecの値が「1」であると、CPUはステップ815にて「Yes」と判定してステップ820に進み、燃料減量フラグXdecの値が「0」から「1」へと変化した後、後述するステップ845の処理によって所定回数(N回)だけ燃料噴射が実行されたか否かを判定する。
燃料噴射弁がN回実行されていない場合、CPUはステップ820にて「No」と判定してステップ825に進み、ステップ810にて取得した目標噴射量QFtgtに係数(減量係数)kを乗じた値を新たな目標噴射量QFtgtに設定する。係数kは0より大きく且つ1より小さい定数である。これにより、燃料減量フラグXdecの値が「1」である場合の目標噴射量QFtgtは、燃料減量フラグXdecの値が「0」である場合の目標噴射量QFtgtよりも小さくなる。即ち、燃料噴射量が減量される。その後、CPUはステップ830以降に進む。
一方、燃料減量フラグXdecの値が「0」から「1」へと変化した後にN回の燃料噴射が実行された場合、CPUはステップ820にて「Yes」と判定してステップ850に進み、燃料減量フラグXdecの値を「0」に設定する。その後、CPUはステップ830以降に進む。この結果、燃料噴射量の減量が終了する。
CPUはステップ830に進むと、機関回転速度NE及びアクセルペダル操作量AccpをルックアップテーブルMapTFtgt(NE,Accp)に適用することにより、目標噴射時期TFtgtを取得する。更に、CPUは以下に述べるステップ835乃至ステップ845の処理を順に行い、ステップ895に進んで本ルーチンを一旦終了する。
ステップ835:CPUは、機関回転速度NE及びアクセルペダル操作量AccpをルックアップテーブルMapTItgt(NE,Accp)に適用することにより、目標点火時期TItgtを取得する。
ステップ840:CPUは、機関回転速度NE及びアクセルペダル操作量AccpをルックアップテーブルMapTAtgt(NE,Accp)に適用することにより、目標スロットル弁開度TAtgtを取得する。
ステップ845:CPUは、目標噴射量QFtgt、目標噴射時期TFtgt、目標点火時期TItgt及び目標スロットル弁開度TAtgtに従って指示信号を燃料噴射弁39、点火装置35及びスロットル弁アクチュエータ45aにそれぞれ送出する。以上により、通常制御が実行される。
以上、説明したように、本装置によれば、着火始動制御において始動不良が発生した場合であっても、燃料の再噴射(第3噴射)が行われるので、圧縮行程気筒において逆転を助長するような自着火又は点火による燃焼の発生が抑制される。従って、着火始動に成功しない場合であっても揺り返しが長時間継続することがないので、スタータ始動を早期に開始することができる。更に、着火始動制御において始動不良が発生した場合に、圧縮行程気筒の一次コイル37aの通電時間が長時間に及ばない。よって、イグナイタ35を含む点火回路を保護することができる。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態においては、第3噴射が実行された場合に燃料噴射量の減量(ステップ825を参照。)が行われているが、このような燃料の減量を行わなくてもよい。
更に、上記実施形態においては、着火始動制御は、機関10が正転しながら機関回転速度NEが「0」に向かっている際に行われていたが、機関10が逆転して膨張行程気筒のクランク角が圧縮上死点に近づいたときに実行されてもよい。
10…内燃機関、32…吸気弁、34…排気弁、35…点火装置、36…点火プラグ、37…イグニッションコイル、38…イグナイタ、39…燃料噴射弁、53…三元触媒、80…電子制御ユニット(ECU)。

Claims (3)

  1. 燃焼室に燃料を直接噴射する燃料噴射弁と、
    前記燃焼室に点火用火花を発生させる点火装置と、
    を各気筒に備える多気筒内燃機関に適用され、
    所定の自動停止条件が成立した場合に前記燃料噴射弁からの燃料の噴射を停止して前記機関の回転を停止させる自動停止制御を実行し、前記自動停止制御の開始後に再始動要求が発生した場合に、膨張行程にある気筒の前記燃料噴射弁から燃料を噴射させる第1噴射を行い次いで前記点火装置を用いて同膨張行程にある気筒の燃焼室に同第1噴射によって噴射された燃料を点火するための点火用火花を発生させ、且つ、圧縮行程にある気筒の前記燃料噴射弁から燃料を噴射させる第2噴射を行い次いで前記点火装置を用いて同第2噴射によって噴射された燃料を点火するための点火用火花を発生させる着火始動制御を実行することにより前記機関を再始動させる制御部、を備えた内燃機関の制御装置において、
    前記制御部は、
    前記第2噴射の後に前記圧縮行程にある気筒のクランク角が圧縮上死点を超えることができない始動不良が発生した又は同始動不良が発生するであろうと判定した場合には、同圧縮行程にある気筒において混合気の自着火が発生しないように同圧縮行程にある気筒の前記燃料噴射弁から燃料を再噴射させる第3噴射を行うように構成された、
    制御装置。
  2. 請求項1に記載の内燃機関の制御装置であって、
    前記点火装置は、一次コイル、二次コイル及び点火プラグを含み、前記一次コイルの通電及び同通電の遮断により前記二次コイルに生じた高電圧を前記点火プラグの電極部に印加することにより前記点火用火花を発生するように構成され、
    前記制御部は、
    前記始動不良が発生した又は同始動不良が発生するであろうと判定した時点において前記第2噴射によって噴射された燃料を点火するための前記点火用火花を発生させるために前記一次コイルの通電を既に開始していた場合、前記第3噴射を行った時点から所定時間後に同一次コイルの通電を遮断するように構成された、
    制御装置。
  3. 請求項1又は請求項2に記載の内燃機関の制御装置であって、
    前記制御部は、
    前記始動不良が発生した又は同始動不良が発生するであろうと判定した場合、前記機関に備えられているスタータにより前記機関をクランキングするとともに前記燃料噴射弁から燃料を噴射し且つ前記点火装置の発生する点火用火花により同噴射された燃料に点火して同機関を再始動させるスタータ始動制御を行い、
    前記スタータ始動制御の実行後に前記機関が始動を完了した後、前記第3噴射を行った履歴がある場合には同履歴がない場合に比べて前記燃料噴射弁から噴射される燃料の量を所定期間に亘り少なくするように構成された、
    制御装置。
JP2015048430A 2015-03-11 2015-03-11 多気筒内燃機関の制御装置 Active JP6311629B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015048430A JP6311629B2 (ja) 2015-03-11 2015-03-11 多気筒内燃機関の制御装置
CN201610135834.2A CN105971752B (zh) 2015-03-11 2016-03-10 多缸内燃机的控制装置
US15/066,085 US9863389B2 (en) 2015-03-11 2016-03-10 Control unit for a multi-cylinder internal combustion engine
DE102016104354.0A DE102016104354B4 (de) 2015-03-11 2016-03-10 Steuereinheit für eine Mehrzylinder-Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015048430A JP6311629B2 (ja) 2015-03-11 2015-03-11 多気筒内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2016169626A true JP2016169626A (ja) 2016-09-23
JP6311629B2 JP6311629B2 (ja) 2018-04-18

Family

ID=56801225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015048430A Active JP6311629B2 (ja) 2015-03-11 2015-03-11 多気筒内燃機関の制御装置

Country Status (4)

Country Link
US (1) US9863389B2 (ja)
JP (1) JP6311629B2 (ja)
CN (1) CN105971752B (ja)
DE (1) DE102016104354B4 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017221730A1 (de) * 2017-12-01 2019-06-06 Robert Bosch Gmbh Verfahren zum emissionsverringernden Betrieb einer Brennkraftmaschine mit Start/Stopp-Automatik
JP7020338B2 (ja) * 2018-08-07 2022-02-16 トヨタ自動車株式会社 内燃機関の制御装置
CN112177787B (zh) * 2019-11-20 2023-04-07 株式会社电装 发动机控制装置及其控制方法
US11572844B2 (en) * 2020-02-24 2023-02-07 Ford Global Technologies, Llc Methods and system for stopping an internal combustion engine
JP7310740B2 (ja) * 2020-07-16 2023-07-19 トヨタ自動車株式会社 エンジン装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173488A (ja) * 1999-12-17 2001-06-26 Mitsubishi Motors Corp 筒内噴射型内燃機関の始動装置
JP2006299997A (ja) * 2005-04-22 2006-11-02 Toyota Motor Corp 内燃機関の始動装置
JP2008274821A (ja) * 2007-04-27 2008-11-13 Mazda Motor Corp 車両用エンジンの制御装置
JP5456088B2 (ja) * 2012-02-24 2014-03-26 三菱電機株式会社 エンジン自動停止再始動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036928B1 (en) 1999-03-18 2007-05-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Starting device and control method thereof for direct-injection internal combustion engine
JP3815441B2 (ja) * 2003-02-04 2006-08-30 トヨタ自動車株式会社 内燃機関の停止始動制御装置
JP3966230B2 (ja) * 2003-06-10 2007-08-29 マツダ株式会社 エンジンの始動装置
US7051693B2 (en) 2003-11-21 2006-05-30 Mazda Motor Corporation Engine starting system
JP3928616B2 (ja) * 2003-12-16 2007-06-13 マツダ株式会社 エンジンの始動装置
JP5472004B2 (ja) * 2010-09-21 2014-04-16 株式会社デンソー エンジンの自動始動制御装置
US9222453B2 (en) * 2012-02-06 2015-12-29 Ford Global Technologies, Llc Method for restarting an engine
CN104350260B (zh) * 2012-06-14 2017-05-17 三菱电机株式会社 发动机启动装置和发动机启动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173488A (ja) * 1999-12-17 2001-06-26 Mitsubishi Motors Corp 筒内噴射型内燃機関の始動装置
JP2006299997A (ja) * 2005-04-22 2006-11-02 Toyota Motor Corp 内燃機関の始動装置
JP2008274821A (ja) * 2007-04-27 2008-11-13 Mazda Motor Corp 車両用エンジンの制御装置
JP5456088B2 (ja) * 2012-02-24 2014-03-26 三菱電機株式会社 エンジン自動停止再始動装置

Also Published As

Publication number Publication date
CN105971752A (zh) 2016-09-28
JP6311629B2 (ja) 2018-04-18
US9863389B2 (en) 2018-01-09
US20160265500A1 (en) 2016-09-15
DE102016104354A1 (de) 2016-09-15
CN105971752B (zh) 2018-06-22
DE102016104354B4 (de) 2019-03-28

Similar Documents

Publication Publication Date Title
JP2007270808A (ja) 多気筒4サイクルエンジンの制御装置
JP6311629B2 (ja) 多気筒内燃機関の制御装置
JP2006348861A (ja) 内燃機関の始動装置
US9903332B2 (en) Control device of multi-cylinder internal combustion engine
JP5742682B2 (ja) 内燃機関の始動制御装置
JP6287889B2 (ja) 多気筒内燃機関の制御装置
JP6171746B2 (ja) エンジンの始動制御装置
WO2013150729A1 (ja) 燃料噴射制御装置
JP2004176569A (ja) 内燃機関の始動制御装置
JP2008223583A (ja) エンジンの制御装置
JP2004036561A (ja) 筒内噴射型内燃機関の自動停止始動装置
US20160265463A1 (en) Control device of multi-cylinder internal combustion engine
JP4747916B2 (ja) 多気筒4サイクルエンジンの制御装置
JP2013209930A (ja) 内燃機関の始動制御装置
JP6260580B2 (ja) 内燃機関の制御装置
JP4770787B2 (ja) 車両用エンジンの制御装置
JP6841119B2 (ja) エンジンの制御装置
JP4706539B2 (ja) 多気筒4サイクルエンジンの制御装置
JP2008190484A (ja) 内燃機関の始動装置
JP2000097071A (ja) 筒内直噴エンジンの制御装置
JP2014141958A (ja) 内燃機関の制御装置
JP4645625B2 (ja) 筒内噴射型内燃機関の始動装置
JP2007270806A (ja) 多気筒4サイクルエンジンの制御装置
JP2010084643A (ja) ディーゼルエンジンの自動停止装置及びディーゼルエンジンの制御方法
JP2008291697A (ja) 直噴式内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R151 Written notification of patent or utility model registration

Ref document number: 6311629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151