JP2016157693A - 固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック - Google Patents

固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック Download PDF

Info

Publication number
JP2016157693A
JP2016157693A JP2016033535A JP2016033535A JP2016157693A JP 2016157693 A JP2016157693 A JP 2016157693A JP 2016033535 A JP2016033535 A JP 2016033535A JP 2016033535 A JP2016033535 A JP 2016033535A JP 2016157693 A JP2016157693 A JP 2016157693A
Authority
JP
Japan
Prior art keywords
layer
active layer
solid oxide
oxide fuel
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016033535A
Other languages
English (en)
Other versions
JP6678042B2 (ja
Inventor
哲大 末廣
Tetsudai Suehiro
哲大 末廣
恵一 片山
Keiichi Katayama
恵一 片山
小野 達也
Tatsuya Ono
達也 小野
大地 冨田
Daichi Tomita
大地 冨田
墨 泰志
Yasushi Sumi
泰志 墨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JP2016157693A publication Critical patent/JP2016157693A/ja
Application granted granted Critical
Publication of JP6678042B2 publication Critical patent/JP6678042B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】発電性能を高めることができるとともに、耐久性も高めることができる固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタックを提供すること。
【解決手段】燃料電池単セル1では、燃料極層3は、固体電解質層5側より、活性層11と中間層13と拡散層15とを備えており、中間層13の開気孔率は活性層11の開気孔率よりも小さく、活性層11の開気孔率は拡散層15の開気孔率よりも小さい。よって、発電反応で発生する水蒸気が活性層11内に滞留しにくい。その結果、三相界面への燃料ガスの供給が容易になるので、発電性能が高い。また、中間層13の開気孔率が最も小さいので、汚染物質が活性層11に侵入しにくく、三相界面に付着しにくいので、耐久性が高い。
【選択図】図2

Description

本発明は、固体電解質層と空気極層と燃料極層とを有する固体電解質形燃料電池単セルと、その固体電解質形燃料電池単セルを備えた固体酸化物形燃料電池スタックに関する。
従来、燃料電池として、例えば固体電解質(固体酸化物)を用いた固体酸化物形燃料電池(以下SOFCとも記す)が知られている。
このSOFCでは、例えば固体電解質層の一方の側に燃料ガスに接する多孔質の燃料極層を設けるとともに、他方の側に酸化剤ガス(例えば空気)に接する多孔質の酸化剤極層(空気極層)を設けた固体酸化物形燃料電池単セルが使用されている。
また、近年では、燃料電池の性能の向上などのために、燃料極層について、その厚み方向における気孔率(開気孔率)を所定の値に設定した各種の技術が提案されている(特許文献1〜3参照)。
例えば特許文献3には、燃料極層の気孔率を固体電解質層側ほど小さくすることによって、電極反応時の分極を低減して、発電性能を向上させる技術が開示されている。
特開平9−50812号公報 特許第5179718号公報 特開2004−55194号公報
しかしながら、上述した従来技術においては、燃料極層の内側(固体電解質層側)の気孔率が外側に比べて小さいので、発電反応で発生する水蒸気が燃料極層の固体電解質層近傍に滞留し易くなる。その結果、固体電解質層と燃料極層と反応ガス(燃料ガス)とが接する反応場である三相界面への燃料ガスの供給が低下して、発電性能が低下するという問題があった。
この対策として、例えば燃料極層の気孔率(特に固体電解質近傍の気孔率)を大きくすると、外部から供給される燃料ガス中の汚染物質(例えばS、Cl、Si、B、P)が三相界面に付着し易くなって、耐久性が低下するという問題があった。
本発明は、このような問題に鑑みてなされたものであり、発電性能を高めることができるとともに、耐久性も高めることができる固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタックを提供することを目的とする。
(1)本発明の第1態様の固体酸化物形燃料電池単セルは、空気極層と、燃料極層と、前記空気極層と前記燃料極層との間に配置された固体電解質層と、を有する固体酸化物形燃料電池単セルにおいて、前記燃料極層は、前記固体電解質層側より、活性層と中間層と拡散層とを備え、前記活性層と前記中間層と前記拡散層とは、開気孔を有し、前記中間層の開気孔率は前記活性層の開気孔率よりも小さく、前記活性層の開気孔率は前記拡散層の開気孔率よりも小さいことを特徴とする。
本第1態様では、燃料極層は、固体電解質層側より、活性層と中間層と拡散層とを備えており、中間層の開気孔率は活性層の開気孔率よりも小さく、活性層の開気孔率は拡散層の開気孔率よりも小さい。つまり、燃料極層においては、固体電解質層側より、開気孔率が中程度の活性層と、開気孔率が最も小さい中間層と、開気孔率が最も大きい拡散層との順番で配置されている。
このように、本第1態様では、活性層の開気孔率は中間層の開気孔率より大きいので、発電反応で発生する水蒸気が活性層内に滞留しにくい(即ち水蒸気濃度が低い)。その結果、三相界面へ燃料ガスが供給されやすくなるので、発電性能が高いという効果がある。
また、本第1態様では、中間層の開気孔率が活性層及び拡散層よりも小さい。よって、外部から供給される燃料ガス中の汚染物質が、中間層でトラップされ、活性層に侵入しにくくなる。したがって、汚染物質が三相界面に付着しにくいので、耐久性が高いという効果がある。
(2)本発明の第2態様の固体酸化物形燃料電池単セルでは、前記中間層の厚みは前記活性層の厚みよりも小さく、前記活性層の厚みは前記拡散層の厚みよりも小さい。
本第2態様では、燃料極層は、固体電解質層側より、厚みが中程度の活性層と、厚みが最も小さい中間層と、厚みが最も大きい拡散層との順番で配置されている。
つまり、燃料極層では、中間層の厚みが活性層及び拡散層よりも小さいので、活性層について、水蒸気の排出や燃料ガスの導入の際の抵抗が少ない。これにより、発電反応により発生した水蒸気を効率よく排出でき、また、燃料ガスも効率よく導入することができるため、発電性能が高いという効果を奏する。
(3)本発明の第3態様の固体酸化物形燃料電池スタックでは、第1又は第2態様に記載の固体酸化物形燃料電池単セルを備えている。
本第3態様では、上述した構成の固体酸化物形燃料電池単セルを1又は複数備えているので、高い発電性能を有する。
<以下に、本発明の各構成について説明する>
・固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタックは、燃料ガスと酸化剤ガスを用いて発電を行う装置である。ここで、燃料ガスとは、燃料となる還元剤(例えば水素)を含むガスを示し、酸化剤ガスとは、酸化剤(例えば酸素)を含むガス(例えば空気)を示す。
なお、固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタックを用いて発電を行う場合、燃料極側に燃料ガスを導入し、空気極側に酸化剤ガスを導入する。
・固体酸化物形燃料電池単セルとしては、平板状や円筒状や扁平状など各種の形状を採用できる。
・固体酸化物形燃料電池スタックとして、複数の固体酸化物形燃料電池単セルを用いる場合には、全て上述した固体酸化物形燃料電池単セルを用いてもよく、或いは、一部に上述した固体酸化物形燃料電池単セルを用いてもよい。
・固体酸化物形燃料電池スタックでは、固体酸化物形燃料電池単セルを所定方向に連続するように配置することができる。また、例えば板状の固体酸化物形燃料電池単セルを用いる場合には、それらを積層して配置することができる。
・空気極層、燃料極層(従って、活性層、中間層、拡散層)としては、多孔質層を採用できる。
・開気孔率とは、多孔質の各構成(活性層、中間層、拡散層)における開気孔の割合である。また、通常、開気孔とは、各構成において、内部から直接又は他の気孔等を介して表面に到るように(ガスの経路が)連通している気孔を示している。
なお、本発明における固体酸化物形燃料電池単セルにおいては、各層の断面に観察される気孔は実質的に開気孔と見なしている。
・燃料ガスとしては、水素、水素源となる炭化水素、水素と炭化水素との混合ガス、及びこれらのガスを所定温度の水中を通過させ加湿した燃料ガス、これらのガスに水蒸気を混合させた燃料ガス等が挙げられる。
炭化水素は特に限定されず、例えば、天然ガス、ナフサ、石炭ガス化ガス等が挙げられる。更に、メタン、エタン、プロパン、ブタン及びペンタン等の炭素数が1〜10、好ましくは1〜7、より好ましくは1〜4の飽和炭化水素、並びにエチレン及びプロピレン等の不飽和炭化水素を主成分とするものが好ましく、飽和炭化水素を主成分とするものが更に好ましい。これらの燃料ガスは1種のみを用いてもよいし、2種以上を併用することもできる。また、窒素及びアルゴン等の不活性ガスを含有していてもよい。
・酸化剤ガスとしては、酸素と他の気体との混合ガス等が挙げられる。また、この混合ガスには80体積%以下の窒素及びアルゴン等の不活性ガスが含有されていてもよい。これらの酸化剤ガスのうちでは安全であって、且つ安価であるため空気(約80体積%の窒素が含まれている)が好ましい。
実施形態の燃料電池単セルを厚み方向に破断した状態を模式的に示す断面図である。 実施形態の燃料電池単セルを厚み方向に破断し要部を拡大して模式的に示す断面図である。 実施形態の燃料電池スタックを模式的に示す斜視図である。 実施形態の燃料電池スタックを積層方向に破断した状態(図3のA−A断面)を模式的に示す断面図である。
以下、本発明の実施形態について説明する。
[実施形態]
a)まず、固体酸化物形燃料電池の基本構成である固体酸化物形燃料電池単セル(以下、単に「単セル」ともいう)について説明する。
図1に模式的に示す様に、単セル1は、平板状であり、燃料ガス(例えば水素)に接する多孔質の燃料極層3と、酸素イオン導電性を有する固体電解質層5と、固体電解質層5と空気極層9との反応を防止する反応防止層7と、酸化剤ガス(例えば空気中の酸素)に接触する多孔質の空気極層9とが、この順に積層されている。
尚、この単セル1は、燃料極層3が支持基体となるいわゆる燃料極支持形の単セル1である。
詳しくは、図2に模式的に示すように、燃料極層3は、固体電解質層5側より、活性層11、中間層(トラップ層)13、拡散層(基板層)15の順番で積層されたものである。
特に本実施形態では、活性層11と中間層13と拡散層15とは、気孔(開気孔)を有する多孔質層であり、中間層13の開気孔率は活性層11の開気孔率よりも小さく、活性層11の開気孔率は拡散層15の開気孔率よりも小さい。
また、中間層13の厚みは活性層11の厚みよりも小さく、活性層11の厚みは拡散層15の厚みよりも小さい。
以下、各構成について詳しく説明する。
<空気極層9>
空気極層9は、酸素源となる酸化剤ガスと接触し、単セル1におけるカソードとして機能する。
空気極層9の材料としては、燃料電池の使用条件等により適宜選択することができる。この材料としては、例えば金属、金属の酸化物、金属の複合酸化物等を用いることができる。金属としては、Pt、Au、Ag、Pd、Ir、Ru、Ru等の金属又は2種以上の金属を含有する合金が挙げられる。
更に、金属の酸化物としては、例えば、La、Sr、Ce、Co、Mn、Fe等の酸化物(例えば、La、SrO、Ce、Co、MnO、FeO等)が挙げられる。また、複酸化物としては、La、Pr、Sm、Sr、Ba、Co、Fe、Mn等のうちの少なくとも1種を含有する各種の複合酸化物(例えば、La1−xSrCoO系複合酸化物、La1−xSrFeO系複合酸化物、La1−xSrCo1−yFe系複合酸化物、La1−xSrMnO系複合酸化物、Pr1−xBaCoO系複合酸化物、Sm1−xSrCoO系複合酸化物等)が挙げられる。
<反応防止層7>
反応防止層7としては、CeO及び希土類元素を主成分とする材料を採用できる。尚、材料全体がCeO及び希土類元素で構成されていてもよい。
<固体電解質層5>
固体電解質層5は、酸素イオン伝導性を有する固体電解質の材料からなる。この固体電解質層5の材料としては、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、SDC(サマリアをドープしたセリア)、GDC(ガドリアをドープしたセリア)、ペロブスカイト系酸化物等が挙げられる。これらは、単一膜でもよいし、2種以上の組成が積層構造となっている多層膜でもよい。多層膜としては、例えばYSZ+SDC膜、YSZ+GDC膜などが挙げられる。
尚、固体電解質層5の膜厚は、3〜20μmが好ましい。3μmを下回ると、薄膜化が難しく、欠陥のないセルが得られにくく、20μmを上回ると、抵抗値が高くなり、発電効率が悪くなる。
<燃料極層3(全体)>
燃料極層3は、水素源となる燃料ガスと接触し、単セル1におけるアノードとして機能する。
この燃料極層3としては、金属(特にNi)粒子とセラミックス粒子からなるサーメットを採用できる。
金属としては、Ni以外に、Cu、Fe、Co、Ag、Pt、Pd、W、Mo、及びこれらの合金等を採用できる。
セラミックスとしては、ジルコニア、YSZ、ScSZ、SDC、GDC、アルミナ、シリカ、チタニアなどが挙げられる。特に、YSZ、ScSZ、SDC、GDCが望ましい。これらは、酸素イオン伝導性があり、燃料極層3の電気化学的活性を高めるからである。なお、電気化学的活性とは、発電反応のことである。
燃料極層3の全体の厚みは、約500〜2000μmの範囲が好ましい。500μmを下回ると、セルに十分な強度が得られにくく、2000μmを上回ると、燃料ガスの通気性が悪くなり、発電効率が低下する恐れがある。
<活性層11>
活性層11は、燃料極層3のうち固体電解質層5に接して配置された多孔質層であり、中間層13や拡散層15に比べて高い電気化学的活性を有する。
つまり、後述するように、中間層13や拡散層15に比べて高い電気化学的活性を有するように、活性層11は、固体電解質層5に隣接して酸素イオンが多く存在するとともに、拡散層15、中間層13から水素(イオン)が供給される構造となっており、燃料極層3の中で最も電気化学反応が進む構造(配置)となっている。
この活性層11としては、前記燃料極層3(全体)で示したような金属(例えばNi)粒子とセラミックス粒子からなるサーメットを採用できる。この金属及びセラミックとしては、前記燃料極層3(全体)で示したような材料を採用できる。
なお、活性層11の気孔(開気孔)を形成するために、後述するように、例えば有機ビーズを用いることもできる。
また、前記サーメットにおける金属(特にNi)の含有量としては、サーメット全体量を100体積%としたとき、20〜45体積%(特に30〜35体積%)が望ましく、例えば30体積%を採用できる。ここで、20体積%を下回ると、導電性(導電率)が低下し、45体積%を上回ると、通気性のある組織が得られにくい。
活性層11は、中間層13及び拡散層15に比べて、電気化学的活性が高い。つまり、活性層11の導電性を、中間層13及び拡散層15より高めるために、例えばサーメットにおけるNi等の金属の含有量を、中間層13及び拡散層15よりも活性層11の方を多くすることが好ましい。
活性層11の厚みとしては、例えば5〜50μmの範囲(例えば10μm)を採用できる。ここで、活性層11の厚みが、5μmを下回ると、固体電解質層5に穴が発生し易くなり、50μmを上回ると、活性層11の通気性が悪くなって(従って水蒸気が滞留し易くなって)、発電性能が低下する。
活性層11の開気孔率としては、例えば10〜25体積%の範囲(例えば15体積%)を採用できる。ここで、活性層11の開気孔率が、10体積%を下回ると、通気性が悪くなり、25体積%を上回ると、発電反応場(三相界面)が減少してしまい、発電効率が悪くなる。
<中間層13>
中間層13は、活性層11と拡散層15との間に配置された多孔質層であり、主として、燃料ガス等に含まれる汚染物質(例えばS、Cl、Si、B、P)を捕集(トラップ)する機能を有する。
この中間層13としては、前記燃料極層3(全体)で示したような金属(例えばNi)粒子とセラミックス粒子からなるサーメットを採用できる。この金属及びセラミックとしては、前記燃料極層3(全体)で示したような材料を採用できる。
また、前記サーメットにおける金属(特にNi)の含有量としては、サーメット全体量を100体積%としたとき、20〜45体積%(特に30〜35体積%)が望ましく、例えば30体積%を採用できる。ここで、20体積%が下回ると、導電性が低下し、45体積%を上回ると、通気性のある組織が得られにくい。
中間層13の厚みとしては、例えば1〜5μmの範囲(例えば3μm)を採用できる。ここで、中間層13の厚みが、1μmを下回ると、汚染物質を捕集する機能が小さくなり、十分に汚染物質を捕集することが困難になる。また、中間層13の厚みが、5μmを上回ると、燃料極層3での水蒸気や燃料ガスの通気性が悪くなって、発電性能が低下する。
中間層13の開気孔率としては、例えば5〜10体積%の範囲(例えば9体積%)を採用できる。ここで、中間層13の開気孔率が、5体積%を下回ると、通気性が悪くなり、10体積%を上回ると、汚染物質を捕集する機能が低下する。
<拡散層15>
拡散層15は、中間層13に接して配置された最外の多孔質層であり、主として、燃料ガスを中間層13や活性層11に導入するとともに、単セル1全体を支持する機能を有する。
この拡散層15としては、前記燃料極層3(全体)で示したような金属(例えばNi)粒子とセラミックス粒子からなるサーメットを採用できる。この金属及びセラミックとしては、前記燃料極層3(全体)で示したような材料を採用できる。
なお、拡散層15の気孔(開気孔)を形成するために、後述するように、例えば有機ビーズを用いることもできる。
また、前記サーメットにおける金属(特にNi)の含有量としては、サーメット全体量を100体積%としたとき、20〜45体積%(特に30〜35体積%)が望ましく、例えば30体積%を採用できる。ここで、20体積%が下回ると、導電性が低下し、45体積%を上回ると、通気性のある組織が得られにくい。
拡散層15の厚みとしては、例えば500〜2000μmの範囲(例えば800μm)を採用できる。ここで、拡散層の厚みが、500μmを下回ると、支持体としての機能が低下し、2000μmを上回ると、通気性が悪くなって、発電性能が低下する。
拡散層15の開気孔率としては、例えば20〜45体積%の範囲(例えば31体積%)を採用できる。ここで、拡散層15の開気孔率が、20体積%を下回ると、通気性が悪くなり、45体積%を上回ると、拡散層15の強度が低下して、支持体としての機能が低下する。
このように、本実施形態では、多孔質層である、活性層11と中間層13と拡散層15における開気孔率の大小関係は、中間層13<活性層11<拡散層15である。また、各層11〜15の厚みの大小関係は、中間層13<活性層11<拡散層15である。更に、例えばサーメットにおける金属含有量の各層の大小の関係は、活性層11>中間層13及び拡散層15である。
b)次に、単セル1を備えた燃料電池スタックについて説明する。
なお、図3及び図4では、燃料電池スタック21に用いられる単セル1の数は、実際より少なく模式的に示している。
図3及び図4に模式的に示す様に、燃料電池スタック21は、上述した構成を有する単セル1が、一又は複数個用いられたものである。
詳しくは、図4に示す様に、燃料電池スタック21では、単セル1を主要部とする発電単位23が、同図の上下方向(積層方向)に複数連続して積層されている。
尚、本実施形態では、説明の便宜上、各図面の方向を基準に「上」、「下」等の方向を表記するが、実際の燃料電池スタックの方向を規定するものではない。
具体的には、発電単位23は、単セル1と、空気極集電体27と、燃料極集電体29と、空気極側絶縁フレーム31と、セパレータ33と、燃料極側フレーム35と、一方の側(図4の上方)のインターコネクタ25(但し燃料電池スタック21における上端部ではエンドプレート37)と、他方の側のインターコネクタ25(但し燃料電池スタック21における下端部ではエンドプレート39)とを備えている。なお、隣接する発電単位23同士では、1つのインターコネクタ25を共有するように構成されている。
ここで、空気極集電体27は、隣接するインターコネクタ25にろう材(図示せず)によって接合されている。また、空気極側絶縁フレーム31は、軟質マイカからなるマイカフレームである。
上述の部材を積層、一体化し燃料電池スタック21が構成されている。なお、各部材の一体化は、積層方向に貫通するボルトを用いても良いし、その他、既知の方法で一体化させることとしてもよい。
以下、燃料電池スタック21の各構成について説明する。
<空気極集電体27>
空気極集電体27の材質としては、金属又は導電性セラミックを用いることができる。
空気極集電体27は、一面で空気極層9と接触し、他面で、ろう材によってインターコネクタ25(又はエンドプレ−ト37)に接合されている。
<燃料極集電体29>
燃料極集電体29の材質としては、金属が好ましく、例えばNi又はNi基合金等により形成することができる。
燃料極集電体29は、一面で燃料極層3と接触し、他面で、インターコネクタ25(又はエンドプレ−ト39)に接合されている。
<セパレータ33>
セパレータ33は、単セル1の外周に接合された平面視で枠状の板材であり、セパレータ33の材質としては、ステンレスなどの金属が挙げられる。
このセパレータ33により、空気極層9側の(酸化剤ガスの流路である)空気流路41と燃料極層3側の(燃料ガスの流路である)燃料流路43とが、両ガスが混合しないように分離されている。
<インターコネクタ25、エンドプレート37、49>
インターコネクタ25及びエンドプレート37、49の材質は、金属、特に、ステンレス鋼、ニッケル基合金、クロム基合金等の耐熱合金などにより形成される。
c)次に、燃料電池単セル1の製造方法について説明する。
<拡散層用グリーンシートの作製>
NiO粉末(60重量部)とYSZ粉末(40重量部)との混合粉末(100重量部)に対して、造孔材である有機ビーズ(混合粉末に対して10重量%)と、ブチラール樹脂と、可塑剤であるDOPと、分散剤と、トルエン+エタノール混合溶剤とを加え、ボールミルにて混合して、スラリーを調整した。得られたスラリーをドクターブレード法により、厚さ250μmの拡散層用グリーンシートを作製した。
<中間層用グリーンシートの作製>
NiO粉末(60重量部)とYSZ粉末(40重量部)との混合粉末(100重量部)に対して、ブチラール樹脂と、可塑剤であるDOPと、分散剤と、トルエン+エタノール混合溶剤とを加え、ボールミルにて混合して、スラリーを調整した。得られたスラリーをドクターブレード法により、厚さ4μmの中間層用グリーンシートを作製した。
<活性層用グリーンシートの作製>
NiO粉末(60重量部)とYSZ粉末(40重量部)との混合粉末(100重量部)に対して、造孔材である有機ビーズ(混合粉末に対して10重量%)と、ブチラール樹脂と、可塑剤であるDOPと、分散剤と、トルエン+エタノール混合溶剤とを加え、ボールミルにて混合して、スラリーを調整した。得られたスラリーをドクターブレード法により、厚さ12μmの活性層用グリーンシートを作製した。
<固体電解質層用グリーンシートの作製>
YSZ粉末(100重量部)に対して、ブチラール樹脂と、可塑剤であるDOPと、分散剤と、トルエン+エタノール混合溶剤とを加え、ボールミルにて混合して、スラリーを調整した。得られたスラリーをドクターブレード法により、厚さ10μmの固体電解質層用グリーンシートを作製した。
<積層成形体の作製>
次に、拡散層用グリーンシート4枚と、中間層用グリーンシート1枚と、活性層用グリーンシート1枚と、固体電解質層用グリーンシート1枚とを積層し、150×150mm角に切り出して積層成形体を作製した。
この積層成形体を、250℃で脱脂した後、1200〜1500℃で1〜10時間焼成して、積層焼成体を作製した。
<反応防止層7の作製>
反応防止層7の材料として、GDC(ガドリニウム添加セリア)と、バインダー溶液とからなる材料を用いて、反応防止層ペーストを作製した。
次に、前記積層焼成体における固体電解質層5の表面に、反応防止層ペーストを印刷した。
<空気極層9の作製>
空気極層9の材料として、例えば平均粒径1〜4μmのLa1−xSrCo1−yFe粉末と、バインダー溶液とからなる材料を用いて、空気極層用ペーストを作製した。
次に、反応防止層ペースト上に、空気極層用ペーストを印刷した。
そして、その印刷した反応防止層ペースト及び空気極層用ペーストを、焼成によって緻密とならないように、900〜1200℃にて1〜5時間焼成して、反応防止層7及び空気極層9を形成した。
これによって、単セル1を完成した。なお、単セル1には、セパレータ33をろう付けした。
また、この単セル1に上述した各部材を前記図4のように組み合わせて、周知のろう付け等の定法によって、インターコネクタ25、各フレーム31、35、セパレータ33、エンドプレート37、39等を接合して、燃料電池スタック21を作製することができる。
また、このようにして製造された燃料電池スタック21を、例えば発電中に水素等の還元雰囲気に晒すと、燃料極層3中の例えばNiOが還元されてNiになることによって、例えば中間層13などの燃料極層3中に微細な気孔が形成される。なお、活性層11や拡散層15は、製造時に有機ビーズの造孔材を含むので、上述した焼成によって造孔材が消失した箇所に気孔(開気孔)が形成される。
d)次に、活性層11と中間層13と拡散層15とを区別する手法について説明する。
まず、燃料極層3に対して、中間層13を中心に、少なくとも活性層11と推定される層の厚み方向全体が確認できる倍率で、固体電解質層5と燃料極層3との境界が画像の上方の端から、画像の上方から下方に向かう長さの1/10の領域に写り、活性層11と中間層13との境界と推測される部分が、画像の上方から下方に向かう長さの1/5から3/5までの領域に写るように撮影して画像(SEM画像)を得る。
なお、画像としては2値化画像を採用できる(ただし、コントラストにより2値化処理後の画像における気孔が実際の形態と大きく異なる場合は、コントラストを調整するか、2値化処理していない画像を採用する)。例えばここでの倍率は、2000倍とすることができる。画像の倍率は、これに限られるものではない。
次に、固体電解質層5と活性層11の界面に平行な仮想線を、0.3μm間隔で固体電解質層5側から順に引き、仮想線K1、K2、K3、・・・、Km、・・・、K(m+9)、K(m+10)、・・・、Knを得る。
次に、各仮想線上に存在する気孔の割合(気孔率)を後述の手法にて測定する。
次に、各仮想線の気孔率Ks1、Ks2、Ks3、・・・、Ksm、・・・、Ks(m+9)、Ks(m+10)、・・・、Ksnのうち、固体電解質層5側から順番に10個の仮想線の気孔率を有する各データ群を設定し、各データ群の10個の気孔率の平均値(Ave)と各データ群の気孔率の標準偏差(σ)を算出する。
固体電解質層5側から順番に、データ群G1は、Ks1、Ks2、・・・、Ks10からなり、データ群G2は、Ks2、Ks3、・・・、Ks11からなり、データ群Gmは、Ksm、Ks(m+1)、Ks(m+2)、・・・、Ks(m+9)からなり、データ群G(m+1)は、Ks(m+1)、Ks(m+2)、・・・、Ks(m+10)からなる。
すなわち、データ群G(m+1)とは、データ群Gmから、データ群Gmの1つ目の仮想線Kmの気孔率Ksmを除いた9個の気孔率(Ks(m+1)、・・・、Ks(m+9))に、データ群の最後の仮想線K(m+9)の次の仮想線K(m+10)の気孔率Ks(m+10)を加えた10個の気孔率からなる一つの群を意味する。
そして、「G(m+1)の気孔率の平均値」が「Gmの気孔率の平均値に、Gmの10個の気孔率の標準偏差(σ)の2倍の値を加えた値」を初めて上回ったとき、または、「G(m+1)の気孔率の平均値」が「Gmの気孔率の平均値に、Gmの10個の気孔率の標準偏差(σ)の2倍の値を減じた値」を初めて下回ったときの、データ群G(m+1)の10個目の気孔率Ks(m+10)に対応する仮想線K(m+10)を、各層の境界(活性層11と中間層13との境界、中間層13と拡散層15との境界)とする。
すなわち、Gmの気孔率の平均値をGmAve、G(m+1)の気孔率の平均値をG(m+1)Ave、Gmの気孔率の標準偏差をσmとしたとき、下記式(1)を満たす初めてのデータ群G(m+1)の10個目の気孔率Ks(m+10)に対応する仮想線K(m+10)を、各層の境界(活性層11と中間層13との境界、中間層13と拡散層15との境界)とする。
|(G(m+1)Ave)−(GmAve)|>2σm ・・・(1)
e)次に、活性層11と中間層13と拡散層15との気孔率(開気孔率)の測定方法について説明する。
上述した製造方法によって形成された燃料極層3に対して、積層方向に沿って断面を出し、その断面を撮像して画像(例えばSEM画像)を得る。なお、このSEM画像の倍率は、活性層11が厚み方向に写る倍率とする(ここでは、2000倍で撮影したが、これに限られるものではない)。
次に、SEM画像に対して、一定間隔(例えば0.3μm間隔)で、前記積層方向に垂直な方向に対して平行な直線を複数本引く。
次に、引いた直線上の気孔にあたる部分の長さを測定する。
ここで、1本の直線上にある複数の気孔部分の長さの和を、直線総長さで割った値が気孔率に相当する。
そして、複数(例えば3〜30本)の直線の気孔率の平均値を求め、その平均値を、活性層11、中間層13、拡散層15の各気孔率とする。例えば、直線の本数としては、各層において、その厚みの1/10の間隔で10本を採用でき、各直線にて測定した気孔率の平均を各層の気孔率として採用できる。
なお、本発明のような構成の単セル1においては、通常は、各気孔の殆どは他の気孔と連通しているので、この気孔率が開気孔率に相当する。つまり、本発明においては、上述した測定方法によって得られた気孔率を、本発明の開気孔率として採用することができる。
なお、本測定では、2000倍のSEM画像を用いて開気孔率の測定を行ったが、500〜20000倍のSEM画像を用いても、上記の測定方法で開気孔率の測定が可能である。
f)次に、本実施形態の作用効果について説明する。
本実施形態では、燃料極層3は、固体電解質層5側より、(それぞれ多孔質の)活性層11と中間層13と拡散層15とを備えており、中間層13の開気孔率は活性層11の開気孔率よりも小さく、活性層11の開気孔率は拡散層15の開気孔率よりも小さい。
つまり、本実施形態では、活性層11の開気孔率は中間層13の開気孔率より大きいので、下記式(2)の発電反応で発生する水蒸気が活性層11内に滞留しにくい(即ち水蒸気濃度が低い)。その結果、三相界面への燃料ガスの供給が容易になるので、発電性能が高いという効果がある。
+O2− → HO+2e− ・・・(2)
また、本実施形態では、中間層13の開気孔率が活性層11及び拡散層15よりも小さいので、外部から供給される燃料ガス中の汚染物質が、活性層11に侵入しにくい。よって、汚染物質が三相界面に付着しにくいので、被毒耐久性が高いという効果がある。
更に、本実施形態では、燃料極層3は、固体電解質層5側より、厚みが拡散層15より小さい活性層11と、厚みが活性層11より小さい中間層13と、厚みが最も大きい拡散層15との順番で配置されている。
つまり、中間層13の厚みが最も小さいので、水蒸気の排出や燃料ガスの導入の際の抵抗が少ない。この点からも、発電反応により発生した水蒸気を効率よく排出でき、また、燃料ガスも効率よく導入することができるため、発電性能が高いという利点がある。
尚、本発明は前記実施形態等になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
(1)例えば、前記実施形態のような板状の燃料電池単セルが積層された燃料電池スタック以外に、例えば周知の円筒形状などの燃料電池単セルを複数配置したもの等、各種の形状のものが挙げられる。
(2)また、燃料極集電体、空気極集電体についても、従来公知の形態を採用することができる。例えば、空気極集電体は、インターコネクタの一部が突出する形で一体に形成されていてもよい。
1…燃料電池単セル
3…燃料極層
5…固体電解質層
9…空気極層
11…活性層
13…中間層
15…拡散層
21…燃料電池スタック
23…発電単位
25…インターコネクタ
37、39…エンドプレート

Claims (3)

  1. 空気極層と、燃料極層と、前記空気極層と前記燃料極層との間に配置された固体電解質層と、を有する固体酸化物形燃料電池単セルにおいて、
    前記燃料極層は、前記固体電解質層側より、活性層と中間層と拡散層とを備え、
    前記活性層と前記中間層と前記拡散層とは、開気孔を有し、
    前記中間層の開気孔率は前記活性層の開気孔率よりも小さく、前記活性層の開気孔率は前記拡散層の開気孔率よりも小さいことを特徴とする固体酸化物形燃料電池単セル。
  2. 前記中間層の厚みは前記活性層の厚みよりも小さく、前記活性層の厚みは前記拡散層の厚みよりも小さいことを特徴とする請求項1に記載の固体酸化物形燃料電池単セル。
  3. 請求項1又は2に記載の固体酸化物形燃料電池単セルを備えたことを特徴とする固体酸化物形燃料電池スタック。
JP2016033535A 2015-02-25 2016-02-24 固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック Active JP6678042B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015035286 2015-02-25
JP2015035286 2015-02-25

Publications (2)

Publication Number Publication Date
JP2016157693A true JP2016157693A (ja) 2016-09-01
JP6678042B2 JP6678042B2 (ja) 2020-04-08

Family

ID=56826626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033535A Active JP6678042B2 (ja) 2015-02-25 2016-02-24 固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック

Country Status (1)

Country Link
JP (1) JP6678042B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151193A1 (ja) * 2017-02-16 2018-08-23 日本特殊陶業株式会社 電気化学反応単セルおよび電気化学反応セルスタック
JP2018147714A (ja) * 2017-03-06 2018-09-20 日本特殊陶業株式会社 電気化学反応単セルおよび電気化学反応セルスタック
JP2020068195A (ja) * 2018-10-18 2020-04-30 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
JP2020167091A (ja) * 2019-03-29 2020-10-08 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池の支持体形成用材料およびその利用
JP2020170607A (ja) * 2019-04-01 2020-10-15 株式会社豊田中央研究所 固体酸化物形燃料電池用アノード
CN114824302A (zh) * 2022-04-26 2022-07-29 中国科学技术大学先进技术研究院 一种集流体及制备方法
JP2023000010A (ja) * 2021-06-17 2023-01-04 森村Sofcテクノロジー株式会社 電気化学反応単セルおよび電気化学反応セルスタック

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165143A (ja) * 2005-12-14 2007-06-28 Ngk Spark Plug Co Ltd 固体電解質型燃料電池セル、固体電解質型燃料電池スタック、及び固体電解質型燃料電池セルの製造方法
JP2010231918A (ja) * 2009-03-26 2010-10-14 Kyocera Corp 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
WO2013180299A1 (ja) * 2012-05-31 2013-12-05 京セラ株式会社 セルおよびセルスタック装置並びに電気化学モジュール、電気化学装置
WO2014024960A1 (ja) * 2012-08-09 2014-02-13 日本碍子株式会社 固体酸化物型燃料電池
JP2015173091A (ja) * 2014-02-20 2015-10-01 日本碍子株式会社 燃料電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165143A (ja) * 2005-12-14 2007-06-28 Ngk Spark Plug Co Ltd 固体電解質型燃料電池セル、固体電解質型燃料電池スタック、及び固体電解質型燃料電池セルの製造方法
JP2010231918A (ja) * 2009-03-26 2010-10-14 Kyocera Corp 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
WO2013180299A1 (ja) * 2012-05-31 2013-12-05 京セラ株式会社 セルおよびセルスタック装置並びに電気化学モジュール、電気化学装置
WO2014024960A1 (ja) * 2012-08-09 2014-02-13 日本碍子株式会社 固体酸化物型燃料電池
JP2015173091A (ja) * 2014-02-20 2015-10-01 日本碍子株式会社 燃料電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018151193A1 (ja) * 2017-02-16 2019-02-21 日本特殊陶業株式会社 電気化学反応単セルおよび電気化学反応セルスタック
CN110291672A (zh) * 2017-02-16 2019-09-27 日本特殊陶业株式会社 电化学反应单体电池和电化学反应电池组
WO2018151193A1 (ja) * 2017-02-16 2018-08-23 日本特殊陶業株式会社 電気化学反応単セルおよび電気化学反応セルスタック
CN110291672B (zh) * 2017-02-16 2022-06-10 森村索福克科技股份有限公司 电化学反应单体电池和电化学反应电池组
JP2018147714A (ja) * 2017-03-06 2018-09-20 日本特殊陶業株式会社 電気化学反応単セルおよび電気化学反応セルスタック
JP2020068195A (ja) * 2018-10-18 2020-04-30 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
JP7336702B2 (ja) 2018-10-18 2023-09-01 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
JP7274912B2 (ja) 2019-03-29 2023-05-17 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池の支持体形成用材料およびその利用
JP2020167091A (ja) * 2019-03-29 2020-10-08 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池の支持体形成用材料およびその利用
JP2020170607A (ja) * 2019-04-01 2020-10-15 株式会社豊田中央研究所 固体酸化物形燃料電池用アノード
JP7075368B2 (ja) 2019-04-01 2022-05-25 株式会社豊田中央研究所 固体酸化物形燃料電池用アノード
JP2023000010A (ja) * 2021-06-17 2023-01-04 森村Sofcテクノロジー株式会社 電気化学反応単セルおよび電気化学反応セルスタック
JP7288928B2 (ja) 2021-06-17 2023-06-08 森村Sofcテクノロジー株式会社 電気化学反応単セルおよび電気化学反応セルスタック
CN114824302A (zh) * 2022-04-26 2022-07-29 中国科学技术大学先进技术研究院 一种集流体及制备方法

Also Published As

Publication number Publication date
JP6678042B2 (ja) 2020-04-08

Similar Documents

Publication Publication Date Title
JP6678042B2 (ja) 固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック
JP5179718B2 (ja) 固体酸化物型燃料電池セル、固体酸化物型燃料電池スタック、及び固体酸化物型燃料電池セルの製造方法
US20030148160A1 (en) Anode-supported tubular solid oxide fuel cell stack and method of fabricating the same
EP2701225B1 (en) Fuel cell and fuel cell stack
JP6734723B2 (ja) 電気化学反応単セル、および、電気化学反応セルスタック
US20230395813A1 (en) Fuel electrode and electrochemical cell
JP2016038984A (ja) 固体酸化物形電気化学装置
JP2007323955A (ja) 固体酸化物形燃料電池、及びそのスタック構造
JP7301768B2 (ja) 電気化学セル、電気化学セルスタックおよび電気化学セル用電解質
JP6088949B2 (ja) 燃料電池単セルおよびその製造方法
JP2016039004A (ja) 燃料電池
JP5981001B1 (ja) 燃料電池
JP2012099497A (ja) 固体酸化物型燃料電池セル及び固体酸化物型燃料電池スタック
JP6517993B1 (ja) 電気化学装置
JP5242951B2 (ja) 固体電解質形燃料電池及びその製造方法
JP5205543B1 (ja) 燃料電池セル
JP2018206693A (ja) 導電性部材、電気化学反応単位、および、電気化学反応セルスタック
JP5999276B2 (ja) 固体酸化物燃料電池
JP6393714B2 (ja) 電気化学反応単セルおよび電気化学反応セルスタック
JP5981000B1 (ja) 燃料電池
JP2015032427A (ja) 固体酸化物形燃料電池、及び固体酸化物形燃料電池の製造方法
JP2015076339A (ja) 燃料電池
JP2021018901A (ja) 電気化学反応単セル、および、電気化学反応セルスタック
JP2012074304A (ja) 固体酸化物形燃料電池用発電セル
JP2020113504A (ja) 電気化学反応単セルおよび電気化学反応セルスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6678042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250