JP6393714B2 - 電気化学反応単セルおよび電気化学反応セルスタック - Google Patents

電気化学反応単セルおよび電気化学反応セルスタック Download PDF

Info

Publication number
JP6393714B2
JP6393714B2 JP2016156051A JP2016156051A JP6393714B2 JP 6393714 B2 JP6393714 B2 JP 6393714B2 JP 2016156051 A JP2016156051 A JP 2016156051A JP 2016156051 A JP2016156051 A JP 2016156051A JP 6393714 B2 JP6393714 B2 JP 6393714B2
Authority
JP
Japan
Prior art keywords
layer
fuel
air electrode
electrochemical reaction
single cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016156051A
Other languages
English (en)
Other versions
JP2018026217A (ja
Inventor
井上 志郎
志郎 井上
小野 達也
達也 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016156051A priority Critical patent/JP6393714B2/ja
Priority to US16/080,448 priority patent/US10756375B2/en
Priority to PCT/JP2017/018758 priority patent/WO2018029935A1/ja
Priority to KR1020187024068A priority patent/KR102147074B1/ko
Priority to CN201780013925.1A priority patent/CN108701839B/zh
Priority to EP17839010.0A priority patent/EP3499616B1/en
Publication of JP2018026217A publication Critical patent/JP2018026217A/ja
Application granted granted Critical
Publication of JP6393714B2 publication Critical patent/JP6393714B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本明細書によって開示される技術は、電気化学反応単セルに関する。
水素と酸素との電気化学反応を利用して発電を行う燃料電池の種類の1つとして、固体酸化物形の燃料電池(以下、「SOFC」という)が知られている。SOFCの構成単位である燃料電池単セル(以下、単に「単セル」という)は、固体酸化物を含む電解質層と、電解質層を挟んで所定の方向(以下、「第1の方向」という)に互いに対向する空気極および燃料極とを備える。電解質層は、例えば、YSZ(イットリア安定化ジルコニア)やScSZ(スカンジア安定化ジルコニア)を含むように形成されている。また、空気極は、例えば、LSCF(ランタンストロンチウムコバルト鉄酸化物)やLSM(ランタンストロンチウムマンガン酸化物)を含むように形成されている。
単セルにおいて、空気極に含まれるSr(ストロンチウム)が電解質層側に拡散し、この拡散したSrが電解質層に含まれるZr(ジルコニウム)と反応すると、高抵抗な物質であるSrZrO(以下、「SZO」という)が生成される。空気極と電解質層との間の領域において、SZOが層状に生成されると(すなわち、第1の方向に略直交する方向に連続的に生成されると)、第1の方向の電気抵抗が増大し、単セルの発電性能が低下する。
このようなSZOの生成を抑制するため、空気極と電解質層との間に、例えばGDC(ガドリニウムドープセリア)を含む反応防止層を配置すると共に、電解質層と反応防止層との境界付近において両者の相互拡散により生成される固溶層の厚さを所定値以上にする技術が知られている(例えば、特許文献1参照)。この技術によれば、空気極から拡散したSrが電解質層に含まれるZrと反応してSZOが生成されることが効果的に抑制される。
特開2015−35416号公報
しかし、電解質層と反応防止層との相互拡散により生成される固溶層は、それ自体が高抵抗層であるため、固溶層の厚さを所定値以上にすると、やはり第1の方向の電気抵抗が増大し、単セルの発電性能が低下する。
なお、このような課題は、水の電気分解反応を利用して水素の生成を行う固体酸化物形の電解セル(以下、「SOEC」ともいう)の構成単位である電解単セルにも共通の課題である。なお、本明細書では、燃料電池単セルと電解単セルとをまとめて電気化学反応単セルと呼ぶ。また、このような課題は、SOFCやSOECに限らず、他のタイプの電気化学反応単セルにも共通の課題である。
本明細書では、上述した課題を解決することが可能な技術を開示する。
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される電気化学反応単セルは、Zrを含む電解質層と、前記電解質層の第1の方向の一方側に配置された燃料極と、前記電解質層の前記第1の方向の他方側に配置され、Srを含む空気極と、前記電解質層と前記空気極との間に配置された反応防止層と、を備える電気化学反応単セルにおいて、前記反応防止層は、0.015(wt%)以上、1(wt%)以下の含有率でZrを含む。本電気化学反応単セルによれば、反応防止層が0.015(wt%)以上の含有率でZrを含むため、反応防止層中に点在するZrによって空気極から電解質層側に拡散してくるSrをトラップすることができ、これにより、Srが反応防止層と電解質層との境界付近の領域まで拡散することを抑制することができ、該領域で高抵抗なSrZrOが層状に生成されて電気化学反応単セルの性能が低下することを抑制することができる。また、反応防止層のZrの含有率が1(wt%)以下であるため、空気極からのSr以外の元素の拡散量が過大となることを抑制することができ、空気極の組成が変化して信頼性が低下することを抑制することができる。
(2)上記電気化学反応単セルにおいて、前記反応防止層におけるZrの前記含有率は、0.18(wt%)以下である構成としてもよい。本電気化学反応単セルによれば、反応防止層のZrの含有率が0.18(wt%)以下であるため、使用開始後においても空気極からのSr以外の元素の拡散量が過大となることを抑制することができ、使用開始後に空気極の組成が変化して耐久信頼性が低下することを抑制することができる。
(3)上記電気化学反応単セルにおいて、前記反応防止層におけるZrの前記含有率は、0.05(wt%)以上である構成としてもよい。本電気化学反応単セルによれば、反応防止層のZrの含有率が0.05(wt%)以上であるため、反応防止層中に点在するZrによって空気極から電解質層側に拡散してくるSrを効果的にトラップすることができ、電気化学反応単セルの性能が低下することを効果的に抑制することができる。
(4)上記電気化学反応単セルにおいて、前記反応防止層は、Gdを含む構成としてもよい。本電気化学反応単セルによれば、反応防止層に含まれるGdによってもSrの電解質層112側への拡散を抑制することができ、電気化学反応単セルの性能が低下することを効果的に抑制することができる。
(5)上記電気化学反応単セルにおいて、前記電解質層は、固体酸化物を含む構成としてもよい。本電気化学反応単セルによれば、SrZrOの生成による性能低下が発生しやすい本電気化学反応単セルにおいて、空気極の信頼性低下を抑制しつつ、電気化学反応単セルの性能低下を抑制することができる。
(6)上記電気化学反応単セルにおいて、前記電気化学反応単セルは、燃料電池単セルである構成としてもよい。本電気化学反応単セルによれば、空気極の信頼性低下を抑制しつつ、発電性能の低下を抑制することができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、電気化学反応単セル(燃料電池単セルまたは電解単セル)、複数の電気化学反応単セルを備える電気化学反応セルスタック(燃料電池スタックまたは電解セルスタック)、それらの製造方法等の形態で実現することが可能である。
本実施形態における燃料電池スタック100の外観構成を示す斜視図である。 図1のII−IIの位置における燃料電池スタック100のXZ断面構成を示す説明図である。 図1のIII−IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。 図2に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図である。 図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。 単セル110における反応防止層180周辺の詳細構成を示す説明図である。 性能評価結果を示す説明図である。 TOF−SIMSにより取得された強度データの一例を示す説明図である。 サンプルS1についてのSr/Gd強度比およびZr/Gd強度比を示す説明図である。 サンプルS4についてのSr/Gd強度比およびZr/Gd強度比を示す説明図である。 変形例における燃料電池スタック100aの構成を概略的に示す説明図である。
A.実施形態:
A−1.構成:
(燃料電池スタック100の構成)
図1は、本実施形態における燃料電池スタック100の外観構成を示す斜視図であり、図2は、図1のII−IIの位置における燃料電池スタック100のXZ断面構成を示す説明図であり、図3は、図1のIII−IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとするが、燃料電池スタック100は実際にはそのような向きとは異なる向きで設置されてもよい。図4以降についても同様である。
燃料電池スタック100は、複数の(本実施形態では7つの)発電単位102と、一対のエンドプレート104,106とを備える。7つの発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。一対のエンドプレート104,106は、7つの発電単位102から構成される集合体を上下から挟むように配置されている。なお、上記配列方向(上下方向)は、特許請求の範囲における第1の方向に相当する。
燃料電池スタック100を構成する各層(発電単位102、エンドプレート104,106)のZ方向回りの周縁部には、上下方向に貫通する複数の(本実施形態では8つの)孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通して、一方のエンドプレート104から他方のエンドプレート106にわたって上下方向に延びる連通孔108を構成している。以下の説明では、連通孔108を構成するために燃料電池スタック100の各層に形成された孔も、連通孔108と呼ぶ場合がある。
各連通孔108には上下方向に延びるボルト22が挿通されており、ボルト22とボルト22の両側に嵌められたナット24とによって、燃料電池スタック100は締結されている。なお、図2および図3に示すように、ボルト22の一方の側(上側)に嵌められたナット24と燃料電池スタック100の上端を構成するエンドプレート104の上側表面との間、および、ボルト22の他方の側(下側)に嵌められたナット24と燃料電池スタック100の下端を構成するエンドプレート106の下側表面との間には、絶縁シート26が介在している。ただし、後述のガス通路部材27が設けられた箇所では、ナット24とエンドプレート106の表面との間に、ガス通路部材27とガス通路部材27の上側および下側のそれぞれに配置された絶縁シート26とが介在している。絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成される。
各ボルト22の軸部の外径は各連通孔108の内径より小さい。そのため、各ボルト22の軸部の外周面と各連通孔108の内周面との間には、空間が確保されている。図1および図2に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸正方向側の辺)の中点付近に位置するボルト22(ボルト22A)と、そのボルト22Aが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から酸化剤ガスOGが導入され、その酸化剤ガスOGを各発電単位102に供給するガス流路である酸化剤ガス導入マニホールド161として機能し、該辺の反対側の辺(Y軸に平行な2つの辺の内のX軸負方向側の辺)の中点付近に位置するボルト22(ボルト22B)と、そのボルト22Bが挿通された連通孔108とにより形成された空間は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へと排出する酸化剤ガス排出マニホールド162として機能する。なお、本実施形態では、酸化剤ガスOGとして、例えば空気が使用される。
また、図1および図3に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置するボルト22(ボルト22D)と、そのボルト22Dが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から燃料ガスFGが導入され、その燃料ガスFGを各発電単位102に供給する燃料ガス導入マニホールド171として機能し、該辺の反対側の辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置するボルト22(ボルト22E)と、そのボルト22Eが挿通された連通孔108とにより形成された空間は、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へと排出する燃料ガス排出マニホールド172として機能する。なお、本実施形態では、燃料ガスFGとして、例えば都市ガスを改質した水素リッチなガスが使用される。
燃料電池スタック100には、4つのガス通路部材27が設けられている。各ガス通路部材27は、中空筒状の本体部28と、本体部28の側面から分岐した中空筒状の分岐部29とを有している。分岐部29の孔は本体部28の孔と連通している。各ガス通路部材27の分岐部29には、ガス配管(図示せず)が接続される。また、図2に示すように、酸化剤ガス導入マニホールド161を形成するボルト22Aの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス導入マニホールド161に連通しており、酸化剤ガス排出マニホールド162を形成するボルト22Bの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス排出マニホールド162に連通している。また、図3に示すように、燃料ガス導入マニホールド171を形成するボルト22Dの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス導入マニホールド171に連通しており、燃料ガス排出マニホールド172を形成するボルト22Eの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス排出マニホールド172に連通している。
(エンドプレート104,106の構成)
一対のエンドプレート104,106は、略矩形の平板形状の導電性部材であり、例えばステンレスにより形成されている。一方のエンドプレート104は、最も上に位置する発電単位102の上側に配置され、他方のエンドプレート106は、最も下に位置する発電単位102の下側に配置されている。一対のエンドプレート104,106によって複数の発電単位102が押圧された状態で挟持されている。上側のエンドプレート104は、燃料電池スタック100のプラス側の出力端子として機能し、下側のエンドプレート106は、燃料電池スタック100のマイナス側の出力端子として機能する。
(発電単位102の構成)
図4は、図2に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図であり、図5は、図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。
図4および図5に示すように、発電単位102は、単セル110と、セパレータ120と、空気極側フレーム130と、空気極側集電体134と、燃料極側フレーム140と、燃料極側集電体144と、発電単位102の最上層および最下層を構成する一対のインターコネクタ150とを備えている。セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ150におけるZ方向回りの周縁部には、上述したボルト22が挿通される連通孔108に対応する孔が形成されている。
インターコネクタ150は、略矩形の平板形状の導電性部材であり、例えばフェライト系ステンレスにより形成されている。インターコネクタ150は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を防止する。なお、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ150は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ150は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ150と同一部材である。また、燃料電池スタック100は一対のエンドプレート104,106を備えているため、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えておらず、最も下に位置する発電単位102は下側のインターコネクタ150を備えていない(図2および図3参照)。
単セル110は、電解質層112と、電解質層112の下側に配置された燃料極(アノード)116と、電解質層112の上側に配置された空気極(カソード)114と、電解質層112と空気極114との間に配置された反応防止層180とを備える。なお、本実施形態の単セル110は、燃料極116で単セル110を構成する他の層(電解質層112、空気極114、反応防止層180)を支持する燃料極支持形の単セルである。
電解質層112は、略矩形の平板形状部材であり、固体酸化物であるYSZ(イットリア安定化ジルコニア)を含むように形成されている。空気極114は、略矩形の平板形状部材である。本実施形態では、空気極114は、集電層220と、集電層220より電解質層112側(下側)に位置する活性層210とから構成されている(図6参照)。空気極114の活性層210は、主として、酸化剤ガスOGに含まれる酸素のイオン化反応の場として機能する層であり、LSCF(ランタンストロンチウムコバルト鉄酸化物)と活性化物質としてのGDC(ガドリニウムドープセリア)とを含むように形成されている。また、空気極114の集電層220は、主として、空気室166から供給された酸化剤ガスOGを拡散させると共に、発電反応により得られた電気を集電する場として機能する層であり、LSCFを含むように形成されている。燃料極116は、略矩形の平板形状部材であり、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。このように、本実施形態の単セル110は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。
反応防止層180は、略矩形の平板形状部材であり、GDC(ガドリニウムドープセリア)を含むように形成されている。反応防止層180は、空気極114から拡散したSrが電解質層112に含まれるZrと反応して高抵抗なSZOが生成されることを抑制する。単セル110における反応防止層180周辺の構成については、後に詳述する。
セパレータ120は、中央付近に上下方向に貫通する略矩形の孔121が形成されたフレーム状の部材であり、例えば、金属により形成されている。セパレータ120における孔121の周囲部分は、電解質層112における空気極114の側の表面の周縁部に対向している。セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部124により、電解質層112(単セル110)と接合されている。セパレータ120により、空気極114に面する空気室166と燃料極116に面する燃料室176とが区画され、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリークが抑制される。
空気極側フレーム130は、中央付近に上下方向に貫通する略矩形の孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130の孔131は、空気極114に面する空気室166を構成する。空気極側フレーム130は、セパレータ120における電解質層112に対向する側とは反対側の表面の周縁部と、インターコネクタ150における空気極114に対向する側の表面の周縁部とに接触している。また、空気極側フレーム130によって、発電単位102に含まれる一対のインターコネクタ150間が電気的に絶縁される。また、空気極側フレーム130には、酸化剤ガス導入マニホールド161と空気室166とを連通する酸化剤ガス供給連通孔132と、空気室166と酸化剤ガス排出マニホールド162とを連通する酸化剤ガス排出連通孔133とが形成されている。
燃料極側フレーム140は、中央付近に上下方向に貫通する略矩形の孔141が形成されたフレーム状の部材であり、例えば、金属により形成されている。燃料極側フレーム140の孔141は、燃料極116に面する燃料室176を構成する。燃料極側フレーム140は、セパレータ120における電解質層112に対向する側の表面の周縁部と、インターコネクタ150における燃料極116に対向する側の表面の周縁部とに接触している。また、燃料極側フレーム140には、燃料ガス導入マニホールド171と燃料室176とを連通する燃料ガス供給連通孔142と、燃料室176と燃料ガス排出マニホールド172とを連通する燃料ガス排出連通孔143とが形成されている。
燃料極側集電体144は、燃料室176内に配置されている。燃料極側集電体144は、インターコネクタ対向部146と、電極対向部145と、電極対向部145とインターコネクタ対向部146とをつなぐ連接部147とを備えており、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。電極対向部145は、燃料極116における電解質層112に対向する側とは反対側の表面に接触しており、インターコネクタ対向部146は、インターコネクタ150における燃料極116に対向する側の表面に接触している。ただし、上述したように、燃料電池スタック100において最も下に位置する発電単位102は下側のインターコネクタ150を備えていないため、当該発電単位102におけるインターコネクタ対向部146は、下側のエンドプレート106に接触している。燃料極側集電体144は、このような構成であるため、燃料極116とインターコネクタ150(またはエンドプレート106)とを電気的に接続する。なお、電極対向部145とインターコネクタ対向部146との間には、例えばマイカにより形成されたスペーサー149が配置されている。そのため、燃料極側集電体144が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電体144を介した燃料極116とインターコネクタ150(またはエンドプレート106)との電気的接続が良好に維持される。
空気極側集電体134は、空気室166内に配置されている。空気極側集電体134は、複数の略四角柱状の集電体要素135から構成されており、例えば、フェライト系ステンレスにより形成されている。空気極側集電体134は、空気極114における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における空気極114に対向する側の表面とに接触している。ただし、上述したように、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えていないため、当該発電単位102における空気極側集電体134は、上側のエンドプレート104に接触している。空気極側集電体134は、このような構成であるため、空気極114とインターコネクタ150(またはエンドプレート104)とを電気的に接続する。なお、本実施形態では、空気極側集電体134とインターコネクタ150とは一体の部材として形成されている。すなわち、該一体の部材の内の、上下方向(Z軸方向)に直交する平板形の部分がインターコネクタ150として機能し、該平板形の部分から空気極114に向けて突出するように形成された複数の凸部である集電体要素135が空気極側集電体134として機能する。また、空気極側集電体134とインターコネクタ150との一体部材は、導電性のコートによって覆われていてもよく、空気極114と空気極側集電体134との間には、両者を接合する導電性の接合層が介在していてもよい。
A−2.燃料電池スタック100の動作:
図2および図4に示すように、酸化剤ガス導入マニホールド161の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して酸化剤ガスOGが供給されると、酸化剤ガスOGは、ガス通路部材27の分岐部29および本体部28の孔を介して酸化剤ガス導入マニホールド161に供給され、酸化剤ガス導入マニホールド161から各発電単位102の酸化剤ガス供給連通孔132を介して、空気室166に供給される。また、図3および図5に示すように、燃料ガス導入マニホールド171の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して燃料ガスFGが供給されると、燃料ガスFGは、ガス通路部材27の分岐部29および本体部28の孔を介して燃料ガス導入マニホールド171に供給され、燃料ガス導入マニホールド171から各発電単位102の燃料ガス供給連通孔142を介して、燃料室176に供給される。
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、単セル110において酸化剤ガスOGおよび燃料ガスFGの電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は空気極側集電体134を介して一方のインターコネクタ150に電気的に接続され、燃料極116は燃料極側集電体144を介して他方のインターコネクタ150に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するエンドプレート104,106から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器(図示せず)により加熱されてもよい。
各発電単位102の空気室166から排出された酸化剤オフガスOOGは、図2および図4に示すように、酸化剤ガス排出連通孔133を介して酸化剤ガス排出マニホールド162に排出され、さらに酸化剤ガス排出マニホールド162の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示せず)を介して燃料電池スタック100の外部に排出される。また、各発電単位102の燃料室176から排出された燃料オフガスFOGは、図3および図5に示すように、燃料ガス排出連通孔143を介して燃料ガス排出マニホールド172に排出され、さらに燃料ガス排出マニホールド172の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示しない)を介して燃料電池スタック100の外部に排出される。
A−3.単セル110における反応防止層180周辺の詳細構成:
図6は、単セル110における反応防止層180周辺の詳細構成を示す説明図である。図6には、反応防止層180を挟んで電解質層112の一部と空気極114の一部とが含まれる領域(図4の領域X1)における単セル110のXZ断面構成が示されている。
本実施形態では、単セル110は、LSCFを含む空気極114(の活性層210)と、YSZを含む電解質層112との間に、GDCを含む反応防止層180が設けられている。また、本実施形態では、反応防止層180が、GDCに加えて所定量のYSZを含んでいる。すなわち、図6において概念的に示すように、反応防止層180内には、所定量のZr元素が点在している。なお、反応防止層180と電解質層112との境界付近には、反応防止層180と電解質層112との相互拡散により生成された固溶層182が存在している。
ここで、反応防止層180がZrを含んでいない場合には、空気極114から拡散したSrは、反応防止層180と電解質層112との境界付近の領域まで達して、その領域でZrと反応する。そのため、反応防止層180と電解質層112との境界付近の領域(固溶層182付近の領域)においてSZOが層状に生成され、これによって上下方向の電気抵抗が増大し、単セル110の発電性能が低下する。これに対し、本実施形態の単セル110では、反応防止層180がZrを含んでいるため、空気極114から電解質層112側に拡散してくるSrを、反応防止層180内に点在するZrによってトラップすることができる。すなわち、空気極114から拡散したSrの少なくとも一部は、反応防止層180内に点在するZrと反応する。このとき、SrとZrとが反応して高抵抗なSZOが生成されるが、SZOの生成位置は反応防止層180内に点在する位置となる。そのため、本実施形態の単セル110では、空気極114から拡散してくるSrが反応防止層180と電解質層112との境界付近の領域まで拡散することを抑制することができ、この領域で高抵抗なSZOが層状に生成されて単セル110の発電性能が低下することを抑制することができる。
A−4.性能評価:
上述したように、本実施形態の単セル110では、反応防止層180がZrを含んでいるため、単セル110の発電性能の低下を抑制することができる。そこで、反応防止層180におけるZrの適切な含有率を特定するため、複数の単セル110のサンプルを作成し、性能評価を行った。図7は、性能評価結果を示す説明図である。図7に示すように、各サンプルは、反応防止層180のZr含有率(wt%)が互いに異なっている。具体的には、サンプルS1,S2,S3,S4,S5,S6,S7は、この順に、反応防止層180のZr含有率が高くなっている。
A−4−1.単セル110の製造方法:
以下の製造方法に従い、単セル110の各サンプルを製造した。
(電解質層112と燃料極116との積層体の形成)
YSZ粉末(BET法による比表面積:5〜7m/g)に対して、ブチラール樹脂と、可塑剤であるジオクチルフタレート(DOP)と、分散剤と、トルエンとエタノールとの混合溶剤とを加え、ボールミルにて混合して、スラリーを調製する。得られたスラリーをドクターブレード法により薄膜化して、例えば厚さ約10μmの電解質層用グリーンシートを得る。また、NiOの粉末(BET法による比表面積:3〜4m/g)をNi重量に換算して55質量部となるように秤量し、YSZの粉末(BET法による比表面積:5〜7m/g)45質量部と混合して混合粉末を得る。この混合粉末に対して、ブチラール樹脂と、可塑剤であるDOPと、分散剤と、トルエンとエタノールとの混合溶剤とを加え、ボールミルにて混合して、スラリーを調製する。得られたスラリーをドクターブレード法により薄膜化して、例えば厚さ270μmの燃料極用グリーンシートを得る。電解質層用グリーンシートと燃料極用グリーンシートとを貼り付けて、乾燥させる。その後、例えば1400℃にて焼成を行うことによって、電解質層112と燃料極116との積層体を得る。
(反応防止層180の形成)
GDC粉末(Ce:Gd=8:2(モル比)、BET法による比表面積:15m/g)に高純度ジルコニア玉石にてサンプル毎に定められた量のYSZ粉末(8YSZ、BET法による比表面積:14m/g)を添加し、60時間分散混合を行う。混合後の粉末に、有機バインダとしてのポリビニルアルコールと、有機溶媒としてのブチルカルビトールとを加えて混合し、粘度を調整して反応防止層用ペーストを調製する。得られた反応防止層用ペーストを、上述した電解質層112と燃料極116との積層体における電解質層112の表面にスクリーン印刷によって塗布し、例えば1300℃にて焼成を行う。これにより、反応防止層180が形成され、反応防止層180と電解質層112と燃料極116との積層体を得る。なお、この焼成の際に、反応防止層180と電解質層112との相互拡散が発生し、反応防止層180と電解質層112との境界付近に固溶層182が形成される。
(空気極114の形成)
LSCF粉末と、GDC粉末と、アルミナ粉末と、有機バインダとしてのポリビニルアルコールと、有機溶媒としてのブチルカルビトールとを混合し、粘度を調整して、空気極活性層用ペーストを調製する。得られた空気極活性層用ペーストを、上述した反応防止層180と電解質層112と燃料極116との積層体における反応防止層180の表面にスクリーン印刷によって塗布し、乾燥させる。また、LSCF粉末と、アルミナ粉末と、有機バインダとしてのポリビニルアルコールと、有機溶媒としてのブチルカルビトールとを混合し、粘度を調整して、空気極集電層用ペーストを調製する。得られた空気極集電層用ペーストを、上述した空気極活性層ペーストの上にスクリーン印刷によって塗布し、乾燥させる。その後、例えば1100℃にて焼成を行う。これにより、空気極114の活性層210および集電層220が形成される。以上の工程により、上述した構成の単セル110が製造される。
A−4−2.評価項目および評価方法:
本性能評価では、空気極114から電解質層112側へのSrの拡散状況およびSr以外の元素(Co,Fe)の拡散状況について評価を行った。
(Srの拡散状況の評価方法)
単セル110の各サンプルのZ方向に平行な断面を、飛行時間型2次イオン質量分析(TOF−SIMS)により分析した。具体的には、TOF−SIMSにより、以下の条件で、ZrO+、Gd+、Sr+、CeO+のそれぞれの強度データを取得した。
・1次イオン:Bi3++
・2次イオン極性:正
・測定領域:20μm×20μm
・積算回数:16サイクル、512ピクセル
図8は、TOF−SIMSにより取得された強度データの一例を示す説明図である。図8に示すように、電解質層112側ではZrO+の強度がGd+の強度より高く、反対に、反応防止層180側ではGd+の強度がZrO+の強度より高くなっている。
本性能評価では、各サンプルについてベースラインを合わせるため、2つの基準点(第1基準点P1および第2基準点P2)を設定した。図8に示すように、第1基準点P1は、ZrO+の強度を表す曲線と、Gd+の強度を表す曲線とが交わる位置の点である。すなわち、第1基準点P1は、反応防止層180と電解質層112との境界付近の位置(固溶層182付近の位置)であると想定される点である。また、第2基準点P2は、第1基準点P1を始点に空気極114側に向かって0.2μm間隔で測定点を設定し、各測定点において順に、Gd+の強度に対するZrO+の強度の比(以下、「Zr/Gd強度比」という)を整数値で算出し、連続した3つの測定点におけるZr/Gd強度比が初めて同じ値となったときの、該3つの測定点の内の第1基準点P1から最も離れた測定点である。すなわち、第2基準点P2は、反応防止層180におけるZr/Gd強度比がほぼ一定になる位置を表す点である。
各サンプルについて、第1基準点P1におけるGd+の強度に対するSr+の強度の比(以下、「Sr/Gd強度比」という)を算出した。第1基準点P1におけるSr/Gd強度比は、反応防止層180と電解質層112との境界付近の領域が高抵抗なSZOにより覆われている度合い(すなわち、該領域においてSZOが層状に生成されている度合い)を表している。第1基準点P1におけるSr/Gd強度比が高いと、反応防止層180と電解質層112との境界付近の領域の広い範囲がSZOにより覆われており、単セル110において電気抵抗が増大していることとなる。本性能評価では、第1基準点P1におけるSr/Gd強度比が50%以上である場合に不合格(×)と判定した。
なお、本性能評価では、各サンプルについて、第1基準点P1以外の各位置においてもSr/Gd強度比を算出した。図9および図10には、それぞれサンプルS1,S4について、第1基準点P1から第2基準点P2までの範囲におけるSr/Gd強度比(Sr+/Gd+)およびZr/Gd強度比(ZrO+/Gd+)が示されている。また、本性能評価では、第1基準点P1および第2基準点P2のSr/Gd強度比の値を結ぶ仮想直線ILの傾きの絶対値(以下、「Sr/Gd強度比傾き」という)についても調べた。Sr/Gd強度比傾きは、空気極114から電解質層112側へのSrの拡散の程度を表している。図9に示すようにSr/Gd強度比傾きが比較的大きいと、第1基準点P1に近い領域まで多くのSrが拡散したこととなり、図10に示すようにSr/Gd強度比傾きが比較的小さいと、反応防止層180内に点在するZrによってSrがトラップされ、第1基準点P1に近い領域まで拡散したSrは少ないこととなる。
(Sr以外の元素(Co,Fe)の拡散状況の評価方法)
単セル110の各サンプルについて、空気極114から反応防止層180側へのCoおよびFeの拡散状況を調べた。具体的には、製造された単セル110の各サンプルのZ方向に平行な断面をTEMにて観察し、CoおよびFeの凝集(偏析)の有無を調べ、CoまたはFeの凝集が観察された場合には、それらの元素が反応防止層180内に拡散していると判定した。空気極114から反応防止層180側へのCoやFeの拡散が発生すると、空気極114の組成が変化して信頼性が低下するため好ましくない。そのため、CoまたはFeの凝集が観察された場合には、不合格(×)と判定した。なお、上記初期状態の評価に加えて、1000時間連続通電(温度:700℃、電流密度:0.55A/cm、空気極側雰囲気:酸素50ml/分および窒素200ml/分、燃料極側雰囲気:水素320ml/分、露点:30℃)を行った後の状態(以下、「連続通電後」という)においても、同様に、CoおよびFeの凝集の有無を調べた。
(判定)
上述したSrの拡散状況の評価、および、Sr以外の元素(Co,Fe)の拡散状況の評価を踏まえ、第1基準点P1におけるSr/Gd強度比が50%以上である場合、または、初期状態においてCoまたはFeの凝集が観察された場合に、不合格(×)と判定し、第1基準点P1におけるSr/Gd強度比が50%未満であり、かつ、初期状態においてCoまたはFeの凝集が観察されなかった場合に、合格(〇)と判定した。また、合格判定の内、第1基準点P1におけるSr/Gd強度比が30%未満であり、かつ、連続通電後においてもCoまたはFeの凝集が観察されなかった場合に、特に良好(◎)と判定した。
(性能評価結果)
図7に示すように、Srの拡散状況の評価において、反応防止層180のZr含有率が0.01(wt%)と最も低いサンプルS1では、第1基準点P1におけるSr/Gd強度比が50%以上であるため、不合格(×)と判定された。サンプルS1では、反応防止層180中に存在するZrの量が十分ではなく、空気極114から電解質層112側に拡散してくるSrの多くが反応防止層180内においてトラップされず、反応防止層180と電解質層112との境界付近の位置(第1基準点P1)まで達したものと考えられる。このことは、図9に示すように、サンプル1ではSr/Gd強度比傾きが比較的大きいことからも明らかである。
一方、反応防止層180のZr含有率が0.015(wt%)以上であるサンプルS2〜S7では、第1基準点P1におけるSr/Gd強度比が50%未満であった。これらのサンプルでは、反応防止層180中に比較的多くのZrが点在し、空気極114から電解質層112側に拡散してくるSrの多くが反応防止層180中のZrによってトラップされ、反応防止層180と電解質層112との境界付近の位置(第1基準点P1)まで達したSrがわずかであったものと考えられる。このことは、例えば図10に示すように、サンプル4ではSr/Gd強度比傾きが比較的小さいことからも明らかである。なお、反応防止層180のZr含有率が0.05(wt%)以上であるサンプルS3〜S7では、第1基準点P1におけるSr/Gd強度比が30%未満と、より小さい値となった。そのため、反応防止層180のZr含有率は0.05(wt%)以上であることがより好ましいと言える。
また、Co,Feの拡散状況の評価において、反応防止層180のZr含有率が1.8(wt%)以上であるサンプルS6およびS7では、初期状態においてCoまたはFeの凝集が観察されたため、不合格(×)と判定された。サンプルS6およびS7では、反応防止層180中のZrの量が多すぎるため、空気極114からのCoやFeの拡散が促進されたものと考えられる。
一方、反応防止層180のZr含有率が1(wt%)以下であるサンプルS1〜S5では、初期状態においてCoやFeの凝集が観察されなかった。これらのサンプルでは、反応防止層180中のZrの量が多すぎず、空気極114からのCoやFeの拡散が抑制されたものと考えられる。なお、反応防止層180のZr含有率が1(wt%)であるサンプルS5では、初期状態においてはCoやFeの凝集が観察されなかったものの、連続運転後においてCoまたはFeの凝集が観察された。これに対し、反応防止層180のZr含有率が0.18(wt%)以下であるサンプルS1〜S4では、初期状態においても連続運転後においてもCoやFeの凝集が観察されなかった。そのため、反応防止層180のZr含有率は0.18(wt%)以下であることがより好ましいと言える。
以上のように、サンプルS1では、第1基準点P1におけるSr/Gd強度比が50%以上であるため、不合格(×)と判定された。また、サンプルS6およびS7では、初期状態においてCoまたはFeの凝集が観察されたため、不合格(×)と判定された。一方、サンプルS2〜S5では、第1基準点P1におけるSr/Gd強度比が50%未満であり、かつ、初期状態においてCoまたはFeの凝集が観察されなかったため、合格(〇)と判定された。また、サンプルS2〜S5の内、サンプルS3,S4では、第1基準点P1におけるSr/Gd強度比が30%未満であり、かつ、連続通電後においてもCoまたはFeの凝集が観察されなかったため、特に良好(◎)と判定された。
以上の性能評価結果に鑑みると、反応防止層180のZr含有率が0.015(wt%)以上、1(wt%)以下であると、空気極114の組成が変化して信頼性が低下することを抑制しつつ、単セル110の発電性能の低下を抑制することができるため、好ましいと言える。また、反応防止層180のZr含有率が0.18(wt%)以下であると、使用開始後において空気極114の組成が変化して耐久信頼性が低下することを抑制することができるため、より好ましいと言える。また、反応防止層180のZr含有率が0.05(wt%)以上であると、単セル110の発電性能の低下を効果的に抑制することができるため、より好ましいと言える。
なお、単セル110における反応防止層180のZr含有率は、例えば、以下のように特定することができる。まず、単セル110から空気極114を削り取り、反応防止層180を露出させる。露出した反応防止層180を削って反応防止層180の粉末を取得する。この粉末をICP−AES装置で分析することにより、反応防止層180のZr含有率を特定することができる。なお、反応防止層用ペーストを脱脂した粉末をICP−AES装置で分析することによっても、該反応防止層用ペーストを用いて製造された反応防止層180のZr含有率を特定することができる。
B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
上記実施形態における単セル110または燃料電池スタック100の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、空気極114は、活性層210と集電層220との二層構成であるとしているが、空気極114が活性層210および集電層220以外の他の層を含むとしてもよいし、空気極114が単層構成であるとしてもよい。また、上記実施形態において、燃料電池スタック100に含まれる単セル110の個数は、あくまで一例であり、単セル110の個数は燃料電池スタック100に要求される出力電圧等に応じて適宜決められる。
また、上記実施形態における各部材を構成する材料は、あくまで例示であり、各部材が他の材料により構成されていてもよい。例えば、上記実施形態では、電解質層112がYSZを含むとしているが、電解質層112はZrを含むように構成されていればよく、YSZに代えて、あるいはYSZに加えて、例えばScSZ(スカンジア安定化ジルコニア)等の他の材料を含むとしてもよい。また、上記実施形態では、空気極114(活性層210および集電層220)がLSCFを含むとしているが、空気極114はSrを含むように構成されていればよく、LSCFに代えて、あるいはLSCFに加えて、例えばLSM(ランタンストロンチウムマンガン酸化物)等の他の材料を含むとしてもよい。また、上記実施形態では、反応防止層180がGDCおよびYSZを含むとしているが、反応防止層180は、GDCに代えて、あるいはGDCに加えて、例えばSDC(サマリウムドープセリア)等の他の材料を含むとしてもよいし、YSZに代えて、あるいはYSZに加えて、例えばScSZ等の他の材料を含むとしてもよい。
なお、上記実施形態において、必ずしも燃料電池スタック100に含まれるすべての単セル110について、反応防止層180のZr含有率が上述した好ましい範囲(例えば、0.015(wt%)以上、1(wt%)以下の範囲)にある必要は無く、燃料電池スタック100に含まれる少なくとも1つの単セル110について、反応防止層180のZr含有率が上述した好ましい範囲にあれば、該単セル110について、空気極114の組成が変化して信頼性が低下することを抑制しつつ発電性能の低下を抑制することができるという効果を奏する。
また、上記実施形態では、燃料電池スタック100の構成が、平板形の単セル110を複数備える構成であるが、本発明は、他の構成、例えば国際公開第2012/165409号に記載されているように、略円筒形の単セル110aを複数備える燃料電池スタック100aにも同様に適用可能である。図11は、変形例における燃料電池スタック100aの構成を概略的に示す説明図である。図11に示す変形例における燃料電池スタック100aは、Z方向に互いに所定間隔をあけて並べて配置された複数の発電単位102aを備える。複数の発電単位102aは、隣り合う発電単位102a間に配置された集電部870を介して電気的に直列に接続されている。各発電単位102aは、扁平柱形状の外観を有し、電極支持体830と、単セル110aと、インターコネクタ810とを備える。単セル110aは、燃料極840と、電解質層850と、空気極860と、反応防止層900とを含む。なお、図11に示す変形例におけるZ方向は、特許請求の範囲における第1の方向に相当する。
電極支持体830は、略楕円形状の断面を有する柱状体であり、多孔質材料で形成されている。電極支持体830の内部には、柱状体の延伸方向に延びる複数の燃料ガス流路820が形成されている。燃料極840は、電極支持体830の側面の内、互いに平行な一対の平坦面の一方と、各平坦面の端部同士をつなぐ2つの曲面とを覆うように設けられている。電解質層850は、燃料極840の側面を覆うように設けられている。空気極860は、電解質層850の側面の内、電極支持体830の平坦面上に位置する部分を覆うように設けられている。ただし、電解質層850と空気極860との間には、反応防止層900が配置されている。インターコネクタ810は、燃料極840および電解質層850が設けられていない側の電極支持体830の平坦面上に設けられている。集電部870は、発電単位102aの空気極860と、その発電単位102aに隣り合う発電単位102aのインターコネクタ810とを電気的に接続する。空気極860の外側に酸化剤ガスが供給され、電極支持体830に形成された燃料ガス流路820に燃料ガスが供給され、所定の作動温度まで加熱されると、燃料電池スタック100aにおいて発電が行われる。
このような構成の燃料電池スタック100aにおいても、上記実施形態と同様に、少なくとも1つの単セル110aにおける反応防止層900のZr含有率を0.015(wt%)以上、1(wt%)以下とすれば、空気極860の組成が変化して信頼性が低下することを抑制しつつ、単セル110aの性能の低下を抑制することができる。
また、上記実施形態では、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素との電気化学反応を利用して発電を行うSOFCを対象としているが、本発明は、水の電気分解反応を利用して水素の生成を行う固体酸化物形電解セル(SOEC)の構成単位である電解単セルや、複数の電解単セルを備える電解セルスタックにも同様に適用可能である。なお、電解セルスタックの構成は、例えば特開2016−81813号公報に記載されているように公知であるためここでは詳述しないが、概略的には上述した実施形態における燃料電池スタック100と同様の構成である。すなわち、上述した実施形態における燃料電池スタック100を電解セルスタックと読み替え、発電単位102を電解セル単位と読み替え、単セル110を電解単セルと読み替えればよい。ただし、電解セルスタックの運転の際には、空気極114がプラス(陽極)で燃料極116がマイナス(陰極)となるように両電極間に電圧が印加されると共に、連通孔108を介して原料ガスとしての水蒸気が供給される。これにより、各電解セル単位において水の電気分解反応が起こり、燃料室176で水素ガスが発生し、連通孔108を介して電解セルスタックの外部に水素が取り出される。このような構成の電解単セルおよび電解セルスタックにおいても、上記実施形態と同様に、電解質層と空気極との間に反応防止層を設け、反応防止層のZr含有率を0.015(wt%)以上、1(wt%)以下とすれば、空気極の組成が変化して信頼性が低下することを抑制しつつ、電解単セルの性能の低下を抑制することができる。
また、上記実施形態では、固体酸化物形燃料電池(SOFC)を例に説明したが、本発明は、溶融炭酸塩形燃料電池(MCFC)といった他のタイプの燃料電池(または電解セル)にも適用可能である。
22:ボルト 24:ナット 26:絶縁シート 27:ガス通路部材 28:本体部 29:分岐部 100:燃料電池スタック 102:発電単位 104:エンドプレート 106:エンドプレート 108:連通孔 110:単セル 112:電解質層 114:空気極 116:燃料極 120:セパレータ 121:孔 124:接合部 130:空気極側フレーム 131:孔 132:酸化剤ガス供給連通孔 133:酸化剤ガス排出連通孔 134:空気極側集電体 135:集電体要素 140:燃料極側フレーム 141:孔 142:燃料ガス供給連通孔 143:燃料ガス排出連通孔 144:燃料極側集電体 145:電極対向部 146:インターコネクタ対向部 147:連接部 149:スペーサー 150:インターコネクタ 161:酸化剤ガス導入マニホールド 162:酸化剤ガス排出マニホールド 166:空気室 171:燃料ガス導入マニホールド 172:燃料ガス排出マニホールド 176:燃料室 180:反応防止層 182:固溶層 210:活性層 220:集電層 810:インターコネクタ 820:燃料ガス流路 830:電極支持体 840:燃料極 850:電解質層 860:空気極 870:集電部 900:反応防止層

Claims (7)

  1. Zrを含む電解質層と、前記電解質層の第1の方向の一方側に配置された燃料極と、前記電解質層の前記第1の方向の他方側に配置され、Srを含む空気極と、前記電解質層と前記空気極との間に配置された反応防止層と、を備える電気化学反応単セルにおいて、
    前記反応防止層は、0.015(wt%)以上、1(wt%)以下の含有率でZrを含むことを特徴とする、電気化学反応単セル。
  2. 請求項1に記載の電気化学反応単セルにおいて、
    前記反応防止層におけるZrの前記含有率は、0.18(wt%)以下であることを特徴とする、電気化学反応単セル。
  3. 請求項1または請求項2に記載の電気化学反応単セルにおいて、
    前記反応防止層におけるZrの前記含有率は、0.05(wt%)以上であることを特徴とする、電気化学反応単セル。
  4. 請求項1から請求項3までのいずれか一項に記載の電気化学反応単セルにおいて、
    前記反応防止層は、Gdを含むことを特徴とする、電気化学反応単セル。
  5. 請求項1から請求項4までのいずれか一項に記載の電気化学反応単セルにおいて、
    前記電解質層は、固体酸化物を含むことを特徴とする、電気化学反応単セル。
  6. 請求項1から請求項5までのいずれか一項に記載の電気化学反応単セルにおいて、
    前記電気化学反応単セルは、燃料電池単セルであることを特徴とする、電気化学反応単セル。
  7. 前記第1の方向に並べて配置された複数の電気化学反応単セルを備える電気化学反応セルスタックにおいて、
    前記複数の電気化学反応単セルの少なくとも1つは、請求項1から請求項6までのいずれか一項に記載の電気化学反応単セルであることを特徴とする、電気化学反応セルスタック。
JP2016156051A 2016-08-09 2016-08-09 電気化学反応単セルおよび電気化学反応セルスタック Active JP6393714B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016156051A JP6393714B2 (ja) 2016-08-09 2016-08-09 電気化学反応単セルおよび電気化学反応セルスタック
US16/080,448 US10756375B2 (en) 2016-08-09 2017-05-19 Electrochemical reaction unit cell, and electrochemical reaction cell stack
PCT/JP2017/018758 WO2018029935A1 (ja) 2016-08-09 2017-05-19 電気化学反応単セルおよび電気化学反応セルスタック
KR1020187024068A KR102147074B1 (ko) 2016-08-09 2017-05-19 전기 화학 반응 단셀 및 전기 화학 반응 셀 스택
CN201780013925.1A CN108701839B (zh) 2016-08-09 2017-05-19 电化学反应单体电池和电化学反应电池堆
EP17839010.0A EP3499616B1 (en) 2016-08-09 2017-05-19 Electrochemical reaction single cell and electrochemical reaction cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016156051A JP6393714B2 (ja) 2016-08-09 2016-08-09 電気化学反応単セルおよび電気化学反応セルスタック

Publications (2)

Publication Number Publication Date
JP2018026217A JP2018026217A (ja) 2018-02-15
JP6393714B2 true JP6393714B2 (ja) 2018-09-19

Family

ID=61161932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016156051A Active JP6393714B2 (ja) 2016-08-09 2016-08-09 電気化学反応単セルおよび電気化学反応セルスタック

Country Status (6)

Country Link
US (1) US10756375B2 (ja)
EP (1) EP3499616B1 (ja)
JP (1) JP6393714B2 (ja)
KR (1) KR102147074B1 (ja)
CN (1) CN108701839B (ja)
WO (1) WO2018029935A1 (ja)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4350403B2 (ja) * 2003-03-28 2009-10-21 京セラ株式会社 固体電解質型燃料電池セル
EP2061108B1 (en) * 2006-08-24 2018-10-10 Kyocera Corporation Fuel battery cell, fuel battery cell stack, and fuel battery
JP5171159B2 (ja) * 2006-08-24 2013-03-27 京セラ株式会社 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
US8932783B2 (en) 2008-10-09 2015-01-13 Ceramic Fuel Cells Limited Solid oxide fuel cell or solid oxide fuel cell sub-component and methods of preparing same
KR20110057932A (ko) * 2009-11-25 2011-06-01 연세대학교 산학협력단 테이프 캐스팅-동시소성법에 의하여 제조되는 평판형 고체산화물 단위전지
JP5197890B2 (ja) 2011-05-30 2013-05-15 京セラ株式会社 固体酸化物形燃料電池セルおよび燃料電池セルスタック装置ならびに燃料電池モジュール、燃料電池装置
US8906577B2 (en) * 2011-06-29 2014-12-09 Syracuse University High performance flame fuel cell using an anode supported solid-oxide fuel cell
EP2789039B1 (en) * 2011-12-07 2019-11-13 Saint-Gobain Ceramics & Plastics Inc. Solid oxide fuel cell articles and methods of forming
US20140322633A1 (en) * 2011-12-09 2014-10-30 Posco Solid oxide fuel cell comprising reaction preventing layer and method for manufacturing same
WO2013115255A1 (ja) * 2012-01-30 2013-08-08 京セラ株式会社 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP5676038B2 (ja) * 2013-07-11 2015-02-25 日本特殊陶業株式会社 固体酸化物形燃料電池セル、その製造方法、燃料電池セルスタック、及び固体酸化物形燃料電池。
JP5746398B2 (ja) 2013-08-22 2015-07-08 日本碍子株式会社 固体酸化物型燃料電池
KR101685386B1 (ko) * 2014-07-22 2016-12-13 한국과학기술연구원 저온 동시소결에 의한 연료극 지지형 고체산화물 셀 및 그 제조방법
JP6385788B2 (ja) 2014-10-20 2018-09-05 株式会社東芝 電気化学セルスタック、および電力システム

Also Published As

Publication number Publication date
JP2018026217A (ja) 2018-02-15
CN108701839A (zh) 2018-10-23
US20190067723A1 (en) 2019-02-28
EP3499616A4 (en) 2020-02-12
US10756375B2 (en) 2020-08-25
EP3499616A1 (en) 2019-06-19
KR102147074B1 (ko) 2020-08-24
KR20180102660A (ko) 2018-09-17
WO2018029935A1 (ja) 2018-02-15
EP3499616B1 (en) 2021-03-17
CN108701839B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
EP2701225B1 (en) Fuel cell and fuel cell stack
JP6734723B2 (ja) 電気化学反応単セル、および、電気化学反応セルスタック
KR102239403B1 (ko) 전기 화학 반응 단셀 및 전기 화학 반응 셀 스택
JP6712280B2 (ja) 電気化学反応単セルおよび電気化学反応セルスタック
JP6748518B2 (ja) 電気化学反応セルの製造方法
KR102241562B1 (ko) 전기 화학 반응 단셀 및 전기 화학 반응 셀 스택
JP2018014309A (ja) 電気化学反応セルスタックの製造方法および電気化学反応セルスタック
JP6393714B2 (ja) 電気化学反応単セルおよび電気化学反応セルスタック
JP6993162B2 (ja) 電気化学反応単セル、および、電気化学反応セルスタック
JP6539179B2 (ja) 電気化学反応単セルおよび電気化学反応セルスタック
JP6780920B2 (ja) 燃料電池単セルおよび燃料電池スタック
JP7016334B2 (ja) 電気化学反応単セル、および、電気化学反応セルスタック
JP7152142B2 (ja) 電気化学反応単セルおよび電気化学反応セルスタック
JP2018206693A (ja) 導電性部材、電気化学反応単位、および、電気化学反応セルスタック
JP7096644B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6616121B2 (ja) 燃料電池単セルおよび燃料電池スタック
JP2021163681A (ja) 電気化学反応セルスタック
JP2021163682A (ja) 電気化学反応セルスタック
JP2018137205A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2018056019A (ja) 電気化学反応単セルの製造方法および電気化学反応セルスタックの製造方法
JP2018174040A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2018174039A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2018174065A (ja) 電気化学反応単セル、電気化学反応セルスタック、および、電気化学反応セルスタックの製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180827

R150 Certificate of patent or registration of utility model

Ref document number: 6393714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250