JP2016140287A - 目視判定可能な遺伝子検査 - Google Patents

目視判定可能な遺伝子検査 Download PDF

Info

Publication number
JP2016140287A
JP2016140287A JP2015017396A JP2015017396A JP2016140287A JP 2016140287 A JP2016140287 A JP 2016140287A JP 2015017396 A JP2015017396 A JP 2015017396A JP 2015017396 A JP2015017396 A JP 2015017396A JP 2016140287 A JP2016140287 A JP 2016140287A
Authority
JP
Japan
Prior art keywords
ligation
oligo
reaction
gene
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015017396A
Other languages
English (en)
Other versions
JP6616574B2 (ja
Inventor
裕樹 山下
Hiroki Yamashita
裕樹 山下
和彦 小郷
Kazuhiko Ogo
和彦 小郷
秀一 大村
Shuichi Omura
秀一 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2015017396A priority Critical patent/JP6616574B2/ja
Priority to CN201680019463.XA priority patent/CN107429300A/zh
Priority to EP16743509.8A priority patent/EP3252167A4/en
Priority to PCT/JP2016/052600 priority patent/WO2016121906A1/ja
Priority to US15/547,369 priority patent/US20180023127A1/en
Priority to KR1020177023877A priority patent/KR20170108999A/ko
Publication of JP2016140287A publication Critical patent/JP2016140287A/ja
Application granted granted Critical
Publication of JP6616574B2 publication Critical patent/JP6616574B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6862Ligase chain reaction [LCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/10Detection mode being characterised by the assay principle
    • C12Q2565/137Chromatographic separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】本発明は、臨床現場等で簡易的かつ正確に検査可能なDNA検出技術を提供することを目的とする。【解決手段】ライゲーションで増幅させた一本鎖ヌクレオチド産物を検出試料とする、より簡易的かつ迅速に、目視で行うことが可能な遺伝子解析方法。【選択図】なし

Description

本発明は、目視判定可能な遺伝子検査のために、標的遺伝子の一本鎖DNAを増幅して検出する技術に関する。
検体の塩基配列を解析して判定を行う遺伝子検査は、基礎研究、医療、食品等の分野で広く用いられている。より具体的には、突然変異の検出、遺伝子多型(ヒトや動物では、変化の頻度が1%以上のものを言う)の判定、病原菌の検出、遺伝子組換えの有無の検査等に用いられている。例えば、遺伝子多型判定は、薬の副作用や効果をあらかじめ予測できるとして、医療現場等で活用され始めている。
遺伝子検査は、典型的にはリアルタイムPCR機器を用いたTaqMan法やQP法、DNAマイクロアレイを用いた手法(DigiTag法等)等を使用して行われる。しかしながら、これらの方法はいずれも技術習得、高額な蛍光検出機器を必要とするため、受託解析は行われているものの、医療現場等では活用されにくいのが現状である。
また、オリゴヌクレオチドを固定した固相上で標的核酸を検出する方法が開示されている(特許文献1、特許文献2)。ここでいう「固相」とは、ニトロセルロース膜やナイロン膜等のオリゴヌクレオチドを固定可能な膜上にライン状またはスポット状にオリゴヌクレオチドを結合させたいわゆる「ストリップ」のことであり、具体例は、PAS(Printed Array Strip)と称されるものである。核酸クロマトグラフィーの原理により、PCRにより調製したDNA産物をこのストリップ上に展開し、ハイブリダイゼーションにより検出が可能となる。この手法では、調製したDNA産物は二本鎖となっていて、そのDNA産物の一つの鎖の末端にシングルタグをつけることを特徴としている。しかしながら、PCRにより標的の二本鎖DNA配列を増幅するため、感度(反応性)は高いものの、プライマーダイマー等の非特異的な増幅産物が生じやすく精度(正確性)が低いことが問題としてあった。
特許5503021号 国際公開第2012/070618号 特許3103806号 特開2006−101844号 特公平6−36760号 特許3330599号
本発明は、臨床現場等でも簡易的かつ正確に検査可能な遺伝子解析技術を提供することを目的とする。
従来のストリップでの技術では、標的とするDNAを増幅させて、増幅したDNA産物をストリップ上で「展開」し、ストリップ上のオリゴヌクレオチドとDNA産物がハイブリダイゼーションを起こすことで判定を行うことが出来る。この技術では、標的とするDNAをPCRにより多量に増幅し、そのDNA産物をストリップ上で展開する。したがって、ストリップ上でDNA産物の検出を行うためにはPCRによる増幅が必須とされてきた。しかしながら、PCRにより増幅したDNA産物では、プライマーダイマー等の非特異的なDNA産物が発生することが多々あり、本来検出されないDNAがストリップ上で検出され、誤判定を生じるという問題点があった。
また、ストリップでSNPを検出する場合、PCRに使用するプライマーの3’末端をSNPに対応する塩基に合わせることで、SNPに対応する二本鎖DNAを増幅させる手法が用いられている。しかしながら、SNPのPCRの増幅工程で、プライマーのハイブリダイゼーションが誤って起きることがあり、精度がさらに低くなる問題を生じた。
さらに、ストリップを用いた検出において、一本鎖DNA配列を用いて検出する方法が考えられる。例えば、一本鎖DNAの一方の末端にシングルタグをつけ、もう一方の末端に標識物質をつけるものであり、PCRにより増幅した二本鎖DNA産物を熱変性により、一本鎖DNAに分離することで取得することが考えられる。この方法の場合、PCRにおいて、上記の問題点が発生し、精度が低くなることに加え、DNA産物を熱変性により分離するため、ストリップ上で展開させるときに、分離した一本鎖DNAが二本鎖DNAに一部戻るものがあり、感度がさらに低くなる問題を生じた。
このため、臨床現場等で簡易的かつ高精度に検査可能なDNA検出技術の確立は重要課題の一つである。特に、大掛かりな装置等必要なく、臨床現場等で簡易的かつ高精度に検査可能なストリップを用いた遺伝子検査技術が着目されている。
本発明者らは、上記課題を解決すべく、検査に用いる試料において二本鎖DNA産物を作製しないことで、プライマーダイマー等の非特異的二本鎖DNA産物を増幅させないことに着目した。そこで、ライゲーションで増幅させた一本鎖DNA産物を検出試料とすることで、より精度の高い遺伝子検出技術の開発を検討した。
一本鎖DNAを得る技術は従来より存在していた。有名な技術としては、Digitag法(特許文献3、特許文献4)やLCR(特許文献5、特許文献6)と言った技術があげられる。しかしながら、これらの技術では、反応に用いるオリゴヌクレオチドが非特異的に核酸試料に結合してしまい、偽陽性として誤判定してしまうことがわかった。
一本鎖DNAを得る技術である、Digitag法の工程を説明する。核酸試料の標的となる遺伝子配列をPCRにより増幅させる。熱変性を行い得られたPCR産物を分離させた後、クエリーオリゴとコモンオリゴを用いて、ライゲーション反応を行い、一本鎖DNAのライゲーション産物を得る。得られた一本鎖DNAを鋳型として、再度PCRにより増幅させる。得られたPCR産物を熱変性により、一本鎖として、マイクロアレイ上に分注する。マイクロアレイ上のオリゴヌクレオチドプローブと一本鎖DNAがハイブリダイズし、ハイブリダイズした一本鎖DNAから発せられる蛍光を機器によって読み取り、検出を行う。このとき、得られる一本鎖DNAは、緑と赤の2種類蛍光標識のプライマーからなる。これらの蛍光により、緑と赤、そして緑と赤が混ざった黄色となる。このため、Digitag法では、単色の緑や赤の蛍光の検出においては、他方の蛍光標識のDNAがハイブリダイズしていても、微量であるため検出されない。そのため、わずかなダイマーが生成されていても問題とならない。
しかしながら、上記のDigitag法で得られた一本鎖DNAをストリップ上で展開させると、わずかな遺伝子量であってもラインとして反応がでることになり、偽陽性として検出されることがある。そのため、一本鎖DNAを得る技術として優れてはいるが、精度の観点からはストリップで用いることができない。
次に、一本鎖DNAを得る技術である、LCR反応の工程を説明する。核酸試料の標的となる遺伝子配列をPCRにより増幅させる。PCR後、クエリーオリゴとコモンオリゴ、および、クエリーオリゴとコモンオリゴに相補的なCクエリーオリゴとCコモンオリゴとリガーゼ等を混合する。得られたPCR産物を熱変性を行い分離させた後、クエリーオリゴとコモンオリゴを用いて、ライゲーション反応を行い、一本鎖DNAのライゲーション産物を得る。さらに、得られたライゲーション産物と相補的な、CクエリーオリゴとCコモンオリゴにより、相補的なライゲーション産物を得る。得られたライゲーション産物とFクエリーオリゴとFコモンオリゴを用いて、ライゲーション産物を得る。この工程を繰り返し行い、多量の一本鎖DNAを得ることができる。
しかしながら、上記のLCRで得られた一本鎖DNAをストリップ上で展開させると、偽陽性として検出されることがある。これは、大量に一本鎖DNAを生成するために、プローブと鋳型との間でミスマッチハイブリダイゼーションが起こり、偽陽性となりうる意図しない一本鎖DNAとしてライゲーション産物が生成されるためである。また、プローブ同士がミスマッチハイブリダーゼーションしてしまうことでさらなる意図しない一本鎖DNAが生成されてしまう。そのため、一本鎖DNAを得る技術として優れてはいるが、精度の観点からはストリップで用いることができない。
さらに、Digitag法のように、マルチプレックスPCRで増幅する遺伝子の種類が増えた場合は、反応のしやすい遺伝子が優先的に増幅され、反応しにくい遺伝子の増幅効率が悪くなることがあり、本来検出されるべき核酸試料が検出されず、偽陰性として誤判定することもありえる。
本発明者らは、これらの問題点を解決するため、PCRやLCRと異なり、相補鎖DNAを用いない遺伝子増幅処理に着目し、一本鎖DNAをより簡易的に高精度に取得できる方法を見出し、本発明を完成させた。従来、一本鎖DNAを作製することは、DNAの増幅効率がPCRより悪く、感度が低いという問題点が指摘されていた。しかしながら、この指摘に反し、本技術では、臨床現場等でも簡易的に検査可能な感度を実現している。
すなわち、本発明は、以下を提供するものである:
(1)下記(i)および(ii)をハイブリダイズさせ、目視で検出可能な状態にすることを含む遺伝子解析方法:
(i)ストリップ上に固定したオリゴヌクレオチドプローブ;
(ii)下記(a)および(b)を、核酸試料を鋳型とする一回または複数回の熱サイクル処理を経るライゲーション処理に供して増幅した一本鎖ライゲーション産物:
(a)前記核酸試料に相補的な第一の一本鎖オリゴヌクレオチドおよび前記プローブとハイブリダイズ可能なタグ配列または標識部分を含むクエリーオリゴ;
(b)前記核酸試料に相補的であって、前記第一の一本鎖オリゴヌクレオチドに隣接する第二の一本鎖オリゴヌクレオチドおよびタグ配列または標識部分を含むコモンオリゴ、
(2)サイクリングライゲーション反応を行う(1)の方法、
(3)核酸試料およびオリゴヌクレオチドがDNAである、(1)または(2)の方法、
(4)ストリップが、ストリップ上の異なる位置に配された複数のプローブを固定したプローブ領域と、前記プローブ領域とは異なる位置に配された位置マーカー領域とを備えたクロマトグラフィー本体である、(1)〜(3)のいずれかの方法、
(5)遺伝子差異を検出するためのものである、(1)〜(4)のいずれかの方法、
(6)遺伝子多型を検出するためのものである、(1)〜(5)のいずれかの方法、
(7)オリゴヌクレオチドプローブを固定したストリップ、
対象とする核酸試料に相補的な配列および前記プローブとハイブリダイズ可能なタグ配列を含む一本鎖オリゴヌクレオチド、ならびに
対象とする核酸試料に相補的であって、該一本鎖オリゴヌクレオチドに隣接する一本鎖オリゴヌクレオチドおよび標識物質またはタグ配列を含む一本鎖オリゴヌクレオチド、
を含む、(1)〜(6)のいずれかの遺伝子検査方法のためのキット。
本発明により、遺伝子解析をより簡易的かつ迅速に、目視で行うことが可能となる。
本発明の試料の処理を示す図である。 実施例1の試料をPCRで増幅して得られた断片の確認結果を示す図である。 実施例1で用いたPAS(Printed Array Strip)の模式図である。 実施例1の検出結果を示す図である。 通常のライゲーション反応の温度変化の具体例を示す図である。 サイクリングライゲーション反応の温度変化の具体例を示す図である。 本発明の試料の処理(サイクリングライゲーション)を示す図である。 実施例2の試料をPCRで増幅して得られた断片の確認結果を示す図である。 実施例2、5で用いたPASの模式図である。 実施例2の検出結果を示す図である。 実施例3の試料をPCRで増幅して得られた断片の確認結果を示す図である。 実施例3、4で用いたPASの模式図である。 実施例3の検出結果を示す図である。 実施例4の試料をPCRで増幅して得られた断片の確認結果を示す図である。 実施例4の検出結果を示す図である。 実施例5の検出結果を示す図である。
一の態様において、本発明は核酸試料の目視による検出可能な状態での、複数の遺伝子多型の解析等の遺伝子解析方法に関する。より具体的には、固相担体に結合されたオリゴヌクレオチドプローブに、核酸試料を用いて調製された、タグ配列および標識部分を含む一本鎖ライゲーション産物をハイブリダイズさせることにより、目視にて標的核酸の検出を行うことを可能にする方法に関する。
本発明の遺伝子解析方法は、あらゆる遺伝子の配列の解析に用いることができる。例えば、細菌、ウイルス、植物、ヒトを含む動物、ヒト以外の動物の遺伝子解析に用いることができ、例えば、変異、遺伝子多型、突然変異等の遺伝子変異の検出等に用いることができる。より具体的には、例えば、HPV、デング熱、インフルエンザウイルス等の検出および型判定、動植物の種の判定、遺伝子組換え作物の検出、ウイルス薬剤耐性株遺伝子、薬剤耐性菌遺伝子、一塩基多型(SNP)、マイクロサテライト、置換・欠損・挿入等の検出に用いられる。例えば、本発明の遺伝子解析方法は、遺伝子多型の検出に用いられる。
(核酸試料)
本発明の対象となる核酸試料は、ヌクレオチドが重合した分子であり、オリゴヌクレオチド、ポリペプチド等を含む。また、あらゆる種類の一本鎖または二本鎖のDNA等を含む。さらに、天然のヌクレオチドのみで形成されたもの、および非天然の塩基、ヌクレオチド、ヌクレオシドを一部に含むもの、あるいは合成核酸も含む。典型的には、核酸試料はDNAである。
また、本発明の対象となる核酸試料は、各種動植物由来の試料、例えば血液、尿、鼻汁、唾液、組織、細胞、種子、植物組織、植物培養物等、および微生物由来の試料を用いて、当業者に周知の方法、例えば抽出等により得ることができる。得られた核酸は処理の前に精製してもよいし、しなくてもよい。また、人工的に合成して得ることもできる。好ましくは、核酸試料は、後述のライゲーション処理の前にPCRにより増幅される。この場合、PCRに用いられるプライマーは、対象となる試料に応じて、当業者が適宜選択、設計、調製できる。
核酸試料の特定の部位をPCRにより増幅させることは、必ずしも必要な工程ではないが、後述のライゲーション処理において、より高い精度で増幅産物を得ることができる。
PCRは、複数の遺伝子を同時に増幅させることができるマルチプレックスPCRが可能となる。増幅できる遺伝子数は2〜15である。好ましくは、3〜10であり、さらに好ましくは、4〜8である。遺伝子数が16を超えて、PCRを行うと、ダイマーが多く生成してしまい、精度が低くなり、現場等で簡易に使用できなくなる。
PCRのTm値は、60〜80℃が好ましい。さらに好ましくは、65〜75℃である。比較的高温に設定することで、核酸試料とプライマーのアニーリングが特異的になり、マルチプレックスPCRのミスマッチが軽減される。
(固相担体)
本発明の遺伝子解析方法では、オリゴヌクレオチドプローブが固定された固相担体を用いる。好ましくは、膜上にオリゴヌクレオチドプローブを結合させたアレイである「ストリップ」を固相担体として用いる。このような固相担体は、遺伝子解析方法の実施の前に調製してもよいし、市販品を使用してもよい。固相担体は、好ましくは異なる位置に複数のプローブが固定されたプローブ領域を有することが好ましい。また、プローブ領域とは別の位置に、位置マーカー領域を有することが好ましい。本明細書において、ストリップに固定されたオリゴヌクレオチドプローブを、検出プローブとも称する。
用いられるストリップは、展開溶媒を移動可能なクロマトグラフィー本体であり、本発明の遺伝子解析に用いることができれば特に限定されない。例えば、ガラスまたはプラスチック等の基板上に、シリカ、膜物質等が塗布または接着等で固定されたものや、紙片にニトロセルロース等の膜物質を固定したもの等が挙げられる。好ましいストリップの市販品の例は、PAS(TBA社製)である。
検出プローブの長さは特に限定されず、対象となる核酸試料に応じて当業者が適宜設定できる。好ましい例は、20塩基以上50塩基以下である。検出プローブは、好ましくはDNAである。
(クエリーオリゴおよびコモンオリゴ)
本発明の遺伝子解析方法は、クエリーオリゴおよびコモンオリゴを調製することを含む。
本明細書におけるクエリーオリゴとは、核酸試料に相補的な第一の一本鎖オリゴヌクレオチドおよび任意に検出プローブとハイブリダイズ可能なタグ配列、または任意に標識部分を含むものをいう。本発明において、クエリーオリゴはタグ配列または標識部分を含む。典型的には、第一の一本鎖オリゴヌクレオチドの5’末端側にタグ配列または標識部分が結合している。タグ配列と第一の一本鎖オリゴヌクレオチドとの間に、スペーサー配列が結合されていてもよいし、タグ配列と第一の一本鎖オリゴヌクレオチドがスペーサー配列なしに直接結合していてもよい。
本明細書におけるコモンオリゴとは、核酸試料に相補的であって、第一の一本鎖オリゴヌクレオチドに隣接する第二の一本鎖オリゴヌクレオチド、および任意に標識部分、または任意に検出プローブとハイブリダイズ可能なタグ配列を含むものをいう。本発明の一実施形態において、コモンオリゴは標識部分またはタグ配列を含む。典型的には、第二の一本鎖オリゴヌクレオチドの3’末端側に標識部分またはタグ配列が結合している。また、第二の一本鎖オリゴヌクレオチドの5’末端に、リン酸を付加してもよいし、しなくてもよい。ただし、リン酸を付加しない場合は、後述のライゲーション反応前に5’末端へのリン酸付加を行う工程を入れることができる。
本発明の好ましい実施形態において、クエリーオリゴがタグ配列を含み、コモンオリゴが標識部分を含む。また他の好ましい実施形態において、クエリーオリゴが標識部分を含み、コモンオリゴがタグ配列を含む。さらに他の好ましい実施形態において、クエリーオリゴがタグ配列を含み、コモンオリゴがタグ配列を含む。
標識部分は、検出プローブとハイブリダイズした一本鎖オリゴヌクレオチドを検出できるものであれば特に限定されない。例えば、フルオレセイン、テキサスレッド、ローダミンおよび緑色蛍光タンパク質などの蛍光物質、ルミノール、アクリジニウム誘導体などの発光物質;H、125I、35S、14Cおよび32Pなどの放射性物質、磁気ビーズなどの磁性物質、ペルオキシダーゼ、アルカリフォスファターゼ、β−グルクロニダーゼ、β−D−グルコシダーゼ、β−D−ガラクトシダーゼなどの酵素;顔料および染料などの色素;ビオチン、アビジンおよびストレプトアビジンなどの親和性標識などが挙げられる。本発明の方法は目視による検査に使用できるものであり、蛍光物質、発光物質、色素などの標識部分を用いることが好ましい。また、標識部分をビオチンとし、着色したビーズ等を結合させたアビジンまたはストレプトアビジンを該ビオチンに結合させることで検出を行うことも好ましい。また、標識部分を抗体および/またはハプテンとし、そこに標識物質として蛍光、放射能、磁性、酵素、燐光、化学発光および着色からなる群から選択される1種または2種以上を結合させて検出を実現してもよい。ハプテンとは、単独で抗体と結合するが、それ自体は免疫応答を起こす能力のない物質をいい、例えば、ビオチン、ジゴキシゲニン、およびFITCなどが含まれる。
第一の一本鎖オリゴヌクレオチド、第二の一本鎖オリゴヌクレオチドの長さは、対象となる試料に応じて当業者が適宜設定できる。例えば、第一の一本鎖オリゴヌクレオチドは10〜60塩基、第二の一本鎖オリゴヌクレオチドは20〜70塩基である。好ましくは、第一の一本鎖オリゴヌクレオチドは12〜40塩基、第二の一本鎖オリゴヌクレオチドは20〜50塩基である。
本発明の遺伝子解析方法を遺伝子変異の検出に用いる場合、変異部分がクエリーオリゴ、コモンオリゴのいずれに含まれていてもよい。好ましくは、変異部分はクエリーオリゴに含まれる。より好ましくは、変異部分はクエリーオリゴの3’末端に位置する。
クエリーオリゴおよびコモンオリゴの好ましい濃度は、対象となる試料、検出の標的とする配列等に応じて当業者が適宜調整できる。好ましい濃度の例としては、終濃度でコモンオリゴが100nM〜5μM、クエリーオリゴが1μM〜10μM等である。
(ライゲーション)
上記クエリーオリゴおよびコモンオリゴを、核酸試料を鋳型とするライゲーション反応に供することで固相担体にハイブリダイズさせるライゲーション産物を得ることができる。本明細書にいうライゲーションとは、対応する核酸試料に結合したクエリーオリゴとコモンオリゴを連結する工程である。核酸試料に結合したクエリーオリゴとコモンオリゴは互いに隣接し合った状態になっているので、リガーゼ等を作用させてライゲーション反応を行うことにより、連結部を介してクエリーオリゴとコモンオリゴを連結させることができる。この際のライゲーション反応は複数の遺伝子を同時に増幅させることができるマルチプレックス反応が可能である。増幅できる遺伝子数は2〜15である。好ましくは、3〜10であり、さらに好ましくは、4〜8である。
オリゴ同士の連結に使用し得る好適な試薬には、サーマス・アクアティカス(Thermus aquaticus)のTaqDNA Ligaseが含まれるが、これに限定されない。また、酵素的な手法に変えて、化学的な手法で両オリゴ群を連結してもよい。
より具体的には、図5に示すように、核酸試料とクエリーオリゴ、コモンオリゴを結合させた後、90℃以上の高温(例えば90〜100℃)で数分間、次いで50℃程度の温度(例えば、40〜60℃)で数十分間反応させることでクエリーオリゴとコモンオリゴを連結させ、ストリップ(ここではPASを使用)で遺伝子多型の判定等を行うことが可能である。より具体的には、ライゲーション処理は、90℃以上の高温で数分間、次いで50℃程度の温度で10〜20分間、さらに90℃以上の高温で数分間置いた後、40℃程度に下げることで実施できる。さらに好ましくは後述のサイクリングライゲーション反応を行うことで感度を高めることができる。
(サイクリングライゲーション反応)
多量のライゲーション産物を得るためにLCRを用いると、上述の通り検査精度の問題がある。そこで本発明者らはクエリーオリゴおよびコモンオリゴの相補鎖を加えることなく、90℃以上の熱処理と50℃程度のライゲーション反応を組合せることで、さらに高感度かつ正確に遺伝子多型の判定等を行うことを可能とした(図6)。この温度調整方法は、単純なライゲーション反応とは異なり、また、クエリーオリゴおよびコモンオリゴの相補鎖を入れないことからLCRとも異なった新しいライゲーション方法である。本発明者らは熱処理とライゲーション反応を組み合わせたこの温度調節方法をサイクリングライゲーション反応(CLR:Cycling Ligation Reaction)と命名した。本明細書において、この反応を「サイクリングライゲーション反応」と称する。
より具体的には、図7に示すように、クエリーオリゴとコモンオリゴを核酸試料にハイブリダイズさせるライゲーションにおいて、ハイブリダイズとライゲーションの時間を10〜30秒程度の短時間に設定し、温度を比較的高い温度に設定する。その反応後、急速に高温にして、二本鎖となっていた核酸試料とDNA産物を乖離させ、再度温度を下げ、ライゲーションの反応を行う、といった工程を20回以上のサイクルで行う。この反応は、1.急激に温度を上げる、2.短時間で高温処理を行う、3.急激に温度を下げる、4.短時間でライゲーション反応を行う、これら4つの工程を短時間で繰返し行うことを特徴とする。このサイクリングライゲーション反応により、短時間で正確に標的とする一本鎖DNAだけを増幅させることができ、ストリップにおいて精度の高い検出を行うことができる。
サイクリングライゲーション反応では、90℃以上の高温(例えば90〜100℃)と、50℃程度の温度(例えば、40〜60℃)を繰り返す(例えば、90℃15秒間および58℃30秒間を30サイクル)。好ましいサイクリングライゲーション反応のサイクル数は、例えば10回以上、20回以上、または30回以上である。サイクル数の下限、上限は特に限定されないが、下限は例えば2回以上、3回以上、4回以上、5回以上など、上限は例えば100回以下、90回以下、80回以下、70回以下、60回以下、50回以下、40回以下などが挙げられる。1サイクルの時間も特に限定されないが、下限は例えば10秒間以上、20秒間以上、30秒間以上など、上限は10分間以下、5分間以下、3分間以下、2分間以下、1分間以下などが挙げられる。ハイブリダイズとライゲーションの時間は同じであっても異なっていてもよく、調製する試料等に応じて適宜設定できる。各々の時間の上限、下限は特に限定されないが、下限は例えば10秒間以上、15秒間以上、30秒間以上、40秒間以上、50秒間以上などが挙げられ、上限は例えば5分間以下、3分間以下、2分間以下、1分間以下、50秒間以下、40秒間以下、30秒間以下などが挙げられる。
従来の、ストリップを用いる方法では、二本鎖DNAを検出に供するため、一本鎖のタグ配列と試料の間にスペーサー配列を使用する必要があるが、本発明の方法では、一本鎖ライゲーション産物をPCR増幅せずにハイブリダイゼーション処理に供するため、スペーサー配列は必要なく、遺伝子解析を簡便かつ短時間に行うことが可能である。
ライゲーション処理を行うときに、核酸試料と同時に生成できるポジティブコントロールを用意することが好ましい。ポジティブコントロールとしては、G3PDH遺伝子等があげられる。検出をサンプルとポジティブコントロールの遺伝子産物で同時に行うことで、ストリップ上にラインが現れなくても、ライゲーション処理のミスか、該当のサンプルが含まれていないか判別できる。
(固相担体による検出)
ライゲーション処理によって得られたライゲーション産物は、検出プローブが固定された固相担体に供され、検出される。例えば、ストリップなどのクロマトグラフィー本体を用いる場合、ライゲーション産物を展開液に加え、必要に応じてバッファー、発色液等を加えて混合し、クロマトグラフィーによってハイブリダイゼーション反応を行う。本発明の方法を用いると、遺伝子解析の結果が目視で検出可能な状態となる。
ここでいう「目視で検出可能な状態」とは、目視で検出する態様を当然に含むが、実際に目視で検出を行うことを必要とするものではなく、例えばリーダー等の機械に読み取らせる態様も含む。また、追加の操作、例えば光の照射、を行うことで目視検査が可能となるような状態も含まれる。
本発明の方法は、上述の通り、様々な用途に用いられる。具体的な用途の例として、これらに限定されないが、医療現場における遺伝病の遺伝子診断、病原体の型の判別、税関における検疫、食品工場や食品販売店における食肉や植物の品種の検査、遺伝子組換え原料の使用有無の判定等が挙げられる。
本発明は他の態様において、遺伝子解析に用いることが可能なキットに関する。
一の実施形態において本発明のキットは、検出プローブを備えたストリップ、検出プローブとハイブリダイズ可能なタグ配列および第一の一本鎖オリゴヌクレオチドを含むクエリーオリゴ、ならびに第二の一本鎖オリゴヌクレオチドおよび標識部分を含むコモンオリゴを含む。他の実施形態において、本発明のキットは、検出プローブを備えたストリップ、標識部分および第一の一本鎖オリゴヌクレオチドを含むクエリーオリゴ、ならびに第二の一本鎖オリゴヌクレオチドおよび検出プローブとハイブリダイズ可能なタグ配列を含むコモンオリゴを含む。さらに他の実施形態において、本発明のキットは、検出プローブを備えた固相担体、検出プローブとハイブリダイズ可能なタグ配列および第一の一本鎖オリゴヌクレオチドを含むクエリーオリゴ、ならびに第二の一本鎖オリゴヌクレオチドおよび標識プローブとハイブリダイズ可能なタグ配列を含むコモンオリゴを含む。
また、本明細書にいう標識プローブとは、典型的に一本鎖DNA産物の両末端がタグ配列を有するときに、検出プローブとハイブリダイズしないコモンオリゴのタグ配列とハイブリダイズする、標識部分を有するオリゴヌクレオチドプローブのことである。
好ましくは、本発明のキットは、さらにリガーゼを含む。ライゲーション処理に用いられる限り、いかなるリガーゼを用いてもよい。好ましいリガーゼの例は、Taq DNAリガーゼである。
本発明のキットは、あらゆる遺伝子の配列の解析に用いることができる。例えば、細菌、ウイルス、植物、ヒトを含む動物、ヒト以外の動物の遺伝子解析に用いることができ、例えば、変異、遺伝子多型、突然変異等の遺伝子変異の検出等に用いることができる。より具体的には、例えば、HPV、デング熱、インフルエンザウイルス等の検出および型判定、動植物の種の判定、遺伝子組換え作物の検出、ハラール認証の検査、ウイルス薬剤耐性株遺伝子、薬剤耐性菌遺伝子、一塩基多型(SNP)、マイクロサテライト、置換・欠損・挿入等の検出に用いられる。例えば、本発明のキットは、遺伝子多型の検出や、ウシやブタなどの食品偽装の鑑定、ウイルス感染の簡易検査に用いられる。
以下に、本発明の利用の具体例を詳細に記載するが、本発明が必ずしもこれらに限定されるというものではない。
本発明にかかるヒトの遺伝子検査は、ヒトの血液から遺伝子を抽出することで、容易に検査をすることができる。遺伝子としては、例えばシトクローム遺伝子があげられ、薬の代謝能力を知ることができる。例えば、体内のニコチンの代謝のしやすさ、イリノテカンやタモキシフェンのような抗がん剤の副作用や薬の効果等を知ることができる。
本発明にかかる動物の遺伝子検査は、例えば、各種動物のミトコンドリアの遺伝子を用いることで、その種判別を行うことができる。そのため、動物が生きている状態で血液等を採血する必要は特に無く、食品用の食肉であっても遺伝子を取得することができる。他にも、加工品やスープの原料等でも良い。動物としては、ウシやブタ、トリに限らず、ヒツジ、ヤギ、魚等であっても良い。
本発明にかかる病原菌やウイルス等の検査は、例えば、感染者より直接採取することで、容易に検査をすることができる。病原菌やウイルスに特に制限は無く、また、病原菌やウイルスの感染の有無だけではなく、型判別を行うこともできる。
上記の検査は、特殊な装置を特に必要とすることはなく、卓上用の装置があれば可能とするものである。病院などの臨床現場での利用、食品工場での工程の検査、税関等での偽装食品混入の検査、動物の親子鑑定、農作物の品種鑑定等、多くの場面でその利用が想定できる。
以下に本発明を実施例を用いて詳細に説明するが、実施例は例示の目的であり、本願発明が必ずしも実施例に限定されるものではない。
実施例1
本発明の方法による標的遺伝子変異の検出を次の手順で行った。以下、これらの順序に従って説明する。ライゲーション反応までの手順を図1に示した。
1.プライマーの調製
2.標的遺伝子の増幅
3.ライゲーション用プローブの調製
4.ライゲーション反応
5.クロマトグラフィー本体(PAS:Printed Array Strip)を用いた検出。
また、ヒト由来のゲノムDNA 4サンプル(A04、B03、C03、D03)を実験に供試した。
1.プライマーの調製
1−1.プライマーの調製
ヒトゲノム中のCYP2D6遺伝子に特異的な以下の表1に示すプライマーC12〜C14(ユーロフィンジェノミクス社製)を準備した。これらプライマーは通常のオリゴヌクレオチド合成方法に準じて合成され、100μMの濃度に調整された。C12プライマーはCYP2D6遺伝子の遺伝子多型であるrs16947(CがTに変異)、C14プライマーは同遺伝子多型であるrs1065852(CがTに変異)を含む遺伝子領域を増幅するように設計した。なお、図面ではrs16947を2850C>T、rs1065852を100C>Tと記載している。
2.標的遺伝子の増幅
2−1.反応液調製
標的遺伝子の増幅に使用したゲノムDNAはヒト由来のものを用いた。ゲノムDNAを表1のプライマーを用いて以下のように増幅した。なお、サンプル増幅用試薬として、QIAGEN社のMultiplex PCR Kitを使用した。サーマルサイクラーとして、eppendorf社のMastercycler(登録商標) gradientを使用した。表2に示す試薬を個々のサンプルごとに調製した。
2−2.PCR反応
調製したサンプル溶液をPCRチューブに移し、サーマルサイクル反応(95℃で15分後、95℃で30秒、68℃で2分を40サイクル、その後4℃に下げる)を行った。そして、増幅したサンプルはAgilent Technologies社のバイオアナライザを用いて電気泳動し、目的とするサイズの増幅産物が得られたことを確認した。結果を図2に示す。
3.ライゲーション用プローブの調製
3−1.ライゲーション用のプローブの調製
2.で得た増幅サンプルに結合させるライゲーション用プローブ(コモンオリゴはユーロフィンジェノミクス社製、クエリーオリゴはTBA社製)を準備した。プローブの塩基配列を表3に示す。ライゲーション用プローブは各遺伝子多型にコモンオリゴ1種類、クエリーオリゴ2種類を作成した。クエリーオリゴは遺伝子変異が生じていない野生型に結合するもの(WTと標記)と遺伝子変異が生じている変異型に結合するもの(MTと標記)からなる。コモンオリゴの3’末端にはビオチン[Biotin]が標識されており、クエリーオリゴの5’末端にはクロマトグラフィー本体(PAS)に固定化されたオリゴDNAと相補的なタグ配列が付加されている(配列情報非開示)。また、クエリーオリゴとタグ配列の間にはspacer C3が挿入されている。クロマトグラフィー本体に固定化されたオリゴDNAの位置は図3に記載した。
3−2.コモンオリゴの5’末端のリン酸化
ライゲーション反応を行うために、コモンオリゴの5’末端にリン酸基を付加した。リン酸基を付加する試薬として、東洋紡社のT4 Polynucleotide Kinaseを使用した。
3−3.反応液調製
表4に示す試薬を調製した。なお、コモンオリゴの最適濃度を調べる目的で、調製液に加えるコモンオリゴ濃度を1μM、10μM、50μM、100μMの4種類とした。
3−4.反応条件
コモンオリゴ溶液をPCRチューブに移し、サーマルサイクラーにセットした。温度条件は、37℃で30分後、95℃で3分、その後4℃に下げ、反応を終了した。
3−5.反応液調製
リン酸基付加反応を行ったコモンオリゴ溶液全量(20μL)にクエリーオリゴ20μLを混合した。なお、各コモンオリゴ溶液に対して表5の組成でクエリーオリゴを混合した。
4.ライゲーション反応
4−1.反応液調製
ライゲーション反応における組成は表6のとおりとした。なお、ライゲーションを行うための酵素として、NEW ENGLAND BioLabs社のTaq DNA Ligaseを使用した。
4−2.ライゲーション反応
ライゲーション溶液をPCRチューブに移し、サーマルサイクラーにセットした。温度条件は、95℃で5分後、58℃で15分、95℃で2分、その後37℃に下げ、反応を終了した。
5.クロマトグラフィー本体を用いた検出
5−1.ハイブリダイゼーション反応
4.で得られた一本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応およびその検出を行った。
5−2.反応液調製
ハイブリダイゼーション反応および検出は、展開液(TBA社製)、ラテックス液(TBA社製)、ホルムアミドを30%含有するTEバッファーおよびライゲーション産物を混合して調製した反応液を用いて実施した。反応液の組成を表7に示す。
5−3.ハイブリダイゼーション工程
上記反応液各50μLを1.5mLチューブに加え、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を行った。反応液は約20分間ですべて吸い上がり、すべて吸いあがった段階でクロマトグラフィーによるハイブリダイゼーション反応を完了とした。反応終了後、クロマトグラフィー本体を風乾させ、目視による反応箇所の確認および画像を撮影した。
5−4.検出工程
クロマトグラフィー本体の乾燥後の発色の有無を目視で確認した。結果を表8および図4に示す。図4に示すように、3.ライゲーション用プローブの調製でコモンオリゴの濃度を500nM、クエリーオリゴを2.5μMとした場合に予想される位置で発色が見られ、本手法が効果を有することが確認できた。
5−5.結果
実施例2
本発明の検出方法による標的遺伝子変異の検出感度をさらに上げる方法として、次の手順で実験を行った。以下、これらの順序に従って説明する。ライゲーション反応までの手順を図7に示す。
1.プライマーの調製
2.標的遺伝子の増幅
3.ライゲーション用プローブの調製
4.サイクリングライゲーション反応
5.クロマトグラフィー本体(PAS:Printed Array Strip)を用いた検出
また、ヒト由来のゲノムDNA(A、B、C、D、E、F、G)を実験に供試した。
1.プライマーの調製
ヒトゲノム中のCYP2D6遺伝子に特異的な以下の表9に示すプライマーC09、C10、C12、C14およびポジティブコントロールとしてG3PDH遺伝子に特異的なプライマーコントロール(ユーロフィンジェノミクス社製)を準備した。これらプライマーは通常のオリゴヌクレオチド合成方法に準じて合成され、100μMの濃度に調整された。C09プライマーはCYP2D6遺伝子の遺伝子多型であるrs1135840(GがCに変異)、C10プライマーは同遺伝子の遺伝子多型であるrs5030865(GがAに変異)、C12プライマーは同遺伝子の遺伝子多型であるrs16947(CがTに変異)、C14プライマーは同遺伝子多型であるrs1065852(CがTに変異)を含む遺伝子領域を増幅するように設計した。なお、図面ではrs1135840を4180G>C、rs5030865を1758G>A、rs16947を2850C>T、rs1065852を100C>Tと記載している。
2.標的遺伝子の増幅
2−1.反応液調製
標的遺伝子の増幅に使用したゲノムDNAはヒト由来のものを用いた。ゲノムDNAを表9のプライマーを用いて以下のように増幅した。なお、サンプル増幅用試薬として、KAPABIOSYSTEMS社のKAPA2G FAST Multiplexを使用した。サーマルサイクラーとして、eppendorf社のMastercycler(登録商標) gradientを使用した。表10に示す試薬を個々のサンプルごとに調製した。
2−2.PCR反応
調製したサンプル溶液をPCRチューブに移し、サーマルサイクル反応(95℃で3分後、95℃で15秒、60℃で30秒、72℃で1分を30サイクル、その後72℃で5分、最後に4℃に下げる)を行った。そして、増幅したサンプルはAgilent Technologies社のバイオアナライザを用いて電気泳動し、目的とするサイズの増幅産物が得られたことを確認した。結果を図8に示す。
3.ライゲーション用プローブの調製
3−1.ライゲーション用のプローブの調製
2.で得た増幅サンプルに結合させるライゲーション用プローブ(コモンオリゴはユーロフィンジェノミクス社製、クエリーオリゴはTBA社製)を準備した。プローブの塩基配列を表11に示す。ライゲーション用プローブは各遺伝子多型にコモンオリゴ1種類、クエリーオリゴ2種類を作成した。クエリーオリゴは遺伝子変異が生じていない野生型に結合するもの(WTと標記)と遺伝子変異が生じている変異型に結合するもの(MTと標記)からなる。コモンオリゴの5’末端にはリン酸基[P]が修飾されており、3’末端にはビオチン[Biotin]が標識されている。なお、実施例1ではコモンオリゴの5’末端にリン酸基を修飾する反応を行っていたが、今回は操作時間の短縮を目的とし、オリゴ合成段階で5’末端にリン酸基を修飾したコモンオリゴを用いた。クエリーオリゴの5’末端にはクロマトグラフィー本体(PAS)に固定化されたオリゴDNAと相補的なタグ配列が付加されている(配列情報非開示)。また、クエリーオリゴとタグ配列の間にはspacer C3が挿入されている。クロマトグラフィー本体に固定化されたオリゴDNAの位置は図9に記載した。なお、本実施例ではTBA社が販売するクロマトグラフィー本体のE12シリーズを使用した。実施例1で使用したD6シリーズより固定化されたオリゴDNAの数が増え、12種類になっている(F−1〜F−12)。
4.サイクリングライゲーション反応
4−1.反応液調製
ライゲーション反応における組成は表12のとおりとした。なお、ライゲーションを行うための酵素として、NEW ENGLAND BioLabs社のTaq DNA Ligaseを使用した。
4−2.ライゲーション反応
ライゲーション溶液をPCRチューブに移し、サーマルサイクラーにセットした。温度条件は、95℃で1分後、58℃で5分、その後、95℃で15秒、58℃で30秒を30サイクル、その後95℃で1分加熱し、37℃に温度を下げ反応を終了した。
5.クロマトグラフィー本体を用いた検出
5−1.ハイブリダイゼーション反応
4.で得られた一本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応およびその検出を行った。
5−2.反応液調製
ハイブリダイゼーション反応および検出は、展開液(TBA社製)、ラテックス液(TBA社製)、TEバッファーおよびライゲーション産物を混合して調製した反応液を用いて実施した。反応液の組成を表13に示す。
5−3.ハイブリダイゼーション工程
上記反応液各20μLを1.5mLチューブに加え、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を行った。ハイブリダイゼーション反応は37℃で行った。反応液は約20分間ですべて吸い上がり、すべて吸いあがった段階でクロマトグラフィーによるハイブリダイゼーション反応を完了とした。反応終了後、クロマトグラフィー本体を風乾させ、目視による反応箇所の確認および画像を撮影した。
5−4.検出工程
クロマトグラフィー本体の乾燥後の発色の有無を目視で確認した。図10に示すように、既知の遺伝子多型とクロマトグラフィー本体による遺伝子多型解析結果がすべて一致した。サイクリングライゲーション反応によりクロマトグラフィー本体上のラインが実施例1よりもしっかりと目視できるようになった。これらのことから、本手法が簡便な遺伝子多型の判定法として有効であることが示された。
実施例3
ヒトの遺伝子の遺伝子多型だけでなく、本発明の検出方法が動物種判定法としても利用できることを示すため、下記の手順で実験を行った。
1.プライマーの調製
2.標的遺伝子の増幅
3.ライゲーション用プローブの調製
4.サイクリングライゲーション反応
5.クロマトグラフィー本体(PAS:Printed Array Strip)を用いた検出
また、ヒト由来のゲノムDNA、ウシ由来のゲノムDNA、ブタ由来のゲノムDNA、ニワトリ由来のゲノムDNA、ウシとブタとニワトリ由来のDNAを1:1:1で混合したDNAを実験に供試した。
1.プライマーの調製
ヒト、ウシ、ブタ、ニワトリのゲノム中のミトコンドリアDNAの中から、これら4種に共通のDNA配列を見つけ出し、表14に示すプライマー(ユーロフィンジェノミクス社製)を準備した。これらプライマーは通常のオリゴヌクレオチド合成方法に準じて合成され、100μMの濃度に調整された。
2.標的遺伝子の増幅
2−1.反応液調製
標的遺伝子の増幅に使用したゲノムDNAはヒト、ウシ、ブタ、ニワトリ由来のものを用いた。ゲノムDNAを表14のプライマーを用いて以下のように増幅した。なお、サンプル増幅用試薬として、KAPABIOSYSTEMS社のKAPA2G FAST Multiplexを使用した。サーマルサイクラーとして、eppendorf社のMastercycler(登録商標) gradientを使用した。表15に示す試薬を個々のサンプルごとに調製した。
2−2.PCR反応
調製したサンプル溶液をPCRチューブに移し、サーマルサイクル反応(95℃で3分後、95℃で15秒、57℃で30秒、72℃で1分を30サイクル、その後72℃で5分、最後に4℃に下げる)を行った。そして、増幅したサンプルはAgilent Technologies社のバイオアナライザを用いて電気泳動し、目的とするサイズの増幅産物が得られたことを確認した。結果を図11に示す。
3.ライゲーション用プローブの調製
3−1.ライゲーション用のプローブの調製
2.で得た増幅サンプルに結合させるライゲーション用プローブ(コモンオリゴはユーロフィンジェノミクス社製、クエリーオリゴはTBA社製)を準備した。プローブの塩基配列を表16に示す。ライゲーション用プローブは各動物種にコモンオリゴ1種類、クエリーオリゴ1種類を作成した。また、ポジティブコントロール用として、ヒト、ウシ、ブタ、ニワトリに共通のコモンオリゴ、クエリーオリゴを作成した。コモンオリゴの5’末端にはリン酸基[P]が修飾されており、3’末端にはビオチン[Biotin]が標識されている。クエリーオリゴの5’末端にはクロマトグラフィー本体(PAS)に固定化されたオリゴDNAと相補的なタグ配列が付加されている(配列情報非開示)。また、本実施例ではクエリーオリゴとタグ配列の間にはspacer C3は挿入されていない。クロマトグラフィー本体に固定化されたオリゴDNAの位置は図12に記載した。なお、本実施例ではTBA社が販売するクロマトグラフィー本体のF12シリーズを使用した。実施例2で使用したE12シリーズとは固定化されたオリゴDNAの位置が多少異なっている。
4.サイクリングライゲーション反応
4−1.反応液調製
ライゲーション反応における組成は表17のとおりとした。なお、ライゲーションを行うための酵素として、NEW ENGLAND BioLabs社のTaq DNA Ligaseを使用した。
4−2.ライゲーション反応
ライゲーション溶液をPCRチューブに移し、サーマルサイクラーにセットした。温度条件は、95℃で1分後、58℃で5分、その後、95℃で15秒、58℃で30秒を30サイクル、その後95℃で1分加熱し、37℃に温度を下げ反応を終了した。
5.クロマトグラフィー本体を用いた検出
5−1.ハイブリダイゼーション反応
4.で得られた一本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応およびその検出を行った。
5−2.反応液調製
ハイブリダイゼーション反応および検出は、展開液(TBA社製)、ラテックス液(TBA社製)、TEバッファーおよびライゲーション産物を混合して調製した反応液を使用して実施した。反応液の組成を表18に示す。
5−3.ハイブリダイゼーション工程
上記反応液各20μLを1.5mLチューブに加え、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を行った。ハイブリダイゼーション反応は37℃で行った。反応液は約20分間ですべて吸い上がり、すべて吸いあがった段階でクロマトグラフィーによるハイブリダイゼーション反応を完了とした。反応終了後、クロマトグラフィー本体を風乾させ、目視による反応箇所の確認および画像を撮影した。
5−4.検出工程
クロマトグラフィー本体の乾燥後の発色の有無を目視で確認した。図13に示すように、本手法によりクロマトグラフィー本体による各動物種判定が可能であった。このことから、本手法が簡便な動物種判定手法として有効であることを示した。
実施例4
ヒトの遺伝子の遺伝子多型だけでなく、本発明の検出方法がウイルス等の型判定法としても利用できることを示すため、下記の手順で実験を行った。検出対象はヒトパピローマウイルスの16型および18型とした。
1.プライマーの調製
2.標的遺伝子の増幅
3.ライゲーション用プローブの調製
4.サイクリングライゲーション反応
5.クロマトグラフィー本体(PAS:Printed Array Strip)を用いた検出
また、実験材料として、HPV16の遺伝子断片およびHPV18の遺伝子断片を導入したプラスミド、および、HPV16に感染していることが既知の臨床検体1サンプルを用いた。
1.プライマーの調製
表19に示すHPVの16型および18型に特異的なプライマーおよびポジティブコントロールとしてヒトのG3PDH遺伝子に特異的なプライマー(ユーロフィンジェノミクス社製)を準備した。これらプライマーは通常のオリゴヌクレオチド合成方法に準じて合成され、100μMの濃度に調整された。
2.標的遺伝子の増幅
2−1.反応液調製
標的遺伝子の増幅に使用したDNAはHPVの16型由来のDNA配列が含まれるプラスミドおよび18型由来のDNA配列が含まれるプラスミドを用いた。これらプラスミドには表19で示したHPV16およびHPV18のプライマー配列が含まれている。また、HPV型判定の性能を評価するために、HPV16の感染が既知のヒトゲノムDNAを実験に用いた。これらDNAを表19のプライマーを用いて以下のように増幅した。なお、サンプル増幅用試薬として、KAPABIOSYSTEMS社のKAPA2G FAST Multiplexを使用した。サーマルサイクラーとして、eppendorf社のMastercycler(登録商標) gradientを使用した。表20に示す試薬を個々のサンプルごとに調製した。
2−2.PCR反応
調製したサンプル溶液をPCRチューブに移し、サーマルサイクル反応(95℃で3分後、95℃で15秒、57℃で30秒、72℃で1分を30サイクル、その後72℃で5分、最後に4℃に下げる)を行った。そして、増幅したサンプルはAgilent Technologies社のバイオアナライザを用いて電気泳動し、目的とするサイズの増幅産物が得られたことを確認した。結果を図14に示す。
3.ライゲーション用プローブの調製
3−1.ライゲーション用のプローブの調製
2.で得た増幅サンプルに結合させるライゲーション用プローブ(コモンオリゴはユーロフィンジェノミクス社製、クエリーオリゴはTBA社製)を準備した。プローブの塩基配列を表21に示す。ライゲーション用プローブはHPV16、HPV18およびポジティブコントロールのヒトG3PDH遺伝子にそれぞれコモンオリゴ1種類、クエリーオリゴ1種類を作成した。コモンオリゴの5’末端にはリン酸基[P]が修飾されており、3’末端にはビオチン[Biotin]が標識されている。クエリーオリゴの5’末端にはクロマトグラフィー本体(PAS)に固定化されたオリゴDNAと相補的なタグ配列が付加されている(配列情報非開示)。また、本実施例ではクエリーオリゴとタグ配列の間にはspacer C3は挿入されていない。クロマトグラフィー本体に固定化されたオリゴDNAの位置は図12に記載した。なお、本実施例ではTBA社が販売するクロマトグラフィー本体のF12シリーズを使用した。実施例2で使用したE12シリーズとは固定化されたオリゴDNAの位置が多少異なっている。
4.サイクリングライゲーション反応
4−1.反応液調製
ライゲーション反応における組成は表22のとおりとした。なお、ライゲーションを行うための酵素として、NEW ENGLAND BioLabs社のTaq DNA Ligaseを使用した。
4−2.ライゲーション反応
ライゲーション溶液をPCRチューブに移し、サーマルサイクラーにセットした。温度条件は、95℃で1分後、58℃で5分、その後、95℃で15秒、58℃で30秒を30サイクル、その後95℃で1分加熱し、37℃に温度を下げ反応を終了した。
5.クロマトグラフィー本体を用いた検出
5−1.ハイブリダイゼーション反応
4.で得られた一本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応およびその検出を行った。
5−2.反応液調製
ハイブリダイゼーション反応および検出は、展開液(TBA社製)、ラテックス液(TBA社製)、TEバッファーおよびライゲーション産物を混合して調製した反応液を使用して実施した。反応液の組成を表23に示す。
5−3.ハイブリダイゼーション工程
上記反応液各20μLを1.5mLチューブに加え、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を行った。ハイブリダイゼーション反応は37℃で行った。反応液は約20分間ですべて吸い上がり、すべて吸いあがった段階でクロマトグラフィーによるハイブリダイゼーション反応を完了とした。反応終了後、クロマトグラフィー本体を風乾させ、目視による反応箇所の確認および画像を撮影した。
5−4.検出工程
クロマトグラフィー本体の乾燥後の発色の有無を目視で確認した。図15に示すように、本手法によりクロマトグラフィー本体によるHPVの16型、18型判定が可能であった。このことから、本手法が簡便なHPV型判定手法として有効であることを示した。
実施例5
クエリータグのスペーサーの有無が検査の結果に影響を与えるかを調べるため、次の手順で実験を行った。以下、これらの順序に従って説明する。
1.プライマーの調製
2.標的遺伝子の増幅
3.ライゲーション用プローブの調製(スペーサー無し)
4.サイクリングライゲーション反応
5.クロマトグラフィー本体(PAS:Printed Array Strip)用いた検出
また、ヒト由来のゲノムDNA 3サンプル(A12、B12、C12)を実験に供試した。
1.プライマーの調製
ヒトゲノム中のCYP2D6遺伝子に特異的な以下の表24に示すプライマーC09〜C14およびポジティブコントロールとしてG3PDH遺伝子に特異的なプライマーコントロール(ユーロフィンジェノミクス社製)を準備した。これらプライマーは通常のオリゴヌクレオチド合成方法に準じて合成され、100μMの濃度に調整された。C09プライマーはCYP2D6遺伝子の遺伝子多型であるrs1135840(GがCに変異)、C12プライマーは同遺伝子の遺伝子多型であるrs16947(CがTに変異)、C14プライマーは同遺伝子多型であるrs1065852(CがTに変異)を含む遺伝子領域を増幅するように設計した。なお、実施例の図ではrs1135840を4180G>C、rs16947を2850C>T、rs1065852を100C>Tと記載している。
2.標的遺伝子の増幅
2−1.反応液調製
標的遺伝子の増幅に使用したゲノムDNAはヒト由来のものを用いた。ゲノムDNAを表24のプライマーを用いて以下のように増幅した。なお、サンプル増幅用試薬として、KAPABIOSYSTEMS社のKAPA2G FAST Multiplexを使用した。サーマルサイクラーとして、eppendorf社のMastercycler(登録商標) gradientを使用した。表25に示す試薬を個々のサンプルごとに調製した。
2−2.PCR反応
調製したサンプル溶液をPCRチューブに移し、サーマルサイクル反応(95℃で3分後、95℃で15秒、60℃で30秒、72℃で1分を30サイクル、その後72℃で5分、最後に4℃に下げる)を行った。
3.ライゲーション用プローブの調製
3−1.ライゲーション用のプローブの調製
2.で得た増幅サンプルに結合させるライゲーション用プローブ(コモンオリゴはユーロフィンジェノミクス社製、クエリーオリゴはTBA社製)を準備した。プローブの塩基配列を表26に示す。ライゲーション用プローブは各遺伝子多型にコモンオリゴ1種類、クエリーオリゴ2種類を作成した。クエリーオリゴは遺伝子変異が生じていない野生型に結合するもの(WTと標記)と遺伝子変異が生じている変異型に結合するもの(MTと標記)からなる。コモンオリゴの5’末端にはリン酸基[P]が修飾されており、3’末端にはビオチン[Biotin]が標識されている。クエリーオリゴの5’末端にはクロマトグラフィー本体(PAS)に固定化されたオリゴDNAと相補的なタグ配列が付加されている(配列情報非開示)。クエリーオリゴとタグ配列の間にはspacer C3は挿入されていない。クロマトグラフィー本体に固定化されたオリゴDNAの位置は図9に記載した。なお、本実施例ではTBA社が販売するクロマトグラフィー本体のE12シリーズを使用した。
4.サイクリングライゲーション反応
4−1.反応液調製
ライゲーション反応における組成は表27のとおりとした。なお、ライゲーションを行うための酵素として、NEW ENGLAND BioLabs社のTaq DNA Ligaseを使用した。
4−2.ライゲーション反応
ライゲーション溶液をPCRチューブに移し、サーマルサイクラーにセットした。温度条件は、95℃で1分後、58℃で5分、その後、95℃で15秒、58℃で30秒を30サイクル、その後95℃で1分加熱し、37℃に温度を下げ反応を終了した。
5.クロマトグラフィー本体を用いた検出
5−1.ハイブリダイゼーション反応
4.で得られた一本鎖DNAを用いての核酸クロマトグラフィーによるハイブリダイゼーション反応およびその検出を行った。
5−2.反応液調製
ハイブリダイゼーション反応および検出は、展開液(TBA社製)、ラテックス液(TBA社製)、TEバッファーおよびライゲーション産物を混合して調製した反応液を使用して実施した。反応液の組成を表28に示す。
5−3.ハイブリダイゼーション工程
上記反応液各20μLを1.5mLチューブに加え、クロマトグラフィー本体の各下端部を差込んでクロマトグラフィーによるハイブリダイゼーション反応を行った。ハイブリダイゼーション反応は37℃で行った。反応液は約20分間ですべて吸い上がり、すべて吸いあがった段階でクロマトグラフィーによるハイブリダイゼーション反応を完了とした。反応終了後、クロマトグラフィー本体を風乾させ、目視による反応箇所の確認および画像を撮影した。
5−4.検出工程
クロマトグラフィー本体の乾燥後の発色の有無を目視で確認した。図16に示すように、既知の遺伝子多型とクロマトグラフィー本体による遺伝子多型解析結果がすべて一致し、かつ、spacer C3がある場合と無い場合の結果も一致した。このことから、本手法にスペーサーの有無は影響を与えないことを示した。

Claims (7)

  1. 下記(i)および(ii)をハイブリダイズさせ、目視で検出可能な状態にすることを含む遺伝子解析方法:
    (i)ストリップ上に固定したオリゴヌクレオチドプローブ;
    (ii)下記(a)および(b)を、核酸試料を鋳型とする一回または複数回の熱サイクル処理を経るライゲーション処理に供して増幅した一本鎖ライゲーション産物:
    (a)前記核酸試料に相補的な第一の一本鎖オリゴヌクレオチドおよび前記プローブとハイブリダイズ可能なタグ配列または標識部分を含むクエリーオリゴ;
    (b)前記核酸試料に相補的であって、前記第一の一本鎖オリゴヌクレオチドに隣接する第二の一本鎖オリゴヌクレオチドおよびタグ配列または標識部分を含むコモンオリゴ。
  2. サイクリングライゲーション反応を行う、請求項1に記載の方法。
  3. 核酸試料およびオリゴヌクレオチドがDNAである、請求項1または2に記載の方法。
  4. ストリップが、ストリップ上の異なる位置に配された複数のプローブを固定したプローブ領域と、前記プローブ領域とは異なる位置に配された位置マーカー領域とを備えたクロマトグラフィー本体である、請求項1〜3のいずれか1項に記載の方法。
  5. 遺伝子差異を検出するためのものである、請求項1〜4のいずれか1項に記載の方法。
  6. 遺伝子多型を検出するためのものである、請求項1〜5のいずれか1項に記載の方法。
  7. オリゴヌクレオチドプローブを固定したストリップ、
    対象とする核酸試料に相補的な配列および前記プローブとハイブリダイズ可能なタグ配列を含む一本鎖オリゴヌクレオチド、ならびに
    対象とする核酸試料に相補的であって、該一本鎖オリゴヌクレオチドに隣接する配列および標識物質またはタグ配列を含む一本鎖オリゴヌクレオチド、
    を含む、請求項1〜6のいずれか1項に記載の遺伝子解析方法のためのキット。
JP2015017396A 2015-01-30 2015-01-30 目視判定可能な遺伝子検査 Expired - Fee Related JP6616574B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015017396A JP6616574B2 (ja) 2015-01-30 2015-01-30 目視判定可能な遺伝子検査
CN201680019463.XA CN107429300A (zh) 2015-01-30 2016-01-29 可目视判定的基因检查
EP16743509.8A EP3252167A4 (en) 2015-01-30 2016-01-29 Visually determinable genetic testing
PCT/JP2016/052600 WO2016121906A1 (ja) 2015-01-30 2016-01-29 目視判定可能な遺伝子検査
US15/547,369 US20180023127A1 (en) 2015-01-30 2016-01-29 Visually determinable genetic testing
KR1020177023877A KR20170108999A (ko) 2015-01-30 2016-01-29 육안 판정 가능한 유전자 검사

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017396A JP6616574B2 (ja) 2015-01-30 2015-01-30 目視判定可能な遺伝子検査

Publications (2)

Publication Number Publication Date
JP2016140287A true JP2016140287A (ja) 2016-08-08
JP6616574B2 JP6616574B2 (ja) 2019-12-04

Family

ID=56543510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017396A Expired - Fee Related JP6616574B2 (ja) 2015-01-30 2015-01-30 目視判定可能な遺伝子検査

Country Status (6)

Country Link
US (1) US20180023127A1 (ja)
EP (1) EP3252167A4 (ja)
JP (1) JP6616574B2 (ja)
KR (1) KR20170108999A (ja)
CN (1) CN107429300A (ja)
WO (1) WO2016121906A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021176651A (ja) * 2017-06-01 2021-11-11 日本製鉄株式会社 プレスライン

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521252A (ja) * 2000-02-07 2003-07-15 イルミナ インコーポレイテッド ユニバーサルプライミングを用いる核酸検出方法
JP2004526402A (ja) * 2000-04-14 2004-09-02 コーネル リサーチ ファンデーション インコーポレーテッド リガーゼ検出反応を用いた核酸配列の違いの検出のための位置特定可能なアレイの設計方法
JP2009536525A (ja) * 2006-05-10 2009-10-15 ディクステリティー ダイアグノーティクス 化学反応性オリゴヌクレオチドプローブを使用した核酸標的の検出
JP2011072222A (ja) * 2009-09-29 2011-04-14 Kitasato Otsuka Biomedical Assay Kenkyusho:Kk 標的核酸の検出方法
JP2013198482A (ja) * 2012-02-22 2013-10-03 Nippon Meat Packers Inc 核酸の検出方法
WO2014007384A1 (ja) * 2012-07-05 2014-01-09 日本碍子株式会社 検体検査部材
WO2014156513A1 (ja) * 2013-03-29 2014-10-02 日本碍子株式会社 変異の検出方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020150921A1 (en) * 1996-02-09 2002-10-17 Francis Barany Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays
US20020090646A1 (en) * 2000-05-03 2002-07-11 Amgen Inc. Calcitonin-related molecules
US20020182609A1 (en) * 2000-08-16 2002-12-05 Luminex Corporation Microsphere based oligonucleotide ligation assays, kits, and methods of use, including high-throughput genotyping
ATE437216T1 (de) * 2001-09-06 2009-08-15 Genomic Profiling Systems Inc Schnellnachweis replizierender zellen
JP2006500916A (ja) * 2002-05-30 2006-01-12 テロジェン インコーポレーテッド hnRNPA1およびA2核酸分子と関連がある新形成を治療するための方法および組成物
US20030232341A1 (en) * 2002-06-12 2003-12-18 Casey Warren Michael Detection of single nucleotide polymorphisms
EP1552001A4 (en) * 2002-09-19 2006-01-04 Applera Corp METHODS AND COMPOSITIONS FOR TARGET DETECTION
US20070087360A1 (en) * 2005-06-20 2007-04-19 Boyd Victoria L Methods and compositions for detecting nucleotides
WO2008077095A2 (en) * 2006-12-19 2008-06-26 Cornell Research Foundation, Inc. Use of lecithin:retinol acyl transferase gene promoter methylation in evaluating the cancer state of a subject
US20100105032A1 (en) * 2008-10-23 2010-04-29 Tao Pan Highly sensitive multiplex single nucleotide polymorphism and mutation detection using real time ligase chain reaction microarray
JP2012105644A (ja) * 2010-10-28 2012-06-07 Arkray Inc 多型検出用プローブ、多型検出方法、薬効評価方法、および多型検出用キット
CN103228785B (zh) * 2010-11-24 2016-09-07 株式会社钟化 扩增核酸的检测方法和检测装置
US9745633B2 (en) * 2013-06-28 2017-08-29 Diacarta Ltd Detection of PNA clamping

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521252A (ja) * 2000-02-07 2003-07-15 イルミナ インコーポレイテッド ユニバーサルプライミングを用いる核酸検出方法
JP2004526402A (ja) * 2000-04-14 2004-09-02 コーネル リサーチ ファンデーション インコーポレーテッド リガーゼ検出反応を用いた核酸配列の違いの検出のための位置特定可能なアレイの設計方法
JP2009536525A (ja) * 2006-05-10 2009-10-15 ディクステリティー ダイアグノーティクス 化学反応性オリゴヌクレオチドプローブを使用した核酸標的の検出
JP2011072222A (ja) * 2009-09-29 2011-04-14 Kitasato Otsuka Biomedical Assay Kenkyusho:Kk 標的核酸の検出方法
JP2013198482A (ja) * 2012-02-22 2013-10-03 Nippon Meat Packers Inc 核酸の検出方法
WO2014007384A1 (ja) * 2012-07-05 2014-01-09 日本碍子株式会社 検体検査部材
WO2014156513A1 (ja) * 2013-03-29 2014-10-02 日本碍子株式会社 変異の検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. BIOCHEM. BIOPHYS. METHODS, (2008), 70, [6], P.897-902, JPN6018027869, ISSN: 0004047222 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021176651A (ja) * 2017-06-01 2021-11-11 日本製鉄株式会社 プレスライン
JP7103494B2 (ja) 2017-06-01 2022-07-20 日本製鉄株式会社 プレスライン

Also Published As

Publication number Publication date
WO2016121906A1 (ja) 2016-08-04
EP3252167A1 (en) 2017-12-06
CN107429300A (zh) 2017-12-01
US20180023127A1 (en) 2018-01-25
KR20170108999A (ko) 2017-09-27
EP3252167A4 (en) 2018-08-22
JP6616574B2 (ja) 2019-12-04

Similar Documents

Publication Publication Date Title
JP7110155B2 (ja) 非干渉性、ノイズキャンセル性のポリヌクレオチド識別タグを用いたマルチプレックスパイロシーケンシング
CN110551846B (zh) 一种用于非洲猪瘟病毒核酸快速检测的Cpf1试剂盒及其检测方法
KR101378214B1 (ko) 검체 해석 방법 및 그것에 사용하는 분석 키트
CN113249499B (zh) 一种伤寒沙门氏菌的检测试剂盒、其制备方法及其应用
CN113234814A (zh) 一种用于同时检测虾急性肝胰腺坏死症和肝肠孢子虫的多重rpa引物和探针组合物及检测方法
JP4903722B2 (ja) ウイルスを用いることによる試料中の生細胞を検出するための方法
Yacoub et al. Development of a novel real-time PCR-based strategy for simple and rapid molecular pathotyping of Newcastle disease virus
Wang et al. Development of a naked eye CRISPR-Cas12a and-Cas13a multiplex point-of-care detection of genetically modified swine
JP6616574B2 (ja) 目視判定可能な遺伝子検査
CN106319079A (zh) 一种检测22q11.2拷贝数缺失的方法
CN110305986A (zh) Sva、o型fmdv和a型fmdv的一步法三重实时荧光定量pcr检测引物和探针
JP6580331B2 (ja) 一本鎖dna産物の調製方法
JP5613160B2 (ja) ゲノムdna中の標的配列の検出又は解析方法
CN1617936A (zh) 在单一样本中检测和定量多种靶核酸
JP2011004733A (ja) 複数検体中の標的核酸を検出するマイクロアレイ
KR20120086028A (ko) 웨스트나일바이러스와 일본뇌염바이러스의 감별 진단
KR101338292B1 (ko) A형 간염 바이러스에 대한 역전사 중합효소 연쇄반응 효소면역 측정법
Lou et al. Laboratory test for diagnosis of parasitic diseases
KR102514966B1 (ko) 실시간 중합효소연쇄반응을 이용한 파에코바이러스 검출 및 정량 방법
JP2021164429A (ja) 等温増幅産物による標的配列の検出
US20220002824A1 (en) Primer sets, biomarkers, kit and applications thereof
Shaikh et al. Biotechnological approaches in disease diagnosis and management of goats
JP4528889B1 (ja) 検体解析方法およびそこにおいて使用されるアッセイキット
CN117904342A (zh) 一种用于弓形虫的基因序列、snp位点及其应用
JP2012200223A (ja) 核酸定量法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191108

R150 Certificate of patent or registration of utility model

Ref document number: 6616574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees