JP2016122910A - 光通信装置 - Google Patents

光通信装置 Download PDF

Info

Publication number
JP2016122910A
JP2016122910A JP2014261024A JP2014261024A JP2016122910A JP 2016122910 A JP2016122910 A JP 2016122910A JP 2014261024 A JP2014261024 A JP 2014261024A JP 2014261024 A JP2014261024 A JP 2014261024A JP 2016122910 A JP2016122910 A JP 2016122910A
Authority
JP
Japan
Prior art keywords
optical
unit
signal
correction
correction information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014261024A
Other languages
English (en)
Other versions
JP6502663B2 (ja
Inventor
信彦 菊池
Nobuhiko Kikuchi
信彦 菊池
理宇 平井
Riu Hirai
理宇 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumentum Japan Inc
Original Assignee
Oclaro Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oclaro Japan Inc filed Critical Oclaro Japan Inc
Priority to JP2014261024A priority Critical patent/JP6502663B2/ja
Publication of JP2016122910A publication Critical patent/JP2016122910A/ja
Application granted granted Critical
Publication of JP6502663B2 publication Critical patent/JP6502663B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】光出力部の特性変化による出力光信号の劣化を補償するよう伝送すべきデジタル情報信号を補正する光通信装置を提供する。
【解決手段】光通信装置は、出力される光信号の変調に用いるデジタル信号をアナログ多値信号に変換する変換部と、アナログ多値信号によって変調された光信号を出力する光出力部と、取得した光出力部の特性データに応じた光出力部の変調特性変化を補償するよう変換部により変換されるデジタル信号を補正する補正部と、を含む。
【選択図】図1

Description

本発明は、光通信装置に関し、より詳しくは、光ファイバで伝送される多値の光情報の送受信に適した光通信装置に関する。
モバイル端末の爆発的増加やクラウドコンピューティング等の普及に伴い、インターネットの情報処理、伝送を担うデータセンタ内、データセンタ間で、急速なトラフィックの増加が続いている。このような超高速の情報伝送の大部分は光ファイバ伝送で実現されており、装置間を接続する数100m程度の距離から、データセンタ内外の接続を行う数km〜数10kmの光ファイバ伝送回線の速度の高速化が望まれている。現行の大容量伝送規格の代表は100Gイーサ(IEEE802.3 100GbE)であるが、さらなるトラフィックの増加を背景に次世代大容量光ファイバ伝送規格は400Gイーサまで増加することが予定されている。
このような光ファイバ伝送に用いる光通信装置は、サイズや供給電力、最大発熱量の制限された装置内に大量に配置する必要があるため、特に小型化、低コスト化、省電力化が求められている。光通信装置の消費電力の増加要因としては、光源や光変調器といった光信号を変調して出力する光出力部の温度安定化に用いられるヒータやクーラーが挙げられる。このため、光ファイバ伝送に用いる光通信装置においては、温度安定化を極力省くことや、温度安定化の範囲を狭めて省電力化を行うのが一般的である。しかしながら、このような温度安定化の省略は光通信装置、特に光出力部の性能に大きな影響を与える。
A.E-L.A. Mohamed, et al., International Journal of Computer Science and Telecommunications Volume 2, Issue 6, September 2011. X. Song, et al., IEEE 802.3 400GbE Study Group, Interium Meeting, Jan. 2014. (R. Hirai, H. Toyoda and N. Kikuchi, "Proposal of new 400GbE signaling formats with 4λ x 100G configuration," IEEE 802.3 400GbE Study Group, Interium Meeting, Jan. 2014. N. Kikuchi and R. Hirai, "Intensity-Modulated / Direct-Detection (IM/DD) Nyquist Pulse-Amplitude Modulation (PAM) Signaling for 100-Gbit/s/λ Optical Short-reach Transmission" in ECOC 2014, paper P.4.12
例えば、光出力部の代表的な構成である、光源を直接オン/オフする直接変調方式においては、レーザ光を放出する光源機能と、光信号を高速で変調する光変調器の機能を単一のレーザ光源が兼ねるため、光出力部の変調特性は外部環境の変動を受けやすい。一般に、直接変調方式の光出力部は動作温度が大となると、出力光強度が低下し、変調帯域が急減するという特性がある。また、レーザ駆動電流が大となると、出力光強度が高くなるとともに変調帯域が向上するという特性もある。このように動作温度やレーザ駆動電流の変化により変調帯域が変化すると、波形歪が発生して出力光信号波形のアイ開口が閉じ、受信感度が大幅に劣化し、伝送距離が短縮してしまい高速光ファイバ伝送が不可能となる。
このため、従来では、温度依存性が極力小さいレーザの開発が進められているものの、光通信装置の動作温度範囲はたとえば0〜85度と非常に大きく、特に高温時における変調帯域の減少はいまだに直接変調レーザの変調速度や伝送距離の大きな制限要因となっている。なお動作温度の変化は光源の波長を大きく変化させるため、複数の波長の光源を用いる波長多重伝送においては、波長変化量を一定範囲内に留めるため、動作温度範囲をたとえば+/−10度などの一定範囲に留める構成も取られるが、一般に動作温度中心を高くとる方が消費電力の増加を防ぐ効果が高く、やはり高温側でのレーザ特性の劣化により性能が制限されるという問題がある。
また、光出力部に光源と光変調器とが分離している外部変調方式を用いた光通信装置においては、光源と光変調器とが分離しているため、直接変調方式のような温度依存性は若干緩和されるものの、依然大きな性能上の問題がある。外部変調方式において、低コスト、小型の光変調器には温度や波長依存性の大きな半導体の変調器、たとえば半導体電界吸収型変調器(EA変調器)や位相変調器、MZ型変調器やIQ変調器、偏波多重IQ変調器、ポリマー変調器などが用いられている。これらの変調器の動作原理となる光吸収特性やこれに伴う位相変調特性は温度や信号波長によって変化することが知られている。例えば、ポリマー変調器などは変調器素材として用いるポリマーが高い温度依存性を持つ。非特許文献1にはポリマー変調器の変調特性、特に図12に示すポリマー変調器の温度特性が報告されている。図12に示されるように、ポリマー変調器の周波数帯域は温度上昇によって1/2以下に減少する。また、EA変調器や位相変調器などは半導体のバンド構造やその吸収特性を利用して光変調を行うため、その周波数特性は温度依存性を持つ。発明者らは、EA変調器の変調特性の検討を行い、EA変調器の周波数特性の温度依存性を確認した。図13は、EA変調器の周波数特性を示す図である。図13に示すように、温度が25度から85℃に上昇することによってEA変調器の変調帯域(−3dB帯域)はおよそ20GHzから10GHzと大きく低下してしまうことがわかる。
一方で、400Gイーサに代表される次世代光ファイバ伝送に用いられる光通信装置においては、光変調速度が数10GBaudに達することで、レーザ光源や光変調器の動作速度がほぼ上限に近付き、変調帯域の不足が顕著となり、理想的な状態でも十分なアイ開口や消光比が得られなくなりつつある。このような状態では動作マージンが不足しているため、レーザ光源や光変調器の温度変化、レーザ駆動電流のわずかな変化によって変調特性が変化するだけで、情報伝送が困難となってしまうという問題がある。そこで、レーザ光源や光変調器の動作速度の限界を克服するため、従来の2値変調にかわって多値変調の適用が検討されている。2値変調は、送信すべき2値情報信号の論理“1”、論理“0”をそれぞれ光強度の最大、最小に対応させるものである。これに対して多値変調の一つは、送信すべき多値情報信号を光強度の最大から最小の間の中間レベルを用いた多値レベルに対応させている。たとえば、非特許文献2においては、4〜16値のパルス振幅変調(PAM)の利用が検討されている。
ここで、従来の多値変調を用いた光通信装置の構成の一例を図14に示す。図14に示す光通信装置100は外部変調方式を用いており、多値符号化部102が、並列デジタル信号として入力されるデジタル情報信号101をPAM4、PAM8、デュオバイナリ信号などの多値信号に符号化する。そして、DAコンバータ115によりアナログ変換されたアナログ多値信号は、出力段増幅部103で振幅Aに増幅された後に、バイアスT104によりバイアス電圧Vbが加算され、変調信号111として、光変調器105に入力される。一方、光源となる半導体レーザ106にはレーザ駆動電流112が入力され、レーザ駆動電流112に応じた強度の光が半導体レーザ106から出力されて光変調器105に入力される。そして、光変調器105は、半導体レーザ106から入力されたレーザ光を変調信号111により変調した多値変調光108を出力光ファイバ107出力する。
図14における制御部113は、振幅の設定値Aや、バイアス電圧設定値Vb、レーザ駆動電流設定値Ifを設定する。レーザ駆動電流設定値Ifやバイアス電圧設定値Vbなどの一部の動作パラメータについては、別途光変調器105から出力される出力光強度を検出し、その値が一定となるようにフィードバック制御を行う場合もある。このような、バイアス電圧設定値Vb、レーザ駆動電流設定値Ifなどによりアナログ電気信号を制御することで、光変調器105から出力される光信号の伝送性能の劣化を補償することは、従来の2値変調においては有効であった。
しかしながら、多値変調においては従来の方法で出力光信号の伝送性能の劣化を補償することは難しい。なぜなら、多値数の高いPAM信号や多値位相変調信号、QAM変調信号などの多値変調信号を利用すると、従来の2値変調信号を利用する場合に比べて出力信号波形のアイ開口が数分の1に激減するからである。図15は、光変調速度50GBaudにおけるPAM4信号変調による出力光波形とそのスペクトルとを示す図である。図15に示すように、出力光波形は4値レベルの光強度を示しておりアイ開口は2値レベルより狭まることがわかる。そして、スペクトルはなだらかに50GHz付近まで広がっている。このため、出力光信号波形のアイ開口量や波形歪は変調特性の変化に極めて敏感となり、レーザ光源や光変調器の変調帯域や周波数特性がわずかに変化するだけでも出力光信号に大きな波形劣化が生じてしまう。
さらに、発明者らは、従来のPAM変調に比べて所要帯域を削減し、かつ高速伝送を実現する手法としてナイキストパルスを用いたナイキストPAM変調の利用を提唱している(非特許文献3及び非特許文献4)。この場合、図14に示す多値符号化部102と光変調器105との間に変調帯域を制限するナイキストフィルタを備える。図16は、光変調速度50GBaudにおけるナイキストPAM変調による出力光波形とそのスペクトルとを示す図である。図16に示すように、ナイキストPAM変調による出力光波形はピーク強度の高い波形となるが、そのスペクトルは所要帯域内でほぼ平坦な矩形となり、所要帯域幅はR/2=25GHzに緩和することができる。
しかし、ナイキストPAM変調は光源や光変調器の所要帯域の削減に非常に有効な技術であるが、一方で光通信装置の使用環境や動作条件の変化によりレーザ光源や光変調器の特性が変化を受けやすいという問題がある。ナイキストPAM変調では図16に示すように出力光信号のスペクトル形状を矩形に保つことで、波形の符号間干渉の発生を防止しているため、スペクトル形状が崩れると大きな伝送性能の劣化が生じてしまう。
このように、近年の伝送容量の増加により変調速度がきわめて高くなったこと、及び光変調を多値化することによって、光出力部の特性変化による出力光信号の劣化は深刻さを大きく増しつつある。
本発明は上記実情を鑑みて為されたものであり、光通信装置において、光出力部の特性変化による出力光信号の劣化を補償するよう伝送すべきデジタル情報信号を補正することを目的とする。
(1)上記課題を解決するために、本発明にかかる光通信装置は、出力される光信号の変調に用いるデジタル信号をアナログ多値信号に変換する変換部と、前記アナログ多値信号によって変調された前記光信号を出力する光出力部と、前記光出力部の特性データを取得する特性データ取得部と、前記取得した特性データに応じた前記光出力部の変調特性変化を補償するよう前記変換部により変換される前記デジタル信号を補正する補正部と、を含むことを特徴とする。
(2)上記(1)に記載の光通信装置であって、前記特性データ取得部は、前記特性データとして前記光出力部の動作温度を取得する、こととしてもよい。
(3)上記(2)に記載の光通信装置であって、前記光出力部の動作温度を測定するための温度センサ、をさらに含む、こととしてもよい。
(4)上記(1)から(3)のいずれかに記載の光通信装置であって、前記特性データ取得部は、前記光信号の光源を駆動するための駆動電流値もしくは前記光出力部に設定するバイアス電圧を取得する、こととしてもよい。
(5)上記(1)から(4)のいずれかに記載の光通信装置であって、前記特性データに応じた前記デジタル信号を補正するための補正情報を記憶する記憶部、をさらに含み、前記補正部は、前記取得した特性データに応じた補正情報を前記記憶部から取得して前記デジタル信号に重畳する、こととしてもよい。
(6)上記(5)に記載の光通信装置であって、前記取得した特性データの値に応じた前記補正情報が前記記憶部に記憶されていない場合に、前記記憶部に記憶されている前記補正情報に基づいて当該取得した特性データの値に対応する前記補正情報を補間して前記補正部に出力する補間部、をさらに含む、こととしてもよい。
(7)上記(5)または(6)に記載の光通信装置であって、前記補正情報は前記光出力部の周波数特性を平坦とするための値である、こととしてもよい。
(8)上記(7)に記載の光通信装置であって、前記補正部は、前記光出力部の周波数特性を平坦とするデジタルフィルタであり、前記補正情報は前記光出力部の周波数特性を平坦とするための前記デジタルフィルタの伝達特性を定める設定値である、こととしてもよい。
(9)上記(5)から(8)のいずれかに記載の光通信装置であって、前記記憶部は、前記補正情報を書き換え可能、または当該記憶部を交換可能な記憶媒体で構成される、こととしてもよい。
(10)上記(9)に記載の光通信装置であって、前記補正情報を前記記憶部に書き込むための信号端子、または通信手段をさらに含む、こととしてもよい。
(11)上記(1)から(10)のいずれかに記載の光通信装置であって、外部から受信した受信光信号を電気信号に変換する光電変換部と、前記変換された電気信号の誤差を等化する適応等化部と、前記等化された電気信号を復号して情報信号として出力する復号部と、をさらに含む、こととしてもよい。
本発明により、光出力部の特性変化による出力光信号の劣化を補償するよう伝送すべきデジタル情報信号を補正する光通信装置が提供される。
第1実施形態に係る光通信装置の構成の一例を示す図である。 第1実施形態に係る光通信装置の補正部を構成する回路の第1の例を示す図である。 第1実施形態に係る補正部を構成する回路の第2の例を示す図である。 第1実施形態に係る補正情報記憶部に記憶される補正情報テーブルの一例を示す図である。 第1実施形態に係る光変調器の周波数特性を示す図である。 第1実施形態に係る補正部の周波数特性の一例を示す図である。 変調器の周波数特性と補正部の周波数特性とを合成した合成周波数特性を示す図である。 第2実施形態に係る光通信装置の構成の一例を示す図である。 第3実施形態に係る光通信装置の構成の一例を示す図である 第4実施形態に係る光通信装置の構成の一例を示す図である。 第5実施形態に係る光通信装置の構成の一例を示す図である。 ポリマー変調器の温度特性を示す図である。 EA変調器の周波数特性を示す図である。 従来の多値変調を用いた光通信装置の構成の一例を示す図である。 光変調速度50GBaudにおけるPAM4信号変調による出力光波形とそのスペクトルとを示す図である。 光変調速度50GBaudにおけるナイキストPAM変調による出力光波形とそのスペクトルとを示す図である。
[第1実施形態]
以下、本発明の第1実施形態について図面に基づき詳細に説明する。なお、図面において、同一または同等の要素には同一の符号を付し、重複する説明を省略する。
図1は、第1実施形態に係る光通信装置の構成の一例を示す図である。図1に示すように、第1実施形態に係る光通信装置200は、多値符号化部202、補正部203、DAコンバータ204、出力段増幅部205、バイアスT206、半導体レーザ208及び光変調器209を含む光出力部207、定電圧源210、定電流源211、制御部212、補正情報記憶部213、及び温度センサ214を含んで構成される。第1実施形態に係る光通信装置200は、主に光送信器としての機能を有し、光出力部207に半導体レーザ208及び光変調器209を含む外部変調方式を採用した例を示している。
第1実施形態では、光出力部207の特性変化の指標となる特性データの一つである温度の変化による出力光信号の劣化を補償するよう伝送されるデジタル情報信号を補正する構成としている。ここで、出力光信号の劣化とは、出力光信号の波形形状やスペクトルの歪み、帯域の劣化などを含むこととし、言い換えればこのような劣化した光信号を出力する光出力部の変調特性変化ともいえる。
伝送されるデジタル情報信号250は、光出力部207で光信号を変調するのに用いられる信号である。本実施形態では、まず、伝送されるデジタル情報信号250は並列デジタル信号として多値符号化部202に入力されて多値信号に符号化され、補正部203に入力されて補正が行われた後に、DAコンバータ204によりアナログ多値信号に変換される。そして、アナログ多値信号は、出力段増幅部205で所定の振幅に増幅され、バイアスT206によりバイアス電圧が加算されて、変調信号251として光出力部207に入力される。
光出力部207は、半導体レーザ208及び光変調器209を含んで構成されている。半導体レーザ208は、レーザ駆動電流252に応じた強度のレーザ光を光変調器209に出力する。そして、光変調器209が、半導体レーザ208から入力されるレーザ光を、アナログ多値信号である変調信号251に応じた光強度に変調した光信号を出力光信号257として出力光ファイバ258に出力する。第1実施形態では、光変調器209としてEA変調器を用いることとする。EA変調器は半導体のバンド構造やその吸収特性を利用して光変調を行うため、その周波数特性は温度依存性を持つことを前述した。これにより、一般にEA変調器の動作温度が上昇すると、バンド構造が広がり光変調の効果が減衰するため、変調信号の変調効率が低下し消光比が劣化し、光損失の増加、変調帯域の低下などの出力光信号257の劣化が生じる。そこで、第1実施形態に係る光通信装置200においては、温度センサ214を光出力部207の近傍(特に光変調器209の近傍)に配置して光出力部207の動作温度を測定することとしている。温度センサ214は光出力部207の温度測定を行い、測定された温度情報は温度センサ信号253として制御部212に入力される。
制御部212は、出力段増幅部205によるアナログ多値信号の出力振幅の設定値Aや、光出力部207に供給するバイアス電圧を定電圧源210から出力させるためのバイアス電圧設定値Vb、半導体レーザ208を駆動するための駆動電流を定電流源211から出力させるためのレーザ電流設定値Ifを設定する。これらの値は、各部品の動作点を制御する動作パラメータであり、一般的に、出力段増幅部205、光変調器209、半導体レーザ208の事前測定結果に基づいてその特性に応じた値を記憶し、光通信装置200の立ち上げ時などに設定される。さらに、バイアス電圧設定値Vb、レーザ電流設定値Ifなどの一部の動作パラメータについては、別途光出力部207から出力される出力光強度を検出し、その値が一定となるようにフィードバック制御を行う場合もある。このようにバイアス電圧設定値Vb、レーザ電流設定値Ifなどは、光変調器209、半導体レーザ208の特性に応じた値が設定されるため、これらの値も光出力部207の特性データになり得る。
また、制御部212は、光出力部207の特性データを取得する特性データ取得部を含み、特性データ取得部が取得した特性データの値に応じた出力光信号257の劣化を補償するようデジタル情報信号250を補正するための補正情報を、補正情報記憶部213から補正部203に出力させる。本実施形態においては、制御部212は、温度センサ214から出力される温度センサ信号253を取得し、取得した温度センサ信号253が示す温度情報に基づいて補正情報を選択するための補正情報選択信号255を補正情報記憶部213に出力する。ここで、補正情報選択信号255は、温度センサ信号253が示す温度情報そのままであってもよいし、温度情報を補正情報記憶部213に記憶されている補正情報テーブルのアドレス番号などに変換したものであってもよい。そして、補正情報記憶部213に記憶されている補正情報テーブルから補正情報選択信号255に対応する補正情報が読み出され補正情報設定信号256として補正部203に出力される。なお、制御部212に外部の情報処理装置と通信するための通信手段を設け、外部通信信号254を介して動作パラメータや特性データを取得することとしてもよい。
補正部203は、補正情報設定信号256により設定される補正情報をデジタル情報信号250に重畳することで当該デジタル情報信号を補正する。補正部203は、補正部203の出力特性が可変なデジタルフィルタ回路で構成されていればよく、以下に2つのデジタルフィルタ回路の例を示すが、その他のデジタルフィルタ回路であってもよい。
図2は、第1実施形態に係る光通信装置の補正部203を構成する回路の第1の例を示す図である。図2に示すように補正回路300は、実数タップのFIR(有限インパルス応答)フィルタを用いて構成されている。FIRフィルタは、デジタル信号処理やデジタル通信で周波数特性等化器として用いられるデジタルフィルタであり、遅延回路301、複数の実数タップ乗算器302、加算器303を梯子型に並べて構成される。図2に例示する補正回路300は、実数タップ乗算器302を11個用いる11タップのFIRフィルタであり、実数タップ乗算器302に設定する設定値により補正回路300の伝達特性が定められる。本実施形態においては、補正回路300は、補正情報記憶部213から入力される補正情報を示す補正情報設定信号256によって各実数タップ乗算器302に設定する11個の実数値を書き換えることで、多値符号化部202から入力されるデジタル情報信号250を任意に補正することができる。これにより、補正回路300は出力光信号257の劣化を補償するようデジタル情報信号250を補正することが可能となる。ここで、実数タップ乗算器302の数を増やせば補償精度が向上するが一方で補正回路300の消費電力が増加するため、数十個ほどの実数タップ乗算器302を用いるのが理想的である。
次に、図3は、第1実施形態に係る補正部203を構成する回路の第2の例を示す図である。図3に示すように補正回路310は、FFTと逆FFTを用いて構成される周波数領域等化器である。周波数領域等化器もデジタル信号処理やデジタル通信で用いられるデジタルフィルタであり、周期64のFFT回路311と逆FFT回路313の間に複素タップ乗算器312が64個並べられて構成される。これら64個の複素タップ乗算器312の各タップの値を設定することで補正部203の出力特性を直接変化させ、自由な出力特性を得る。
図4は、第1実施形態に係る補正情報記憶部213に記憶される補正情報テーブルの一例を示す図である。図4に例示する補正情報テーブルは、図1に示す光通信装置200と図2に示す補正回路300の構成とに対応したものである。つまり、補正情報テーブルには、出力光信号257の劣化を補償するための補正情報である補正回路300の各実数タップ乗算器302に設定する値が記憶されている。図4に例示する補正情報テーブルは、特性データである光出力部207の動作温度Tを1列目に設定し、動作温度Tは1℃単位で設定される。2列目以降は、W1〜W11の11個のタップ重みが設定され、補正回路300の11個の実数タップ乗算器302の各タップに設定するタップ重みの値W1〜W11が収納される。このような補正情報テーブルにより、光出力部207の動作温度に応じて補正部203による補正に必要な補正情報(タップ重み)が読み出される。ここで、補正情報テーブルにおける動作温度Tの間隔が広すぎると、補正情報設定信号256の量子化誤差が大きくなるため、図1の温度センサ214の分解能と同程度とするか、量子化誤差が生じても伝送性能に影響が無い程度に抑える必要がある。
ここで、補正情報テーブルに格納されるタップ重みは、光出力部207の動作温度Tに応じた出力光信号257の劣化、つまりは光出力部207(本実施形態では、光変調器209)の変調特性変化を補償するために定められる値となる。以下に、具体的なタップ重みの設定方法を説明する。ここでは、光出力部207の変調特性の一つとして光変調器209の周波数特性を例にして説明する。
図5は、第1実施形態に係る光変調器209の周波数特性を示す図である。図5は、光変調器209の動作温度に応じた光変調器209の周波数特性を示す図であり、光変調器209の動作温度が0℃、25℃、50℃と変化するにつれて、その周波数特性が変化し、変調帯域が低下する(例えば、3dB光変調帯域は、0℃で21GHz程度であるが、25℃で19GHz、50℃で15GHzまでに低下する)。また、光変調器209の動作温度の上昇により半導体レーザ208から入力されるレーザ光の波長も大きく変化する可能性があり、EA変調器のように波長依存性の大きな外部変調器の場合には、入力されるレーザ光の波長の変化によって周波数特性に大きな変化が生じる場合もある。そこで、このような光変調器209の周波数特性の変化を補償するような周波数特性を補正部203に持たせる必要がある。
図6は、第1実施形態に係る補正部203の周波数特性の一例を示す図である。図6は、光変調器209の動作温度に応じた補正部203の周波数特性を示しており、図4に示す補正情報テーブルの該当する動作温度の各タップ重みを補正部203に設定した場合の補正部203の周波数特性となる。ここで、補正部203の周波数特性は、光変調器209の周波数特性の変化を打ち消す特性とすることが理想的である。具体的には、図6に示す動作温度0℃、25℃、50℃の3点における0〜20GHzの帯域内の周波数特性は、図5に示す各温度の光変調器209の周波数特性の逆特性とする。
図7は、図5に示す光変調器209の周波数特性と、図6に示す補正部203の周波数特性とを合成した合成周波数特性を示す図である。図7に示すように、合成周波数特性は、0〜20GHzの帯域内で動作温度によらず一定となり、変調帯域は低下しない。このように、補正部203の周波数特性が図5に示す光変調器209の周波数特性と逆特性となるようにすることで光変調器209の周波数特性の変化(ここでは、温度依存性)を打ち消すことが可能となる。
そこで、補正部203の周波数特性が各動作温度における光変調器209の周波数特性の変化を打ち消すような特性となるよう、補正情報テーブルに含まれるタップ重みの値を設定する。ここでは、特に、ナイキストPAM変調を用いる場合に、補正部203の周波数特性が光変調器209の周波数特性と逆特性となるようにタップ重みを設定することが有効となる。前述したように多値符号化部202と光出力部207との間に変調帯域を制限するナイキストフィルタを備えるナイキストPAM変調では、光変調器209の温度変化にかかわらず光変調器209が出力する出力光信号257のスペクトル、すなわち光変調器209の周波数特性が帯域内でほぼ完全に平坦となるような状態を維持する必要があるため、光変調器209の周波数特性の目標形状を図7に示すような平坦な周波数特性形状とすればよいこととなる。
なお、図6に示す周波数特性はあくまでも補正部203の周波数特性の一例であり、周波数特性は補正部203を構成する回路の分解能の制限や測定誤差、動作パラメータの量子化誤差などにより一定の誤差を持つ。また、目標とする周波数特性についても、必ずしも図7のように0〜20GHzの帯域内で完全に平坦にする必要はない。例えば、レイズドコサイン型やベッセル低域フィルタ型のように、符号干渉の少ない右下がりの滑らかな周波数特性が目標形状となるように補正部203の周波数特性(つまりは、各タップ重み)を設定してもよい。また、光通信系には光変調器209以外にもDAコンバータ204、出力段増幅部205、信号の線路などの部品が含まれ、これらの部品は個別にそれぞれ温度依存性を持つ。このため、一般には光変調器209の周波数特性の変化だけを補正しても、光通信系全体の周波数特性が上記の目標形状に合致するわけではない。よって、光通信装置全体の伝送性能向上には、図5のような光変調器209単独の周波数特性の温度依存性だけではなく、光通信装置全体の周波数特性の温度依存性を測定し、これが特定の目標形状に合致するように、補正部203の周波数特性、タップ重みを設定するのが本発明の効果を高めるために特に有効である。
また、図5に示す光変調器209の周波数特性では、DC(0Hz)での周波数変調効率、すなわち光変調器209の平均光損失は動作温度では変化せず常に0dBとする例を示しているが、この例に限定されない。例えば、図6に示す補正部203の周波数特性は光損失の変化も補償するように設定されてもよい。この場合、合成周波数特性は図7においては常に平坦となっているが、動作温度の変化によって光損失の変化が生じることになる。このような光損失の変化の影響は、光通信装置間のレベルマージンを十分に取ることで回避可能であるし、また出力光信号257の出力光強度が一定となるように別途安定化制御を行って回避してもよい。同様に、補正部203は動作温度による光変調器209の周波数特性の変化分のみを補正し、光損失の変化を補償する等化回路を別に設ける構成を取っても構わない。このような構成では、補正部203は、動作温度の変化により生じるなだらかな周波数特性の劣化のみを補償すればよいので、補正部203の回路規模を大幅に縮小したり、補正情報記憶部213の回路規模やメモリサイズを縮小したりすることが可能となる。
また、補正部203を構成する回路にデジタルフィルタを用いる例を示したが、高速アナログ回路で実現することも可能である。この場合補正部203は、数〜10数タップの高速FFE(前方等化器)やDFE(判定帰還等化器)として実装することができる。また、図1では高速のDAコンバータを用いてアナログ多値信号を生成する例を示したが、この例に限られない。例えば、2値信号の場合にはそのまま、4値信号の場合には高速の2値信号を振幅を変えて加算する、デュオバイナリ信号の場合には遅延加算符号化器を用いるなど高速のアナログ演算を用いてアナログ多値信号を生成してもよい。
また、第1実施形態に係る光出力部207の特性データとして光出力部207の動作温度を用いる例を示したが、光出力部207の動作、変調特性に影響を与えるものであれば他の特性データであってよい。例えば、バイアス電圧設定値Vb、レーザ駆動電流設定値If、変調信号251の振幅A、光変調器209に入力されるレーザ光の強度、光変調器209から出力する出力光信号257の光強度、であってもよいし、これら2以上の特性データを組み合わせて用いてもよい。特に、EA変調器の場合には、動作温度、バイアス電圧設定Vb、光変調器209に入力するレーザ光の強度などがEA変調器の動作に大きな影響を与える特性データとして知られている。また、例えば、光変調器の光吸収によって生じる光電流や光電圧、平均光損失、変調信号の変調度、消光比なども、変調器動作を間接的に反映するため、光出力部207の特性データとして利用することが可能である。この場合、各特性データを測定する測定器を備えて特性データの値を取得してもよいし、制御部212から出力される各特性データの指示値を特性データの値として取得してもよい。なお、特性データの種類に応じた補正情報テーブルが補正情報記憶部213に記憶されていることとする。
[第2実施形態]
図8は、本発明の第2実施形態に係る光通信装置の構成の一例を示す図である。図8に示すように、第2実施形態に係る光通信装置400は、第1実施形態とは、光出力部407の構成、補正部403の構成、温度センサ414の配置、定電圧源210の有無に差異がある点を除けば、同一のものである。従って、第1実施形態と同等の構成には同符号を付し、その重複する説明は省略するものとする。
第2実施形態に係る光通信装置400は、光出力部407に半導体レーザ408を用いた直接変調方式を採用した例を示しており、光出力部407の特性データの一つである温度の変化による出力光信号257の劣化を補償するようデジタル情報信号250を補正する構成となっている。
温度センサ414は光通信装置400内の任意の位置に配置されることとする。第1実施形態においては温度センサ214を光出力部207の近傍に配置しているが、温度センサ414は光出力部407の温度を反映できれば必ずしも光出力部407の近傍に配置する必要は無い。光通信装置400内部に配置する集積回路や光出力部407などの部品の発熱が小さければ光通信装置400内部はおおむね同一の温度に保たれるため、温度センサ414を光通信装置400内部に配置すれば十分である。なお、集積回路内部の温度センサを利用することとしてもよい。
光出力部407では、直流成分であるレーザ駆動電流452と、高周波変調成分である変調電気信号451とが入力され、両電流を加算器やバイアスTなどで合成した合成電流により光出力部407内の半導体レーザ408が駆動される。このようにして駆動された半導体レーザ408から出力されるレーザ光の強度成分は、変調電気信号451によって直接変調され、変調電気信号451の振幅に比例した光強度変調が得られる。
補正部403は、補正回路411、固定等化回路412、及び補間回路413を含んで構成される。補正回路411は、図2の補正回路300、図3の補正回路310と同様の回路である。補間回路413は、補正情報記憶部213の記憶容量を節約するために設けられた回路である。例えば、補正情報記憶部213に記憶されている補正情報に対応しない補正情報選択信号255が入力されると、補間回路413は、補正情報記憶部213を参照して入力値前後の補正情報を読み出し、その線形補間によって新たな補正情報を生成し、補正情報設定信号256として補正回路411へ出力する。具体的には、図4に示す補正情報テーブルの左端列(温度T)にない72.4℃を示す入力値が補正情報選択信号255として入力される場合、入力値72.4℃の前後の値である72℃と73℃のタップ重みW1〜W11をそれぞれ読み出し、72℃のタップ重みと73℃のタップ重みとを比率6:4(入力値と各温度との差の絶対値比)で線形補間して新しいタップWi(i=1〜11)を生成する。このような補間回路413を用いることで、補正情報記憶部213に収納する補正情報テーブルのサイズを大きく削減することが可能になる。なお、補間回路413による補間のアルゴリズムは上述の例に限定されず、例えば、複数点の特性データを利用したより高精度な高次関数での補間や、複数の特性データに対する2次元の補間など、各種の補間アルゴリズムを用いてよい。
固定等化回路412は、補正回路411と同様に光出力部407の変調特性変化を補正するための回路であるが、特に変調特性の固定部分を分離して設けたものである。補正回路411(例えばFIRフィルタや周波数領域等化器)のタップ数や段数は、補正回路411の消費電力と周波数分解能を決める重要なパラメータであり、一般に、補正回路411の長さが長いほど回路規模が増大し消費電力が増加するが、同時に周波数分解能が高まり、急峻で複雑な周波数特性の補正が可能となる。光通信装置400全体の持つ急峻で複雑な周波数特性は、高周波線路の反射や増幅に用いる集積回路の特性などによって発生するため、光出力部407の特性データの変化に対して概ね固定的であり、光通信装置400ごとのばらつきが大きいものと考えられる。一方、温度やレーザ駆動電流などの光出力部407の特性データによって変化する周波数特性は緩やかに変化する特徴があり、同種のデバイスに共通な特徴を持つと考えられる。そこで、光通信装置400ごとのばらつきが大きい急峻で複雑な周波数特性については、光通信装置400ごとに固定の補正情報を予め設定した固定等化回路412で補正し、光出力部407の特性データにより変化する緩やかな周波数特性については補正回路411が補正情報テーブルを用いて特性データに応じた補正を行うこととする。
このように、タップ数が多く複雑な補正特性を持つ固定等化回路412と、タップ数の少ない可変の補正特性を持つ補正回路411と、を分離して構成することで、補正情報記憶部213に必要となるメモリ量を大幅に縮小したり、タップ数の多い固定等化回路412を補正特性固定に特化して専用回路を用いて実装することで補正回路411の消費電力を低減したりすることが可能となる。
また、第2実施形態に係る光出力部407の特性データとして温度を用いる例を示したが、光出力部407の動作、周波数特性に影響を与えるものであれば他の特性データであってよい。第2実施形態のように半導体レーザ408を用いた直接変調方式の場合は、光出力部407の周波数特性に影響を与える特性データとしては、動作温度およびレーザ駆動電流値が代表的である。また、これらの特性データは、例えば出力光強度や、変調信号の変調度、消光比などとも密接な関係にあるため、出力光強度、変調度、消光比などを観測して、特性データとして用いてもよい。
なお、第2実施形態に係る、光出力部407、補正部403、及び温度センサ414の配置のうちのいずれか1つの構成、またはいずれか2つを組み合わせた構成を第1実施形態に係る光通信装置に適用することとしてもよい。
[第3実施形態]
図9は、本発明の第3実施形態に係る光通信装置の構成の一例を示す図である。図9に示すように、第3実施形態に係る光通信装置500は光送信器及び光受信器としての機能を有し、光送信器としての構成は第1実施形態に係る光通信装置200と同様である。よって、第1実施形態とは、光送信部510及び光受信部520を含む構成、集積回路530、に差異がある点を除けば、同一のものである。従って、第1実施形態と同等の構成には同符号を付し、その重複する説明は省略するものとする。
第3実施形態に係る光通信装置500は、光送信部510及び光受信部520を含み、光送信部510及び光受信部520の一部が同一の集積回路530上に配置される。集積回路530は、光多値信号の変復調と内部の制御全体を受け持つものであり、多値符号化部202、補正部203、DAコンバータ204、制御部212、補正情報記憶部213、定電圧源210、定電流源211、ADコンバータ522、受信側適応等化部523、及び復号部524を含んで構成されている。集積回路530は、出力端子(出力ピン)581を介して出力段増幅部205、バイアスT206、及び半導体レーザ208と接続されている。なお、出力端子581は、物理的な専用のピンであっても、また複数のデバイス間で共用するI2CやSPIなどの通信用の信号出力端子であってもよい。また、光変調器209に近接されて配置された温度センサ214から出力される温度センサ信号253は、集積回路530に設けられたセンサ信号の入力端子582を介して、集積回路530に入力される。なお、入力端子582は、物理的なピンであっても、通信用の信号入力端子であってもよい。
なお、図9に示す光通信装置500の構成は一例であり、製造上の都合などを満たせば各部品を集積回路530の内外に自由に配置することができる。例えば、光変調器209、半導体レーザ208などを、シリコンフォトニクス技術といった集積回路530と同じシリコンプロセスを用いて製造してもよいし、ハイブリッド集積といった手法によって集積回路530と一体に製造してもよい。また、集積回路530の内部に配置される定電流源211、定電圧源210、DAコンバータ204なども適宜集積回路の外部に配置することが可能である。
光受信部520は、フォトダイオード521、ADコンバータ522、受信側適応等化部523、及び復号部524を含んで構成される。入力光ファイバ571から入力された受信光信号である受信強度変調信号572はフォトダイオード521で電気信号に光電変換されて、集積回路530中のADコンバータ522に入力される。受信電気信号はADコンバータ522でデジタル情報信号577に変換され、受信側適応等化部523で誤差を適応等化されることで主として光ファイバ伝送路や受信側回路の周波数特性による波形の劣化を補正された後に、復号部524でデジタル情報信号577を復元し、これを受信情報信号として光通信装置500の外部に出力する。
受信側適応等化部523は、主に、光ファイバ伝送路や光受信部520における伝送性能の劣化や、光出力部207の変調特性の変化の一部を補正する。具体的に、受信側適応等化部523は、例えばブラインドアルゴリズムにより受信信号波形のアイ開口を最大とするように動作する。そのため、光出力部207の変調特性の劣化により出力信号波形歪が大きくなり光受信部に入力される受信信号波形のアイ開口が小さくなっている場合には、受信側適応等化部523での収束が困難となり大きな伝送劣化を生じる可能性がある。また、受信側適応等化部523が光出力部207で生じた大きな帯域劣化を等化すると雑音が過剰に増幅してしまい、伝送信号の品質が大きく劣化してしまうという雑音強調という現象が生じる。そして、ADコンバータの分解能も有限(通常6〜8ビット程度)であるため、受信側適応等化部523で過大な帯域等化を行うと、信号SNが劣化する可能性がある。これはすなわち、仮に受信側適応等化部523が高域成分を増幅するような補正を行うと、相対的に低域の信号の振幅が減衰するため、信号の有効振幅が減衰し信号SNが劣化する。このように受信側適応等化部523による補正量は有限であるため、できる限り光送信器側で出力光信号257の劣化を防ぐのが望ましい。なお、光受信部を高速アナログ信号処理で実現する場合は、補償機能がそもそも存在しなかったり、たかだか数タップのFFE/DFE程度の補償機能しか存在しなかったり、十分な補償能力を持たないのが一般的である。
そこで、図9に示すような光送信部510の補正部203と、光受信部520の受信側適応等化部523とを含む光通信装置500を用いることで、光通信装置500全体での伝送性能の劣化を抑えることが可能となる。光送信装置500では、使用中の環境(温度・振動・熱)や経時劣化などにより、光出力部207に想定外の変調特性の変化が生じる場合がある。例えば、光送信部510の補正部203による補正の対象となる特性データ以外の特性データの変化による出力光信号の劣化が生じる場合などに、想定外の光出力部207の変調特性変化が生じる。この場合、光送信部510の補正部203と、光受信部520の受信側適応等化部523とを組み合わせて用いることで、光送信部510の補正部203が光出力部207の特性変化による出力光信号257の劣化を補正するとともに、受信側適応等化部523が光送信部側で補正しきれない出力光信号257の劣化、伝送性能の変化成分を補正することができる。さらに、光送信部510の補正部203と光受信部520の受信側適応等化部523とを組み合わせて用いる場合には、補正情報記憶部213における特性データの間隔を粗く設定し、メモリの節約を行うことが可能である。
[第4実施形態]
図10は、本発明の第4実施形態に係る光通信装置の構成の一例を示す図である。図に示すように、第4実施形態に係る光通信装置は、第3実施形態に係る光通信装置500とは、光送信部610の構成に差異がある点を除けば、同一のものである。従って、第3実施形態と同等の構成には同符号を付し、その重複する説明は省略するものとする。
第4実施形態に係る光通信装置600では、第2実施形態に係る光通信装置400と同様に光出力部407に半導体レーザ408を用いた直接変調方式を採用し、補正部603による補正に用いる特性データを2種類とした例を示している。半導体レーザ408の変調特性は動作温度及びレーザ駆動電流設定値Ifに非常に強く依存するため、温度ないしはレーザ駆動電流設定値Ifのどちらか一方を一定値とし、他方の値変化に基づいて補正部603による補正を行うことが理想的である。一方で、動作温度範囲を広ければ半導体レーザ408の温度安定化に用いるクーラーやヒータの制御量を減らし、その分低電力化を図ることが可能となる。また、半導体レーザ408から出力されるレーザ光強度はレーザ駆動電流設定値Ifによって決まるため、経年劣化や環境変化によるレーザ光強度の変化を防ぐ場合、もしくは意図的にレーザ光強度を変化させる場合には、レーザ駆動電流設定値Ifを変化させることも必要となる。そこで、第4実施形態に係る光通信装置600の制御部212は、レーザ駆動電流設定値Ifと温度センサ214からの温度センサ信号253とに基づいて、第一の特性データ信号(温度)683と第二の特性データ信号(レーザ電流値)684とを補間部413に出力することとする。そして、補間部413は、補正情報記憶部213を参照し、両特性データの値に対応した補正情報を示す補正情報設定信号656を補正回路411に出力する。
このような複数の特性データを用いた補正は、他の光変調器にも適用可能である。例えば、電界吸収型変調器集積化光源では、その変調特性が動作温度とバイアス電圧に依存して変化するため、同様の構成で効果的に変調特性を補正することが可能となる。また、動作温度を特性データとして利用すると同時に、振幅Aやレーザ駆動電流設定値If(ないしはバイアス電圧設定値Vbなど)を変化させて変調特性を一定に保ってもかまわない。このような構成においては、各特性データに関する補正情報を補正情報記憶部213に収納することが可能である。
また、集積回路530には、補正情報記憶部213に外部から補正情報を書き込むための補正情報入力端子685を設けている。このようにすることで、光通信装置600に利用される半導体レーザ、光変調器及びドライバなどに合致した補正情報を、後から補正情報記憶部213に書き換え可能となり、より高精度な補正が可能となる。また同様の補正情報の補正情報入力端子687を光通信装置600に配置しており、これによって光通信装置600全体を組み立て後に全体の特性を加味した実測データから補正特性を算出しおのおの個別の光通信装置600の特性に応じた補正情報を設定することが可能となり、さらに補正効果を高めることが可能となる。
[第5実施形態]
図11は、本発明の第5実施形態に係る光通信装置の構成の一例を示す図である。図11に示すように、第5実施形態に係る光通信装置700は、第3実施形態に係る光通信装置500とは、集積回路の構成に差異がある点を除けば、同一のものである。従って、第3実施形態と同等の構成には同符号を付し、その重複する説明は省略するものとする。
第5実施形態に係る光通信装置は、集積回路790、信号用集積回路791−1、及び信号用集積回路791−2を含み、信号用集積回路791−1及び791−2と、集積回路790とを異なる集積回路で構成している。集積回路790は、信号処理用集積回路791−1および791−2に比べて動作速度がきわめて低く、一方で信号レベルの制御など複雑な機能が要求されるため、汎用性の高い汎用プロセッサなどで実現される。
また、補正情報記憶部213は集積回路790の外部に配置され、補正情報記憶部213と集積回路790とは記憶部読み書き用通信経路792を介して接続されている。補正情報記憶部213は不揮発性シリアル/パラレルEPROM、フラッシュメモリ等の一般的なメモリ回路であり、必要に応じて取り外し可能としてもよい。また、補正情報記憶部213を取り外し可能として、補正情報を書き込んだ後に実装する利用形態も可能となる。
図11において、補正情報を補正情報記憶部213に入力するための入力端子を明示的に示していないが、制御部212が外部通信信号714の一部として外部から補正情報を受け取り、これを記憶部読み書き用通信経路792を介して補正情報記憶部213に書き込む。このように、外部通信信号714及びその接続端子が実質的に図11の第4の実施形態における集積回路530に備えられる補正情報入力端子685ないしは、補正情報入力端子687と等価な役割を果たしている。また、制御部212は、外部通信信号714を介して外部から特性データを取得してもよい。
また、図11において、補間部を明示的に示していないが、制御部212がその機能を兼用しても構わない。図11において信号処理用集積回路791−1と信号処理用集積回路791−2を分離して記載しているが、両者は同一の集積回路としてもよい。
なお、本発明は上述の実施形態に限定されるものではない。例えば、光通信装置に光出力部の温度安定化に用いられるヒータやクーラーといった温度調整器が備えられていてもよい。この場合、光通信装置を常に所定温度に保つと消費電力が増加するため、所定温度から所定範囲内の温度変化を許容する設定を行うことがある。また、EA変調器などには正常に動作する動作温度範囲があり、動作温度範囲を超える場合に温度調整を行い、動作温度範囲内の場合は温度調整を停止する、という設定を行うことがある。このように光通信装置に温度調整器が備えられていても温度調整器が動作していない間などの温度変動が生じる場合に本発明を適用することができる。
さらに、上述の実施形態では、主に強度変調方式について説明したがこれに限定されず例えば外部変調器としてMZ変調器を適用した位相変調方式や、IQ変調器を適用した電界変調方式で駆動させた場合であっても適用できる。
100,200,400,500,600,700 光通信装置、101,250 デジタル情報信号、102,202 多値符号化部、103,205 出力段増幅部、104,206 バイアスT、105,209 光変調器、106,208,408 半導体レーザ、107,258 出力光ファイバ、108 多値変調光、109,210 定電圧源、110,211 定電流源、111,251 変調信号、112,252,452 レーザ駆動電流、113,212 制御部、115,204 DAコンバータ、203,403,603 補正部、207,407 光出力部、213 補正情報記憶部、214,414 温度センサ、254,714 外部通信信号、253 温度センサ信号、255 補正情報選択信号、256,656 補正情報設定信号、257 出力光信号、300,310,411 補正回路、301 遅延回路、302 実数タップ乗算器、303 加算器、311 FFT回路、312 複素タップ乗算器、313 逆FFT回路、412 固定等化回路、413 補間部、451 変調電気信号、510,610 光送信部、520 光受信部、521 フォトダイオード、522 ADコンバータ、523 受信側適応等化部、524 復号部、530,790 集積回路、571 入力光ファイバ、572 受信強度変調信号、577 デジタル情報信号、581 出力端子、582 入力端子、683 第一の特性データ信号、684 第二の特性データ信号、685,687 補正情報入力端子、791−1,791−2 信号用集積回路、792 記憶部書き込み用通信経路。

Claims (11)

  1. 出力される光信号の変調に用いるデジタル信号をアナログ多値信号に変換する変換部と、
    前記アナログ多値信号によって変調された前記光信号を出力する光出力部と、
    前記光出力部の特性データを取得する特性データ取得部と、
    前記取得した特性データに応じた前記光出力部の変調特性変化を補償するよう前記変換部により変換される前記デジタル信号を補正する補正部と、
    を含むことを特徴とする光通信装置。
  2. 請求項1に記載の光通信装置であって、
    前記特性データ取得部は、前記特性データとして前記光出力部の動作温度を取得する、
    ことを特徴とする。
  3. 請求項2に記載の光通信装置であって、
    前記光出力部の動作温度を測定するための温度センサ、をさらに含む、
    ことを特徴とする。
  4. 請求項1から3のいずれか一項に記載の光通信装置であって、
    前記特性データ取得部は、前記光信号の光源を駆動するための駆動電流値もしくは前記光出力部に設定するバイアス電圧を取得する、
    ことを特徴とする。
  5. 請求項1から4のいずれか一項に記載の光通信装置であって、
    前記特性データに応じた前記デジタル信号を補正するための補正情報を記憶する記憶部、をさらに含み、
    前記補正部は、前記取得した特性データに応じた補正情報を前記記憶部から取得して前記デジタル信号に重畳する、
    ことを特徴とする。
  6. 請求項5に記載の光通信装置であって、
    前記取得した特性データの値に応じた前記補正情報が前記記憶部に記憶されていない場合に、前記記憶部に記憶されている前記補正情報に基づいて当該取得した特性データの値に対応する前記補正情報を補間して前記補正部に出力する補間部、をさらに含む、
    ことを特徴とする。
  7. 請求項5または6に記載の光通信装置であって、
    前記補正情報は前記光出力部の周波数特性を平坦とするための値である、
    ことを特徴とする。
  8. 請求項7に記載の光通信装置であって、
    前記補正部は、前記光出力部の周波数特性を平坦とするデジタルフィルタであり、前記補正情報は前記光出力部の周波数特性を平坦とするための前記デジタルフィルタの伝達特性を定める設定値である、
    ことを特徴とする。
  9. 請求項5から8のいずれか一項に記載の光通信装置であって、
    前記記憶部は、前記補正情報を書き換え可能、または当該記憶部を交換可能な記憶媒体で構成される、
    ことを特徴とする。
  10. 請求項9に記載の光通信装置であって、
    前記補正情報を前記記憶部に書き込むための信号端子、または通信手段をさらに含む、
    ことを特徴とする。
  11. 請求項1乃至10に記載の光通信装置であって、
    外部から受信した受信光信号を電気信号に変換する光電変換部と、
    前記変換された電気信号の誤差を等化する適応等化部と、
    前記等化された電気信号を復号して情報信号として出力する復号部と、
    をさらに含む、
    ことを特徴とする。
JP2014261024A 2014-12-24 2014-12-24 光通信装置 Active JP6502663B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014261024A JP6502663B2 (ja) 2014-12-24 2014-12-24 光通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014261024A JP6502663B2 (ja) 2014-12-24 2014-12-24 光通信装置

Publications (2)

Publication Number Publication Date
JP2016122910A true JP2016122910A (ja) 2016-07-07
JP6502663B2 JP6502663B2 (ja) 2019-04-17

Family

ID=56327533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014261024A Active JP6502663B2 (ja) 2014-12-24 2014-12-24 光通信装置

Country Status (1)

Country Link
JP (1) JP6502663B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212684A (ja) * 2016-05-27 2017-11-30 住友電工デバイス・イノベーション株式会社 光送信装置及び光送信装置の駆動調整方法
JP2018022949A (ja) * 2016-08-01 2018-02-08 日本オクラロ株式会社 光送受信器、光送信集積回路及び光受信集積回路
WO2020039725A1 (ja) * 2018-08-23 2020-02-27 三菱電機株式会社 光送信装置、光送信方法、及びプログラム
CN112041733A (zh) * 2018-05-04 2020-12-04 三菱电机株式会社 光环电路和光环调制器
JP7367557B2 (ja) 2020-02-21 2023-10-24 富士通オプティカルコンポーネンツ株式会社 光通信装置及び補正方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448472A (en) * 1987-08-19 1989-02-22 Fujitsu Ltd Light-emitting device driving circuit
JPH04290278A (ja) * 1991-03-19 1992-10-14 Fujitsu Ltd レーザ駆動回路
JPH10336115A (ja) * 1997-06-02 1998-12-18 Nec Corp アナログ光送信装置
JP2002344077A (ja) * 2001-05-16 2002-11-29 Toshiba Corp 光源の波長保持回路
JP2010514278A (ja) * 2006-12-20 2010-04-30 オフィディウム、プロプライエタリー、リミテッド 光伝送システムの非線形補償
WO2011052423A1 (ja) * 2009-10-29 2011-05-05 三菱電機株式会社 予等化光送信器および予等化光ファイバ伝送システム
JP2011124798A (ja) * 2009-12-10 2011-06-23 Planners Land Co Ltd 可視光通信送信装置
WO2013126150A1 (en) * 2012-02-24 2013-08-29 Cisco Technology, Inc. Pre-distortion techniques for optical modulators to improve constellation point separation
JP2014103594A (ja) * 2012-11-21 2014-06-05 Fujitsu Ltd 光送信装置、光送信方法、および光送信プログラム
JP2014158182A (ja) * 2013-02-15 2014-08-28 Phi Microtech Inc 温度補償回路

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448472A (en) * 1987-08-19 1989-02-22 Fujitsu Ltd Light-emitting device driving circuit
JPH04290278A (ja) * 1991-03-19 1992-10-14 Fujitsu Ltd レーザ駆動回路
JPH10336115A (ja) * 1997-06-02 1998-12-18 Nec Corp アナログ光送信装置
JP2002344077A (ja) * 2001-05-16 2002-11-29 Toshiba Corp 光源の波長保持回路
JP2010514278A (ja) * 2006-12-20 2010-04-30 オフィディウム、プロプライエタリー、リミテッド 光伝送システムの非線形補償
WO2011052423A1 (ja) * 2009-10-29 2011-05-05 三菱電機株式会社 予等化光送信器および予等化光ファイバ伝送システム
JP2011124798A (ja) * 2009-12-10 2011-06-23 Planners Land Co Ltd 可視光通信送信装置
WO2013126150A1 (en) * 2012-02-24 2013-08-29 Cisco Technology, Inc. Pre-distortion techniques for optical modulators to improve constellation point separation
JP2014103594A (ja) * 2012-11-21 2014-06-05 Fujitsu Ltd 光送信装置、光送信方法、および光送信プログラム
JP2014158182A (ja) * 2013-02-15 2014-08-28 Phi Microtech Inc 温度補償回路

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212684A (ja) * 2016-05-27 2017-11-30 住友電工デバイス・イノベーション株式会社 光送信装置及び光送信装置の駆動調整方法
JP2018022949A (ja) * 2016-08-01 2018-02-08 日本オクラロ株式会社 光送受信器、光送信集積回路及び光受信集積回路
CN112041733A (zh) * 2018-05-04 2020-12-04 三菱电机株式会社 光环电路和光环调制器
JP2021518928A (ja) * 2018-05-04 2021-08-05 三菱電機株式会社 光リング回路及びリング光変調器
JP7170744B2 (ja) 2018-05-04 2022-11-14 三菱電機株式会社 光リング回路
CN112041733B (zh) * 2018-05-04 2024-02-06 三菱电机株式会社 光环电路和光环调制器
WO2020039725A1 (ja) * 2018-08-23 2020-02-27 三菱電機株式会社 光送信装置、光送信方法、及びプログラム
JPWO2020039725A1 (ja) * 2018-08-23 2021-02-15 三菱電機株式会社 光送信装置、光送信方法、及びプログラム
JP7367557B2 (ja) 2020-02-21 2023-10-24 富士通オプティカルコンポーネンツ株式会社 光通信装置及び補正方法

Also Published As

Publication number Publication date
JP6502663B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
US11483074B2 (en) Coherent optical transceiver with programmable application modes
JP6502663B2 (ja) 光通信装置
JP4739076B2 (ja) 光ファイバ通信システム
US8503887B2 (en) Pre-equalized optical transmitter and pre-equalized optical transmission system
JP6738682B2 (ja) 光送受信器、光送信集積回路及び光受信集積回路
EP2738956B1 (en) Optical multilevel signal pre-equalization circuit, optical multilevel signal pre-equalization transmitter, and polarization-multiplexed pre-equalization transmitter
JP2017152979A (ja) 誤り訂正回路および光伝送システム
JP5174573B2 (ja) 予等化光ファイバ通信システム
JP2013153259A (ja) 通信装置及び通信方法
US8948609B2 (en) Pre-distortion techniques for optical modulators to improve constellation point separation
US10148465B2 (en) Training assisted joint equalization
US10148363B2 (en) Iterative nonlinear compensation
JP2013081227A (ja) デジタル受信機及びそれを用いた光通信システム
JP6330802B2 (ja) デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法
JPWO2014141337A1 (ja) 光変調器、光送信器、光送受信システム及び光変調器の制御方法
US9083570B2 (en) Level equalization to compensate for implementation impairments in optical communication systems with high-order modulations
US10862589B2 (en) Histogram based optimization for optical modulation
JP6522964B2 (ja) 光送受信器
JP5844832B2 (ja) ディジタルコヒーレント光受信装置および周波数特性調整方法
WO2015136877A1 (ja) 光送信機、それを用いた光通信システムおよび光送信方法
WO2013128835A1 (ja) 光受信器および光通信システム
JP2014138361A (ja) 光送信器、光通信システム、および光送信器補償方法
Duthel et al. Impact of pluggable analog coherent optics modules on line card architecture and DSP functionality
CN114337840B (zh) 一种调制信号6PolSK-QPSK的色散补偿方法
JP2012100006A (ja) 光送信機、光受信機および光通信システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6502663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250