WO2020039725A1 - 光送信装置、光送信方法、及びプログラム - Google Patents

光送信装置、光送信方法、及びプログラム Download PDF

Info

Publication number
WO2020039725A1
WO2020039725A1 PCT/JP2019/024468 JP2019024468W WO2020039725A1 WO 2020039725 A1 WO2020039725 A1 WO 2020039725A1 JP 2019024468 W JP2019024468 W JP 2019024468W WO 2020039725 A1 WO2020039725 A1 WO 2020039725A1
Authority
WO
WIPO (PCT)
Prior art keywords
bias voltage
signal
voltage
condition
value
Prior art date
Application number
PCT/JP2019/024468
Other languages
English (en)
French (fr)
Inventor
勇人 佐野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020538203A priority Critical patent/JP6880333B2/ja
Publication of WO2020039725A1 publication Critical patent/WO2020039725A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation

Definitions

  • the present invention relates to an optical transmission device, an optical transmission method, and a program, and more particularly, to an optical transmission device, an optical transmission method, and a program applicable to a multi-level modulation method mainly using a PAM4 modulation method.
  • Non-Patent Document 1 proposes a PAM4 modulation method.
  • EA Electro-Absorption
  • the optical transmitter described above has a problem that the error rate of the optical signal increases due to a change in the extinction curve characteristic of the EA modulator with respect to the temperature.
  • the PAM4 modulation method for transmitting 2 bits (4 values of 3, 2, 1, 0) in one symbol is 4-value amplitude modulation in which the amplitude level is modulated corresponding to 3, 2, 1, 0.
  • thermoelectric controller Thermoelectric Cooler
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an optical transmission device that can reduce an error rate of an optical signal even when a temperature change occurs without using a thermoelectric controller for an EA modulator. Aim.
  • An optical transmitter includes a first optical modulator that performs pulse amplitude modulation on an input continuous laser light by a transmission modulation signal characterized by a DC bias voltage and a drive amplitude, and outputs the modulated optical signal as an optical signal. And changing the input continuous laser light to a first condition change based on a photocurrent value caused by an electric field absorption effect from the first DC bias voltage to the third DC bias voltage, each of which has a different voltage value.
  • a second optical modulator that outputs a third condition changing signal from the signal as a third condition changing signal, and a third condition changing signal from the first condition changing signal from the second optical modulator
  • a first drive condition control signal is obtained from the change signal based on the difference in the amount of light absorbed by the third condition change signal, and the first drive condition control signal is applied from the first DC bias voltage applied to the second optical modulator.
  • 3D A driving condition search unit that outputs a bias voltage, and a DC component that is a DC component of a transmission modulation signal applied to the first optical modulator based on the first driving condition control signal obtained by the driving condition search unit.
  • An optical transmitter control unit for adjusting the voltage value of the bias voltage is provided.
  • the modulation signal for transmission applied to the first optical modulator is adjusted and output from the first optical modulator.
  • the error rate of the optical signal can be reduced.
  • FIG. 2 is a block diagram showing a configuration of the optical transmission device 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of an optical signal generation unit 200a according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram illustrating a relationship between an extinction curve characteristic and a DC bias voltage in the EA modulator 220 according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an eye pattern (appropriate driving conditions) of an optical signal in the PAM4 modulation method in the EA modulator 220 according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram for explaining a principle of a control method in the EA modulator 220 according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between a power transmittance T and a photocurrent Iph with respect to a reverse applied voltage V in the EA modulators 220, 231, and 233 according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between a power transmittance T and a reverse applied voltage V in the drive amplitude adjustment mode in the EA modulators 220, 231, and 233 according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between a power transmittance T and a reverse applied voltage V in the drive amplitude adjustment mode in the EA modulators 220, 231, and 233 according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between an extinction curve and an applied voltage V in the EA modulator 220 according to Embodiment 1 of the present invention, with and without adjustment at the temperature t1 and the temperature t2.
  • FIG. 3 is a diagram illustrating a hardware configuration of the optical transmission device 100 according to Embodiment 1 of the present invention.
  • 5 is a flowchart showing an adjustment mode in the optical transmission device 100 according to Embodiment 1 of the present invention.
  • 5 is a flowchart illustrating a DC bias voltage adjustment mode in the optical transmission device 100 according to Embodiment 1 of the present invention.
  • 4 is a flowchart illustrating a drive amplitude adjustment mode in the optical transmission device 100 according to Embodiment 1 of the present invention.
  • FIG. 9 is a block diagram showing a configuration of an optical transmission device 100 according to Embodiment 2 of the present invention.
  • 9 is a flowchart showing an adjustment mode in the optical transmission device 100 according to Embodiment 2 of the present invention.
  • FIG. 13 is a block diagram illustrating a configuration of an optical signal generation unit 200c according to Embodiment 3 of the present invention.
  • FIG. 14 is a block diagram illustrating a configuration of an optical signal generation unit 200d according to Embodiment 4 of the present invention.
  • 15 is a flowchart showing an adjustment mode in the optical transmission device 100 according to Embodiment 5 of the present invention.
  • FIG. 16 is a block diagram showing a configuration of an optical transmission device 100 according to Embodiment 6 of the present invention.
  • FIG. 13 is a block diagram illustrating a configuration of an optical signal generation unit 200c according to Embodiment 3 of the present invention.
  • FIG. 14 is a block diagram illustrating a configuration of an optical signal generation unit 200d according to
  • FIG. 19 is a block diagram showing a configuration of an optical signal generation unit 200e according to Embodiment 6 of the present invention.
  • FIG. 21 is a diagram showing a relationship between a reverse direction applied voltage V and a power transmittance T in a drive amplitude adjustment mode in the EA modulators 220, 231, and 234 according to the sixth embodiment of the present invention.
  • 15 is a flowchart illustrating a drive amplitude adjustment mode in the optical transmission device 100 according to Embodiment 6 of the present invention.
  • Embodiment 1 An optical transmission device 100 according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • solid arrows indicate the flow of optical signals
  • dotted arrows indicate the flow of electric signals.
  • FIG. 1 is a block diagram showing a configuration of an optical transmission device 100 according to Embodiment 1 of the present invention.
  • the optical transmission device 100 is a device that focuses on the transmission function of a communication device and an optical transceiver that control transmission and reception of an optical signal in an optical communication network including an optical fiber or a wireless space. Therefore, in an actual system, an optical receiver and a control device for controlling the optical receiver are included together with the optical transmitter 100 in the same housing.
  • a generally known device can be used as the optical receiver and a control device for controlling the optical receiver, and thus detailed description is omitted.
  • the optical transmission device 100 is an optical transmission device to which the PAM4 modulation method is applied, and is applied to, for example, a large-capacity optical fiber communication device.
  • the optical transmission device 100 includes an optical transmitter 200 and an optical transmitter control unit 300.
  • the optical transmitter 200 converts an electric signal input as data information to be transmitted to a communication partner into an optical signal and outputs the optical signal.
  • the optical transmitter 200 includes at least one optical device.
  • the electric signal input as data information is input to the optical device as a transmission modulation signal 1 which is an ultra-high-speed electric signal.
  • the transmission modulation signal 1 is a modulation signal characterized by a DC bias voltage Vbias and a drive amplitude VRF.
  • two adjustment modes for the modulation signal 1 for transmission that is, a DC bias voltage (Vbias) adjustment mode and a drive amplitude (VRF) adjustment mode are repeatedly performed along with normal optical communication. Note that these adjustment modes are not always performed, and may be repeatedly performed at predetermined intervals.
  • the optical transmitter control unit 300 generates the modulation signal for transmission 1, outputs the modulation signal for transmission 1 to the optical transmitter 200, receives various electric signals from the optical transmitter 200, and receives the input electric signal.
  • the optical transmitter 200 is controlled based on.
  • the optical transmitter control unit 300 may be realized on a dedicated control board for the optical transmitter 200, or may be realized on a control board for the entire optical transmitter 100.
  • the optical transmitter 200 is an optical transmitter to which the PAM4 modulation method is applied, and is configured by an optical device of an electro-absorption modulator laser diode (EML).
  • the optical transmitter 200 includes an optical signal generation unit 200a, which is an optical element, and a driving condition search unit 200b.
  • the optical signal generation unit 200a generates and transmits and receives an electric signal and an optical signal, and performs a main function as the optical transmitter 200.
  • the optical signal generation unit 200a has a basic configuration including a continuous laser light output unit (hereinafter, referred to as a CW light output unit) 210 and an electroabsorption modulator (hereinafter, referred to as an EA modulator) 220, which are generally known.
  • An optical device as an element is provided with a first observation EA modulator 231 to a third observation EA modulator 233.
  • the CW light output unit 210 is configured by a semiconductor laser that generates CW (Continuous Wave) light (continuous wave oscillation light) as a source of an optical signal and sends the CW light to a subsequent block. As shown in FIG. 2, the CW light output unit 210 includes a light emitting unit 211, a CW light branching unit 212, and an observation CW light branching unit 213.
  • CW Continuous Wave
  • the CW light output unit 210 includes a light emitting unit 211, a CW light branching unit 212, and an observation CW light branching unit 213.
  • the light emitting unit 211 is a semiconductor laser (LD) that outputs CW light.
  • the CW light branching unit 212 branches the CW light from the light emitting unit 211 into two, and outputs the two to the EA modulator 220 and the observation CW light branching unit 213.
  • the observation CW light branching unit 213 branches the CW light from the CW light branching unit 212 into three, and outputs the CW light from the first observation EA modulator 231 to the third observation EA modulator 233.
  • the characteristics of the CW light before and after branching of the CW light branching unit 212 are the same except for the optical power, and the characteristics of the CW light before and after branching of the observation CW light branching unit 213 are the same except for the optical power.
  • the CW light branching unit 212 and the observation CW light branching unit 213 are configured by an optical coupler, a multimode interference waveguide, or the like. Further, the adjustment mode is performed for all periods during the operation of the optical transmission apparatus 100. However, when the adjustment mode is periodically performed, the CW optical branching unit 212 only outputs the CW light from the light emitting unit 211 only in the adjustment mode. The light may be branched to the observation CW light branching unit 213.
  • the EA modulator 220 has a waveguide structure that is an external modulator, is optically connected to the CW light output unit 210, and outputs the CW light from the CW light output unit 210 input through the CW light branching unit 212.
  • the modulation is performed by a transmission modulation signal 1 which is an electric signal for modulation applied through an electrode provided in the waveguide, and an optical signal is generated and output.
  • the EA modulator 220 utilizes the property that, when an electric signal is applied, an electric field is generated in the waveguide to cause light absorption of CW light passing therethrough, and as a result, the optical power of output light is reduced. .
  • the EA modulator 220 generates an optical signal whose optical power is modulated by supplying a high-speed electric signal as the transmission modulation signal 1 and outputs the optical signal.
  • the transmission modulation signal 1 is a bias-applied modulation signal for driving the EA modulator 220, and is an electric signal obtained by combining a DC bias voltage Vbias and a modulation signal having a drive amplitude VRF.
  • the EA modulator 220 has a function of attenuating the optical power of the continuous laser light input from the CW light output unit 210 via the CW light branching unit 212 by the electric field absorption effect.
  • a first optical modulator that performs pulse amplitude modulation by the applied modulation signal for transmission 1 and outputs it as an optical signal is configured.
  • the EA modulator 220 has a relationship between the power transmittance T and the reverse applied voltage V as shown in FIG. 3, that is, an extinction curve characteristic.
  • FIG. 3 shows the extinction curve T0 with respect to the temperature at the start of operation or the set temperature at the time of steady operation within the allowable temperature range of use of the optical transmitter 100.
  • the horizontal axis indicates the reverse applied voltage V, that is, the voltage value in the modulation signal for transmission 1
  • the vertical axis indicates the power transmittance T of the EA modulator 220.
  • the reverse direction applied voltage V is a positive value on the horizontal axis.
  • the bias is appropriately applied so that the modulation is performed in a linear region in the extinction curve T0.
  • the modulated signal for transmission 1 is supplied to the EA modulator 220.
  • the reverse applied voltage V near the center point of the linear region in the extinction curve T0 is set as the DC bias voltage Vbias, and the voltage difference between the transmission modulation signal 1 corresponding to level 3 and level 0 in the PAM4 modulation method is used for transmission.
  • the drive amplitude VRF of the modulation signal 1 is set.
  • the power transmittances T of the optical signals from level 3 to level 0 should appear at regular intervals. Therefore, the reverse applied voltage value indicating the transmission modulation signal 1 at the level 3 is a value obtained by subtracting half of the drive amplitude VRF from the DC bias voltage Vbias, and the transmission modulation signal 1 at the level 2 is obtained.
  • the reverse applied voltage value shown is a value obtained by subtracting 1/6 of the drive amplitude VRF from the DC bias voltage Vbias, and the reverse applied voltage value showing the transmission modulation signal 1 at the level 1 is the DC bias voltage Vbias.
  • the value obtained by adding 1/6 of the drive amplitude VRF and the value of the reverse applied voltage indicating the transmission modulation signal 1 at the level 0 are the value obtained by adding 1/2 of the drive amplitude VRF to the DC bias voltage Vbias. I do.
  • the optical output power of the EA modulator 220 changes from P03 to P00 for level 3 to level 0, respectively, as shown in FIG. Therefore, a quaternary light output is obtained corresponding to level 3 to level 0.
  • the eye pattern of the optical signal output from the EA modulator 220 has three eyes: an eye between levels 3 and 2, an eye between levels 2 and 1, and an upper and lower eye between levels 1 and 0. Since the three eyes are open at equal intervals, signal errors in the three upper, middle, and lower eyes occur at approximately the same frequency, and the error rate decreases as the amplitude difference between the levels increases.
  • the extinction curve characteristic of the EA modulator 220 is affected by various environments inside and outside the optical transmission device 100.
  • the extinction curve changes from the extinction curve T0.
  • the influence of the temperature on the electric field absorption effect is complicated, so that the fluctuation of the extinction curve corresponding to the temperature change cannot be expressed simply like the parallel movement of the function.
  • the transmission modulation signal 1 is applied in the linear region of the extinction curve T0 due to temperature fluctuations. , The transmission modulated signal 1 is applied to the region, the eye pattern of the optical signal output from the EA modulator 220 is distorted, and the upper, middle, and lower eyes become unequally spaced, and the error rate of the optical signal becomes lower. May increase.
  • the first embodiment has two adjustment modes, a DC bias voltage adjustment mode and a drive amplitude adjustment mode, and changes the reverse applied voltage value in the transmission modulation signal 1 so that the transmission modulation signal 1 Is applied to the linear region of the extinction curve.
  • the basic idea of the control is to aim at the maximum value of the slope of the extinction curve in the extinction curve characteristic of the EA modulator 220 and to obtain the DC bias voltage Vbias.
  • FIG. 5 is a diagram illustrating the principle of the drive condition search of the EA modulator 220.
  • the horizontal axis represents the reverse applied voltage V, that is, the voltage value in the modulation signal for transmission 1
  • the vertical axis represents the power transmittance T of the EA modulator 220.
  • the reverse direction applied voltage V is a positive value on the horizontal axis.
  • the solid lines T1 and T2 show the extinction curve
  • the dotted lines T1 'and T2' show the slope characteristics of the extinction curve obtained by differentiating the extinction curves T1 and T2 with voltage. Is shown.
  • the temperature t1 and the temperature t2 are different temperatures. When the temperature changes from t1 to t2, the power transmittance T for each voltage changes. That is, the extinction curve changes from T1 to T2 as shown in FIG.
  • An index that is an appropriate value is the maximum value of the slope of the extinction curve. That is, when the extinction curve characteristic is completely linear, the slope of the extinction curve is constant for any DC bias voltage. However, actually, the power transmittance T indicated by the extinction curve has a value of 0 or more and 1 or less, so that the slope is not constant for all DC bias voltages Vbias, and the slope is equal to the DC bias voltage Vbias. Increase or decrease. As the inclination increases and decreases, as shown in FIG.
  • the rate of change of the inclination is small near the maximum values of the inclination characteristics T1 'and T2' of the extinction curve.
  • the region where the extinction curve T1 and the extinction curve T2 have high linearity is obtained at the DC bias voltage Vbias giving the maximum value. Therefore, a voltage that gives the maximum value of the slope of the extinction curve is appropriate as the DC bias voltage Vbias applied to the EA modulator 220.
  • the drive amplitude VRF of the modulation signal is very large, the value of the transmission modulation signal 1 giving level 3 or level 0 enters the nonlinear region of the extinction curve. The waveform is distorted even under the conditions. Therefore, the drive amplitude VRF of the modulation signal is controlled to an appropriate value, and the DC bias voltage Vbias is set to a voltage that gives the maximum value of the slope. Based on this idea, the modulation signal for transmission 1 to the EA modulator 220 is generated. This will be specifically described below.
  • the first observation EA modulator 231 to the third observation EA modulator 233 in the optical signal generation unit 200 a are for searching for an appropriate driving condition of the EA modulator 220.
  • Each of the first observation EA modulator 231 to the third observation EA modulator 233 has the same configuration as the EA modulator 220, and the first EA modulator 231 corresponds to the CW light from the CW light output unit 210.
  • the first condition changing current 5 to the third condition changing current 7 are output as the use condition signals.
  • the first observation EA modulator 231 to the third observation EA modulator 233 have the semiconductor layer structure and composition ratio of the EA modulator 220 for the purpose of searching for an appropriate driving condition of the EA modulator 220. And the same as possible.
  • the first DC bias voltage 2 to the third DC bias voltage 4 applied from the first observation EA modulator 231 to the third observation EA modulator 233 have different voltage values.
  • the reason why the first DC bias voltage 2 to the third DC bias voltage 4 are set to different voltage values is that the photocurrent which is an output from the first observation EA modulator 231 to the third observation EA modulator 233 is used. Is based on the idea that the modulation signal 1 for transmission to the EA modulator 220 is adjusted by using the difference in the values of.
  • the first observation EA modulator 231 to the third observation EA modulator 233 have a waveguide structure other than the applied first to third DC bias voltages 2 to 4.
  • the length of the region where the electric field absorption effect occurs and the like are made as equal as possible.
  • the first observation EA modulator 231 to the third observation EA modulator 233 are EA modulators having the same configuration.
  • the length of the waveguide from the first observation EA modulator 231 to the third observation EA modulator 233 is not necessarily the same as the length of the waveguide of the EA modulator 220. No need.
  • the first observation EA modulator 231 to the third observation EA modulator 233 change the optical power of the continuous laser light from the CW light output unit 210 input via the observation CW light branching unit 213. It is composed of three waveguides each having a function of attenuating by the electric field absorption effect, and the continuous laser light from the CW light output unit 210 has different voltage values from the first DC bias voltage 2 to the third DC bias voltage.
  • a second optical modulator that outputs a first condition changing signal as a third condition changing signal based on a value of a photocurrent caused by an electric field absorption effect by the voltage 4 is configured.
  • the first observation EA modulator 231 to the third observation EA modulator 233 are respectively controlled by the first DC bias voltage 2 to the third DC bias voltage 4 applied through electrodes provided on the waveguide.
  • a photocurrent occurs between the applied electrodes.
  • the amount of light absorption in the first observation EA modulator 231 to the third observation EA modulator 233 and thus the power transmittance T can be estimated.
  • the voltage values of the first DC bias voltage 2 to the third DC bias voltage 4 applied from the first observation EA modulator 231 to the third observation EA modulator 233 are as follows.
  • the voltage difference (V1-V2) between the voltage values indicated by the first DC bias voltage 2 and the second DC bias voltage 3 in the DC bias voltage adjustment mode is set to a difference value ⁇ 2
  • the second DC bias voltage A voltage difference (V2 ⁇ V3) between the voltage values indicated by the third and third DC bias voltages 4 is set as a difference value ⁇ 3.
  • the voltage value V1 of the first DC bias voltage 2 is Vbias
  • the voltage value V2 indicated by the second DC bias voltage 3 is Vbias ⁇ 2
  • the voltage value V3 indicated by the third DC bias voltage 4 is Vbias ⁇ 2 ⁇ ⁇ 3.
  • the difference value ⁇ 2 and the difference value ⁇ 3 are about 0.1 V because the DC bias voltage Vbias in the transmission modulation signal 1 applied to the EA modulator 220 is controlled with a resolution of about 0.1 V in the first embodiment. Control with resolution.
  • Vbias at the initial value is set to the value shown in FIG. 3, that is, a value intermediate between level 1 and level 2 in the extinction curve T0 at the temperature t0.
  • a voltage difference (V1-V2) between the voltage values indicated by the first DC bias voltage 2 and the second DC bias voltage 3 in the drive amplitude adjustment mode is defined as a difference value ⁇ 2, and the second DC bias voltage 3 and the third DC bias voltage 3
  • the voltage difference (V2-V3) between the voltage values indicated by the DC bias voltage 4 is set as the difference value ⁇ 3. Assuming that the voltage value V1 indicated by the first DC bias voltage 2 is Vbias, the voltage value V2 indicated by the second DC bias voltage 3 is Vbias ⁇ 2, and the voltage value V3 indicated by the third DC bias voltage 4 is Vbias ⁇ 2. ⁇ 3.
  • the difference value ⁇ 2 is 1/6 of the drive amplitude VRF
  • the difference value ⁇ 3 is 1/3 of the drive amplitude VRF. That is, the difference value ⁇ 3 corresponds to the voltage difference between the equally-spaced levels shown in FIG. 3, and the difference value ⁇ 2 corresponds to 1 of the voltage difference between the levels.
  • Vbias at the start of the drive amplitude adjustment mode is a value set immediately after the end of the DC bias voltage adjustment mode because it is performed immediately after the end of the DC bias voltage adjustment mode.
  • the drive condition search unit 200b performs generation, transmission, reception, control, and the like of an electric signal, and performs the third condition change signal from the first observation EA modulator 231 to the third condition change signal from the third observation EA modulator 233.
  • the third DC bias voltage 4 is output from the first DC bias voltage 2 applied to the third observation EA modulator 233.
  • the driving condition search unit 200b includes a first current-voltage conversion unit 241 to a third current-voltage conversion unit 243, a first differential amplification unit 251 and a second differential amplification unit 252, and a comparison unit 260 , A drive condition control unit 270 and a three-point DC bias voltage control unit 280.
  • FIG. 1 shows the flow of the electric signal between the components of the driving condition search unit 200b, there is no actual flow of the electric signal when the operation is performed by software.
  • the first current-to-voltage converter 241 to the third current-to-voltage converter 243 correspond to the first observation EA modulator 231 to the third observation EA modulator 233, respectively.
  • the current values indicated by the first condition changing current 5 to the third condition changing current 7 from the first observation EA modulator 231 to the third observation EA modulator 233 are converted into voltage values,
  • the first condition changing voltage 10 to the third condition changing voltage 12 as the third condition changing signal are obtained from the first condition changing signal.
  • the first current-to-voltage converter 241 to the third current-to-voltage converter 243 perform the first condition output from the first observation EA modulator 231 to the third observation EA modulator 233.
  • the first current-voltage converter 241 to the third current-voltage converter 243 are configured by resistors having the same resistance value.
  • the first differential amplifying unit 251 includes the voltage value Vph1 indicated by the first condition changing voltage 10 from the first current-to-voltage conversion unit 241 and the second condition from the second current-to-voltage conversion unit 242.
  • a difference Vph1 ⁇ Vph2 between the voltage value indicated by the first condition change voltage 10 and the voltage value indicated by the second condition change voltage 11 is linearly amplified.
  • a certain first intermediate drive condition 13 is obtained.
  • the second differential amplifying unit 252 calculates the voltage value Vph2 indicated by the second condition changing voltage 11 from the second current-to-voltage conversion unit 242 and the third condition from the third current-to-voltage conversion unit 243.
  • a difference Vph2-Vph3 between the voltage value indicated by the second condition changing voltage 11 and the third condition changing voltage 12 is linearly amplified.
  • a certain second intermediate drive condition 14 is obtained.
  • the amplification factor in the DC bias voltage adjustment mode is a1 and the amplification factor in the drive amplitude adjustment mode is b1.
  • the amplification factor in the DC bias voltage adjustment mode is a2 and the amplification factor in the drive amplitude adjustment mode is b2. Therefore, the absolute value of the voltage indicated by the first intermediate drive condition 13 from the first differential amplifier 251 is a1 ⁇
  • the absolute value of the voltage indicated by the second intermediate drive condition 14 from the second differential amplifier 252 is a2 ⁇
  • the reason why the first differential amplifying unit 251 and the second differential amplifying unit 252 perform the linear amplification is to secure a necessary input voltage in the next processing and to perform the second amplification from the first observation EA modulator 231.
  • the difference value ⁇ 2 and the difference value ⁇ 3 that give the difference between the first DC bias voltage 2 to the third DC bias voltage 4 and the voltage value 4 applied to the third observation EA modulator 233 are different values. This is to adjust the amount of amplification.
  • the reverse applied voltage V is a voltage applied to the EA modulator
  • the photocurrent Iph is a current value output from the EA modulator.
  • the right graph of FIG. 6 shows the relationship between the photocurrent Iph and the reverse applied voltage V.
  • the horizontal axis shows the reverse direction applied voltage V
  • the vertical axis shows the value of the photocurrent Iph.
  • the first DC bias voltage 2 to the third DC bias voltage 4 applied from the first observation EA modulator 231 to the third observation EA modulator 233 are V1 to V3, which are indicated as reverse applied voltages.
  • the photocurrent Iph for the voltage values V1 to V3 is indicated by a circle.
  • the left graph in FIG. 6 shows the relationship between the power transmittance T and the reverse applied voltage V.
  • the horizontal axis indicates the reverse applied voltage V
  • the vertical axis indicates the value of the power transmittance T.
  • the DC bias voltage Vbias is adjusted by comparing the slope of the extinction curve, for example, referring to the left graph of FIG. 6, the second DC bias applied to the second observation EA modulator 232 will be described.
  • a difference value ⁇ 3 which is a voltage difference (V2 ⁇ V3) between the voltage 3 and the third DC bias voltage 4 applied to the third observation EA modulator 233 is applied to the first observation EA modulator 231.
  • the comparison is made when the difference value ⁇ 2 which is the voltage difference (V1 ⁇ V2) between the first DC bias voltage 2 and the second DC bias voltage 3 applied to the second observation EA modulator 232 is twice.
  • the difference value ⁇ 2 which is the voltage difference (V1 ⁇ V2) between the first DC bias voltage 2 and the second DC bias voltage 3 applied to the second observation EA modulator 232 is twice.
  • the second DC bias voltage 3 applied to the second observation EA modulator 232 and the third DC bias voltage 3 applied to the third observation EA modulator 233 The difference value ⁇ 3 which is the voltage difference (V2 ⁇ V3) between the third DC bias voltage 4 and the first DC bias voltage 2 applied to the first observation EA modulator 231 and the second observation EA modulation
  • the linear amplification in the second differential amplifying unit 252 is performed. Is required to be set to ⁇ times the amplification factor b1 of the linear amplification in the first differential amplifier 251.
  • FIG. 7 shows the power transmittance T of the EA modulators 220, 231 to 233 in the drive amplitude adjustment mode with respect to the reverse applied voltage V by using a circle.
  • the horizontal axis indicates the reverse applied voltage V, and the vertical axis indicates the value of the power transmittance T.
  • the comparison unit 260 determines the first intermediate drive condition 13 based on the first intermediate drive condition 13 from the first differential amplifier 251 and the second intermediate drive condition 14 from the second differential amplifier 252. And the voltage value indicated by the second intermediate driving condition 14 to obtain a driving condition adjusting signal 15. That is, in the DC bias voltage adjustment mode, the comparing section 260 compares the absolute value (a1 ⁇
  • the comparison unit 260 compares the voltage value (b1 ⁇
  • ) indicated by the second intermediate driving condition 14 from the unit 252 is compared, and a driving condition adjusting signal 15 in which the magnitude relation is binary information is obtained.
  • the drive condition adjusting signal 15 is set to an H level (indicating a digital value of 1) when the voltage value of the first intermediate drive condition 13 is higher than the voltage value of the second intermediate drive condition 14, for example.
  • the signal is a binary signal that is set to L level (indicating a digital value of 0).
  • an offset amount is set, and when the voltage value of the first intermediate drive condition 13 is higher than the sum or difference between the voltage value of the second intermediate drive condition 14 and the offset amount, an H level (indicating a digital value of 1).
  • the L level (indicating a digital value of 0) is used.
  • the magnitude relationship is determined by outputting a voltage lower or higher than the threshold voltage.
  • ) of the voltage indicated by the second intermediate drive condition 14 from the second differential amplifier 252 is equal to the first intermediate drive from the first differential amplifier 251.
  • the driving condition adjusting signal 15 obtained by the comparison unit 260 indicates the L level.
  • the L level indicated by the driving condition adjusting signal 15 means that the gradient between V2 and V1 is smaller than the gradient between V3 and V2. Note that the slope between V2 and V1 and the slope between V3 and V2 can be understood by referring to FIG.
  • the DC bias voltage Vbias in the transmission modulation signal 1 is adjusted by the unit amount ⁇ Vbias so that Vbias is adjusted to V3 side.
  • the resolution is reduced, that is, the voltage is reduced by about 0.1 V.
  • the driving condition adjusting signal 15 obtained by the comparing section 260 indicates the H level.
  • the H level indicated by the driving condition adjustment signal 15 means that the DC bias voltage Vbias in the transmission modulation signal 1 is increased by a unit amount ⁇ Vbias so as to adjust Vbias to the V1 side.
  • the guideline for adjustment when the first intermediate drive condition 13 (V1 to V2) is larger or smaller than the second intermediate drive condition 14 (V2 to V3) is as follows. .
  • VRF is reduced because modulation is performed in the nonlinear region.
  • Small Modulation in the linear region leaves room for increasing VRF.
  • ) indicated by the second intermediate drive condition 14 from the second differential amplifier 252 is output from the first differential amplifier 251.
  • the driving condition adjusting signal 15 obtained by the comparing unit 260 indicates the L level.
  • the L level indicated by the driving condition adjusting signal 15 means that the eye amplitude between levels 2 and 1 is narrow because the eye amplitude between levels 3 and 2 is wider than the eye amplitude between levels 2 and 1.
  • the magnitude of the drive amplitude VRF in the transmission modulation signal 1 is increased by a unit amount ⁇ VRF, which is equivalent to the resolution in the first embodiment, that is, about 0.1 V.
  • ⁇ VRF the voltage value indicated by the second intermediate drive condition 14 from the second differential amplifier unit 252
  • the driving condition adjusting signal 15 obtained by the comparing section 260 indicates the H level.
  • the H level indicated by the driving condition adjusting signal 15 means that the eye between levels 3 and 2 is narrow due to the nonlinearity of the extinction curve characteristic, and the H level of the driving amplitude VRF of the transmission modulation signal 1 is small.
  • the magnitude is reduced by a unit amount ⁇ VRF, which is equivalent to the resolution in the first embodiment, that is, reduced by about 0.1 V.
  • an offset amount or the like at the time of determining the magnitude relation is set.
  • the reason for setting the offset amount is as follows. That is, although the same EA modulator is used for the first observation EA modulator 231 to the third observation EA modulator 231, the layer structure, the composition ratio, and the length of the region where the electroabsorption effect occurs are equal. Are ideal, but they slightly differ due to manufacturing errors. As a result, there is a possibility that a difference occurs in the extinction curve characteristics from the first observation EA modulator 231 to the third observation EA modulator 233. is there.
  • the comparison unit 260 The offset amount at the time of determination can be set.
  • the setting of the offset amount at the time of the magnitude relationship determination in the comparison unit 260 is necessary to prevent the drive amplitude from excessively lowering. That is, in the first embodiment, modulation is performed by setting the maximum value of the slope characteristic of the extinction curve to Vbias in the DC bias voltage adjustment mode, and in this case, the amplitude difference of level 2-1 is equal to level 3-2. Is usually slightly larger than the amplitude difference of Then, there is a possibility that the VRF will continue to decrease each time the adjustment is repeated. Therefore, by properly setting the offset amount, the comparison and adjustment can be maintained such that the amplitude difference between the level 2-1 and the level 3-2 is approximately equal.
  • the drive condition control unit 270 performs various settings of the following set values 1 to 6 before the operation of the optical transmission device 100. That is, the setting value 1: DC bias voltage adjustment for the first DC bias voltage 2 to the third DC bias voltage 4 applied from the first observation EA modulator 231 to the third observation EA modulator 233 A difference value ⁇ 2 which is a voltage difference (V1 ⁇ V2) between the voltage values indicated by the first DC bias voltage 2 and the second DC bias voltage 3 in the mode, the second DC bias voltage 3 and the third DC bias A difference value ⁇ 3 that is a voltage difference (V2 ⁇ V3) between the voltage values indicated by the voltage 4.
  • Set value 2 the first DC bias voltage 2 to the third DC bias voltage 4 applied from the first observation EA modulator 231 to the third observation EA modulator 233 in the drive amplitude adjustment mode
  • a difference value ⁇ 2 which is a voltage difference (V1-V2) between the voltage values indicated by the first DC bias voltage 2 and the second DC bias voltage 3
  • a difference value ⁇ 3 which is a voltage difference (V2-V3) between the indicated voltage values.
  • Set value 3 unit amount ⁇ Vbias of increase / decrease in one adjustment to DC bias voltage Vbias and unit amount ⁇ VRF of increase / decrease in one adjustment to drive amplitude VRF in transmission modulation signal 1 applied to EA modulator 220.
  • Set value 4 Amplification rate a1 in DC bias voltage adjustment mode in first differential amplification section 251, amplification rate b1 in drive amplitude adjustment mode, DC bias voltage adjustment mode in second differential amplification section 252 And a2 in the drive amplitude adjustment mode.
  • Set value 5 Offset amount at the time of magnitude relationship determination in comparison section 260.
  • Set value 6 Adjustable upper and lower limits of DC bias voltage Vbias and drive amplitude VRF.
  • the drive condition control unit 270 instructs whether to perform the DC bias voltage adjustment mode or the drive amplitude adjustment mode after the optical transmission device 100 starts operating. That is, the drive condition control unit 270 also has a role of switching whether to control the DC bias voltage Vbias in the transmission modulation signal 1 and whether to control the drive amplitude VRF in the transmission modulation signal 1.
  • the DC bias voltage adjustment mode and the drive amplitude adjustment mode first, the DC bias voltage adjustment mode is performed, then the drive amplitude adjustment mode is performed, and then the DC bias voltage adjustment mode and the drive amplitude adjustment mode are alternately repeated. It is. Note that the adjustment operation in the DC bias voltage adjustment mode and the drive amplitude adjustment mode may be performed at regular intervals without performing the adjustment operation in the DC bias voltage adjustment mode and the drive amplitude adjustment mode continuously.
  • the driving condition control unit 270 In the DC bias voltage adjustment mode, the driving condition control unit 270 first sets the set values in the DC bias voltage adjustment mode, which are set values 1 to 6, in each component. If the set values set in the respective components are the same, it is not necessary to reset them.
  • the drive condition control unit 270 sets the difference value ⁇ 2 and the difference value ⁇ 3 as the third drive condition control signal 16.
  • the drive condition control unit 270 sets the amplification factor in the first differential amplification unit 251 to a1, and the amplification factor in the second differential amplification unit 252 to a2.
  • the drive condition control unit 270 obtains the first drive condition control signal 8 and the third drive condition control signal 16 based on the drive condition adjustment signal 15 obtained by the comparison unit 260. Since the DC bias voltage adjustment mode is set, the second drive condition control signal 9 is not generated. As a result, the DC bias voltage Vbias in the transmission modulation signal 1 applied to the EA modulator 220 is adjusted by the optical transmitter control unit 300 by the first drive condition control signal 8, and the second drive condition control signal 9 Is not generated, the optical transmitter control unit 300 maintains the drive amplitude VRF of the modulation signal for transmission 1.
  • the third driving condition control signal 16 obtained by the driving condition control unit 270 is the first DC bias voltage 2 applied from the first observation EA modulator 231 to the third observation EA modulator 233. To adjust the third DC bias voltage 4.
  • the driving condition control unit 270 converts the first driving condition control signal 8 and the third driving condition control signal 16 into DC.
  • the bias voltage Vbias is a signal for decreasing the unit amount ⁇ Vbias and the drive condition adjusting signal 15 indicates the H level
  • the first drive condition control signal 8 and the third drive condition control signal 16 are converted to the DC bias voltage Vbias. Is a signal for increasing the unit amount ⁇ Vbias.
  • the drive condition control unit 270 starts the drive amplitude adjustment mode.
  • the drive condition control unit 270 sets the difference value ⁇ 2 and the difference value ⁇ 3 as the third drive condition control signal 16.
  • the drive condition control unit 270 sets the amplification factor in the first differential amplification unit 251 to b1, and the amplification factor in the second differential amplification unit 252 to b2.
  • the drive condition control unit 270 obtains the second drive condition control signal 9 and the third drive condition control signal 16 based on the drive condition adjustment signal 15 obtained by the comparison unit 260. Since the driving amplitude adjustment mode is set, the first driving condition control signal 8 is not generated. As a result, the optical transmitter control unit 300 adjusts the drive amplitude VRF of the transmission modulation signal 1 applied to the EA modulator 220 by the second drive condition control signal 9, and converts the first drive condition control signal 8. By not generating this, the DC bias voltage Vbias in the transmission modulation signal 1 is maintained by the optical transmitter control unit 300.
  • the third driving condition control signal 16 obtained by the driving condition control unit 270 is the first DC bias voltage 2 applied from the first observation EA modulator 231 to the third observation EA modulator 233. To adjust the third DC bias voltage 4.
  • the driving condition control unit 270 increases the magnitude of the driving amplitude VRF by the unit amount ⁇ VRF in the second driving condition control signal 9.
  • the third drive condition control signal 16 is converted from the voltage value of the second DC bias voltage 3 to ⁇ VRF / 6 and from the voltage value of the third DC bias voltage 4 to ( ⁇ VRF / 6 + ⁇ VRF / 3).
  • the second drive condition control signal 9 is a signal for reducing the magnitude of the drive amplitude VRF by a unit amount ⁇ VRF
  • the third drive condition The control signal 16 is a signal that increases by ⁇ VRF / 6 from the voltage value of the second DC bias voltage 3 and ( ⁇ VRF / 6 + ⁇ VRF / 3) from the voltage value of the third DC bias voltage 4.
  • the DC bias voltage Vbias and the drive amplitude VRF in the transmission modulation signal 1 from the optical transmitter control unit 300 become the DC bias voltage Vbias and the drive amplitude adjustment mode set in the DC bias voltage adjustment mode.
  • the drive amplitude VRF set at this time is maintained, and the process proceeds to the next DC bias voltage adjustment mode.
  • the three-point DC bias voltage control unit 280 receives the third observation EA modulator 231 from the third observation EA modulator 231 based on the third drive condition control signal 16 obtained by the drive condition control unit 270.
  • a third DC bias voltage 4 is output from the first DC bias voltage 2 applied to the EA modulator 233 for use. That is, the three-point DC bias voltage control unit 280 converts the third drive condition control signal 16 obtained by the drive condition control unit 270 from the first observation EA modulator 231 to the third observation EA modulator.
  • 233 has a role of adjusting the first DC bias voltage 2 to the third DC bias voltage 4 respectively.
  • the driving condition control unit 270 first sets the DC bias voltage Vbias, the difference value ⁇ 2, and the difference value ⁇ 3 as initial values, and performs the first observation.
  • a first DC bias voltage 2 having a voltage value V1 of Vbias is applied to the EA modulator 231 for observation, and a second DC bias voltage 3 having a voltage value V2 of Vbias- ⁇ 2 is applied to the second EA modulator 232 for observation.
  • a third DC bias voltage 4 having a voltage value V2 of Vbias- ⁇ 2- ⁇ 3 is applied to the third observation EA modulator 233.
  • the three-point DC bias voltage control unit 280 sends the voltage value V1 to the first observation EA modulator 231. Apply a first DC bias voltage 2 of Vbias + ⁇ Vbias, apply a second DC bias voltage 3 of a voltage value V2 of Vbias ⁇ 2 + ⁇ Vbias to a second observation EA modulator 232, A third DC bias voltage 4 having a voltage value V3 of Vbias ⁇ 2 ⁇ 3 + ⁇ Vbias is applied to the EA modulator 233.
  • the driving condition control unit 270 indicates that the third driving condition control signal 16 indicates a signal for increasing the unit amount ⁇ Vbias
  • the first observation EA modulator 231 is further provided.
  • the unit amount ⁇ Vbias is increased.
  • the driving condition control unit 270 repeats this operation until the third driving condition control signal 16 no longer indicates a signal for increasing the unit amount ⁇ Vbias.
  • the voltage value is supplied to the first observation EA modulator 231 in the same manner as in the case of indicating the signal for increase.
  • a first DC bias voltage 2 whose V1 is Vbias ⁇ Vbias is applied
  • a second DC bias voltage 3 whose voltage value V2 is Vbias ⁇ 2 ⁇ Vbias is applied to the second observation EA modulator 232
  • a third DC bias voltage 4 whose voltage value V3 is Vbias- ⁇ 2- ⁇ 3- ⁇ Vbias is applied to the third observation EA modulator 233.
  • the three-point DC bias voltage control unit 280 first uses the drive condition control unit 270 to initialize the DC bias voltage Vbias, the difference value ⁇ 2, and the difference value ⁇ 3 at the end of the DC bias voltage adjustment mode as initial values.
  • the first DC bias voltage 2 having a voltage value V1 of Vbias is applied to the first observation EA modulator 231 and the voltage value V2 is Vbias- ⁇ 2 to the second observation EA modulator 232.
  • a second DC bias voltage 3 is applied, and a third DC bias voltage 4 having a voltage value V2 of Vbias- ⁇ 2- ⁇ 3 is applied to the third observation EA modulator 233.
  • the three-point DC bias voltage control unit 280 determines that the third drive condition control signal 16 is changed from the voltage value of the second DC bias voltage 3 by ⁇ VRF / 6 and the third DC bias voltage 4
  • the first DC bias voltage 2 having the voltage value V1 of Vbias is applied to the first observation EA modulator 231 to perform the second observation.
  • a second DC bias voltage 3 having a voltage value V2 of Vbias- ⁇ 2- ⁇ VRF / 6 is applied to the EA modulator 232 for observation, and a voltage value V3 of Vbias- ⁇ 2- ⁇ VRF / is applied to the third observation EA modulator 233.
  • a third DC bias voltage 4 of 6- ⁇ 3- ⁇ VRF / 3 is applied.
  • the drive condition control unit 270 outputs the third drive condition control signal 16 from the voltage value of the second DC bias voltage 3 to ⁇ VRF / 6 and the third DC bias voltage.
  • ⁇ VRF / 6 is applied to the second DC bias voltage 3 applied to the second observation EA modulator 232, and the third observation EA is applied.
  • the third DC bias voltage 4 applied to the modulator 233 is reduced by ( ⁇ VRF / 6 + ⁇ VRF / 3).
  • the driving condition control unit 270 outputs the third driving condition control signal 16 from the voltage value of the second DC bias voltage 3 to ⁇ VRF / 6 and from the voltage value of the third DC bias voltage 4 to ( ⁇ VRF / 6 + ⁇ VRF / 3). ) Repeat until no further signal is shown.
  • the driving condition control unit 270 outputs the third driving condition control signal 16 from the voltage value of the second DC bias voltage 3 to ⁇ VRF / 6 and from the voltage value of the third DC bias voltage 4 to ( ⁇ VRF / 6 + ⁇ VRF / 3).
  • the first DC bias voltage 2 whose voltage value V1 is Vbias is applied to the first observation EA modulator 231 in the same manner as when the signal to decrease is shown
  • a second DC bias voltage 3 having a voltage value V2 of Vbias ⁇ 2 + ⁇ VRF / 6 is applied to the observation EA modulator 232
  • a voltage value V3 of the third observation EA modulator 233 is Vbias ⁇ 2 + ⁇ VRF / 6 ⁇ 3 + ⁇ VRF.
  • a third DC bias voltage 4 of / 3 is applied.
  • the third drive condition control signal 16 is changed from the voltage value of the second DC bias voltage 3 to ⁇ VRF / 6 and the third DC bias voltage 4 This is repeated until no signal for increasing the voltage value from ( ⁇ VRF / 6 + ⁇ VRF / 3) is shown.
  • the drive condition control unit 270 and the three-point DC bias voltage control unit 280 generate the first drive condition control signal 8 and the second drive condition control signal 9 based on the drive condition adjustment signal 15, and A driving condition generation unit that outputs the first DC bias voltage 2 to the third DC bias voltage 4 applied from the observation EA modulator 231 to the third observation EA modulator 233 is configured.
  • the optical transmitter controller 300 includes a DC bias voltage controller 310, a modulation signal generator 320, and a DC / AC synthesizer 330. Although the components of the optical transmitter control unit 300 are shown as the flow of the electric signal, there is no actual flow of the electric signal when the operation is performed by software.
  • the optical transmitter control unit 300 controls the voltage of the DC bias voltage Vbias, which is the DC component of the transmission modulation signal 1 applied to the EA modulator 220.
  • a value is set, and based on the second drive condition control signal 9 from the drive condition search unit 200b, a voltage value of the drive amplitude VRF characterizing the transmission modulation signal 1 applied to the EA modulator 220 is set and set.
  • a modulation signal having a drive amplitude VRF is synthesized with the voltage value of the DC bias voltage Vbias thus generated to generate a transmission modulation signal 1, and the transmission modulation signal 1 is applied to the EA modulator 220.
  • the DC bias voltage control unit 310 sets a DC bias voltage Vbias, which is a DC component of the transmission modulation signal 1 applied to the EA modulator 220.
  • the driving condition search unit 200b Based on the first drive condition control signal 8 from the drive condition control unit 270, a DC bias voltage Vbias, which is a DC component of the transmission modulation signal 1, is generated and maintained.
  • the DC bias voltage control unit 310 In the DC bias voltage adjustment mode, when the first drive condition control signal 8 obtained by the drive condition control unit 270 indicates a signal for increasing the unit amount ⁇ Vbias, the DC bias voltage control unit 310 Is set to Vbias + ⁇ Vbias and the first drive condition control signal 8 indicates a signal for decreasing the unit amount ⁇ Vbias, the voltage value of the DC bias generation signal 17 is set to Vbias ⁇ Vbias, and the first drive condition control signal 8 Is not a signal to increase or decrease the unit amount ⁇ Vbias. When the adjustment mode ends, the DC bias voltage control unit 310 maintains the DC bias voltage Vbias at the end.
  • the modulation signal generator 320 receives the electric signal 19 indicating the level 3 to the level 0, adjusts the drive amplitude of the high-speed electric signal for data transmission, amplifies the signal in many cases, and outputs the amplified signal. Yes, it is composed of a driver and the like. That is, the modulation signal generation unit 320 sets the drive amplitude VRF characterizing the transmission modulation signal 1 applied to the EA modulator 220 in the initial state, and obtains the drive amplitude VRF in the drive condition control unit 270 in the drive amplitude adjustment mode.
  • the second drive condition control signal 9 indicates a signal for decreasing the unit amount ⁇ VRF
  • the drive amplitude VRF ⁇ VRF of the modulation signal 18 is used, and the second drive condition control signal 9 indicates a signal for increasing the unit amount ⁇ VRF.
  • the modulation signal generation section 320 maintains the drive amplitude VRF at the end.
  • the DC / AC combining section 330 applies a DC bias voltage Vbias obtained by the DC bias voltage control section 310 to the modulation signal 18 having the drive amplitude VRF obtained by the modulation signal generation section 320, and transmits the modulated signal for modulation.
  • the credit modulation signal 1 is generated and applied to the EA modulator 220.
  • the voltage value of the transmission modulation signal 1 output from the DC / AC combining unit 330 is Vbias-1 / 2VRF, and the modulation signal generation unit 320
  • the voltage value of the modulation signal 1 for transmission is Vbias-1 / 6 VRF
  • the modulation signal for transmission is given.
  • the voltage value of 1 indicates Vbias + 1/6 VRF
  • the voltage value of the modulation signal 1 for transmission indicates Vbias + 1 / 2VRF when the electric signal 19 indicating the level 0 is given to the modulation signal generation unit 320.
  • Vbias is a voltage value adjusted and maintained by the DC bias voltage control unit 310
  • VRF is a voltage value adjusted and maintained by the modulation signal generation unit 320. I have.
  • the reverse applied voltage V located at the center of the linear region of the extinction curve at the temperature t1 is applied to the EA modulator 220 for transmission.
  • the DC bias voltage Vbias in the modulation signal 1, that is, the DC bias voltage Vbias obtained by the DC bias voltage control unit 310, and the drive amplitude VRF in the transmission modulation signal 1 applied to the EA modulator 220 is used to generate the modulation signal.
  • the driving amplitude VRF obtained by the section 320 is obtained.
  • the extinction curve of the EA modulator 220 becomes as shown in the right graph. Since it changes to the left, the eyes between levels 3 and 2, the eyes between levels 2 and 1, and the eyes between levels 1 and 0 are not evenly spaced and narrow. . As a result, the amplitude difference between the levels becomes smaller, and the error rate becomes higher.
  • the DC bias voltage Vbias is adjusted, as shown in the graph below, following the change in the extinction curve in the EA modulator 220 in the left direction. Since the DC bias voltage Vbias obtained by the DC bias voltage control unit 310 also changes following to the left, the eyes between levels 3 and 2, the eyes between levels 2 and 1, the eyes between levels 1 and 0, etc. The error rate is small because the intervals are maintained and the level amplitude differences are maintained.
  • level 3 to level 0 can be obtained in the linear region of the extinction curve in the EA modulator 220 only by adjusting the DC bias voltage Vbias obtained by the DC bias voltage control unit 310.
  • the modulated signal generating section 320 In order to adjust the drive amplitude VRF, the eyes between levels 3 and 2, the eyes between levels 2 and 1, and the eyes between levels 1 and 0 are maintained at equal intervals, and the error rate is small.
  • the optical signal generation unit 200a has the hardware configuration described with reference to FIGS.
  • the optical transmitter control unit 300 includes a processor 301 such as a CPU (Central Processing Unit) or a system LSI (Large Scale Integration), a memory 302 including a RAM (Random Access Memory) and a ROM (Read Only Memory), and the like.
  • a communication interface 303 and an input / output interface 304 are provided.
  • the processor 301, the memory 302, the communication interface 303, and the input / output interface 304 are connected to a bus 305, and data and control signals are exchanged via the bus 305.
  • the processor 301 reads a program recorded in the memory 302 and executes a process.
  • the memory 302 stores various data, a program for implementing the first embodiment, a processing program required for starting the system, and the like.
  • the communication interface 303 is used for transmission and reception of data and control signals between various components inside the optical transmission device 100 or external various components and the device.
  • the input / output interface 304 transmits and receives a control signal and a modulation signal between the optical transmitter 200 and the optical transmitter control unit 300 from the electric wiring 410 to the electric wiring 450.
  • the CW light output unit 210 it is an injection current to a light source for generating light, for the EA modulator 220, a transmission modulation signal 1, and for the first observation EA modulator 231.
  • the optical transmitter control unit 300 is realized by the processor 301 executing a program stored in the memory 302 for operating as the optical transmission device 100.
  • the driving condition search unit 200b also has a processor 201, a memory 202, a communication interface 203, and an input / output interface 204, similarly to the optical transmitter control unit 300.
  • the memory 202 stores a difference value ⁇ 2 which is a voltage difference (V1 ⁇ V2) between the voltage values indicated by the first DC bias voltage 2 and the second DC bias voltage 3 in the DC bias voltage adjustment mode, and a second DC bias voltage.
  • a difference value ⁇ 3 which is a voltage difference (V2 ⁇ V3) of the voltage value indicated by the voltage 4 a unit amount ⁇ VRF of increase / decrease in one adjustment to the drive amplitude VRF, and DC bias voltage adjustment in the first differential amplifier 251 Amplification rate a1 in mode
  • the driving condition searching unit 200b since the driving condition searching unit 200b is configured by an electric circuit that does not include an optical device, the driving condition searching unit 200b does not necessarily need to be included in the optical transmitter 200. It may be configured on an electric circuit board different from 300, or may be configured on the same electric circuit board.
  • the drive condition search unit 200b is configured on the same circuit board as the optical transmitter control unit 300, the processor 201 and the processor 301, the memory 202 and the memory 302, the communication interface 203 and the communication interface 303, the input / output interface 204 and the input / output interface 304 May have a common hardware configuration.
  • the memory 302 and the memory 202 store a program for executing a flowchart showing a process flow of event recognition in the optical transmitter 100 shown in FIGS.
  • the flowchart shown in FIG. 10 includes a step ST1 for performing various settings of the driving condition search unit 200b, a step ST2 for starting modulation, and a step ST3 for performing a DC bias voltage adjustment mode before the operation of the optical transmitting apparatus 100. It comprises a step ST4 for confirming the adjustment of the DC bias voltage, a step ST5 for executing the drive amplitude adjustment mode, and a step ST6 for confirming the adjustment of the drive amplitude.
  • step ST1 is a step of setting the above-described various set values stored in the memory 202 before the operation of the optical transmission device 100. That is, various setting values stored in the ROM configuring the memory 202 are read out and temporarily stored in the RAM configuring the memory 202.
  • Step ST2 is a step of starting modulation.
  • An injection current to a light source for generating light is applied to the CW light output unit 210 of the optical transmitter 200 via the electric wiring 410.
  • the modulation signal for transmission 1 from the DC / AC combining section 330 is applied to the EA modulator 220 via the electric wiring 410 based on the set value set in step ST1.
  • an optical signal is output from the EA modulator 220. This is a step mainly at the start of operation of the optical transmission device 100.
  • Step ST3 is a step of performing a DC bias voltage adjustment mode performed in conjunction with the operation of the optical transmission device 100 that outputs an optical signal.
  • step ST3 as shown in FIG. 11, the DC bias voltage Vbias for the first DC bias voltage 2 to the third DC bias voltage 4 of the first observation EA modulator 231 to the third observation EA modulator 233.
  • Step STa2 of applying the first DC bias voltage 2 to the third DC bias voltage 4 from the observation EA modulator 231 to the third observation EA modulator 233, and the driving condition adjusting signal 15 , A step STa5 for increasing the DC bias voltage Vbias, and a step STa6 for decreasing the DC bias voltage Vbias. .
  • step STa1 the driving condition control unit 270 sets the DC bias voltage Vbias as an adjustment target and notifies the three-point DC bias voltage control unit 280 that the DC bias voltage adjustment mode is set.
  • the amplification factors a1 and a2 are read from the memory 202, and the amplification factor of the first differential amplification unit 251 is set to a1 and the amplification factor of the second differential amplification unit 252 is set to a2.
  • the gain of the first differential amplifying unit 251 and the gain of the second differential amplifying unit 252 are the same as the already set values, there is no need to particularly update.
  • step STa2 the three-point DC bias voltage control unit 280 applies the first DC bias voltage 2 having a voltage value V1 of Vbias to the first observation EA modulator 231 and the second observation EA modulator 231.
  • a second DC bias voltage 3 having a voltage value V2 of Vbias- ⁇ 2 is applied to the second DC bias voltage 4 having a voltage value V2 of Vbias- ⁇ 2 ⁇ 3 to the third observation EA modulator 233.
  • ⁇ 2 and ⁇ 3 are the values set in step STa1, and since the control of the DC bias voltage Vbias is performed at a resolution of about 0.1V, ⁇ 2 and ⁇ 3 are also performed at a resolution of about 0.1V.
  • the difference between the photocurrent output from the first observation EA modulator 231 to the third observation EA modulator 233 and the third observation EA modulator 231 is obtained.
  • the voltage between (V2 and V1) and the voltage between (V3 and V2) can be estimated.
  • the DC bias voltage Vbias can be adaptively adjusted with respect to the extinction curve characteristics that fluctuate with temperature changes. Can be adjusted.
  • step STa3 the driving condition search unit 200b converts the first condition changing current 5 to the third condition changing current 7 from the first observation EA modulator 231 to the third observation EA modulator 233.
  • a plurality of simple processes are sequentially performed based on the indicated photocurrent (current value).
  • the first current-voltage converter 241 to the third current-voltage converter 243 respectively correspond to the first observation EA modulator 231 to the third observation EA modulator 233, respectively.
  • the current values (Iph1, Iph2, Iph3) indicated by the first condition-changing current 5 to the third condition-changing current 7 are converted into voltage values (Vph1, Vph2, Vph3), and the first condition-changing current is changed.
  • a third condition changing voltage 12 is obtained from the first condition changing voltage 10 as a third condition changing signal from the signal.
  • the first differential amplifying unit 251 determines whether the voltage value Vph1 indicated by the first condition changing voltage 10 from the first current-to-voltage conversion unit 241 and the voltage value Vph1 from the second current-to-voltage conversion unit 242 Based on the voltage value Vph2 indicated by the second condition changing voltage 11, the difference amount (Vph2 ⁇ Vph1) between the first condition changing voltage 10 and the voltage value indicated by the second condition changing voltage 11 is linearly calculated. A first intermediate drive condition 13 which is an amplified value is obtained. The second differential amplifier 252 determines whether the voltage value Vph2 indicated by the second condition changing voltage 11 from the second current-to-voltage converter 242 and the third condition from the third current-to-voltage converter 243.
  • the comparing section 260 calculates the absolute value (a1 ⁇
  • ) of the voltage indicated by the second intermediate drive condition 14 is compared to obtain a drive condition adjustment signal 15 in which the magnitude relation is binary information, and the drive condition adjustment signal 15 Is output to the driving condition control unit 270.
  • Step STa4 is a step of determining what kind of signal the driving condition adjusting signal 15 is. That is, when the drive condition adjusting signal 15 is such that the voltage value indicated by the second intermediate drive condition 14 from the second differential amplifier 252 is equal to the first intermediate drive condition 13 from the first differential amplifier 251 It is determined whether the voltage value is greater than the indicated voltage value.
  • step STa5 the driving condition control is performed based on the driving condition adjusting signal 15 indicating that the slope of the extinction curve between (V2 and V1) is larger than the slope of the extinction curve between (V3 and V2).
  • the unit 270 transmits the first drive condition control signal 8 and the third drive condition control signal 16 for increasing the DC bias voltage Vbias by a unit amount ⁇ Vbias to the DC bias voltage control unit 310 and the three-point DC bias voltage control unit 280.
  • the DC bias voltage control unit 310 which has obtained the first drive condition control signal 8 for increasing the unit amount ⁇ Vbias, updates the DC bias voltage Vbias by adding the unit amount ⁇ Vbias to the DC bias voltage Vbias, and sends the DC bias voltage Vbias to the DC / AC combining unit 330. Output.
  • the DC / AC combining section 330 combines the updated DC bias voltage Vbias with the modulation signal of the drive amplitude VRF output from the modulation signal generation section 320 in accordance with the electric signal 19 for modulation to generate the transmission modulation signal 1.
  • the transmission modulation signal 1 is generated and applied to the EA modulator 220.
  • the three-point DC bias voltage control unit 280 that has obtained the third drive condition control signal 16 for increasing the unit amount ⁇ Vbias updates the DC bias voltage Vbias by adding the unit amount ⁇ Vbias to the DC bias voltage Vbias, and A first DC bias voltage 2 having a voltage value V1 of Vbias is applied to the observation EA modulator 231, and a second DC bias voltage having a voltage value V2 of Vbias ⁇ 2 is applied to the second observation EA modulator 232. A voltage 3 is applied, and a third DC bias voltage 4 having a voltage value V3 of Vbias ⁇ 2 ⁇ 3 is applied to the third observation EA modulator 233. Thereafter, the process proceeds to step ST4 shown in FIG.
  • step STa5 the adjustment amount increased in one cycle in the DC bias voltage adjustment mode is as follows.
  • DC bias voltage Vbias voltage value V1 applied to first observation EA modulator 231, voltage value V2 applied to second observation EA modulator 232 (Vbias ⁇ 2), and third observation EA modulation
  • the unit amount ⁇ Vbias is increased for each of the voltage values V3 (Vbias ⁇ 2 ⁇ 3) applied to the detector 233. Note that the drive amplitude VRF, the difference value ⁇ 2, and the difference value ⁇ 3 maintain the set values.
  • step STa4 when the voltage value indicated by the first intermediate driving condition 13 is not higher than the voltage value indicated by the second intermediate driving condition 14, the second voltage applied to the second observation EA modulator 232 is set.
  • the slope of the extinction curve between the voltage V2 of the DC bias voltage 3 and the voltage V1 of the first DC bias voltage 2 applied to the first EA modulator 231 for observation (V2 to V1) is equal to the inclination of the third observation EA modulator 231.
  • V3 of the third DC bias voltage 4 applied to the EA modulator 233 and the voltage V2 of the second DC bias voltage 3 applied to the second EA modulator 232 for observation This means that it is smaller than the slope of the extinction curve, and the process proceeds to step STa6.
  • step STa6 the driving condition control is performed by the driving condition adjustment signal 15 indicating that the slope of the extinction curve between (V2 and V1) is smaller than the slope of the extinction curve between (V3 and V2).
  • the unit 270 transmits the first drive condition control signal 8 and the third drive condition control signal 16 for decreasing the DC bias voltage Vbias by a unit amount ⁇ Vbias to the DC bias voltage control unit 310 and the three-point DC bias voltage control unit 280.
  • Output to The DC bias voltage control unit 310 which has obtained the first drive condition control signal 8 for reducing the unit amount ⁇ Vbias, updates the DC bias voltage Vbias by subtracting the unit amount ⁇ Vbias from the DC bias voltage Vbias. Output.
  • a modulation signal having a drive amplitude VRF output from the modulation signal generation unit 320 is synthesized with the DC bias voltage Vbias updated by the DC / AC synthesis unit 330 according to the electric signal 19 for modulation to generate a transmission modulation signal 1. Then, the transmission modulation signal 1 is applied to the EA modulator 220.
  • the three-point DC bias voltage control unit 280 that has obtained the third drive condition control signal 16 for decreasing the unit amount ⁇ Vbias updates the DC bias voltage Vbias by subtracting the unit amount ⁇ Vbias from the DC bias voltage Vbias, and A first DC bias voltage 2 having a voltage value V1 of Vbias is applied to the observation EA modulator 231, and a second DC bias voltage having a voltage value V2 of Vbias ⁇ 2 is applied to the second observation EA modulator 232. A voltage 3 is applied, and a third DC bias voltage 4 having a voltage value V3 of Vbias ⁇ 2 ⁇ 3 is applied to the third observation EA modulator 233. Thereafter, the process proceeds to step ST4 shown in FIG.
  • step STa6 the adjustment amount to be reduced in one cycle in the DC bias voltage adjustment mode is as follows.
  • DC bias voltage Vbias voltage value V1 applied to first observation EA modulator 231, voltage value V2 applied to second observation EA modulator 232 (Vbias ⁇ 2), and third observation EA modulation
  • the unit amount ⁇ Vbias is reduced for each of the voltage values V3 (Vbias ⁇ 2 ⁇ 3) applied to the unit 233. Note that the drive amplitude VRF, the difference value ⁇ 2, and the difference value ⁇ 3 maintain the set values.
  • step ST4 determines whether the adjustment of DC bias voltage Vbias has been sufficiently performed.
  • the criterion of the sufficient judgment is set in step ST1. For example, it is necessary to adjust the DC bias voltage Vbias within a range that does not exceed an adjustable upper limit or lower limit. When the upper limit or lower limit is reached, it is determined that the adjustment has been sufficiently performed. Even when the upper limit value or the lower limit value is not achieved, the number of times of the DC bias voltage adjustment mode shown in FIG. 11 is set by experience, or the result of the magnitude relationship in step STa4 is determined from the immediately preceding result. When inverted, it is used as a criterion for ending the DC bias voltage adjustment mode. When it is determined that the adjustment of the DC bias voltage is not sufficiently performed (NO), the process returns to step ST3, and when it is determined that the adjustment is sufficiently performed (YES), the process proceeds to step ST5.
  • Step ST5 implements the drive amplitude adjustment mode, and sets the gain b1 of the first differential amplifier 251 and the gain b2 of the second differential amplifier 252 as shown in FIG.
  • step STb1 a DC bias voltage for the first DC bias voltage 2 to the third DC bias voltage 4 of the first observation EA modulator 231 to the third observation EA modulator 233 is set.
  • the difference value ⁇ 2 which is the voltage difference (V1 ⁇ V2) between the voltage values indicated by the first DC bias voltage 2 and the second DC bias voltage 3, and the second DC bias voltage 3 and the third DC bias voltage 4 indicate A step STb7 of changing the difference value ⁇ 3, which is the voltage difference (V2 ⁇ V3) between the voltage values, according to the drive amplitude VRF is provided.
  • step STb1 the drive condition control unit 270 switches the adjustment target from the DC bias voltage Vbias to the drive amplitude VRF of the transmission modulation signal 1 in step STb1. Further, the gain of the first differential amplifier 251 is set to b1, and the gain of the second differential amplifier 252 is set to b2. When the gain a1 of the first differential amplifier 251 and the gain a2 of the second differential amplifier 252 in the DC bias voltage adjustment mode have the same value, there is no particular need to change.
  • step STb2 the three-point DC bias voltage control unit 280 sets the first DC bias voltage 2 to the third DC bias voltage 4 of the first observation EA modulator 231 to the third observation EA modulator 233.
  • the DC bias voltage is set, and the first DC bias voltage 2 to the third DC bias voltage 4 are applied from the first observation EA modulator 231 to the third observation EA modulator 233. That is, the three-point DC bias voltage control unit 280 applies the first DC bias voltage 2 in which the voltage value V1 applied to the first observation EA modulator 231 is Vbias, and performs the second observation EA modulation.
  • a second DC bias voltage 3 having a voltage value V2 of Vbias- ⁇ 2 is applied to the modulator 232, and a third DC bias voltage having a voltage value V3 of Vbias- ⁇ 2- ⁇ 3 is applied to the third observation EA modulator 233. 4 is applied.
  • the difference value ⁇ 2 and the difference value ⁇ 3 are values set in step STb1 as initial values, and then changed and updated in accordance with the drive amplitude VRF in step STb7, that is, the second DC bias voltage 3 In (3), subtract or add .DELTA.VRF / 3 from the voltage value of the second DC bias voltage 3, and in the third DC bias voltage 4, subtract or add .DELTA.VRF / 3 from the voltage value of the third DC bias voltage 4. Is the value updated by.
  • Vbias which is the voltage value V1 applied to the first observation EA modulator 231
  • V2 applied to the second observation EA modulator 232 and the third
  • the difference value ⁇ 2 is set to VRF / 6
  • the difference value ⁇ 3 is set to VRF / 3.
  • the EA modulator 220 can perform modulation in the linear region of the extinction curve.
  • the level above the center of the eye pattern in the PAM4 modulation method is observed, and the non-linear state below the center of the eye pattern is not observed. Since the DC bias voltage adjustment mode is performed and the DC bias voltage Vbias is adjusted, the drive amplitude VRF can be approximated to be symmetric about the DC bias voltage Vbias. Therefore, the drive amplitude VRF can be adjusted by performing one of the upper level and the lower level from the center of the eye pattern.
  • Step STb3 performs the same process as step STa3 in the DC bias voltage adjustment mode.
  • a plurality of simple processes are sequentially performed based on the current (current value).
  • the first current-to-voltage converter 241 to the third current-to-voltage converter 243 are connected to the first observation EA modulator 231 through the third observation EA modulator 233, respectively.
  • the current values (Iph1, Iph2, Iph3) indicated by the condition changing current 5 to the third condition changing current 7 are converted into voltage values (Vph1, Vph2, Vph3), and the first condition changing signal
  • a third condition changing voltage 12 is obtained from the first condition changing voltage 10 as the condition changing signal.
  • the first differential amplifying unit 251 determines whether the voltage value Vph1 indicated by the first condition changing voltage 10 from the first current-to-voltage conversion unit 241 and the voltage value Vph1 from the second current-to-voltage conversion unit 242 Based on the voltage value Vph2 indicated by the second condition changing voltage 11, the difference amount (Vph2 ⁇ Vph1) between the first condition changing voltage 10 and the voltage value indicated by the second condition changing voltage 11 is linearly calculated. A first intermediate drive condition 13 which is an amplified value is obtained. The second differential amplifier 252 determines whether the voltage value Vph2 indicated by the second condition changing voltage 11 from the second current-to-voltage converter 242 and the third condition from the third current-to-voltage converter 243.
  • the comparing section 260 determines that the voltage value (b1 ⁇
  • ) indicated by the second intermediate drive condition 14 is compared to obtain a drive condition adjustment signal 15 in which the magnitude relationship is binary information, and the drive condition adjustment signal 15 is controlled by the drive condition control. Output to the unit 270.
  • the gain b1 of the first differential amplifier 251 and the gain b2 of the second differential amplifier 252 are used to make the amplitude difference between the levels 3 and 2 and the levels 2-1 the same. Therefore, an appropriate value is selected according to the difference value ⁇ 2 and the difference value ⁇ 3.
  • the amplification factor b2 is set to 1 / of the amplification factor b1.
  • Step STb4 is a step of determining what kind of signal the driving condition adjusting signal 15 is. That is, when the driving condition adjusting signal 15 is such that the voltage value indicated by the first intermediate driving condition 13 from the first differential amplifying unit 251 is equal to the second intermediate driving condition 14 from the second differential amplifying unit 252, It is determined whether the voltage value is greater than the indicated voltage value.
  • the second DC bias voltage 3 applied to the second observation EA modulator 232 The eye amplitude between levels 2 and 1 estimated from the voltage V2 of the first DC bias voltage 2 applied to the first observation EA modulator 231 (V2 to V1) is the third Between the voltage V3 of the third DC bias voltage 4 applied to the observation EA modulator 233 and the voltage V2 of the second DC bias voltage 3 applied to the second observation EA modulator 232 (from V3 to V3). V2) is larger than the eye amplitude between levels 3 and 2, and the process proceeds to step STb5.
  • Step STb5 indicates that the eye amplitude between levels 2 and 1 estimated from between (V2 and V1) obtained by the comparing section 260 is larger than the eye amplitude between levels 3 and 2 between (V3 and V2).
  • the drive condition control unit 270 causes the drive condition control unit 270 to reduce the drive amplitude VRF by the unit amount ⁇ VRF by the drive condition control signal 15 indicating that the eye amplitude between levels 3 and 2 is narrow.
  • the output signal 9 is output to the modulation signal generation unit 320.
  • the modulation signal generation unit 320 that has obtained the second drive condition control signal 9 for reducing the unit amount ⁇ VRF, updates the drive amplitude VRF by subtracting the unit amount ⁇ VRF from the drive amplitude VRF, and outputs the updated drive amplitude VRF to the DC / AC combining unit 330.
  • the DC / AC combining section 330 combines the DC bias voltage Vbias from the DC bias voltage control section 310 with the modulation signal of the drive amplitude VRF output from the modulation signal generation section 320 according to the electric signal 19 for modulation, and transmits the resultant signal.
  • a modulated signal 1 is generated, and the modulated signal 1 for transmission is applied to the EA modulator 220.
  • step STb7 the difference value ⁇ 2 and the difference value ⁇ 3 of the three applied voltages from the first observation EA modulator 231 to the third observation EA modulator 233 are changed in accordance with the updated drive amplitude VRF. That is, the first DC bias voltage 2 is Vbias, the second DC bias voltage 3 is Vbias ⁇ (VRF ⁇ VRF) / 6, and the third DC bias voltage 4 is Vbias ⁇ (VRF ⁇ VRF) / 6 ⁇ (VRF ⁇ VRF) / 3.
  • the adjustment amount reduced in one cycle in the drive amplitude adjustment mode is as follows.
  • the unit amount ⁇ VRF is reduced to the drive amplitude VRF, ⁇ VRF / 6 is increased to the voltage value V2 (Vbias ⁇ 2) applied to the second observation EA modulator 232, and the voltage applied to the third observation EA modulator 233 DC bias voltage Vbias for increasing ⁇ VRF / 6 + ⁇ VRF / 3 to value V3 (Vbias ⁇ 2 ⁇ 3), decreasing ⁇ VRF / 6 to difference value ⁇ 2, and decreasing ⁇ VRF / 3 to difference value ⁇ 3, and for first observation
  • the voltage value V1 applied to the EA modulator 231 maintains the set value.
  • step STb4 when the voltage value indicated by the first intermediate driving condition 13 is not higher than the voltage value indicated by the second intermediate driving condition 14 (NO), the voltage is applied to the second observation EA modulator 232.
  • levels 2 and 1 estimated from between the voltage V2 of the second DC bias voltage 3 and the voltage V1 of the first DC bias voltage 2 applied to the first observation EA modulator 231 (V2 to V1) Of the third DC bias voltage 4 applied to the third observation EA modulator 233 and the second DC bias voltage 3 applied to the second observation EA modulator 232 This means that it is not larger than the eye amplitude between levels 3 and 2 during the voltage V2 (V3 to V2), and the process proceeds to step STb6.
  • step STb6 the sum or difference of the eye amplitude and the offset amount between levels 2 and 1 estimated from between (V2 and V1) obtained between the levels 3 and 2 between (V3 and V2) obtained by the comparing unit 260
  • the drive condition control unit 270 increases the drive amplitude VRF by a unit amount ⁇ VRF by using the drive condition adjustment signal 15 indicating that the drive amplitude VRF is not larger than the eye amplitude, that is, indicating that there is room for increasing the drive amplitude VRF.
  • the driving condition control signal 9 is output to the modulation signal generator 320.
  • the modulation signal generation unit 320 that has obtained the second drive condition control signal 9 for increasing the unit amount ⁇ VRF adds the unit amount ⁇ VRF to the drive amplitude VRF, updates the drive amplitude VRF, and outputs the updated drive amplitude VRF to the DC / AC combining unit 330.
  • the DC / AC combining section 330 combines the DC bias voltage Vbias output from the DC bias voltage control section 310 with the modulation signal of the drive amplitude VRF output from the modulation signal generating section 320 according to the electric signal 19 for modulation.
  • a modulation signal for transmission 1 is generated, and the modulation signal for transmission 1 is applied to the EA modulator 220.
  • step STb7 the difference value ⁇ 2 and the difference value ⁇ 3 of the three applied voltages from the first observation EA modulator 231 to the third observation EA modulator 233 are changed in accordance with the updated drive amplitude VRF. That is, the first DC bias voltage 2 is Vbias, the second DC bias voltage 3 is Vbias ⁇ (VRF + ⁇ VRF) / 6, and the third DC bias voltage 4 is Vbias ⁇ (VRF + ⁇ VRF) / 6 ⁇ (VRF + ⁇ VRF) / 3. I do.
  • the adjustment amount reduced in one cycle in the drive amplitude adjustment mode is as follows.
  • the unit amount ⁇ VRF is increased to the drive amplitude VRF
  • the voltage value V2 (Vbias ⁇ 2) applied to the second observation EA modulator 232 is decreased ⁇ VRF / 6
  • the voltage applied to the third observation EA modulator 233 is increased.
  • the value V3 (Vbias- ⁇ 2- ⁇ 3) is decreased by ⁇ VRF / 6 + ⁇ VRF / 3
  • the difference value ⁇ 2 is increased by ⁇ VRF / 6
  • the difference value ⁇ 3 is increased by ⁇ VRF / 3.
  • the DC bias voltage Vbias and the voltage value V1 applied to the first observation EA modulator 231 maintain the set values.
  • step ST6 determines whether or not drive amplitude VRF has been sufficiently adjusted.
  • the criterion of the sufficient judgment is set in step ST1. For example, it is necessary to perform adjustment within a range that does not exceed the adjustable upper limit or lower limit of the drive amplitude VRF, and when the upper limit or lower limit is reached, it is determined that the adjustment has been sufficiently performed. Even when the upper limit value or the lower limit value is not achieved, the number of times of the drive amplitude adjustment mode shown in FIG. 12 is set by experience, or the result of the magnitude relationship in step STb4 is inverted from the immediately preceding result. Then, a criterion for terminating the drive amplitude adjustment mode is set. When it is determined that the adjustment of the drive amplitude VRF is not sufficiently performed (NO), the process returns to step ST5, and when it is determined that the adjustment is sufficiently performed (YES), the process proceeds to step ST3.
  • step ST3 the drive condition control unit 270 returns the adjustment target to the DC bias voltage adjustment mode again, and thereafter repeats the loop.
  • the DC bias voltage Vbias and the drive amplitude VRF of the transmission modulation signal 1 applied to the EA modulator 220 during the operation of the optical transmitter 200 are adaptively adjusted.
  • the adjustment operation of the DC bias voltage adjustment mode and the drive amplitude adjustment mode is repeatedly performed during all periods of operation of the optical transmitter 200, the adjustment mode may be periodically performed.
  • the first optical modulator that performs optical output is configured as shown in the upper left graph of FIG.
  • the EA modulator 220 is driven in a relatively linear region with respect to the extinction curve at the temperature t1, and when the intervals from the level 3 to the level 0 are appropriately secured, the temperature changes from t1 to t2. Even if the extinction curve of the temperature t1 in the EA modulator 220 changes from the extinction curve to the graph shown on the right of FIG.
  • the first observation EA modulator 231 forming the second optical modulator and the third observation EA modulation The third condition changing signal is obtained from the first condition changing signal based on the value of the photocurrent by the detector 233, and the driving condition searching unit 200b uses the third condition changing signal from the first condition changing signal to generate light based on the third condition changing signal. Sucking A first drive condition control signal based on the amount of difference is output, and the optical transmitter control unit 300 sends the signal to the EA modulator 220 based on the first drive condition control signal in the DC bias voltage adjustment mode.
  • the voltage value of the DC bias voltage which is the DC component of the transmission modulation signal 1 to be applied is adjusted, and the transmission modulation signal to be applied to the EA modulator 220 in the drive amplitude adjustment mode based on the second drive condition control signal.
  • the DC bias voltage Vbias and the drive amplitude VRF characterizing the transmission modulation signal 1 applied to the EA modulator 220 are adjusted as shown in the lower graph of FIG. It can be adjusted adaptively.
  • a good eye pattern can be obtained even when the extinction curve characteristic of the EA modulator 220 is largely changed due to a change in temperature. effective. Further, by optimizing the drive amplitude of the transmission modulation signal 1, it is possible to obtain as wide a level interval as possible, and as a result, it is possible to increase the extinction ratio.
  • the optical transmission device 100 according to the second embodiment has a configuration in which the optical transmission device 100 according to the first embodiment performs two adjustment modes: a DC bias voltage adjustment mode and a drive amplitude adjustment mode.
  • the amplitude adjustment mode is not provided, and the driving amplitude VRF of the modulation signal for transmission 1 applied to the EA modulator 220 is set to a fixed value.
  • the same reference numerals as those in FIGS. 1 and 10 indicate the same or corresponding parts.
  • modulation signal generation section 320 sets the drive amplitude VRF characterizing transmission modulation signal 1 to be applied to EA modulator 220 as a fixed value, and outputs it to DC / AC combining section 330.
  • the fixed value of the drive amplitude VRF is set by the linear region of the extinction curve with respect to temperature when the EA modulator 220 is normally driven in an appropriate environment.
  • DC bias voltage condition control section 271 corresponds to drive condition control section 270 in the first embodiment, and operates in the DC bias voltage adjustment mode. That is, DC bias voltage condition control section 271 performs the same operation as in DC bias voltage adjustment mode in drive condition control section 270 shown in the first embodiment. In short, the DC bias voltage condition control unit 271 performs the following operation in the DC bias voltage adjustment mode. 1) The set values in the DC bias voltage adjustment mode indicated by the set values 1 to 6 described in the first embodiment are set for each component.
  • the third drive condition control signal 16 is a signal for setting the difference value ⁇ 2 and the difference value ⁇ 3. 3)
  • the amplification factor of the first differential amplifier 251 is a1
  • the amplification factor of the second differential amplifier 252 is a2.
  • the first drive condition control signal 8 and the third drive condition control signal 16 are obtained based on the drive condition adjustment signal 15 obtained by the comparison unit 260.
  • the DC bias voltage Vbias in the transmission modulation signal 1 applied to the EA modulator 220 is adjusted by the optical transmitter control unit 300 by the first driving condition control signal 8.
  • the hardware configuration of the optical transmitter 100 shown in FIG. 13 is basically the same as that shown in FIG. That is, in the second embodiment, the memory 302 and the memory 202 store a program for executing the flowchart shown in FIG. FIG. 14 corresponds to a flowchart in which FIGS. 10 and 11 in the first embodiment are combined.
  • steps STa11 to STa61 correspond to steps STa1 to STa6 shown in FIG. 11, respectively, and correspond to the DC bias voltage adjustment mode step of step ST3 shown in FIG.
  • the second embodiment does not have the drive amplitude adjustment mode, and thus does not have steps ST4 to ST6 shown in FIG.
  • This flowchart is a continuous loop flow, and the processing between the loop start and the loop end is repeated.
  • step STa51 and step STa61 After the processing of step STa51 and step STa61, the process returns to step STa21, and thereafter, the loop is repeated. Thereby, the DC bias voltage Vbias is adaptively adjusted during operation of the optical transmission device 100. Although the DC bias voltage adjustment mode is repeatedly performed during all periods of operation of the optical transmitter 200, the DC bias voltage adjustment mode may be periodically performed.
  • the first observation EA modulator constituting the second optical modulator From 231 a third condition changing signal is obtained from the first condition changing signal based on the photocurrent value by the third observation EA modulator 233, and the driving condition search unit 200 b obtains the third condition changing signal from the first condition changing signal.
  • a first drive condition control signal is output based on the difference in the amount of light absorption by the third condition change signal, and the optical transmitter control unit 300 performs EA modulation based on the first drive condition control signal.
  • Adjusting the voltage value of the DC bias voltage Vbias which is the DC component of the transmission modulation signal 1 applied to the modulator 220, and adaptively adjusting the DC bias voltage Vbias of the transmission modulation signal 1 applied to the EA modulator 220.
  • Embodiment 3 a third embodiment of the present invention will be described with reference to FIG.
  • Optical transmission apparatus 100 according to Embodiment 3 is obtained by changing CW light output section 210 in optical transmission apparatuses 100 according to Embodiment 1 and Embodiment 2 to CW light output section 210c. Is the same.
  • the CW light output unit 210c includes a light emitting unit 211c and an observation CW light branching unit 213c.
  • the light emitting unit 211c is a semiconductor laser (LD) that outputs CW light.
  • This semiconductor laser (LD) has a resonator structure formed of mirrors facing each other, and has a structure in which CW light is extracted from each mirror in different directions.
  • the CW light extracted from one mirror of the light emitting section 211c is output to the EA modulator 220.
  • the CW light extracted from the other mirror of the light emitting unit 211c is output to the observation CW light branching unit 213c.
  • the CW light input to the observation CW light branching unit 213c is branched into three and output from the first observation EA modulator 231 to the third observation EA modulator 233.
  • the observation CW light branching unit 213 is an optical coupler, a multimode interference waveguide, or the like.
  • the optical transmission device 100 according to the third embodiment differs from the optical transmission device 100 according to the first and second embodiments only in the CW light output unit 210c. The same effect as that of the optical transmission device 100 or the same effect as that of the optical transmission device 100 according to the second embodiment is obtained.
  • Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described with reference to FIG.
  • Optical transmission apparatus 100 according to Embodiment 4 is obtained by changing optical signal generation section 200a to optical signal generation section 200d in optical transmission apparatuses 100 according to Embodiments 1 and 2, and has the other configuration. Is the same.
  • the optical signal generation unit 200d includes a CW light output unit 210d including a light emitting unit 211d that is a semiconductor laser (LD) that outputs CW light, an EA modulator 220, a modulated light branching unit 214, and a first observation EA.
  • the modulator 231 is provided with a third observation EA modulator 233.
  • the CW light output from the light emitting unit 211d is modulated by the EA modulator 220 and output as an optical signal.
  • the modulated light branching unit 214 is provided between the EA modulator 220 and the first observation EA modulator 231 to the third observation EA modulator 233, and includes the EA modulator 220 and the first observation EA modulator. 231 to the third observation EA modulator 233 are optically connected in series.
  • An optical signal from the EA modulator 220 is output as an optical output from an optical output port via a modulated optical branching unit 214.
  • the optical signal from the EA modulator 220 is further split into three by the modulated light splitting unit 214 and output from the first observation EA modulator 231 to the third observation EA modulator 233.
  • the distribution ratio of the ports for optical output in the modulated light branching unit 214 is set to be larger than the distribution ratio of the output ports from the first EA modulator 231 for observation to the third EA modulator 233 for observation. I try not to lower the optical power.
  • the optical transmission device 100 according to the fourth embodiment differs from the optical transmission device 100 according to the first and second embodiments only in the optical signal generation unit 200d. The same effect as that of the optical transmission device 100 or the same effect as that of the optical transmission device 100 according to the second embodiment is obtained.
  • Embodiment 5 a fifth embodiment of the present invention will be described with reference to FIG.
  • the optical transmission device 100 according to the fifth embodiment is obtained by adding a second drive amplitude adjustment mode to the optical signal generation unit 200a in the optical transmission device 100 according to the first embodiment. That is, the drive amplitude adjustment mode in the optical transmission device 100 according to the first embodiment is obtained by observing an upper level from the center of the eye pattern in the PAM4 modulation method, and furthermore, adjusting a lower level from the center of the eye pattern. A second drive amplitude adjustment mode to be observed is added.
  • step ST7 is the same step as step ST5.
  • a difference value ⁇ 2 which is a voltage difference (V1-V2) between the voltage values indicated by the first DC bias voltage 2 and the second DC bias voltage 3, the second DC bias voltage 3 and the third DC bias voltage
  • a difference value ⁇ 3, which is a voltage difference (V2 ⁇ V3) between the voltage values indicated by the bias voltage 4 is set, the amplification factor of the first differential amplifier 251 is c1, and the amplification of the second differential amplifier 252 is Set the rate to c2.
  • the difference value ⁇ 2 is VRF / 6, and the difference value ⁇ 3 is VRF / 3.
  • the three-point DC bias voltage control unit 280 applies the first DC bias voltage 2 in which the voltage value V1 applied to the first observation EA modulator 231 is Vbias, and the second observation EA modulator 232 To the third observation EA modulator 233, the third DC voltage V3 is Vbias + ⁇ 2 + ⁇ 3 in which the voltage value V3 is the voltage of the level 0. Is applied.
  • the drive condition searching unit 200b performs the same processing as in step ST5, and calculates the difference values ⁇ 2 and ⁇ 3 of the three applied voltages from the first observation EA modulator 231 to the third observation EA modulator 233. Then, ⁇ VRF / 6 and ⁇ VRF / 3 are added to or subtracted from the drive amplitude VRF, respectively, and the drive amplitude is changed in accordance with the updated drive amplitude VRF.
  • the first DC bias voltage 2 is Vbias
  • the second DC bias voltage 3 is Vbias + VRF / 6 + ⁇ VRF / 6 or bias + VRF / 6 ⁇ VRF / 6
  • the third DC bias voltage 4 is Vbias + VRF / 6 + ⁇ VRF / 6 + VRF / 3 + ⁇ VRF / 3 or Vbias + VRF / 6 ⁇ VRF / 6 + VRF / 3 ⁇ VRF / 3.
  • step ST8 the process proceeds to step ST8.
  • the second drive amplitude adjustment mode shown in step ST7 is repeatedly performed, and it is determined that the drive amplitude VRF has been sufficiently adjusted.
  • the process proceeds to step ST3.
  • the drive condition control unit 270 returns the adjustment target to the DC bias voltage adjustment mode again, and thereafter repeats the loop.
  • the DC bias voltage Vbias and the drive amplitude VRF of the transmission modulation signal 1 applied to the EA modulator 220 during the operation of the optical transmitter 200 are adaptively adjusted.
  • the optical transmission device 100 according to the fifth embodiment differs from the optical transmission device 100 according to the first embodiment in that a second drive amplitude adjustment mode is added.
  • the drive amplitude of the transmission modulation signal 1 can be set to a wider level interval, and as a result, the extinction ratio Has the effect of being able to be higher.
  • FIG. 18 an optical transmitting apparatus 100 according to Embodiment 6 of the present invention will be described using FIG. 18 to FIG.
  • Optical transmission apparatus 100 according to the sixth embodiment performs, with respect to optical transmission apparatus 100 according to the first embodiment, a drive amplitude adjustment mode out of two adjustment modes of a DC bias voltage adjustment mode and a drive amplitude adjustment mode.
  • a fourth observation EA modulator is added from the first observation EA modulator 231 to the third observation EA modulator 233, and a fourth current-voltage converter 244 and a third ,
  • a drive amplitude adjustment signal generation unit 250b composed of a differential amplification unit 253, a fourth differential amplification unit 254, and a drive amplitude adjustment comparison unit 261; and a drive amplitude adjustment DC bias voltage control unit 281. Things.
  • the same reference numerals indicate the same or corresponding parts.
  • This is performed using the signal generation unit 250a, the driving condition control unit 272, and the three-point DC bias voltage control unit 280.
  • the drive amplitude adjustment mode corresponds to the observation EA modulator selected from the first observation EA modulator 231 to the third observation EA modulator 233 and the selected observation EA modulator.
  • a current-voltage converter, a fourth observation EA modulator 234 constituting a third optical modulator, a fourth current-voltage converter 244, a third differential amplifier 253, and a fourth This is performed using the drive amplitude adjustment signal generation unit 250b having the differential amplifier unit 254 and the drive amplitude adjustment comparison unit 261; the drive condition control unit 272; and the drive amplitude adjustment DC bias voltage control unit 281.
  • the CW light output unit 210e includes a light emitting unit 211, a CW light branching unit 212, and an observation CW light branching unit 213e.
  • the observation CW light splitter 213 e splits the CW light from the CW light splitter 212 into four lights and outputs the CW light from the first observation EA modulator 231 to the fourth observation EA modulator 234.
  • the characteristics of the CW light before and after branching of the observation CW light branching unit 213e are the same except for the optical power.
  • the fourth observation EA modulator 234 includes an EA modulator for searching for an appropriate driving condition of the EA modulator 220 together with the first observation EA modulator 231 to the third observation EA modulator 233. This is for obtaining a voltage value of the drive amplitude of the modulation signal for transmission with respect to 220.
  • the fourth observation EA modulator 234 has the same configuration as the first observation EA modulator 231 to the third observation EA modulator 233, and is configured by the fourth DC bias voltage 20 applied.
  • a third optical modulator that outputs a fourth condition changing signal 21 based on the value of the photocurrent caused by the electric field absorption effect on the continuous laser light from the CW light output unit 210e.
  • the fourth observation EA modulator 234 receives the branched CW light from the observation CW light branching unit 213e.
  • the fourth observation EA modulator 234 is different from the first observation EA modulator 234 except that the fourth DC bias voltage 20 is different from the voltage values of the first DC bias voltage 2 to the third DC bias voltage 4. 231, the third observation EA modulator 233, and the semiconductor layer structure, the composition ratio, the waveguide structure, the length of the region where the electroabsorption effect occurs, and the like are made the same as much as possible.
  • the voltage values of the first DC bias voltage 2 to the third DC bias voltage 4 and the fourth DC bias voltage 20 applied from the first observation EA modulator 231 to the fourth observation EA modulator 234 are , As follows. In the initial value, the voltage difference (V1-V2) between the voltage values indicated by the first DC bias voltage 2 and the second DC bias voltage 3 in the DC bias voltage adjustment mode is set to a difference value ⁇ 2, and the second DC bias voltage A voltage difference (V2 ⁇ V3) between the voltage values indicated by the third and third DC bias voltages 4 is set as a difference value ⁇ 3.
  • the voltage difference (V1 ⁇ V2) between the voltage values indicated by the first DC bias voltage 2 and the second DC bias voltage 3 is set to the difference value ⁇ 2, and the second DC bias voltage 3
  • a voltage difference (V2 ⁇ V3) between the voltage values indicated by the third DC bias voltage 4 and the third DC bias voltage 4 are set as a difference value ⁇ 3.
  • the voltage difference (V3-V4) is set as a difference value ⁇ 4.
  • the voltage value V1 indicated by the first DC bias voltage 2 is Vbias
  • the voltage value V2 indicated by the second DC bias voltage 3 is Vbias ⁇ 2
  • the voltage value V3 indicated by the third DC bias voltage 4 is Vbias. ⁇ 2 ⁇ 3, which is the same voltage as in the DC bias voltage adjustment mode in the first embodiment.
  • the voltage value V4 indicated by the fourth DC bias voltage is Vbias- ⁇ 2- ⁇ 3- ⁇ 4.
  • the voltage difference (V1 ⁇ V4) that is, ( ⁇ 2 + ⁇ 3 + ⁇ 4) is half the driving amplitude VRF / ⁇ 4 is set to be equal to 2.
  • the drive condition searching unit 200f includes the first current-voltage converter 241 to the third current-voltage converter 243, the first differential amplifier 251 and the second differential amplifier 252, and the comparator 260.
  • the DC bias adjustment signal generation unit 250a the driving condition control unit 272, and the three-point DC bias voltage control unit 280
  • the fourth current-voltage conversion unit 244, the third differential amplification unit 253, and the A drive amplitude adjustment signal generator 250b having four differential amplifiers 254 and a drive amplitude adjustment comparator 261 and a drive amplitude adjustment DC device voltage controller 281 are provided.
  • FIG. 18 shows the flow of the electric signal between the components of the driving condition search unit 200f, there is no actual flow of the electric signal when the operation is performed by software.
  • the fourth current-to-voltage converter 244 is composed of a resistor having the same resistance as the first current-to-voltage converter 241 to the third current-to-voltage converter 243.
  • the third differential amplifying unit 253 calculates the voltage value Vph1 indicated by the first condition changing voltage 10 from the first current-to-voltage converter 241 and the third condition from the third current-to-voltage converter 243. Based on the voltage value Vph3 indicated by the changing voltage 12, the difference (Vph1 ⁇ Vph3) between the voltage value indicated by the first condition changing voltage 10 and the voltage value indicated by the third condition changing voltage 12 is linearly amplified. A certain third intermediate drive condition 23 is obtained.
  • the fourth differential amplifying unit 254 calculates the voltage value Vph1 indicated by the first condition changing voltage 10 from the first current-to-voltage converter 241 and the fourth condition from the fourth current-to-voltage converter 244.
  • the third differential amplifier 253 sets the amplification factor to b3, and the fourth differential amplifier 254 sets the amplification factor to b4. Therefore, in the drive amplitude adjustment mode, the absolute value of the voltage indicated by the third intermediate drive condition 23 from the third differential amplifier 253 is b3 ⁇
  • the third differential amplifier 253 and the fourth differential amplifier 254 are used in the drive amplitude adjustment mode, and may be inactive in the DC bias voltage adjustment mode.
  • the first differential amplifying unit 251 sets the amplification factor in the DC bias voltage adjustment mode to a1 and the amplification factor in the drive amplitude adjustment mode to b1. It may be inactivated in the drive amplitude adjustment mode.
  • the second differential amplifier 252 sets the amplification factor in the DC bias voltage adjustment mode to a2 and the amplification factor in the drive amplitude adjustment mode to b2. It may be inactive during the mode.
  • the ratio of the amplification factor a1 and the amplification factor a2 of the linear amplification in the first differential amplifier 251 and the second differential amplifier used in the DC bias voltage adjustment mode is determined based on the same idea as in the first embodiment. .
  • the ratio between the amplification factor b3 and the amplification factor b4 in the third differential amplifier unit 253 and the fourth differential amplifier unit 254 used in the drive amplitude adjustment mode is the same as that in the first embodiment when used in the drive amplitude adjustment mode.
  • the linear amplification in the first differential amplifier 251 and the second differential amplifier 252 described above are different from the voltage in the first embodiment.
  • the value of the ratio is different. different.
  • the amplification factor b4 of the fourth differential amplifying unit 254 is determined by considering the difference between the voltages applied from the first observation EA modulator 231 to the fourth observation EA modulator 234 by the third factor.
  • FIG. 20 shows the power transmittance T of the EA modulator 220 and the first observation EA modulator 231 to the fourth observation EA modulator 234 in the drive amplitude adjustment mode with respect to the reverse applied voltage V. This is indicated by a circle.
  • the horizontal axis indicates the reverse applied voltage V
  • the vertical axis indicates the value of the power transmittance T.
  • the drive amplitude adjustment comparison unit 261 is based on the third intermediate drive condition 23 output from the third differential amplifier 253 and the fourth intermediate drive condition 24 output from the fourth differential amplifier 254. Then, the voltage values indicated by the third intermediate drive condition 23 and the fourth intermediate drive condition 24 are compared to obtain a drive amplitude adjustment signal 15b which is one of the drive condition adjustment signals. In other words, the drive amplitude adjustment comparison unit 261 calculates the absolute value of the voltage (b3 ⁇
  • the drive amplitude adjustment signal 15b can set an offset amount when judging the magnitude relationship, as in the drive condition adjustment signal 15 in the drive amplitude adjustment mode in the first embodiment.
  • the reason for providing the offset amount is to prevent the VRF from becoming unnecessarily small each time the adjustment is repeated, as in the first embodiment. Therefore, by appropriately setting the offset amount, the adjustment of the drive amplitude can be maintained such that the amplitude difference between the level 2-1 and the level 3-2 is approximately equal.
  • the drive condition searching unit 200f includes a DC bias adjustment signal generation unit 250a having a first differential amplification unit 251, a second differential amplification unit 252, and a comparison unit 260, which is used in the DC bias voltage adjustment mode. And a drive amplitude adjustment signal generator 250b having a third differential amplifier 253, a fourth differential amplifier 254, and a drive amplitude adjustment comparator 261 for use in the drive amplitude adjustment mode.
  • the DC bias adjustment signal generation unit 250a changes the first condition changing voltage 10 to the third condition changing based on the first condition changing signal 5 to the third condition changing signal 7.
  • a combination of the first condition changing voltage 10 and the second condition changing voltage 11 and a second condition changing voltage 11 are used.
  • a DC bias adjustment signal 15a which is one of the drive condition adjustment signals, is obtained based on the difference between the light absorption amounts due to the combination of the third condition change voltage 12 and the third condition change voltage 12.
  • the drive amplitude adjustment signal generation unit 250b converts the first condition change voltage 10 based on the first condition change signal 5 to the third condition change signal 7 to the third condition change The remaining combination of the three combinations of the voltages 12 and the light absorption amount by the fourth condition changing voltage 22 based on the one condition changing voltage and the fourth condition changing signal 21 of the remaining combinations.
  • the difference amount depends on the combination of the first condition changing voltage 10 and the third condition changing voltage 12, and the first condition changing voltage 10 and the fourth condition changing voltage 22.
  • the drive amplitude adjustment signal 15b is obtained based on the difference between the light absorption amounts.
  • the drive amplitude adjustment signal generator 250b performs the first condition change signal 5 to the third condition change signal 7 based on the third condition change signal 7 in the drive amplitude adjustment mode.
  • a fourth condition based on the remaining combination of the three combinations of the voltage 10 to the third condition changing voltage 12, one of the remaining combinations, and the fourth condition changing signal 21.
  • the difference between the amount of light absorption by the change voltage 22 and the first condition change signal 5 to the third condition based on the first condition change signal 5 to the third condition change signal 7 are used.
  • Fourth condition change based on 21 It may be those obtaining driving amplitude adjustment signal 15b based on the difference of light absorption amount by the use voltage 22.
  • the drive condition control unit 272 sets various setting values before the operation of the optical transmission device 100 as in the first embodiment, and sets the DC bias voltage adjustment mode or the drive amplitude adjustment after the optical transmission device 100 starts operating. Indicates which of the modes is to be performed. In the DC bias voltage adjustment mode, the drive condition control unit 272 obtains the first drive condition control signal 8 based on the DC bias adjustment signal 15a obtained by the comparison unit 260, and performs the third drive condition control. Signal 16 is obtained. Since the drive condition control unit 272 is in the DC bias voltage adjustment mode, the second drive condition control signal 9 is not generated. The operation of the driving condition control unit 272 at this time is the same as that of the first embodiment, and thus the description is omitted.
  • the drive condition control unit 272 obtains the second drive condition control signal 9 based on the drive amplitude adjustment signal 15b obtained by the drive amplitude adjustment comparison unit 261, and 4 is obtained. Since the drive condition control section 272 is in the drive amplitude adjustment mode, the first drive condition control signal 8 is not generated. At this time, the drive condition control section 272 outputs a signal for maintaining the initial value or the state immediately before the drive amplitude adjustment mode instead of the third drive condition control signal 16.
  • the third drive condition control signal 16 obtained by the drive condition control unit 272 is converted from the first DC bias voltage 2 applied from the first observation EA modulator 231 to the third observation EA modulator 233.
  • the fourth driving condition control signal 25 is for adjusting the fourth DC bias voltage 20 applied to the fourth observation EA modulator 234. belongs to.
  • the drive condition control unit 272 controls the three-point DC bias voltage control unit 280 and the like in the DC bias voltage adjustment mode as in the first embodiment, and in the drive amplitude adjustment mode, the drive amplitude adjustment DC bias voltage control unit 281 , The third differential amplifier 253 and the fourth differential amplifier 254 are controlled.
  • Driving condition control section 272 sets setting value 7 corresponding to setting value 2 shown in Embodiment 1 and setting 8 corresponding to setting value 4 as setting values in the drive amplitude adjustment mode. It is.
  • Set value 7 a difference value ⁇ 4 which is a voltage difference (V3-V4) between the voltage values indicated by the third DC bias voltage 4 and the fourth DC bias voltage 20.
  • Set value 8 Gain b3 of third differential amplifier 253, Gain b4 of fourth differential amplifier 254.
  • the three-point DC bias voltage control unit 280 receives the third drive condition control signal 16 from the drive condition control unit 272 and operates in the same manner as in the first embodiment.
  • the three-point DC bias voltage control unit 280 maintains the state immediately after the DC bias voltage adjustment mode in the drive amplitude adjustment mode, in the initial value, or when the drive amplitude adjustment mode is started after the DC bias voltage adjustment mode. Are applied from the first DC bias voltage 2 to the third DC bias voltage 4 to the first observation EA modulator 231. This state is maintained during the drive amplitude adjustment mode.
  • the drive amplitude adjustment DC bias voltage control unit 281 receives the fourth drive condition control signal 25 from the drive condition control unit 272 and receives the DC bias voltage Vbias and the difference value ⁇ 2 as initial values.
  • the drive amplitude adjustment DC bias voltage control unit 281 receives the fourth drive condition control signal 25 from the drive condition control unit 272 and changes the fourth drive condition control signal 25 to ⁇ VRF /
  • the fourth observation EA modulator 234 applies a voltage value V4 of Vbias ⁇ VRF / 2 ⁇ VRF / 2. This is repeated until the fourth drive condition control signal 25 from the drive condition control unit 272 no longer shows a signal for reducing ⁇ VRF / 2.
  • the drive amplitude adjustment DC bias voltage control unit 281 receives the fourth drive condition control signal 25 from the drive condition control unit 272 and changes the fourth drive condition control signal 25 to ⁇ VRF /
  • the fourth observation EA modulator 234 applies the voltage value V4 of Vbias ⁇ VRF / 2 + ⁇ VRF / 2. This is repeated until the fourth drive condition control signal 25 from the drive condition control unit 272 no longer shows a signal for increasing ⁇ VRF / 2.
  • the DC bias voltage control unit 310, the modulation signal generation unit 320, and the DC / AC combining unit 330, which constitute the optical transmitter control unit 300, operate in the same manner as in the first embodiment.
  • the hardware configuration of the optical transmission device 100 according to the sixth embodiment shown in FIGS. 18 and 19 is different from the hardware configuration of the optical transmission device 100 according to the first embodiment shown in FIG.
  • the program for implementing the first embodiment recorded in the memory 302 is changed to a program for implementing the sixth embodiment.
  • the memory 302 and the memory 202 store a program for executing a flowchart showing a process flow of event recognition in the optical transmission device 100 shown in FIGS. 10, 11, and 21.
  • step ST5 is a step of the drive amplitude adjustment mode in the entire adjustment mode shown in FIG. 10, and at the same time, corresponds to FIG. 12 showing a detailed flowchart of the drive amplitude adjustment mode in the first embodiment.
  • Steps STb11 to STb71 shown in FIG. 21 correspond to steps STb1 to STb7 shown in FIG. 12, respectively.
  • the flowchart of the drive amplitude adjustment mode (step ST5) in the sixth embodiment includes the amplification factor b3 of the third differential amplification unit and the amplification factor b4 of the fourth differential amplification unit 234, as shown in FIG. , A step STb21 of applying the fourth DC bias voltage 20 to the fourth observation EA modulator 234, and a step STb31 of obtaining the drive amplitude adjustment signal 15b by the drive amplitude adjustment comparator 261.
  • step STb11 the drive condition control unit 272 switches the adjustment target from the DC bias voltage Vbias of the transmission modulation signal 1 to the drive amplitude VRF. Further, the gain of the third differential amplifier 253 is set to b3, and the gain of the fourth differential amplifier 254 is set to b4.
  • step STb21 the drive amplitude adjustment DC bias voltage control unit 281 sets a DC bias voltage for the fourth DC bias voltage 20 of the fourth observation EA modulator 234, and sets the fourth observation EA modulator 234. Is applied with a fourth DC bias voltage 20. That is, the fourth DC bias voltage 20 whose voltage value V4 is (Vbias- ⁇ 2- ⁇ 3- ⁇ 4) is applied to the fourth observation EA modulator 234. Further, the first to third DC bias voltages applied from the first observation EA modulator 231 to the third observation EA modulator 233 are values in the DC bias voltage adjustment mode (step ST3). Has been maintained.
  • the difference value ⁇ 4 is a value set in step ST11 as an initial value, and thereafter is changed and updated in step STb71 in accordance with the drive amplitude VRF.
  • the difference between the photocurrent output from the first observation EA modulator 231 to the fourth observation EA modulator 234 and the first observation EA modulator 234 is changed.
  • level 3 in the EA modulator 220 is in the nonlinear region of the extinction curve. That is, when level 3 is in the linear region, the difference between the photocurrents is linearly proportional to the difference between the applied voltages (horizontal axis), but when level 3 is in the non-linear region, FIG.
  • the relationship is no longer linearly proportional, so that it can be restored to the linearly proportional relationship by detecting this and reducing the drive amplitude.
  • step STb31 a fourth condition changing current (Iph4) 21 and a fourth condition changing voltage (Vph4) 22 corresponding to the fourth observation EA modulator 234 are obtained in the same manner as in step STb3.
  • the third differential amplifier 253 linearly amplifies the difference amount (Vph1 ⁇ Vph3) between the voltage values indicated by the first condition changing voltage 10 and the third condition changing voltage 12.
  • the third intermediate driving condition 23 is obtained.
  • the fourth differential amplifier 254 linearly amplifies the difference (Vph1 ⁇ Vph4) between the voltage value indicated by the first condition changing voltage 10 and the fourth condition changing voltage 22.
  • a certain fourth intermediate drive condition 24 is obtained.
  • the drive amplitude adjustment comparison unit 261 calculates the voltage value (b3 ⁇
  • ) indicated by the fourth intermediate drive condition is compared to obtain a drive amplitude adjustment signal 15b in which the magnitude relationship is binary information, and the drive amplitude adjustment signal 15b is used as the drive condition.
  • Step STb41 is a step of determining what kind of signal the drive amplitude adjustment signal 15b is. That is, the drive amplitude adjustment signal 15b is output from the third differential amplifier 253 and the voltage value indicated by the third intermediate drive condition 23 is output from the fourth differential amplifier 254 to the fourth intermediate amplifier 254. It is determined whether the driving condition 24 is higher than the voltage value indicated by the driving condition 24.
  • the fourth DC bias voltage 20 applied to the fourth observation EA modulator 234 20 exists in the nonlinear region of the extinction curve (shown in the left graph of FIG. 20), and means that the eye amplitude between levels 2 and 1 is larger than the eye amplitude between levels 3 and 2. It proceeds to step STb51.
  • step STb51 it is shown that the estimated eye amplitude between levels 2 and 1 obtained by the drive amplitude adjustment comparing section 261 is larger than the eye amplitude between levels 3 and 2, that is, the eye amplitude between levels 3 and 2.
  • the drive condition control unit 272 reduces the drive amplitude VRF by a unit amount ⁇ VRF in the same procedure as in step STb5 by the drive amplitude adjustment signal 15b indicating that the amplitude is in a narrow state.
  • step STb71 changes the difference value ⁇ 4 between the voltages applied to the third observation EA modulator 233 and the fourth observation EA modulator 234 according to the updated drive amplitude VRF. That is, the fourth DC bias voltage 20 is set to Vbias ⁇ (VRF ⁇ VRF) / 2.
  • the adjustment amount changed in one cycle in the drive amplitude adjustment mode is as follows.
  • the unit amount ⁇ VRF is reduced to the drive amplitude VRF, ⁇ VRF / 2 is increased to the voltage value V4 applied to the fourth observation EA modulator 234, and ⁇ VRF / 2 is decreased to the difference value ⁇ 4.
  • the DC bias voltage Vbias and the voltage values V1, V2, and V3 applied from the first observation EA modulator 231 to the third observation EA modulator 233 maintain the set values. That is, in the drive amplitude adjustment mode, ⁇ 4 is adjusted according to the drive amplitude VRF, and ⁇ 2 and ⁇ 3 are not adjusted.
  • step STb41 when the voltage value indicated by the third intermediate drive condition 23 is not higher than the voltage value indicated by the fourth intermediate drive condition 24 (NO), the voltage is applied to the fourth observation EA modulator 234.
  • Level 3 corresponding to the fourth DC bias voltage 20 exists in the linear region of the extinction curve, meaning that the eye amplitude between levels 2 and 1 is not greater than the eye amplitude between levels 3 and 2, and step STb61. Proceed to.
  • a step STb61 indicates that the estimated eye amplitude between the levels 2 and 1 obtained by the drive amplitude adjustment comparing section 261 is not larger than the eye amplitude between the levels 3 and 2, ie, there is room for increasing the drive amplitude VRF.
  • the drive condition control unit increases the drive amplitude VRF by a unit amount ⁇ VRF in the same procedure as in step STb6, using the drive amplitude adjustment signal 15b meaning that there is a signal.
  • step STb71 changes the difference value ⁇ 4 between the voltages applied to the third observation EA modulator 233 and the fourth observation EA modulator 234 according to the updated drive amplitude VRF. That is, the fourth DC bias voltage is set to Vbias ⁇ (VRF + ⁇ VRF) / 2.
  • the adjustment amount changed in one cycle in the drive amplitude adjustment mode is as follows.
  • the unit amount ⁇ VRF is increased to the drive amplitude VRF
  • ⁇ VRF / 2 is decreased to the voltage value V4 applied to the fourth observation EA modulator 23
  • ⁇ VRF / 2 is increased to the difference value ⁇ 4.
  • the DC bias voltage Vbias and the voltage values V1, V2, and V3 applied from the first observation EA modulator 231 to the third observation EA modulator 233 maintain the set values. That is, in the drive amplitude adjustment mode, ⁇ 4 is adjusted according to the drive amplitude VRF, and ⁇ 2 and ⁇ 3 are not adjusted.
  • step ST6 shown in FIG. 10 the same operation as in the first embodiment is performed.
  • the fourth DC bias voltage 20 is adjusted, and the nonlinear state of light modulation is improved, as shown in the graph on the right side of FIG.
  • a fourth signal for changing the condition 21 based on the value of the photocurrent is obtained by the fourth EA modulator for observation 234 constituting the third optical modulator.
  • the optical transmitter controller 300 controls the voltage of the DC bias voltage, which is the DC component of the transmission modulation signal 1 to be applied to the EA modulator 220, based on the first drive condition control signal in the DC bias voltage adjustment mode.
  • the value Vbias is adaptively adjusted, and the drive amplitude voltage value VRF characterizing the transmission modulation signal 1 applied to the EA modulator 220 is adaptively adjusted based on the second drive condition control signal in the drive amplitude adjustment mode. Can be adjusted.
  • the voltage is applied to the second optical modulator during alternate repetition of the two adjustment modes of the DC bias voltage adjustment mode and the drive amplitude adjustment mode.
  • the same effect as in the first embodiment can be obtained without changing the first DC bias voltage 2 to the third DC bias voltage 4.
  • the third optical modulator is constituted by the fourth observation EA modulator 234.
  • the present invention is not limited to this, and the fourth observation EA modulator is used. It may be configured by a plurality of observation EA modulators, such as adding a fifth observation EA modulator in addition to 234.
  • the DC bias voltages applied to the plurality of observation EA modulators may all be the same, or may be different voltages.
  • any combination of the embodiments can be freely selected, or any of the components can be modified in each of the embodiments, or any of the components can be omitted in each of the embodiments. .
  • optical transmitter 100 optical transmitter, 200 optical transmitter, 200a, 200c, 200d optical signal generator (optical element), 200b driving condition searching unit, 210, 210c, 210d CW optical output unit, 211, 211c, 211d ⁇ light emitting unit, 212 ⁇ CW Optical branching unit, 213, 213c ⁇ observation CW optical branching unit, 214 ⁇ modulated optical branching unit, 220 ⁇ EA modulator, 231 ⁇ first observation EA modulator, 232 ⁇ second observation EA modulator, 233 ⁇ third observation EA modulator for observation, 234 fourth EA modulator for observation, 241 first current-to-voltage converter, 242 second current-to-voltage converter, 243 third current-to-voltage converter, 244 fourth current -Voltage converter, 251 ⁇ first differential amplifier, 252 ⁇ second differential amplifier, 253 ⁇ third differential amplifier, 254 ⁇ fourth differential amplifier, 260 Comparison unit, 261 drive amplitude adjustment comparison unit, 270, 272 drive condition control unit,

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

入力された連続レーザ光を、直流バイアス電圧と駆動振幅により特徴づけられる送信用変調信号(1)によってパルス振幅変調して光信号として出力する第1の光変調器(220)と、入力された連続レーザ光を、それぞれが異なる電圧値である第1のDCバイアス電圧(2)から第3のDCバイアス電圧(4)による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器(231)から(233)と、第2の光変調器(231)から(233)の第1の条件変更用信号から第3の条件変更用信号を受け、第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいた第1の駆動条件制御用信号(8)を出力し、第2の光変調器(231)から(233)に印加する第1のDCバイアス電圧(2)から第3のDCバイアス電圧(4)を出力する駆動条件探索部(200b)と、駆動条件探索部(200b)からの第1の駆動条件制御用信号(8)に基づき、第1の光変調器(220)に印加する送信用変調信号(1)の直流成分である直流バイアス電圧Vbiasの電圧値を調整する光送信器制御部(300)を備える。

Description

光送信装置、光送信方法、及びプログラム
 この発明は、光送信装置、光送信方法、及びプログラムに係り、特に、PAM4変調方式を主とした多値変調方式に適用可能な光送信装置、光送信方法、及びプログラムに関する。
 光通信の分野において、NRZ(Non Return to Zero)変調方式が多く採用されている。近年、通信の大容量化、様々な伝送距離及び用途に応じた光通信ネットワークを実現するために、標準化団体などにおいて標準化が検討されている。
 現在、IEEE P802.3bsにおいて次世代イーサネット規格(イーサネットは登録商標)である400GbEの議論が進められており、400GbEでは多値変調方式の一つであるPAM(Pulse Amplitude Modulation)4変調方式が採用される見込みがある。
 PAM4変調方式として、例えば、非特許文献1にて提案されている。
"4-PAM for High-Speed Short-Range Optical Communications", K. Szczerba, A. Larsson et al., Journal of Optical Communications and Networking, Vol. 4, No. 11, November 2012.
 1シンボルで1ビット(1と0の2値)を送るNRZ(Non Return to Zero)変調方式を適用した光通信ネットワークにおいて、EA変調器(電界吸収型変調器、EA=Electro-Absorption)を適用した光送信器は、EA変調器が持つ消光カーブ特性の温度に対する変動により光信号の誤り率が大きくなるという問題があった。
 また、1シンボルで2ビット(3、2、1、0の4値)を送るPAM4変調方式は、振幅のレベルを3、2、1、0に対応させて変調する4値の振幅変調であるため、NRZ変調方式に対して容量を2倍にできるものの、レベル間の振幅差が1/3となるため、EA変調器が持つ消光カーブ特性の温度に対する変動による光信号の誤り率の増加がNRZ変調方式と比べてより大きな問題となる。
 温度変動に対する対策の一つとして、EA変調器の温度制御に熱電コントローラ(TEC=Thermoelectric Cooler)を用いる方法がある。
 しかるに、EA変調器に対してミリメートルあるいはセンチメートル規模での温度制御がなされることから、光送信器全体の消費電力に対するTECの消費電力の占める割合が比較的大きく、消費電力の点で問題があった。
 この発明は上記した問題点に鑑みてなされたものであり、EA変調器に対して熱電コントローラを用いることなく、温度変動が生じても光信号の誤り率を小さくできる光送信装置を得ることを目的とする。
 この発明に係る光送信装置は、入力された連続レーザ光を、直流バイアス電圧と駆動振幅で特徴づけられる送信用変調信号によってパルス振幅変調を行い、光信号として出力する第1の光変調器と、入力された連続レーザ光を、それぞれが異なる電圧値である第1のDCバイアス電圧から第3のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器と、第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号を受け、第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて第1の駆動条件制御用信号を得るとともに、第2の光変調器に印加する第1のDCバイアス電圧から第3のDCバイアス電圧を出力する駆動条件探索部と、駆動条件探索部にて得られた第1の駆動条件制御用信号に基づき、第1の光変調器に印加する送信用変調信号の直流成分である直流バイアス電圧の電圧値を調整する光送信器制御部を備える。
 この発明によれば、第1の光変調器における消光カーブ特性が変化しても、第1の光変調器に印加される送信用変調信号が調整され、第1の光変調器から出力される光信号の誤り率を小さくできる。
この発明の実施の形態1に係る光送信装置100の構成を示すブロック図である。 この発明の実施の形態1に係る光信号生成部200aの構成を示すブロック図である。 この発明の実施の形態1に係るEA変調器220における消光カーブ特性とDCバイアス電圧の関係を示す図である。 この発明の実施の形態1に係るEA変調器220におけるPAM4変調方式における光信号のアイパターン(適切な駆動条件)を示す図である。 この発明の実施の形態1に係るEA変調器220における制御方式の原理を説明するための図である。 この発明の実施の形態1に係るEA変調器220、231から233における、逆方向印加電圧Vに対するパワー透過率T及びフォトカレントIphの関係を示す図である。 この発明の実施の形態1に係るEA変調器220、231から233における、駆動振幅調整モードの時の、逆方向印加電圧Vに対するパワー透過率Tの関係を示す図。 この発明の実施の形態1に係るEA変調器220における、温度t1と温度t2時の調整有、調整無の時の消光カーブと逆方向印加電圧Vとの関係を示す図である。 この発明の実施の形態1に係る光送信装置100のハードウェア構成を示す図である。 この発明の実施の形態1に係る光送信装置100における調整モードを示すフローチャートである。 この発明の実施の形態1に係る光送信装置100におけるDCバイアス電圧調整モードを示すフローチャートである。 この発明の実施の形態1に係る光送信装置100における駆動振幅調整モードを示すフローチャートである。 この発明の実施の形態2に係る光送信装置100の構成を示すブロック図である。 この発明の実施の形態2に係る光送信装置100における調整モードを示すフローチャートである。 この発明の実施の形態3に係る光信号生成部200cの構成を示すブロック図である この発明の実施の形態4に係る光信号生成部200dの構成を示すブロック図である この発明の実施の形態5に係る光送信装置100における調整モードを示すフローチャートである。 この発明の実施の形態6に係る光送信装置100の構成を示すブロック図である。 この発明の実施の形態6に係る光信号生成部200eの構成を示すブロック図である。 この発明の実施の形態6に係るEA変調器220、231から234における、駆動振幅調整モードの時の、逆方向印加電圧Vに対するパワー透過率Tの関係を示す図。 この発明の実施の形態6に係る光送信装置100における駆動振幅調整モードを示すフローチャートである。
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 この発明の実施の形態1に係る光送信装置100について、図1から図12を用いて説明する。なお、図1において、実線矢印は光信号の流れを、点線矢印は電気信号の流れを示している。
 図1はこの発明の実施の形態1における光送信装置100の構成を示すブロック図である。光送信装置100は、光ファイバ又は無線空間などで構成された光通信ネットワークにおいて、光信号の送受信を司る通信機器及び光トランシーバの、その送信機能に着目した装置である。そのため、実際のシステムでは同じ筐体に光受信器及び光受信器を制御する制御機器が光送信装置100とともに含まれている。この実施の形態1において、光受信器及び光受信器を制御する制御機器については、通常知られている機器を用いることができるため、詳細な説明は省略する。
 また、光送信装置100はPAM4変調方式が適用された光送信装置であり、例えば、大容量光ファイバ通信機器用に適用される。
 光送信装置100は、光送信器200と光送信器制御部300を備えている。光送信器200は、通信相手に送るデータ情報として入力された電気信号を光信号に変換し、出力する。光送信器200は最低1個の光デバイスによって構成される。データ情報として入力される電気信号は超高速な電気信号である送信用変調信号1として光デバイスに入力される。送信用変調信号1はDCバイアス電圧Vbiasと駆動振幅VRFによって特徴づけられる変調信号である。
 また、光送信装置100は、送信用変調信号1に対してのDCバイアス電圧(Vbias)調整モードと駆動振幅(VRF)調整モードの2つの調整モードが通常の光通信に併せて繰り返し行なわれる。なお、これら調整モードは常時行なわず、所定間隔毎に繰り返して行なわれるものでも良い。
 光送信器制御部300は送信用変調信号1を生成し、送信用変調信号1を光送信器200へ出力するとともに、光送信器200からの種々の電気信号が入力され、入力された電気信号に基づき光送信器200を制御する。光送信器制御部300は、光送信器200に対する専用の制御基板上で実現されても良いし、光送信装置100全体に対する制御基板上で実現されても良い。
 光送信器200は、PAM4変調方式が適用される光送信器であり、電界吸収型変調器集積型半導体レーザ(EML=Electro-absorption Modulator Laser Diode)の光デバイスによって構成される。光送信器200は、光素子である光信号生成部200aと駆動条件探索部200bとを備えている。
 光信号生成部200aは、電気信号及び光信号の生成、送受を行ない、光送信器200としての主機能を果たす。光信号生成部200aは、通常知られている、連続レーザ光出力部(以下、CW光出力部と称す)210と電界吸収型変調器(以下、EA変調器と称す)220を基本的な構成要素とする光デバイスに、第1の観測用EA変調器231から第3の観測用EA変調器233を備えさせたものである。
 CW光出力部210は、光信号の元となるCW(Continuous Wave)光(連続波発振光)を生成し、後段ブロックへとCW光を送り出す半導体レーザにより構成される。
 CW光出力部210は、図2に示すように、発光部211と、CW光分岐部212と、観測用CW光分岐部213を備えている。
 発光部211はCW光を出力する半導体レーザ(LD)である。CW光分岐部212は、発光部211からのCW光を2つに分岐してEA変調器220と観測用CW光分岐部213に出力する。観測用CW光分岐部213はCW光分岐部212からのCW光を3つに分岐して第1の観測用EA変調器231から第3の観測用EA変調器233に出力する。
 CW光分岐部212の分岐前及び分岐後のCW光の特性は光パワー以外同じであり、観測用CW光分岐部213の分岐前及び分岐後のCW光の特性は光パワー以外同じである。
 CW光分岐部212及び観測用CW光分岐部213は、光結合器又は多モード干渉導波路などで構成される。
 また、光送信装置100の運用中全ての期間について調整モードを実施しているが、調整モードを周期的に行なう場合は、CW光分岐部212は調整モードの時のみ、発光部211からのCW光を観測用CW光分岐部213に分岐するものでも良い。
 EA変調器220は、外部変調器である導波路構造をしており、CW光出力部210と光接続され、CW光分岐部212を介して入力されるCW光出力部210からのCW光を、導波路に設けた電極を通じて印加される変調用の電気信号である送信用変調信号1により変調を行い、光信号を生成し、出力する。EA変調器220は、電気信号が印加されることにより、導波路内に電界が生じて通過するCW光の光吸収が生じ、その結果として出力光の光パワーが低下する性質を利用している。EA変調器220は、送信用変調信号1として高速な電気信号を与えることにより、光パワーが変調された光信号の生成を行い、光信号を出力している。
 送信用変調信号1はEA変調器220を駆動させるためのバイアス印加された変調信号であり、DCバイアス電圧Vbiasと駆動振幅VRFの変調信号を合成した電気信号である。
 EA変調器220は、CW光分岐部212を介して入力されたCW光出力部210からの連続レーザ光の光パワーを電界吸収効果により減衰させる機能を有し、入力された連続レーザ光を、印加される送信用変調信号1によってパルス振幅変調を行い、光信号として出力する第1の光変調器を構成する。
 EA変調器220は、図3に示すような逆方向印加電圧Vに対するパワー透過率Tの関係、つまり消光カーブ特性を有している。図3は、光送信装置100の使用許容温度範囲内の稼働開始時温度もしくは定常動作時の設定温度に対する消光カーブT0を示している。
 図3において、横軸は逆方向印加電圧V、つまり、送信用変調信号1における電圧値を示し、縦軸はEA変調器220のパワー透過率Tを示している。なお、横軸において逆方向印加電圧Vを正の値としている。
 消光カーブT0は、印加される逆方向印加電圧Vに対して、パワー透過率Tが非線形性を持って変化しているため、消光カーブT0における線形な領域で変調を行うように適切にバイアス印加された送信用変調信号1がEA変調器220に与えられる。
 すなわち、消光カーブT0における線形な領域の中心点近辺の逆方向印加電圧Vを、DCバイアス電圧Vbiasとし、PAM4変調方式におけるレベル3とレベル0に対応する送信用変調信号1の電圧差を送信用変調信号1の駆動振幅VRFとする。
 理想的には、レベル3からレベル0における光信号のパワー透過率Tが等間隔で現れるのが良い。
 従って、レベル3の時の送信用変調信号1を示す逆方向印加電圧値は、DCバイアス電圧Vbiasに、駆動振幅VRFの1/2をマイナスした値、レベル2の時の送信用変調信号1を示す逆方向印加電圧値は、DCバイアス電圧Vbiasに、駆動振幅VRFの1/6をマイナスした値、レベル1の時の送信用変調信号1を示す逆方向印加電圧値は、DCバイアス電圧Vbiasに、駆動振幅VRFの1/6をプラスした値、レベル0の時の送信用変調信号1を示す逆方向印加電圧値は、DCバイアス電圧Vbiasに、駆動振幅VRFの1/2をプラスした値とする。
 このようにすることにより、EA変調器220の光出力パワーは、図4に示すように、レベル3からレベル0それぞれに対してP03からP00となる。従って、レベル3からレベル0に対応して4値の光出力が得られる。
 しかも、EA変調器220から出力される光信号のアイパターンは、レベル3~2間のアイ、レベル2~1間のアイ、レベル1~0間のアイの上中下3つのアイを有し、3つのアイが等間隔に開いている状態であるため、上中下3つのアイにおける信号の誤りは同程度の頻度で生じ、それぞれのレベルの振幅差が大きいほど誤り率は小さくなる。
 EA変調器220の消光カーブ特性は、光送信装置100内外の諸環境から影響を受ける。消光カーブT0に対する温度t0に対して温度が変動すると、消光カーブは消光カーブT0から変動する。
 但し、EA変調器220において、電界吸収効果における温度が与える影響は複雑であるため、温度変化に対応する消光カーブの変動は関数の平行移動のように簡単には表せない。
 すなわち、DCバイアス電圧Vbiasと駆動振幅VRFを初期設定にしたままであると、温度の変動によって、消光カーブT0の線形領域にて送信用変調信号1を印加していたものが、消光カーブの非線形の領域に送信用変調信号1を印加することになり、EA変調器220から出力される光信号のアイパターンが歪み、上中下3つのアイが不等間隔になり、光信号の誤り率が増大する恐れがある。
 この実施の形態1では、DCバイアス電圧調整モードと駆動振幅調整モードの2つの調整モードを持ち、送信用変調信号1における逆方向印加電圧値を変更し、送信用変調信号1がEA変調器220の消光カーブの線形領域に印加されるように制御している。
 制御に関する基本的な考えは、EA変調器220の消光カーブ特性における消光カーブの傾きの極大値に狙いを定め、DCバイアス電圧Vbiasを求めることである。
 この点について、図5を用いて説明する。
 図5は、EA変調器220の駆動条件探索の原理を示す図である。図5において、横軸は逆方向印加電圧V、つまり、送信用変調信号1における電圧値を示し、縦軸はEA変調器220のパワー透過率Tを示している。なお、横軸において逆方向印加電圧Vを正の値としている。2つの温度t1及び温度t2に対し、実線T1と実線T2は消光カーブを、点線T1’と点線T2’は消光カーブT1と消光カーブT2に対して電圧で微分をとった消光カーブの傾き特性を示している。温度t1と温度t2は異なる温度であり、温度がt1からt2に変化すると、各電圧に対するパワー透過率Tが変化する。つまり、消光カーブは図5に示すようにT1からT2に変化する。
 温度変化に対する消光カーブ特性の変動は、EA変調器220における電界吸収効果における温度が与える影響が複雑であるため、関数の平行移動のように簡単には表せないが、最適ではないにしても適切な値として指標になるのが、消光カーブの傾きの極大値である。
 すなわち、消光カーブ特性が完全に線形である場合において、消光カーブの傾きはどのDCバイアス電圧に対しても一定となる。しかし、実際には、消光カーブが示すパワー透過率Tは0以上かつ1以下の値となるため、全てのDCバイアス電圧Vbiasに対して傾きが一定ということはなく、傾きはDCバイアス電圧Vbiasに対して増減する。傾きが増減するなかで、図5に示すように、消光カーブの傾き特性T1’及び傾き特性T2’の極大値の付近では傾きの変化率が小さい。言い換えれば、極大値を与えるDCバイアス電圧Vbiasでは消光カーブT1及び消光カーブT2の線形性が高い領域となる。このことから、EA変調器220に印加するDCバイアス電圧Vbiasとして、消光カーブの傾きの極大値を与える電圧は適切である。
 一方、変調信号の駆動振幅VRFを非常に大きくした場合には、レベル3又はレベル0を与える送信用変調信号1の値が消光カーブの非線形性の領域に入ってしまい、どのようなDCバイアス電圧条件でも波形が歪んでしまう。従って、変調信号の駆動振幅VRFを適切な値に制御し、DCバイアス電圧Vbiasとして、傾きの極大値を与える電圧とする。
 このような考えに基づき、EA変調器220に対する送信用変調信号1を生成している。
 この点について、以下、具体的に説明する。
 光信号生成部200aにおける第1の観測用EA変調器231から第3の観測用EA変調器233はEA変調器220の適切な駆動条件を探索するためのものである。第1の観測用EA変調器231から第3の観測用EA変調器233はそれぞれEA変調器220と同様の構成をしており、CW光出力部210からのCW光に対して対応する第1のDCバイアス電圧2から第3のDCバイアス電圧4が印加されることにより電界吸収効果を引き起こし、その際に生じる電流であるフォトカレントの値を第1の条件変更用信号から第3の条件変更用信号として第1の条件変更用電流5から第3の条件変更用電流7を出力する。
 第1の観測用EA変調器231から第3の観測用EA変調器233は、EA変調器220の適切な駆動条件を探索するという目的から、その半導体の層構造、組成比がEA変調器220と極力同一にしてある。第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4は異なる電圧値を持つ。第1のDCバイアス電圧2から第3のDCバイアス電圧4を異なる電圧値としているのは、第1の観測用EA変調器231から第3の観測用EA変調器233からの出力となるフォトカレントの値の差異を利用して、EA変調器220に対する送信用変調信号1を調整するとの考えに基づく。
 したがって、第1の観測用EA変調器231から第3の観測用EA変調器233は、印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4の電圧値以外は導波路の構造及び電界吸収効果が生じる領域の長さなどを極力同じにしてある。
 言い換えれば、第1の観測用EA変調器231から第3の観測用EA変調器233は、同じ構成のEA変調器である。ただし、DCバイアス電圧調整モードにおいては、第1の観測用EA変調器231から第3の観測用EA変調器233の導波路の長さがEA変調器220の導波路の長さと必ずしも同じである必要はない。
 すなわち、第1の観測用EA変調器231から第3の観測用EA変調器233は、観測用CW光分岐部213を介して入力されたCW光出力部210からの連続レーザ光の光パワーを電界吸収効果により減衰させる機能をそれぞれが有する3つの導波路で構成され、CW光出力部210からの連続レーザ光をそれぞれが異なる電圧値である第1のDCバイアス電圧2から第3のDCバイアス電圧4による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器を構成する。
 第1の観測用EA変調器231から第3の観測用EA変調器233は、それぞれ、導波路に設けた電極を通じて印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4により、導波路内での光吸収が生じると、印加する電極の間にフォトカレントが発生する。フォトカレントの大きさにより、第1の観測用EA変調器231から第3の観測用EA変調器233における光吸収量ひいてはパワー透過率Tを推定できる。この性質を利用して、EA変調器220に印加される送信用変調信号1を制御する一要件としている。
 第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4の電圧値は、以下のようにされる。
 初期値において、DCバイアス電圧調整モード時の第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)を差分値α2とし、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)を差分値α3と設定する。
 第1のDCバイアス電圧2の電圧値V1をVbiasとすると、第2のDCバイアス電圧3が示す電圧値V2はVbias-α2、第3のDCバイアス電圧4が示す電圧値V3はVbias-α2-α3となる。
 差分値α2及び差分値α3は、EA変調器220に印加する送信用変調信号1におけるDCバイアス電圧Vbiasをこの実施の形態1では0.1V程度の分解能で制御を行うため、0.1V程度の分解能で制御する。
 また、初期値におけるVbiasは、図3に示した値、つまり、温度t0の消光カーブT0におけるレベル1とレベル2との中間の値に設定する。
 また、駆動振幅調整モードの第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)を差分値β2とし、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)を差分値β3と設定する。
 第1のDCバイアス電圧2が示す電圧値V1をVbiasとすると、第2のDCバイアス電圧3が示す電圧値V2がVbias-β2、第3のDCバイアス電圧4が示す電圧値V3がVbias-β2-β3となる。
 差分値β2は駆動振幅VRFの1/6、差分値β3は駆動振幅VRFの1/3である。つまり、差分値β3は図3で示した等間隔のレベル間の電圧差に相当し、差分値β2はレベル間の電圧差の1/2に相当する。
 また、駆動振幅調整モード開始時におけるVbiasは、この実施の形態1では、DCバイアス電圧調整モード終了直後に行なうため、DCバイアス電圧調整モード終了直後に設定された値である。
 駆動条件探索部200bは、電気信号の生成、送受、制御などを行ない、第1の観測用EA変調器231から第3の観測用EA変調器233からの第1の条件変更用信号から第3の条件変更用信号を受け、第1の条件変更用信号から第3の条件変更用信号の差分量に基づいてEA変調器220に対する適切な駆動条件を探索するための処理、つまり、EA変調器220を適切に駆動させるための送信用変調信号1を生成するための第1の駆動条件制御用信号8及び第2の駆動条件制御用信号9を得、第1の観測用EA変調器231から第3の観測用EA変調器233に印加する第1のDCバイアス電圧2から第3のDCバイアス電圧4を出力する。
 駆動条件探索部200bは、第1の電流-電圧変換部241から第3の電流-電圧変換部243と、第1の差動増幅部251及び第2の差動増幅部252と、比較部260と、駆動条件制御部270と、3点DCバイアス電圧制御部280を備える。
 なお、図1において、駆動条件探索部200bの各構成要件間を電気信号の流れとして示しているが、ソフトウェア的に行なわれる場合は、実際の電気信号の流れはない。
 第1の電流-電圧変換部241から第3の電流-電圧変換部243は第1の観測用EA変調器231から第3の観測用EA変調器233に対応しており、それぞれが、対応した第1の観測用EA変調器231から第3の観測用EA変調器233からの第1の条件変更用電流5から第3の条件変更用電流7が示す電流値を電圧値に変換して第1の条件変更用信号から第3の条件変更用信号としての第1の条件変更用電圧10から第3の条件変更用電圧12を得る。
 すなわち、第1の電流-電圧変換部241から第3の電流-電圧変換部243は、第1の観測用EA変調器231から第3の観測用EA変調器233から出力された第1の条件変更用電流5から第3の条件変更用電流7が示すフォトカレントの値Iph1から値Iph3を電圧値Vph1からVph3に変換する。この変換では、例えば、抵抗を介した線形変換、つまりオームの法則(V=I×R)に基づき行なわれる。第1の電流-電圧変換部241から第3の電流-電圧変換部243は同じ抵抗値を有する抵抗にて構成している。
 第1の差動増幅部251は、第1の電流-電圧変換部241からの第1の条件変更用電圧10が示す電圧値Vph1と第2の電流-電圧変換部242からの第2の条件変更用電圧11が示す電圧値Vph2に基づき、第1の条件変更用電圧10と第2の条件変更用電圧11が示す電圧値との差分量(Vph1-Vph2)を線形的に増幅した値である第1の中間駆動条件13を得る。
 第2の差動増幅部252は、第2の電流-電圧変換部242からの第2の条件変更用電圧11が示す電圧値Vph2と第3の電流-電圧変換部243からの第3の条件変更用電圧12が示す電圧値Vph3に基づき、第2の条件変更用電圧11と第3の条件変更用電圧12が示す電圧値との差分量(Vph2-Vph3)を線形的に増幅した値である第2の中間駆動条件14を得る。
 第1の差動増幅部251は、DCバイアス電圧調整モード時の増幅率をa1、駆動振幅調整モードの増幅率をb1とされる。第2の差動増幅部252は、DCバイアス電圧調整モード時の増幅率をa2、駆動振幅調整モードの増幅率をb2とされる。
 従って、第1の差動増幅部251からの第1の中間駆動条件13が示す電圧の絶対値は、DCバイアス電圧調整モード時、a1×|Vph2-Vph1|に、駆動振幅調整モード時、b1×|Vph2-Vph1|になる。
 第2の差動増幅部252からの第2の中間駆動条件14が示す電圧の絶対値は、DCバイアス電圧調整モード時、a2×|Vph3-Vph2|に、駆動振幅調整モード時、b2×|Vph3-Vph2|になる。
 第1の差動増幅部251及び第2の差動増幅部252が線形増幅を行う理由は、次の処理における必要な入力電圧を確保することと、第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4の電圧値4電圧値の差分を与える差分値α2及び差分値α3が異なる値であるときに増幅量を調整するためである。
 ここで、EA変調器における、逆方向印加電圧Vに対するパワー透過率T及びフォトカレントIphの関係について図6を用いて説明する。併せて、逆方向印加電圧Vに対するパワー透過率Tの傾きについて図6を用いて説明する。
 なお、逆方向印加電圧VはEA変調器に印加される電圧、フォトカレントIphはEA変調器から出力される電流値である。
 図6の右グラフは、逆方向印加電圧Vに対するフォトカレントIphの関係を示す。横軸は逆方向印加電圧Vを、縦軸はフォトカレントIphの値を示している。
 第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4を逆方向印加電圧として示すV1からV3とすると、電圧値V1からV3に対するフォトカレントIphを○印にて示している。
 図6の左グラフは、逆方向印加電圧Vに対するパワー透過率Tの関係を示す。横軸は逆方向印加電圧Vを、縦軸はパワー透過率Tの値を示している。
 第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4を逆方向印加電圧として示すV1からV3とすると、電圧値V1からV3に対するパワー透過率Tを○印にて示している。
 逆方向印加電圧V2(第2の観測用EA変調器232に印加される第2のDCバイアス電圧3)におけるパワー透過率Tを示す○印と逆方向印加電圧V1(第1の観測用EA変調器231に印加される第1のDCバイアス電圧2)におけるパワー透過率Tを示す○印結ぶ傾きがV2~V1の傾きになり、逆方向印加電圧V3(第3の観測用EA変調器233に印加される第3のDCバイアス電圧4)におけるパワー透過率Tを示す○印と逆方向印加電圧V2(第2の観測用EA変調器232に印加される第2のDCバイアス電圧3)におけるパワー透過率Tを示す○印を結ぶ傾きがV3~V2の傾きになる。
 次に、DCバイアス電圧調整モードにおいて、差分値α2及び差分値α3が異なる値であるときに増幅量を調整する必要性について説明する。
 消光カーブの傾きを比較してDCバイアス電圧Vbiasを調整することから、例えば、図6の左グラフを参考にして説明すると、第2の観測用EA変調器232に印加される第2のDCバイアス電圧3と第3の観測用EA変調器233に印加される第3のDCバイアス電圧4の電圧差(V2-V3)である差分値α3が、第1の観測用EA変調器231に印加される第1のDCバイアス電圧2と第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧差(V1-V2)である差分値α2の2倍である時に比較を行うためには、第2の差動増幅部252における線形増幅の増幅率a2を第1の差動増幅部251における線形増幅の増幅率a1の1/2倍に設定する必要がある。
 また、駆動振幅調整モード時において、図7に示すように、第2の観測用EA変調器232に印加される第2のDCバイアス電圧3と第3の観測用EA変調器233に印加される第3のDCバイアス電圧4の電圧差(V2-V3)である差分値β3が、第1の観測用EA変調器231に印加される第1のDCバイアス電圧2と第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧差(V1-V2)である差分値β2の2倍である時に比較を行うためには、第2の差動増幅部252における線形増幅の増幅率b2を第1の差動増幅部251における線形増幅の増幅率b1の1/2倍に設定する必要がある。
 なお、図7は、EA変調器220、231から233における、駆動振幅調整モードの時の、逆方向印加電圧Vに対するパワー透過率Tを○印にて示している。横軸は逆方向印加電圧Vを、縦軸はパワー透過率Tの値を示している。
 比較部260は、第1の差動増幅部251からの第1の中間駆動条件13と第2の差動増幅部252からの第2の中間駆動条件14に基づき、第1の中間駆動条件13と第2の中間駆動条件14が示す電圧値を比較し、駆動条件調整用信号15を得る。
 すなわち、比較部260は、DCバイアス電圧調整モード時、第1の差動増幅部251からの第1の中間駆動条件13が示す電圧の絶対値(a1×|Vph2-Vph1|)と第2の差動増幅部252からの第2の中間駆動条件14が示す電圧の絶対値(a2×|Vph3-Vph2|)を比較し、大小関係を2値情報とした駆動条件調整用信号15を得る。
 また、駆動振幅調整モード時、比較部260は、第1の差動増幅部251からの第1の中間駆動条件13が示す電圧値(b1×|Vph2-Vph1|)と第2の差動増幅部252からの第2の中間駆動条件14が示す電圧値(b2×|Vph3-Vph2|)を比較し、大小関係を2値情報とした駆動条件調整用信号15を得る。
 駆動条件調整用信号15は、例えば、第1の中間駆動条件13の電圧値が第2の中間駆動条件14の電圧値より高い場合にHレベル(デジタル値の1を示す)とし、第1の中間駆動条件13の電圧値が第2の中間駆動条件14の電圧値より低い場合にLレベル(デジタル値の0を示す)とする2値の信号である。
 また、オフセット量を設定し、第1の中間駆動条件13の電圧値が第2の中間駆動条件14の電圧値とオフセット量との和又は差より高い場合にHレベル(デジタル値の1を示す)とし、第1の中間駆動条件13の電圧値が第2の中間駆動条件14の電圧値とオフセット量との和又は差より低い場合にLレベル(デジタル値の0を示す)とする2値の信号であっても良い。
 なお、駆動条件調整用信号15としてデジタル値を用いるのでなく、アナログ値を用いる場合は、閾値電圧より低い電圧あるいは高い電圧を出力することで大小関係を判別するものとする。
 DCバイアス電圧調整モード時、第1の中間駆動条件13(V1~V2)が第2の中間駆動条件14(V2~V3)に対して大きい場合及び小さい場合における調整の指針を次のようにしている。
 大きい場合:線形領域で変調するためにVbiasをV1側に調整する。
 小さい場合:線形領域で変調するためにVbiasをV3側に調整する。
 例えば、第2の差動増幅部252からの第2の中間駆動条件14が示す電圧の絶対値(a2×|Vph3-Vph2|)が第1の差動増幅部251からの第1の中間駆動条件13が示す電圧の絶対値(a1×|Vph2-Vph1|)より大きい場合、比較部260にて得られた駆動条件調整用信号15はLレベルを示す。この場合、駆動条件調整用信号15が示すLレベルは、V2~V1間の傾きがV3~V2間の傾きより小さいことを意味している。
 なお、V2~V1間の傾き及びV3~V2間の傾きは、図6を参考にすることにより理解できる。
 すなわち、電圧V3側の方が電圧V1より消光カーブの傾きの極大値を与える電圧に近いため、VbiasをV3側に調整するように、送信用変調信号1におけるDCバイアス電圧Vbiasを単位量ΔVbias、この実施の形態1では分解能相当、つまり、0.1V程度減少させることを意味する。逆に、第2の差動増幅部252からの第2の中間駆動条件14が示す電圧値が第1の差動増幅部251からの第1の中間駆動条件13が示す電圧値より小さい場合、比較部260にて得られた駆動条件調整用信号15はHレベルを示す。駆動条件調整用信号15が示すHレベルは、VbiasをV1側に調整するように、送信用変調信号1におけるDCバイアス電圧Vbiasを単位量ΔVbias増大させることを意味する。
 駆動振幅調整モード時、第1の中間駆動条件13(V1~V2)が第2の中間駆動条件14(V2~V3)に対して大きい場合及び小さい場合における調整の指針を次のようにしている。
 大きい場合:非線形領域で変調しているため、VRFを小さくする。
 小さい場合:線形領域で変調しているため、VRFを大きくする余地がある。
 例えば、図7に示すように、第2の差動増幅部252からの第2の中間駆動条件14が示す電圧値(b2×|Vph3-Vph2|)が第1の差動増幅部251からの第1の中間駆動条件13が示す電圧値(b1×|Vph2-Vph1|)より大きい場合、比較部260にて得られた駆動条件調整用信号15はLレベルを示す。この場合、駆動条件調整用信号15が示すLレベルは、レベル3~2間のアイ振幅がレベル2~1間のアイ振幅より広いため、レベル2~1間のアイが狭いことを意味しており、送信用変調信号1における駆動振幅VRFの大きさを単位量ΔVRF、この実施の形態1では分解能相当、つまり、0.1V程度増加させることを意味する。逆に、第2の差動増幅部252からの第2の中間駆動条件14が示す電圧値が第1の差動増幅部251からの第1の中間駆動条件13が示す電圧値より小さい場合、比較部260にて得られた駆動条件調整用信号15はHレベルを示す。駆動条件調整用信号15が示すHレベルは、レベル3~2間のアイが消光カーブ特性の非線形性のために狭くなっていることを意味しており、送信用変調信号1における駆動振幅VRFの大きさを単位量ΔVRF、この実施の形態1では分解能相当、つまり、0.1V程度減少させることを意味する。
 比較部260は、大小関係判定時のオフセット量などが設定される。
 オフセット量を設定する理由は次の理由による。つまり、第1の観測用EA変調器231から第3の観測用EA変調器233は同じEA変調器を用いているが、層構造、組成比及び電界吸収効果が生じる領域の長さが等しいことが理想的であるものの、製作上の誤差によりわずかにこれらが異なり、結果として第1の観測用EA変調器231から第3の観測用EA変調器233における消光カーブ特性に差異が生じる可能性がある。そのため、第1の観測用EA変調器231から第3の観測用EA変調器233におけるわずかな特性差を比較部260の設定で補償するため、この実施の形態1では、比較部260に大小関係判定時のオフセット量の設定を行なえるようにしている。
 また、駆動振幅調整モードにおいて、比較部260における大小関係判定時のオフセット量の設定は、駆動振幅が過剰に低下するのを防ぐためにも必要である。すなわち、この実施の形態1では、DCバイアス電圧調整モードにより消光カーブの傾き特性の極大値をVbiasに設定し、変調を行っており、この場合、レベル2-1の振幅差はレベル3-2の振幅差よりもわずかに大きいのが通常である。すると、VRFは調整を繰り返すごとに小さくなり続ける恐れがある。従って、オフセット量を適切に設定することで、レベル2-1の振幅差とレベル3-2の振幅差がおおよそ等間隔になるように比較と調整を維持できる。
 駆動条件制御部270は、光送信装置100の稼働前に以下に示す設定値1から設定値6の各種設定が行なわれる。
 すなわち、設定値1:第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4に対する、DCバイアス電圧調整モード時の第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)である差分値α2と、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)である差分値α3。
 設定値2:第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4に対する、駆動振幅調整モード時の第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)である差分値β2と、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)である差分値β3。
 設定値3:EA変調器220に印加する送信用変調信号1における、DCバイアス電圧Vbiasに対する一回の調整における増減の単位量ΔVbiasと、駆動振幅VRFに対する一回の調整における増減の単位量ΔVRF。
 設定値4:第1の差動増幅部251における、DCバイアス電圧調整モード時の増幅率a1、駆動振幅調整モードの増幅率b1、第2の差動増幅部252における、DCバイアス電圧調整モード時の増幅率a2、駆動振幅調整モードの増幅率b2。
 設定値5:比較部260における大小関係判定時のオフセット量。
 設定値6:DCバイアス電圧Vbiasと駆動振幅VRFにおける調整可能な上限値及び下限値。
 駆動条件制御部270は、光送信装置100が稼動開始後、DCバイアス電圧調整モード又は駆動振幅調整モードのいずれのモードを行なうかを指示する。つまり、駆動条件制御部270は、送信用変調信号1におけるDCバイアス電圧Vbiasを制御するか否か、及び送信用変調信号1における駆動振幅VRFを制御するか否かを切り替える役割も併せ持つ。
 DCバイアス電圧調整モードと駆動振幅調整モードは、まず、DCバイアス電圧調整モードが行なわれ、その後、駆動振幅調整モードが行なわれ、引き続き、DCバイアス電圧調整モードと駆動振幅調整モードが交互に繰り返し行なわれる。
 なお、DCバイアス電圧調整モード及び駆動振幅調整モードの調整動作を連続的に行なわず、一定間隔毎にDCバイアス電圧調整モード及び駆動振幅調整モードの調整動作を行なうようにしても良い。
 駆動条件制御部270は、DCバイアス電圧調整モード時、まず、設定値1から設定値6に示すDCバイアス電圧調整モード時の設定値を各構成要素に設定する。各構成要素に設定されている設定値が同じであれば、再設定しなくともよい。
 駆動条件制御部270は、第3の駆動条件制御用信号16として、差分値α2及び差分値α3を設定させる信号とする。
 駆動条件制御部270は、第1の差動増幅部251における増幅率をa1、第2の差動増幅部252における増幅率をa2とする。
 駆動条件制御部270は、比較部260にて得られた駆動条件調整用信号15に基づき、第1の駆動条件制御用信号8を得るとともに、第3の駆動条件制御用信号16を得る。
 DCバイアス電圧調整モードであるので第2の駆動条件制御用信号9は発生しない。
 その結果、第1の駆動条件制御用信号8によりEA変調器220に印加する送信用変調信号1におけるDCバイアス電圧Vbiasを光送信器制御部300に調整させ、第2の駆動条件制御用信号9を発生させないことにより送信用変調信号1における駆動振幅VRFを光送信器制御部300に維持させる。
 また、駆動条件制御部270が得る第3の駆動条件制御用信号16は、第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4を調整させるためのものである。
 駆動条件制御部270は、比較部260にて得られた駆動条件調整用信号15がLレベルを示すと、第1の駆動条件制御用信号8及び第3の駆動条件制御用信号16を、DCバイアス電圧Vbiasを単位量ΔVbias減少させる信号とし、駆動条件調整用信号15がHレベルを示すと、第1の駆動条件制御用信号8及び第3の駆動条件制御用信号16を、DCバイアス電圧Vbiasを単位量ΔVbias増加させる信号とする。
 DCバイアス電圧調整モードが終了すると、駆動条件制御部270は駆動振幅調整モードを開始する。
 駆動条件制御部270は、第3の駆動条件制御用信号16として、差分値β2及び差分値β3を設定させる信号とする。
 駆動条件制御部270は、第1の差動増幅部251における増幅率をb1、第2の差動増幅部252における増幅率をb2とする。
 駆動条件制御部270は、比較部260にて得られた駆動条件調整用信号15に基づき、第2の駆動条件制御用信号9を得るとともに、第3の駆動条件制御用信号16を得る。
 駆動振幅調整モードであるので第1の駆動条件制御用信号8は発生しない。
 その結果、第2の駆動条件制御用信号9によりEA変調器220に印加する送信用変調信号1における駆動振幅VRFを光送信器制御部300に調整させ、第1の駆動条件制御用信号8を発生させないことにより送信用変調信号1におけるDCバイアス電圧Vbiasを光送信器制御部300に維持させる。
 また、駆動条件制御部270が得る第3の駆動条件制御用信号16は、第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4を調整させるためのものである。
 駆動条件制御部270は、比較部260にて得られた駆動条件調整用信号15がLレベルを示すと、第2の駆動条件制御用信号9を駆動振幅VRFの大きさを単位量ΔVRF増加させる制御信号とするとともに、第3の駆動条件制御用信号16を、第2のDCバイアス電圧3の電圧値からΔVRF/6、第3のDCバイアス電圧4の電圧値から(ΔVRF/6+ΔVRF/3)減少させる信号とし、駆動条件調整用信号15がHレベルを示すと、第2の駆動条件制御用信号9を駆動振幅VRFの大きさを単位量ΔVRF減少させる信号とするとともに、第3の駆動条件制御用信号16を、第2のDCバイアス電圧3の電圧値からΔVRF/6、第3のDCバイアス電圧4の電圧値から(ΔVRF/6+ΔVRF/3)増加させる信号とする。
 駆動振幅調整モードが終了すると、光送信器制御部300からの送信用変調信号1におけるDCバイアス電圧Vbias及び駆動振幅VRFは、DCバイアス電圧調整モード時に設定されたDCバイアス電圧Vbias及び駆動振幅調整モード時に設定された駆動振幅VRFに維持され、次のDCバイアス電圧調整モードに進む。
 3点DCバイアス電圧制御部280は、調整モードの時、駆動条件制御部270にて得た第3の駆動条件制御用信号16に基づき、第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4を出力する。つまり、3点DCバイアス電圧制御部280は、駆動条件制御部270にて得た第3の駆動条件制御用信号16から、第1の観測用EA変調器231から第3の観測用EA変調器233に印加する第1のDCバイアス電圧2から第3のDCバイアス電圧4をそれぞれ調整する役割を持つ。
 3点DCバイアス電圧制御部280は、DCバイアス電圧調整モードの時、最初に駆動条件制御部270により、初期値としてDCバイアス電圧Vbiasと差分値α2及び差分値α3が設定され、第1の観測用EA変調器231に電圧値V1がVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-α2である第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V2がVbias-α2-α3である第3のDCバイアス電圧4を印加する。
 3点DCバイアス電圧制御部280は、駆動条件制御部270にて第3の駆動条件制御用信号16が単位量ΔVbias増加させる信号を示すと、第1の観測用EA変調器231に電圧値V1がVbias+ΔVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-α2+ΔVbiasである第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V3がVbias-α2-α3+ΔVbiasである第3のDCバイアス電圧4を印加する。
 次の周期におけるDCバイアス電圧調整モードにても駆動条件制御部270にて第3の駆動条件制御用信号16が単位量ΔVbias増加させる信号を示すと、さらに、第1の観測用EA変調器231に印加する第1のDCバイアス電圧2に、第2の観測用EA変調器232に印加する第2のDCバイアス電圧3に、第3の観測用EA変調器233に印加する第3のDCバイアス電圧4に、単位量ΔVbiasを増加させる。駆動条件制御部270にて第3の駆動条件制御用信号16が単位量ΔVbias増加させる信号を示さなくなるまで繰り返される。
 駆動条件制御部270にて第3の駆動条件制御用信号16が単位量ΔVbias減少させる信号を示すと、増加させる信号を示した場合と同様に、第1の観測用EA変調器231に電圧値V1がVbias-ΔVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-α2-ΔVbiasである第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V3がVbias-α2-α3-ΔVbiasである第3のDCバイアス電圧4を印加する。
 次の周期におけるDCバイアス電圧調整モード以降、駆動条件制御部270にて第3の駆動条件制御用信号16が単位量ΔVbias減少させる信号を示さなくなるまで繰り返される。
 3点DCバイアス電圧制御部280は、駆動振幅調整モードの時、最初に駆動条件制御部270により、初期値としてDCバイアス電圧調整モード終了時のDCバイアス電圧Vbiasと差分値β2及び差分値β3が設定され、第1の観測用EA変調器231に電圧値V1がVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-β2である第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V2がVbias-β2-β3である第3のDCバイアス電圧4を印加する。
 3点DCバイアス電圧制御部280は、駆動条件制御部270にて第3の駆動条件制御用信号16が、第2のDCバイアス電圧3の電圧値からΔVRF/6、第3のDCバイアス電圧4の電圧値から(ΔVRF/6+ΔVRF/3)減少させる信号を示すと、第1の観測用EA変調器231に電圧値V1がVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-β2-ΔVRF/6である第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V3がVbias-β2-ΔVRF/6-β3-ΔVRF/3である第3のDCバイアス電圧4を印加する。
 次の周期における駆動振幅調整モードにても駆動条件制御部270にて第3の駆動条件制御用信号16が、第2のDCバイアス電圧3の電圧値からΔVRF/6、第3のDCバイアス電圧4の電圧値から(ΔVRF/6+ΔVRF/3)減少させる信号を示すと、第2の観測用EA変調器232に印加する第2のDCバイアス電圧3にΔVRF/6を、第3の観測用EA変調器233に印加する第3のDCバイアス電圧4に(ΔVRF/6+ΔVRF/3)を減少させる。駆動条件制御部270にて第3の駆動条件制御用信号16が、第2のDCバイアス電圧3の電圧値からΔVRF/6、第3のDCバイアス電圧4の電圧値から(ΔVRF/6+ΔVRF/3)減少させる信号を示さなくなるまで繰り返される。
 駆動条件制御部270にて第3の駆動条件制御用信号16が、第2のDCバイアス電圧3の電圧値からΔVRF/6、第3のDCバイアス電圧4の電圧値から(ΔVRF/6+ΔVRF/3)増加させる信号を示すと、減少させる信号を示した場合と同様に、第1の観測用EA変調器231に電圧値V1がVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-β2+ΔVRF/6である第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V3がVbias-β2+ΔVRF/6-β3+ΔVRF/3である第3のDCバイアス電圧4を印加する。
 次の周期における駆動振幅調整モード以降、駆動条件制御部270にて第3の駆動条件制御用信号16が、第2のDCバイアス電圧3の電圧値からΔVRF/6、第3のDCバイアス電圧4の電圧値から(ΔVRF/6+ΔVRF/3)増加させる信号を示さなくなるまで繰り返される。
 駆動条件制御部270と3点DCバイアス電圧制御部280とは、駆動条件調整用信号15に基づき第1の駆動条件制御用信号8及び第2の駆動条件制御用信号9を生成し、第1の観測用EA変調器231から第3の観測用EA変調器233に印加する第1のDCバイアス電圧2から第3のDCバイアス電圧4を出力する駆動条件生成部を構成する。
 光送信器制御部300は、DCバイアス電圧制御部310と、変調信号生成部320と、直流交流合成部330とを備える。
 なお、光送信器制御部300の各構成要件間を電気信号の流れとして示しているが、ソフトウェア的に行なわれる場合は、実際の電気信号の流れはない。
 光送信器制御部300は、駆動条件探索部200bからの第1の駆動条件制御用信号8に基づき、EA変調器220に印加する送信用変調信号1の直流成分である直流バイアス電圧Vbiasの電圧値を設定し、駆動条件探索部200bからの第2の駆動条件制御用信号9に基づき、EA変調器220に印加する送信用変調信号1を特徴づける駆動振幅VRFの電圧値を設定し、設定した直流バイアス電圧Vbiasの電圧値に、駆動振幅VRFの変調信号を合成して送信用変調信号1を生成し、この送信用変調信号1をEA変調器220に印加する。
 DCバイアス電圧制御部310は、初期状態において、EA変調器220に印加する送信用変調信号1の直流成分である直流バイアス電圧Vbiasを設定し、DCバイアス電圧調整モードの時、駆動条件探索部200bの駆動条件制御部270からの第1の駆動条件制御用信号8に基づき、送信用変調信号1の直流成分である直流バイアス電圧Vbiasを生成し、維持する。
 DCバイアス電圧制御部310は、DCバイアス電圧調整モードの時、駆動条件制御部270にて得た第1の駆動条件制御用信号8が単位量ΔVbias増加させる信号を示すと、DCバイアス生成信号17の電圧値をVbias+ΔVbiasとし、第1の駆動条件制御用信号8が単位量ΔVbias減少させる信号を示すと、DCバイアス生成信号17の電圧値をVbias-ΔVbiasとし、第1の駆動条件制御用信号8が単位量ΔVbias増加させる又は減少させる信号でなくなるまで繰り返される。
 調整モードが終了すると、DCバイアス電圧制御部310は、終了時の直流バイアス電圧Vbiasを維持する。
 変調信号生成部320は、レベル3からレベル0を示す電気信号19が入力され、データ送信するための高速な電気信号の駆動振幅を調整、多くの場合には増幅し、これを出力するものであり、ドライバなどで構成される。
 すなわち、変調信号生成部320は、初期状態において、EA変調器220に印加する送信用変調信号1を特徴づける駆動振幅VRFを設定し、駆動振幅調整モードの時、駆動条件制御部270にて得た第2の駆動条件制御用信号9が単位量ΔVRF減少させる信号を示すと、変調信号18の駆動振幅VRF-ΔVRFとし、第2の駆動条件制御用信号9が単位量ΔVRF増加させる信号を示すと、変調信号18の駆動振幅VRF+ΔVRFとし、第2の駆動条件制御用信号9が単位量ΔVRF減少させる又は増加させる信号でなくなるまで繰り返される。
 駆動振幅調整モードが終了すると、変調信号生成部320は、終了時の駆動振幅VRFを維持する。
 直流交流合成部330は、変調信号生成部320にて得た駆動振幅VRFの変調信号18に対してDCバイアス電圧制御部310にて得た直流バイアス電圧Vbiasをバイアス印加し、変調のための送信用変調信号1を生成し、EA変調器220に印加する。
 変調信号生成部320にレベル3を示す電気信号19が与えられる時、直流交流合成部330から出力される送信用変調信号1の電圧値はVbias-1/2VRFを、変調信号生成部320にレベル2を示す電気信号19が与えられる時、送信用変調信号1の電圧値はVbias-1/6VRFを、変調信号生成部320にレベル1を示す電気信号19が与えられる時、、送信用変調信号1の電圧値はVbias+1/6VRFを、変調信号生成部320にレベル0を示す電気信号19が与えられる時、送信用変調信号1の電圧値はVbias+1/2VRFを示す。
 なお、上記説明では、説明を簡略するため、VbiasはDCバイアス電圧制御部310にて調整され、維持された電圧値とし、VRFは変調信号生成部320にて調整され、維持された電圧値としている。
 このように構成された光送信装置100において、図8の左上グラフに示すように、温度t1における消光カーブの線形領域の中央に位置する逆方向印加電圧VがEA変調器220に印加する送信用変調信号1における直流バイアス電圧Vbias、つまり、DCバイアス電圧制御部310にて得た直流バイアス電圧Vbiasとなっており、EA変調器220に印加する送信用変調信号1における駆動振幅VRFが変調信号生成部320にて得た駆動振幅VRFになっている。
 このような状況にて温度がt1から温度t2に変化した場合、EA変調器220に印加される送信用変調信号1を調整しないと、右グラフに示すように、EA変調器220の消光カーブは左方向に変化するため、レベル3~2間のアイ、レベル2~1間のアイ、レベル1~0間のアイが等間隔であったものが、等間隔でなくなり、かつ、狭くなっている。その結果、それぞれのレベルの振幅差が小さくなり、誤り率が高くなる。
 この発明の実施の形態1に係る光送信装置100においては、直流バイアス電圧Vbiasを調整しているため、下グラフに示すように、EA変調器220における消光カーブの左方向の変化に追随してDCバイアス電圧制御部310にて得た直流バイアス電圧Vbiasも左方向に追随して変化するため、レベル3~2間のアイ、レベル2~1間のアイ、レベル1~0間のアイは等間隔が維持され、レベルの振幅差が維持されるため、誤り率は小さい。
 上記説明では、DCバイアス電圧制御部310にて得る直流バイアス電圧Vbiasの調整だけでEA変調器220における消光カーブの線形領域にレベル3からレベル0を得られるものとしたが、直流バイアス電圧Vbiasの調整後、レベル3又はレベル0がEA変調器220における消光カーブの非線形領域に存在するようになるような場合、この発明の実施の形態1に係る光送信装置100においては、変調信号生成部320にて駆動振幅VRFを調整するため、レベル3~2間のアイ、レベル2~1間のアイ、レベル1~0間のアイは等間隔が維持され、誤り率は小さい。
 次に、図1及び図2に示した光送信装置100のハードウェア構成を、図9を用いて説明する。なお、図9中、図1及び図2に示す符号と同一な符号は同一又は相当部分を示す。
 光信号生成部200aは図1及び図2にて説明したハードウェア構成である。
 光送信器制御部300は、CPU(Central Processing Unit)又はシステムLSI(Large Scale Integration)などのプロセッサ301と、RAM(Random Access Memory)及びROM(Read Only Memory)などで構成されるメモリ302と、通信インタフェース303と、入出力インタフェース304を備えている。
 プロセッサ301、メモリ302、通信インタフェース303及び入出力インタフェース304はバス305に接続され、バス305を介してデータ及び制御信号などの受け渡しが相互に行なわれる。
 プロセッサ301はメモリ302に記録されたプログラムを読み込み、処理を実行する。
 メモリ302には、各種データ、実施の形態1を実施するためのプログラム、及びシステムの起動に必要な処理プログラムなどが格納される。
 通信インタフェース303は、光送信装置100内部の各種部品あるいは外部の各種部品と装置とのデータ及び制御信号の送受信に使用する。
 入出力インタフェース304は、電気配線410から電気配線450を通じて、光送信器200と光送信器制御部300の間の制御信号及び変調信号を送受する。例えば、CW光出力部210に対しては光を発生させるための光源への注入電流であり、EA変調器220に対しては送信用変調信号1であり、第1の観測用EA変調器231から第3の観測用EA変調器233に対しては第1のDCバイアス電圧2から第3のDCバイアス電圧4及び第1の条件変更用信号から第3の条件変更用信号である。
 光送信器制御部300は、メモリ302に格納されている、光送信装置100として動作するためのプログラムをプロセッサ301が実行することにより実現される。
 駆動条件探索部200bも光送信器制御部300と同様にプロセッサ201と、メモリ202と、通信インタフェース203と、入出力インタフェース204を有する。
 メモリ202には、DCバイアス電圧調整モード時の第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)である差分値α2と、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)である差分値α3と、DCバイアス電圧Vbiasに対する一回の調整における増減の単位量ΔVbiasと、駆動振幅調整モード時の第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)である差分値β2と、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)である差分値β3、駆動振幅VRFに対する一回の調整における増減の単位量ΔVRFと、第1の差動増幅部251における、DCバイアス電圧調整モード時の増幅率a1と、駆動振幅調整モードの増幅率b1と、第2の差動増幅部252における、DCバイアス電圧調整モード時の増幅率a2と、駆動振幅調整モードの増幅率b2と、比較部260における大小関係判定時のオフセット量が格納されている。
 また、駆動条件探索部200bは、光デバイスを含まない電気回路で構成されているため、必ずしも光送信器200の中に含まれる必要性はなく、光送信装置100の中において光送信器制御部300と別の電気回路基板上で構成されても良いし、同じ電気回路基板上で構成されても良い。
 駆動条件探索部200bを光送信器制御部300と同じ回路基板に構成する場合、プロセッサ201とプロセッサ301、メモリ202とメモリ302、通信インタフェース203と通信インタフェース303、入出力インタフェース204と入出力インタフェース304は、共通のハード構成で良い。
 メモリ302とメモリ202は、この実施の形態1では、図10から図12に示す光送信装置100におけるイベント認識の処理フローを示すフローチャートを実行するプログラムを記憶している。
 図10に示すフローチャートは、光送信装置100の稼働前に、駆動条件探索部200bの各種設定を行うステップST1と、変調を開始するステップST2と、DCバイアス電圧調整モードを実施するステップST3と、DCバイアス電圧の調整を確認するステップST4と、駆動振幅調整モードを実施するステップST5と、駆動振幅の調整を確認するステップST6により構成される。
 ステップST1からステップST6と、図1に示した光送信装置100における光送信器制御部300及び駆動条件探索部200bとの関係を踏まえ、以下に各ステップについて説明する。
 すなわち、ステップST1は、光送信装置100の稼働前に、メモリ202に格納された上記した各種設定値を設定するステップである。つまり、メモリ202を構成するROMに格納された各種設定値を読み出し、メモリ202を構成するRAMに一時的に記憶させる。
 ステップST2は、変調を開始するステップである。光送信器200のCW光出力部210に対して光を発生させるための光源への注入電流が電気配線410を介して印加される。EA変調器220に対してはステップST1にて設定された設定値に基づき直流交流合成部330からの送信用変調信号1が電気配線410を介して印加される。その結果、EA変調器220から光信号が出力される。これは、主に光送信装置100の運用開始時におけるステップである。
 ステップST3は、光信号が出力される光送信装置100の運用と併せて行なわれるDCバイアス電圧調整モードを実施するステップである。ステップST3は図11に示すように、第1の観測用EA変調器231から第3の観測用EA変調器233の第1のDCバイアス電圧2から第3のDCバイアス電圧4に対するDCバイアス電圧Vbiasを設定するとともに差分値α2及び差分値α3を設定し、第1の差動増幅部251の増幅率a1及び第2の差動増幅部252の増幅率a2を設定するステップSTa1と、第1の観測用EA変調器231から第3の観測用EA変調器233に第1のDCバイアス電圧2から第3のDCバイアス電圧4を印加するステップSTa2と、比較部260にて駆動条件調整用信号15を得るステップSTa3及びステップSTa4と、DCバイアス電圧Vbiasを増加するステップSTa5と、DCバイアス電圧Vbiasを減少させるステップSTa6を備えている。
 すなわち、図11において、ステップSTa1は、駆動条件制御部270がDCバイアス電圧Vbiasを調整対象とし、3点DCバイアス電圧制御部280にDCバイアス電圧調整モードであることを通達する。一方、メモリ202から増幅率a1及び増幅率a2を読み出し、第1の差動増幅部251の増幅率をa1に、第2の差動増幅部252の増幅率をa2に設定する。なお、第1の差動増幅部251の増幅率及び第2の差動増幅部252の増幅率が既に設定した値と同じである場合には特に更新する必要はない。
 ステップSTa2は、3点DCバイアス電圧制御部280が、第1の観測用EA変調器231に電圧値V1がVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-α2である第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V2がVbias-α2-α3である第3のDCバイアス電圧4を印加する。ここで、α2およびα3はステップSTa1で設定された値であり、DCバイアス電圧Vbiasの制御を0.1V程度の分解能で行うため、α2及びα3も0.1V程度の分解能で行なう。
 このように設定することにより、第1の観測用EA変調器231から第3の観測用EA変調器233で出力されるフォトカレントの差分と第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4の差分を考慮することで、EA変調器220における(V2~V1)間及び(V3~V2)間の消光カーブの傾きを推定できる。消光カーブの傾きの大小比較から極大値を追尾するようにDCバイアス電圧Vbiasを正又は負の方向に微調させることで、温度変化で変動する消光カーブ特性に対してDCバイアス電圧Vbiasを適応的に調整することができる。
 ステップSTa3は、駆動条件探索部200bにおいて、第1の観測用EA変調器231から第3の観測用EA変調器233からの第1の条件変更用電流5から第3の条件変更用電流7が示すフォトカレント(電流値)を基に複数の単純な処理を順に行う。
 まず、第1に、第1の電流-電圧変換部241から第3の電流-電圧変換部243が、それぞれ、対応した第1の観測用EA変調器231から第3の観測用EA変調器233からの第1の条件変更用電流5から第3の条件変更用電流7が示す電流値(Iph1、Iph2、Iph3)を電圧値(Vph1、Vph2、Vph3)に変換して第1の条件変更用信号から第3の条件変更用信号としての第1の条件変更用電圧10から第3の条件変更用電圧12を得る。
 第2に、第1の差動増幅部251が、第1の電流-電圧変換部241からの第1の条件変更用電圧10が示す電圧値Vph1と第2の電流-電圧変換部242からの第2の条件変更用電圧11が示す電圧値Vph2に基づき、第1の条件変更用電圧10と第2の条件変更用電圧11が示す電圧値との差分量(Vph2-Vph1)を線形的に増幅した値である第1の中間駆動条件13を得る。第2の差動増幅部252が、第2の電流-電圧変換部242からの第2の条件変更用電圧11が示す電圧値Vph2と第3の電流-電圧変換部243からの第3の条件変更用電圧12が示す電圧値Vph3に基づき、第2の条件変更用電圧11と第3の条件変更用電圧12が示す電圧値との差分量(Vph3-Vph2)を線形的に増幅した値である第2の中間駆動条件14を得る。
 最後に、比較部260が、第1の差動増幅部251からの第1の中間駆動条件13が示す電圧の絶対値(a1×|Vph2-Vph1|)と第2の差動増幅部252からの第2の中間駆動条件14が示す電圧の絶対値(a2×|Vph3-Vph2|)を比較し、大小関係を2値情報とした駆動条件調整用信号15を得、駆動条件調整用信号15を駆動条件制御部270に出力する。
 ステップSTa4は、駆動条件調整用信号15がどのような信号であるか判断するステップである。
 すなわち、駆動条件調整用信号15が、第2の差動増幅部252からの第2の中間駆動条件14が示す電圧値が第1の差動増幅部251からの第1の中間駆動条件13が示す電圧値より大きいか否かを判定する。
 第1の中間駆動条件13が示す電圧値が第2の中間駆動条件14が示す電圧値より大きい場合、第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧V2と第1の観測用EA変調器231に印加される第1のDCバイアス電圧2の電圧V1の間(V2~V1)の消光カーブの傾きが、第3の観測用EA変調器233に印加される第3のDCバイアス電圧4の電圧V3と第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧V2の間(V3~V2)の消光カーブの傾きより大きいことを意味し、ステップSTa5に進む。
 ステップSTa5は、比較部260が得た、(V2~V1)間の消光カーブの傾きが(V3~V2)間の消光カーブの傾きより大きいことを示す駆動条件調整用信号15により、駆動条件制御部270が、DCバイアス電圧Vbiasを単位量ΔVbias増加させる第1の駆動条件制御用信号8及び第3の駆動条件制御用信号16を、DCバイアス電圧制御部310及び3点DCバイアス電圧制御部280に出力する。
 単位量ΔVbias増加させる第1の駆動条件制御用信号8を得たDCバイアス電圧制御部310は、DCバイアス電圧Vbiasに単位量ΔVbiasを足してDCバイアス電圧Vbiasを更新し、直流交流合成部330に出力する。直流交流合成部330にて、更新されたDCバイアス電圧Vbiasに、変調のための電気信号19に従って変調信号生成部320から出力される駆動振幅VRFの変調信号を合成して送信用変調信号1を生成し、この送信用変調信号1をEA変調器220に印加する。
 一方、単位量ΔVbias増加させる第3の駆動条件制御用信号16を得た3点DCバイアス電圧制御部280は、DCバイアス電圧Vbiasに単位量ΔVbiasを足してDCバイアス電圧Vbiasを更新し、第1の観測用EA変調器231に電圧値V1がVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-α2である第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V3がVbias-α2-α3である第3のDCバイアス電圧4を印加する。
 その後、図10に示すステップST4に進む。
 すなわち、ステップSTa5において、DCバイアス電圧調整モードにおける1周期で増加させる調整量は次のようになる。
 DCバイアス電圧Vbias、第1の観測用EA変調器231に印加する電圧値V1、第2の観測用EA変調器232に印加する電圧値V2(Vbias-α2)、及び第3の観測用EA変調器233に印加する電圧値V3(Vbias-α2-α3)それぞれに単位量ΔVbiasを増加させる。
 なお、駆動振幅VRF、差分値α2、及び差分値α3は設定された値を維持する。
 また、ステップSTa4において、第1の中間駆動条件13が示す電圧値が第2の中間駆動条件14が示す電圧値より大きくない場合、第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧V2と第1の観測用EA変調器231に印加される第1のDCバイアス電圧2の電圧V1の間(V2~V1)の消光カーブの傾きが、第3の観測用EA変調器233に印加される第3のDCバイアス電圧4の電圧V3と第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧V2の間(V3~V2)の消光カーブの傾きより小さいことを意味し、ステップSTa6に進む。
 ステップSTa6は、比較部260が得た、(V2~V1)間の消光カーブの傾きが(V3~V2)間の消光カーブの傾きより小さいことを示す駆動条件調整用信号15により、駆動条件制御部270が、DCバイアス電圧Vbiasを単位量ΔVbias減少させる第1の駆動条件制御用信号8及び第3の駆動条件制御用信号16を、DCバイアス電圧制御部310及び3点DCバイアス電圧制御部280に出力する。
 単位量ΔVbias減少させる第1の駆動条件制御用信号8を得たDCバイアス電圧制御部310は、DCバイアス電圧Vbiasに単位量ΔVbiasを引いてDCバイアス電圧Vbiasを更新し、直流交流合成部330に出力する。直流交流合成部330にて更新されたDCバイアス電圧Vbiasに、変調のための電気信号19に従って変調信号生成部320から出力される駆動振幅VRFの変調信号を合成して送信用変調信号1を生成し、この送信用変調信号1をEA変調器220に印加する。
 一方、単位量ΔVbias減少させる第3の駆動条件制御用信号16を得た3点DCバイアス電圧制御部280は、DCバイアス電圧Vbiasに単位量ΔVbiasを引いてDCバイアス電圧Vbiasを更新し、第1の観測用EA変調器231に電圧値V1がVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-α2である第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V3がVbias-α2-α3である第3のDCバイアス電圧4を印加する。
 その後、図10に示すステップST4に進む。
 すなわち、ステップSTa6において、DCバイアス電圧調整モードにおける1周期で減少させる調整量は次のようになる。
 DCバイアス電圧Vbias、第1の観測用EA変調器231に印加する電圧値V1、第2の観測用EA変調器232に印加する電圧値V2(Vbias-α2)、及び第3の観測用EA変調器233に印加する電圧値V3(Vbias-α2-α3)それぞれに単位量ΔVbiasを減少させる。
 なお、駆動振幅VRF、差分値α2、及び差分値α3は設定された値を維持する。
 図10において、ステップST4は、DCバイアス電圧Vbiasの調整が充分に行なわれたかを判断する。充分になされたという判断基準はステップST1にて設定される。例えば、DCバイアス電圧Vbiasにおける調整可能な上限値又は下限値を超えない範囲での調整を行なう必要があり、上限値又は下限値に達成した場合は充分になされたと判断する。また、上限値又は下限値に達成していない場合でも、図11に示したDCバイアス電圧調整モードの回数を、経験により、設定する、あるいはステップSTa4における大小関係の結果が一つ前の結果から反転するとDCバイアス電圧調整モードを終了するなどの判断基準とする。このような判断基準により、DCバイアス電圧の調整が充分に行なわれていないと判断される(NO)とステップST3に戻り、充分に行なわれたと判断される(YES)とステップST5に進む。
 ステップST5は、駆動振幅調整モードを実施するものであり、図12に示すように、第1の差動増幅部251の増幅率b1及び第2の差動増幅部252の増幅率b2を設定するステップSTb1と、第1の観測用EA変調器231から第3の観測用EA変調器233の第1のDCバイアス電圧2から第3のDCバイアス電圧4に対するDCバイアス電圧を設定し、第1の観測用EA変調器231から第3の観測用EA変調器233に第1のDCバイアス電圧2から第3のDCバイアス電圧4を印加するステップSTb2と、比較部260にて駆動条件調整用信号15を得るステップSTb3及びステップSTb4と、駆動振幅VRFを減少するステップSTb5と、駆動振幅VRFを増加させるステップSTb6と、駆動振幅調整モード時の第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)である差分値β2と、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)である差分値β3を駆動振幅VRFに合わせて変更するステップSTb7を備えている。
 図12において、ステップSTb1は、駆動条件制御部270が調整対象をDCバイアス電圧Vbiasから送信用変調信号1の駆動振幅VRFに切替える。また、第1の差動増幅部251の増幅率をb1に、第2の差動増幅部252の増幅率をb2に設定する。DCバイアス電圧調整モードにおける第1の差動増幅部251の増幅率a1と、第2の差動増幅部252の増幅率a2とそれぞれ同じ値である場合には特に変更する必要はない。
 ステップSTb2は、3点DCバイアス電圧制御部280が、第1の観測用EA変調器231から第3の観測用EA変調器233の第1のDCバイアス電圧2から第3のDCバイアス電圧4に対するDCバイアス電圧を設定し、第1の観測用EA変調器231から第3の観測用EA変調器233に第1のDCバイアス電圧2から第3のDCバイアス電圧4を印加する。
 すなわち、3点DCバイアス電圧制御部280が、第1の観測用EA変調器231に印加される電圧値V1がVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がVbias-β2である第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V3がVbias-β2-β3である第3のDCバイアス電圧4を印加する。ここで、差分値β2及び差分値β3は初期値としてステップSTb1にて設定された値であり、その後、ステップSTb7にて駆動振幅VRFに合わせて変更、更新、つまり、第2のDCバイアス電圧3にあっては第2のDCバイアス電圧3の電圧値からΔVRF/6を、第3のDCバイアス電圧4にあっては第3のDCバイアス電圧4の電圧値からΔVRF/3を引く又は足すことによって更新された値である。
 また、第1の観測用EA変調器231に印加される電圧値V1であるVbiasがアイパターンの中心に対応させ、第2の観測用EA変調器232に印加される電圧値V2および第3の観測用EA変調器233に印加される電圧値V3をレベル2およびレベル3に対応させるために、差分値β2はVRF/6、差分値β3はVRF/3に設定する。
 このように設定することにより、第1の観測用EA変調器231から第3の観測用EA変調器233から出力されるフォトカレントの差分と第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4の差分を考慮することで、レベル3~2間の振幅、及びレベル2~1間の半分の振幅を推定できる。
 駆動振幅VRFの調整前に、EA変調器220におけるレベル3が消光カーブの非線形領域にあると、レベル3~2間のフォトカレントの差分は小さく、これを大小比較で検知することにより、送信用変調信号1の駆動振幅VRFを下げることにより、EA変調器220は消光カーブの線形領域での変調が可能となる。
 なお、この実施の形態1では、PAM4変調方式におけるアイパターンの中心から上のレベルを観測し、アイパターンの中心から下側の非線形状態の観測はしていないが、駆動振幅調整モードの前にDCバイアス電圧調整モードを実施し、DCバイアス電圧Vbiasが調整されていることから、駆動振幅VRFはDCバイアス電圧Vbiasを中心に対称であると近似できる。従って、アイパターンの中心から上のレベル又は下のレベルの一方を行なうことで駆動振幅VRFの調整が可能である。
 ステップSTb3は、DCバイアス電圧調整モードにおけるステップSTa3と同様の処理を行なう。
 すなわち、駆動条件探索部200bにおいて、第1の観測用EA変調器231から第3の観測用EA変調器233からの第1の条件変更用電流5から第3の条件変更用電流7が示すフォトカレント(電流値)を基に複数の単純な処理を順に行う。
 まず、第1に、第1の電流-電圧変換部241から第3の電流-電圧変換部243が、第1の観測用EA変調器231から第3の観測用EA変調器233からの第1の条件変更用電流5から第3の条件変更用電流7が示す電流値(Iph1、Iph2、Iph3)を電圧値(Vph1、Vph2、Vph3)に変換して第1の条件変更用信号から第3の条件変更用信号としての第1の条件変更用電圧10から第3の条件変更用電圧12を得る。
 第2に、第1の差動増幅部251が、第1の電流-電圧変換部241からの第1の条件変更用電圧10が示す電圧値Vph1と第2の電流-電圧変換部242からの第2の条件変更用電圧11が示す電圧値Vph2に基づき、第1の条件変更用電圧10と第2の条件変更用電圧11が示す電圧値との差分量(Vph2-Vph1)を線形的に増幅した値である第1の中間駆動条件13を得る。第2の差動増幅部252が、第2の電流-電圧変換部242からの第2の条件変更用電圧11が示す電圧値Vph2と第3の電流-電圧変換部243からの第3の条件変更用電圧12が示す電圧値Vph3に基づき、第2の条件変更用電圧11と第3の条件変更用電圧12が示す電圧値との差分量(Vph3-Vph2)を線形的に増幅した値である第2の中間駆動条件14を得る。
 最後に、比較部260が、第1の差動増幅部251からの第1の中間駆動条件13が示す電圧値(b1×|Vph2-Vph1|)と第2の差動増幅部252からの第2の中間駆動条件14が示す電圧値(b2×|Vph3-Vph2|)を比較し、大小関係を2値情報とした駆動条件調整用信号15を得、駆動条件調整用信号15を駆動条件制御部270に出力する。
 このステップSTb3では、第1の差動増幅部251の増幅率b1、第2の差動増幅部252の増幅率b2は、レベル3~2とレベル2~1間の振幅差を同じにする目的があるため、差分値β2及び差分値β3に合わせて適切な値を選ぶ。この実施の形態1では差分値β3が差分値β2の2倍に設定しているので、増幅率b2が増幅率b1の1/2倍に設定している。
 ステップSTb4は、駆動条件調整用信号15がどのような信号であるか判断するステップである。
 すなわち、駆動条件調整用信号15が、第1の差動増幅部251からの第1の中間駆動条件13が示す電圧値が第2の差動増幅部252からの第2の中間駆動条件14が示す電圧値より大きいか否かを判定する。
 第1の中間駆動条件13が示す電圧値が第2の中間駆動条件14が示す電圧値より大きい場合(YES)、第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧V2と第1の観測用EA変調器231に印加される第1のDCバイアス電圧2の電圧V1の間(V2~V1)から推定されるレベル2~1間のアイ振幅が、第3の観測用EA変調器233に印加される第3のDCバイアス電圧4の電圧V3と第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧V2の間(V3~V2)のレベル3~2間のアイ振幅より大きいことを意味し、ステップSTb5に進む。
 ステップSTb5は、比較部260が得た、(V2~V1)間から推定されるレベル2~1間のアイ振幅が(V3~V2)間のレベル3~2間のアイ振幅より大きいことを示す、つまり、レベル3~2間のアイ振幅が狭い状態であることを意味する駆動条件調整用信号15により、駆動条件制御部270が、駆動振幅VRFを単位量ΔVRF減少させる第2の駆動条件制御用信号9を変調信号生成部320に出力する。
 単位量ΔVRF減少させる第2の駆動条件制御用信号9を得た変調信号生成部320は、駆動振幅VRFに単位量ΔVRFを引いて駆動振幅VRFを更新し、直流交流合成部330に出力する。直流交流合成部330にてDCバイアス電圧制御部310からのDCバイアス電圧Vbiasに、変調のための電気信号19に従って変調信号生成部320から出力される駆動振幅VRFの変調信号を合成して送信用変調信号1を生成し、この送信用変調信号1をEA変調器220に印加するに印加する。
 その後、ステップSTb7に進む。
 ステップSTb7は、第1の観測用EA変調器231から第3の観測用EA変調器233に対する3つの印加電圧の差分値β2及び差分値β3を更新した駆動振幅VRFに合わせて変更する。
 すなわち、第1のDCバイアス電圧2をVbias、第2のDCバイアス電圧3をVbias-(VRF-ΔVRF)/6、第3のDCバイアス電圧4をVbias-(VRF-ΔVRF)/6-(VRF-ΔVRF)/3とする。
 すなわち、ステップSTb5及びステップSTb7において、駆動振幅調整モードにおける1周期で減少させる調整量は次のようになる。
 駆動振幅VRFに単位量ΔVRFを減少、第2の観測用EA変調器232に印加する電圧値V2(Vbias-α2)にΔVRF/6を増加、第3の観測用EA変調器233に印加する電圧値V3(Vbias-α2-α3)にΔVRF/6+ΔVRF/3を増加、差分値β2にΔVRF/6を減少、及び差分値β3にΔVRF/3を減少させる
 DCバイアス電圧Vbias、及び第1の観測用EA変調器231に印加する電圧値V1は設定された値を維持する。
 また、ステップSTb4において、第1の中間駆動条件13が示す電圧値が第2の中間駆動条件14が示す電圧値より大きくない場合(NO)、第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧V2と第1の観測用EA変調器231に印加される第1のDCバイアス電圧2の電圧V1の間(V2~V1)から推定されるレベル2~1間のアイ振幅が、第3の観測用EA変調器233に印加される第3のDCバイアス電圧4の電圧V3と第2の観測用EA変調器232に印加される第2のDCバイアス電圧3の電圧V2の間(V3~V2)のレベル3~2間のアイ振幅より大きくないことを意味し、ステップSTb6に進む。
 ステップSTb6は、比較部260が得た、(V2~V1)間から推定されるレベル2~1間のアイ振幅とオフセット量の和あるいは差が(V3~V2)間のレベル3~2間のアイ振幅より大きくないことを示す、つまり、駆動振幅VRFを増やす余地があることを意味する駆動条件調整用信号15により、駆動条件制御部270が、駆動振幅VRFを単位量ΔVRF増加させる第2の駆動条件制御用信号9を変調信号生成部320に出力する。
 単位量ΔVRF増加させる第2の駆動条件制御用信号9を得た変調信号生成部320は、駆動振幅VRFに単位量ΔVRFを足して駆動振幅VRFを更新し、直流交流合成部330に出力する。直流交流合成部330にてDCバイアス電圧制御部310から出力されるDCバイアス電圧Vbiasに、変調のための電気信号19に従って変調信号生成部320から出力される駆動振幅VRFの変調信号を合成して送信用変調信号1を生成し、この送信用変調信号1をEA変調器220に印加する。
 その後、ステップSTb7に進む。
 ステップSTb7は、第1の観測用EA変調器231から第3の観測用EA変調器233に対する3つの印加電圧の差分値β2及び差分値β3を更新した駆動振幅VRFに合わせて変更する。
 すなわち、第1のDCバイアス電圧2をVbias、第2のDCバイアス電圧3をVbias-(VRF+ΔVRF)/6、第3のDCバイアス電圧4をVbias-(VRF+ΔVRF)/6-(VRF+ΔVRF)/3とする。
 ステップSTb6及びステップSTb7において、駆動振幅調整モードにおける1周期で減少させる調整量は次のようになる。
 駆動振幅VRFに単位量ΔVRFを増加、第2の観測用EA変調器232に印加する電圧値V2(Vbias-α2)にΔVRF/6を減少、第3の観測用EA変調器233に印加する電圧値V3(Vbias-α2-α3)にΔVRF/6+ΔVRF/3を減少、差分値β2にΔVRF/6を増加、及び差分値β3にΔVRF/3を増加させる。
 DCバイアス電圧Vbias、及び第1の観測用EA変調器231に印加する電圧値V1は設定された値を維持する。
 その後、図10に示したステップST6に進む。図10において、ステップST6は、駆動振幅VRFの調整が充分に行なわれたかを判断する。充分になされたという判断基準はステップST1にて設定される。例えば、駆動振幅VRFにおける調整可能な上限値又は下限値を超えない範囲での調整を行なう必要があり、上限値又は下限値に達成した場合は充分になされたと判断する。また、上限値又は下限値に達成していない場合でも、図12に示した駆動振幅調整モードの回数を、経験により、設定する、あるいはステップSTb4における大小関係の結果が一つ前の結果から反転すると駆動振幅調整モードを終了するなどの判断基準とする。このような判断基準により、駆動振幅VRFの調整が充分に行なわれていないと判断される(NO)とステップST5に戻り、充分に行なわれたと判断される(YES)とステップST3に進む。
 ステップST3では、駆動条件制御部270が調整対象を再びDCバイアス電圧調整モードに戻し、以降はループを繰り返す。
 これにより光送信器200の運用中においてEA変調器220に印加する送信用変調信号1のDCバイアス電圧Vbias及び駆動振幅VRFが適応的に調整される。
 なお、光送信器200の運用中全ての期間において、DCバイアス電圧調整モード及び駆動振幅調整モードの調整動作を繰り返して行なうものとしたが、調整モードを周期的に行なうものでも良い。
 以上に述べたように、この発明の実施の形態1に係る光送信装置100にあっては、図8に左上のグラフとして示したように、光出力を行なう第1の光変調器を構成するEA変調器220が温度t1における消光カーブに対して比較的線形な領域で駆動し、レベル3からレベル0における各間隔が適切に確保されている状態から、温度がt1からt2に変化した場合にEA変調器220における温度t1の消光カーブから図8の右に示すグラフに変化したとしても、第2の光変調器を構成する第1の観測用EA変調器231から第3の観測用EA変調器233によってフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号を得、駆動条件探索部200bが第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいた第1の駆動条件制御用信号を出力し、光送信器制御部300が、DCバイアス電圧調整モードにて第1の駆動条件制御用信号に基づき、EA変調器220に印加する送信用変調信号1の直流成分である直流バイアス電圧の電圧値を調整し、駆動振幅調整モードにて第2の駆動条件制御用信号に基づき、EA変調器220に印加する送信用変調信号1を特徴づける駆動振幅の電圧値を調整するため、図8の下のグラフとして示したように、EA変調器220に印加する送信用変調信号1を特徴づけるDCバイアス電圧Vbias及び駆動振幅VRFを適応的に調整することができる。
 従って、この発明の実施の形態1に係る光送信装置100にあっては、温度の変化により、EA変調器220における消光カーブ特性が大きく変わった場合にも良好なアイパターンを得ることができるという効果がある。また、送信用変調信号1の駆動振幅を最適化することでなるべく広いレベル間隔を取ることができ、結果として消光比を高くすることができるという効果がある。
実施の形態2.
 次に、この発明の実施の形態2について図13及び図14を用いて説明する。
 実施の形態2に係る光送信装置100は、実施の形態1に係る光送信装置100がDCバイアス電圧調整モード及び駆動振幅調整モードの2つの調整モードを実施する構成であるのに対して、駆動振幅調整モードを持たず、EA変調器220に印加する送信用変調信号1の駆動振幅VRFは固定値とした構成としたものである。
 図13及び図14において、図1及び図10と同一符号は同一又は相当部分を示す。
 すなわち、変調信号生成部320は、EA変調器220に印加する送信用変調信号1を特徴づける駆動振幅VRFを固定値として設定し、直流交流合成部330に出力する。
 駆動振幅VRFの固定値は、EA変調器220が適切な環境にて通常駆動される時の温度に対する消光カーブの線形領域によって設定される。
 DCバイアス電圧条件制御部271は実施の形態1における駆動条件制御部270に相当し、DCバイアス電圧調整モード時に動作する。
 すなわち、DCバイアス電圧条件制御部271は、実施の形態1に示した駆動条件制御部270におけるDCバイアス電圧調整モードの時と同じ動作をする。
 要するに、DCバイアス電圧条件制御部271は、DCバイアス電圧調整モード時、次の動作を実行する。
 1)実施の形態1にて示した設定値1から設定値6に示すDCバイアス電圧調整モード時の設定値を各構成要素に設定する。
 2)第3の駆動条件制御用信号16を、差分値α2及び差分値α3を設定させる信号とする。
 3)第1の差動増幅部251における増幅率をa1、第2の差動増幅部252における増幅率をa2とする。
 4)比較部260にて得られた駆動条件調整用信号15に基づき、第1の駆動条件制御用信号8を得るとともに、第3の駆動条件制御用信号16を得る。
 その結果、第1の駆動条件制御用信号8によりEA変調器220に印加する送信用変調信号1におけるDCバイアス電圧Vbiasを光送信器制御部300に調整させる。
 5)第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4を調整させるための第3の駆動条件制御用信号16を得る。
 6)比較部260にて得られた駆動条件調整用信号15がLレベルを示すと、第1の駆動条件制御用信号8及び第3の駆動条件制御用信号16を、DCバイアス電圧Vbiasを単位量ΔVbias減少させる信号とし、駆動条件調整用信号15がHレベルを示すと、第1の駆動条件制御用信号8及び第3の駆動条件制御用信号16を、DCバイアス電圧Vbiasを単位量ΔVbias増加させる信号とする。
 図13に示した光送信装置100のハードウェア構成は、実施の形態1として示した図9と基本的な構成は同じであり、メモリ302に格納されたプログラムが異なるだけである。
 すなわち、メモリ302とメモリ202は、この実施の形態2では、図14に示す、光送信装置100におけるイベント認識の処理フローを示すフローチャートを実行するプログラムを記憶している。
 なお、図14は、実施の形態1における図10及び図11を合成したフローチャートに相当する。
 図14において、ステップSTa11からステップSTa61はそれぞれ図11に示したステップSTa1からステップSTa6に相当し、図10に示したステップST3のDCバイアス電圧調整モードのステップに相当する。
 実施の形態2では、駆動振幅調整モードを持たないため、図10に示したステップST4からステップST6を持たない。
 このフローチャートは常時ループのフローとなっており、ループ開始とループ終了の間の処理を繰り返す。
 ステップSTa51及びステップSTa61の処理後、ステップSTa21に戻り、以降はループを繰り返す。これにより光送信装置100の運用中においてDCバイアス電圧Vbiasを適応に調整する。
 なお、光送信器200の運用中全ての期間において、DCバイアス電圧調整モードを繰り返して行なうものとしたが、DCバイアス電圧調整モードを周期的に行なうものでも良い。
 以上に述べたように、この発明の実施の形態2に係る光送信装置100にあっても、実施の形態1と同様に、第2の光変調器を構成する第1の観測用EA変調器231から第3の観測用EA変調器233によってフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号を得、駆動条件探索部200bが第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいた第1の駆動条件制御用信号を出力し、光送信器制御部300が、第1の駆動条件制御用信号に基づき、EA変調器220に印加する送信用変調信号1の直流成分である直流バイアス電圧Vbiasの電圧値を調整し、EA変調器220に印加する送信用変調信号1のDCバイアス電圧Vbiasを適応的に調整することができる。
 従って、この発明の実施の形態2に係る光送信装置100にあっては、温度の変化により、EA変調器220に消光カーブ特性が大きく変わった場合にも良好なアイパターンを得ることができるという効果がある。
 また、PAM4変調方式以外の多値変調方式においても適用できるという効果がある。
実施の形態3.
 次に、この発明の実施の形態3について図15を用いて説明する。
 実施の形態3に係る光送信装置100は、実施の形態1及び実施の形態2に係る光送信装置100におけるCW光出力部210をCW光出力部210cに変更したものであり、その他の構成は同じである。
 従って、CW光出力部210cを備えた光信号生成部200cについて説明する。
 CW光出力部210cは発光部211cと観測用CW光分岐部213cを備えている。
 発光部211cはCW光を出力する半導体レーザ(LD)である。
 この半導体レーザ(LD)は、対向するミラーで形成された共振器構造を有し、それぞれのミラーから異なった方向にCW光を取り出す構造である。
 発光部211cの一方のミラーから取り出されたCW光はEA変調器220へ出力される。
 発光部211cの他方のミラーから取り出されたCW光は観測用CW光分岐部213cへ出力される。
 観測用CW光分岐部213cへ入力されたCW光は3つに分岐されて第1の観測用EA変調器231から第3の観測用EA変調器233へ出力する。
 観測用CW光分岐部213は、光結合器又は多モード干渉導波路などである。
 この実施の形態3に係る光送信装置100にあっても、実施の形態1及び実施の形態2に係る光送信装置100とCW光出力部210cが異なるだけであるので、実施の形態1に係る光送信装置100と同様の効果もしくは実施の形態2に係る光送信装置100と同様の効果を奏する。
実施の形態4.
 次に、この発明の実施の形態4について図16を用いて説明する。
 実施の形態4に係る光送信装置100は、実施の形態1及び実施の形態2に係る光送信装置100における光信号生成部200aを光信号生成部200dに変更したものであり、その他の構成は同じである。
 従って、光信号生成部200dについて説明する。
 光信号生成部200dは、CW光を出力する半導体レーザ(LD)である発光部211dからなるCW光出力部210dと、EA変調器220と、変調光分岐部214と、第1の観測用EA変調器231から第3の観測用EA変調器233を備えている。
 発光部211dから出力されたCW光はEA変調器220に変調されて光信号として出力される。
 変調光分岐部214は、EA変調器220と第1の観測用EA変調器231から第3の観測用EA変調器233の間に設けられ、EA変調器220と第1の観測用EA変調器231から第3の観測用EA変調器233が直列的に光接続されている。
 EA変調器220からの光信号は、変調光分岐部214を介して光出力向けポートから光出力として出力される。
 EA変調器220からの光信号は、変調光分岐部214にてさらに3つに分岐されて第1の観測用EA変調器231から第3の観測用EA変調器233へ出力される。
 変調光分岐部214における光出力向けポートの配分比率は、第1の観測用EA変調器231から第3の観測用EA変調器233に対する出力ポートの配分比率より大きくし、光送信装置100からの光パワーを下げないようにしている。
 この実施の形態4に係る光送信装置100にあっても、実施の形態1及び実施の形態2に係る光送信装置100と光信号生成部200dが異なるだけであるので、実施の形態1に係る光送信装置100と同様の効果もしくは実施の形態2に係る光送信装置100と同様の効果を奏する。
実施の形態5.
 次に、この発明の実施の形態5について図17を用いて説明する。
 実施の形態5に係る光送信装置100は、実施の形態1に係る光送信装置100における光信号生成部200aに対して、さらに第2の駆動振幅調整モードを追加したものである。
 すなわち、実施の形態1に係る光送信装置100における駆動振幅調整モードが、PAM4変調方式におけるアイパターンの中心から上のレベルを観測したものであるが、さらに、アイパターンの中心から下のレベルを観測する第2の駆動振幅調整モードを追加したものである。
 図17において、ステップST7はステップST5と同様のステップである。
 ステップST7において、第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)である差分値γ2と、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)である差分値γ3を設定するとともに、第1の差動増幅部251の増幅率をc1と、第2の差動増幅部252の増幅率をc2に設定する。差分値γ2はVRF/6、差分値γ3はVRF/3である。
 3点DCバイアス電圧制御部280が、第1の観測用EA変調器231に印加される電圧値V1がVbiasである第1のDCバイアス電圧2を印加し、第2の観測用EA変調器232に電圧値V2がレベル1の電圧となるVbias+γ2である第2のDCバイアス電圧3を印加し、第3の観測用EA変調器233に電圧値V3がレベル0の電圧となるVbias+γ2+γ3である第3のDCバイアス電圧4を印加する。
 そして、駆動条件探索部200bは、ステップST5と同様に処理し、第1の観測用EA変調器231から第3の観測用EA変調器233に対する3つの印加電圧の差分値γ2及び差分値γ3を、それぞれ駆動振幅VRFにΔVRF/6、ΔVRF/3を足す、又は引いて更新した駆動振幅VRFに合わせて変更する。
 すなわち、第1のDCバイアス電圧2をVbias、第2のDCバイアス電圧3をVbias+VRF/6+ΔVRF/6又はbias+VRF/6-ΔVRF/6、第3のDCバイアス電圧4をVbias+VRF/6+ΔVRF/6+VRF/3+ΔVRF/3又はVbias+VRF/6-ΔVRF/6+VRF/3-ΔVRF/3とする。
 その後、ステップST8に進む。
 ステップST8にて駆動振幅VRFの調整が充分に行なわれたと判断されるまで、ステップST7に示す第2の駆動振幅調整モードを繰り返して行なわれ、駆動振幅VRFの調整が充分に行なわれたと判断されるとステップST3に進む。
 ステップST3では、駆動条件制御部270が調整対象を再びDCバイアス電圧調整モードに戻し、以降はループを繰り返す。
 これにより光送信器200の運用中においてEA変調器220に印加する送信用変調信号1のDCバイアス電圧Vbias及び駆動振幅VRFが適応的に調整される。
 この実施の形態5に係る光送信装置100は、実施の形態1に係る光送信装置100に対して第2の駆動振幅調整モードを追加しているので、実施の形態1に係る光送信装置100と同様の効果を奏する他、もしくは実施の形態2に係る光送信装置100と同様の効果を奏する他、送信用変調信号1の駆動振幅をさらに広いレベル間隔を取ることができ、結果として消光比をより高くすることができるという効果がある。
実施の形態6.
 次に、この発明の実施の形態6に係る光送信装置100について、図18から図21を用いて説明する。
 実施の形態6に係る光送信装置100は、実施の形態1に係る光送信装置100に対して、DCバイアス電圧調整モード及び駆動振幅調整モードの2つの調整モードのうち、駆動振幅調整モードを行なう構成として、第1の観測用EA変調器231から第3の観測用EA変調器233に第4の観測用EA変調器を追加し、さらに、第4の電流-電圧変換部244と、第3の差動増幅部253及び第4の差動増幅部254及び駆動振幅調整用比較部261により構成される駆動振幅調整用信号生成部250bと、駆動振幅調整用DCバイアス電圧制御部281を追加したものである。なお、各図中同一符号は、同一又は相当部分を示す。
 要するに、この実施の形態6に係る光送信装置100は、DCバイアス電圧調整モードは、第2の光変調器を構成する第1の観測用EA変調器231から第3の観測用EA変調器233と、第1の電流-電圧変換部241から第3の電流-電圧変換部243と、第1の差動増幅部251及び第2の差動増幅部252及び比較部260を有するDCバイアス調整用信号生成部250aと、駆動条件制御部272と、3点DCバイアス電圧制御部280を用いて行なう。
 一方、駆動振幅調整モードは、第1の観測用EA変調器231から第3の観測用EA変調器233のうちから選択された観測用EA変調器及び選択された観測用EA変調器に対応する電流-電圧変換部と、第3の光変調器を構成する第4の観測用EA変調器234と、第4の電流-電圧変換部244と、第3の差動増幅部253及び第4の差動増幅部254及び駆動振幅調整用比較部261を有する駆動振幅調整用信号生成部250bと、駆動条件制御部272と、駆動振幅調整用DCバイアス電圧制御部281を用いて行なう。
 以下に、実施の形態1に係る光送信装置100と相違する点を中心に説明する。
 CW光出力部210eは、図19に示すように、発光部211と、CW光分岐部212と、観測用CW光分岐部213eを備えている。
 観測用CW光分岐部213eは、CW光分岐部212からのCW光を4つに分岐して第1の観測用EA変調器231から第4の観測用EA変調器234に出力する。観測用CW光分岐部213eの分岐前及び分岐後のCW光の特性は光パワー以外同じである。
 第4の観測用EA変調器234は、第1の観測用EA変調器231から第3の観測用EA変調器233とともに、EA変調器220の適切な駆動条件を探索するための、EA変調器220に対する送信用変調信号の駆動振幅の電圧値を得るためのものである。
 第4の観測用EA変調器234は、第1の観測用EA変調器231から第3の観測用EA変調器233と同様の構成をしており、印加される第4のDCバイアス電圧20により、CW光出力部210eからの連続レーザ光に対する電界吸収効果にて引き起こされたフォトカレントの値に基づく第4の条件変更用信号21を出力する第3の光変調器を構成する。第4の観測用EA変調器234は、観測用CW光分岐部213eからの分岐後のCW光を受ける。
 第4の観測用EA変調器234は、第4のDCバイアス電圧20が第1のDCバイアス電圧2から第3のDCバイアス電圧4の電圧値と異なる以外は、第1の観測用EA変調器231から第3の観測用EA変調器233と、その半導体の層構造、組成比、導波路の構造及び電界吸収効果が生じる領域の長さなどを極力同じにしてある。
 第1の観測用EA変調器231から第4の観測用EA変調器234に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4及び第4のDCバイアス電圧20の電圧値は、以下のようにされる。
 初期値において、DCバイアス電圧調整モード時の第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)を差分値α2とし、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)を差分値α3と設定する。
 また、駆動振幅調整モード時においても、第1のDCバイアス電圧2と第2のDCバイアス電圧3が示す電圧値の電圧差(V1-V2)を差分値α2とし、第2のDCバイアス電圧3と第3のDCバイアス電圧4が示す電圧値の電圧差(V2-V3)を差分値α3と設定し、さらに、第3のDCバイアス電圧4と第4のDCバイアス電圧20が示す電圧値の電圧差(V3-V4)を差分値β4と設定する。
 すなわち、第1のDCバイアス電圧2が示す電圧値V1をVbiasとすると、第2のDCバイアス電圧3が示す電圧値V2がVbias-α2、第3のDCバイアス電圧4が示す電圧値V3がVbias-α2-α3となり、これは実施の形態1におけるDCバイアス電圧調整モードと同じ電圧である。
 一方、第4のDCバイアス電圧が示す電圧値V4はVbias-α2-α3-β4となる。
 実施の形態6では、第4の観測用EA変調器に印加される電圧値V4をレベル3に対応させるため、電圧差(V1-V4)、すなわち(α2+α3+β4)が駆動振幅の半値であるVRF/2に等しくなるようにβ4を設定する。
 駆動条件探索部200fは、第1の電流-電圧変換部241から第3の電流-電圧変換部243と、第1の差動増幅部251及び第2の差動増幅部252及び比較部260を有するDCバイアス調整用信号生成部250aと、駆動条件制御部272と、3点DCバイアス電圧制御部280に加え、第4の電流-電圧変換部244と、第3の差動増幅部253及び第4の差動増幅部254及び駆動振幅調整用比較部261を有する駆動振幅調整用信号生成部250bと、駆動振幅調整用DCデバイス電圧制御部281を備える。
 なお、図18において、駆動条件探索部200fの各構成要件間を電気信号の流れとして示しているが、ソフトウェア的に行なわれる場合は、実際の電気信号の流れはない。
 第4の電流-電圧変換部244は第4の観測用EA変調器234からの第4の条件変更用電流21が示す電流値を電圧値に変換して第4の条件変更用信号としての第4の条件変更用電圧22を得る。
 すなわち、第4の電流-電圧変換部244は、第4の観測用EA変調器234から出力された第4の条件変更用電流21が示すフォトカレントの値Iph4を電圧値Vph4に変換する。この変換では、例えば、抵抗を介した線形変換、つまりオームの法則(V=I×R)に基づき行なわれる。第4の電流-電圧変換部244は、第1の電流-電圧変換部241から第3の電流-電圧変換部243と同じ抵抗値を有する抵抗にて構成している。
 第3の差動増幅部253は、第1の電流-電圧変換部241からの第1の条件変更用電圧10が示す電圧値Vph1と第3の電流-電圧変換部243からの第3の条件変更用電圧12が示す電圧値Vph3に基づき、第1の条件変更用電圧10と第3の条件変更用電圧12が示す電圧値との差分量(Vph1-Vph3)を線形的に増幅した値である第3の中間駆動条件23を得る。
 第4の差動増幅部254は、第1の電流-電圧変換部241からの第1の条件変更用電圧10が示す電圧値Vph1と第4の電流-電圧変換部244からの第4の条件変更用電圧22が示す電圧値Vph4に基づき、第1の条件変更用電圧10と第4の条件変更用電圧22が示す電圧値との差分量(Vph1-Vph4)を線形的に増幅した値である第4の中間駆動条件24を得る。
 第3の差動増幅部253は増幅率をb3に、第4の差動増幅部254は増幅率をb4に設定される。
 従って、駆動振幅調整モード時、第3の差動増幅部253からの第3の中間駆動条件23が示す電圧の絶対値はb3×|Vph3-Vph1|になり、第4の差動増幅部254からの第4の中間駆動条件24が示す電圧の絶対値はb4×|Vph4-Vph1|になる。
 なお、第3の差動増幅部253及び第4の差動増幅部254は、駆動振幅調整モード時に使用されるため、DCバイアス電圧調整モード時に不活性にしても良い。
 また、実施の形態1では、第1の差動増幅部251は、DCバイアス電圧調整モード時の増幅率をa1、駆動振幅調整モードの増幅率をb1に設定しているが、増幅率をa1とし、駆動振幅調整モード時に不活性化しても良い。同様に、第2の差動増幅部252は、DCバイアス電圧調整モード時の増幅率をa2、駆動振幅調整モードの増幅率をb2に設定しているが、増幅率をa2とし、駆動振幅調整モード時に不活性にしても良い。
 DCバイアス電圧調整モードで使用する第1の差動増幅部251及び第2の差動増幅部における線形増幅の増幅率a1及び増幅率a2の比率は実施の形態1と同様の考えに基づき決められる。
 駆動振幅調整モードで使用する第3の差動増幅部253及び第4の差動増幅部254における増幅率b3及び増幅率b4の比率も、実施の形態1において、駆動振幅調整モードで使用する場合の第1の差動増幅部251及び第2の差動増幅部252における線形増幅の増幅率b1及び増幅率b2の比率における設定と同様の考えに基づき決められる。
 但し、図20に示すように、第2の観測用EA変調器232から第4の観測用EA変調器234に印加される電圧が実施の形態1における電圧と異なっているために比率の値が異なる。
 すなわち、第4の差動増幅部254の増幅率b4は、第1の観測用EA変調器231から第4の観測用EA変調器234に印加される電圧の差分量を考慮して、第3の差動増幅部253の増幅率b3の{(α2+α3)/(α2+α3+β4)}倍に設定する必要がある。
 なお、図20は、駆動振幅調整モード時の、EA変調器220及び第1の観測用EA変調器231から第4の観測用EA変調器234における、逆方向印加電圧Vに対するパワー透過率Tを○印にて示している。横軸は逆方向印加電圧Vを、縦軸はパワー透過率Tの値を示している。
 駆動振幅調整用比較部261は、第3の差動増幅部253から出力される第3の中間駆動条件23と第4の差動増幅部254から出力される第4の中間駆動条件24に基づき、第3の中間駆動条件23と第4の中間駆動条件24が示す電圧値を比較し、駆動条件調整用信号の一つである駆動振幅調整用信号15bを得る。
 すなわち、駆動振幅調整用比較部261は、第3の中間駆動条件23が示す電圧の絶対値(b3×|Vph3-Vph1|)と第4の中間駆動条件24が示す電圧の絶対値(b4×|Vph4-Vph1|)を比較し、大小関係を2値情報とした駆動振幅調整用信号15bを得る。
 駆動振幅調整用信号15bは、実施の形態1における駆動振幅調整モード時の、駆動条件調整用信号15と同様に、大小関係を判別するときにオフセット量を設定することができる。オフセット量を設ける理由は、実施の形態1と同様で、VRFが調整を繰り返すごとに不要に小さくなり続けることを防ぐためである。従って、オフセット量を適切に設定することで、レベル2-1の振幅差とレベル3-2の振幅差がおおよそ等間隔になるように駆動振幅の調整を維持できる。
 要するに、駆動条件探索部200fは、DCバイアス電圧調整モード時に使用する、第1の差動増幅部251及び第2の差動増幅部252及び比較部260を有するDCバイアス調整用信号生成部250aと、駆動振幅調整モードに使用する、第3の差動増幅部253及び第4の差動増幅部254及び駆動振幅調整用比較部261を有する駆動振幅調整用信号生成部250bとを備えている。
 DCバイアス調整用信号生成部250aは、DCバイアス電圧調整モード時に、第1の条件変更用信号5から第3の条件変更用信号7に基づく第1の条件変更用電圧10から第3の条件変更用電圧12の3つの組み合わせのうちの2つの組み合わせ、この実施の形態6では、第1の条件変更用電圧10と第2の条件変更用電圧11の組み合わせと、第2の条件変更用電圧11と第3の条件変更用電圧12の組み合わせ、による光吸収量の差分量に基づいて駆動条件調整用信号の一つであるDCバイアス調整用信号15aを得る。
 駆動振幅調整用信号生成部250bは、駆動振幅調整モード時に、第1の条件変更用信号5から第3の条件変更用信号7に基づく第1の条件変更用電圧10から第3の条件変更用電圧12の3つの組み合わせのうちの残りの組み合わせと、残りの組み合わせのうちの一つの条件変更用電圧と第4の条件変更用信号21に基づく第4の条件変更用電圧22による光吸収量の差分量、この実施の形態6では、第1の条件変更用電圧10と第3の条件変更用電圧12の組み合わせと、第1の条件変更用電圧10と第4の条件変更用電圧22、による光吸収量の差分量に基づいて駆動振幅調整用信号15bを得る。
 なお、この実施の形態6では、駆動振幅調整用信号生成部250bは、駆動振幅調整モード時に、第1の条件変更用信号5から第3の条件変更用信号7に基づく第1の条件変更用電圧10から第3の条件変更用電圧12の3つの組み合わせのうちの残りの組み合わせと、残りの組み合わせのうちの一つの条件変更用電圧と第4の条件変更用信号21に基づく第4の条件変更用電圧22による光吸収量の差分量とを用いているが、第1の条件変更用信号5から第3の条件変更用信号7に基づく第1の条件変更用電圧10から第3の条件変更用電圧12の3つの組み合わせのうちの一つの組み合わせと、第1の条件変更用電圧10から第3の条件変更用電圧12のうちの一つの条件変更用電圧と第4の条件変更用信号21に基づく第4の条件変更用電圧22による光吸収量の差分量に基づいて駆動振幅調整用信号15bを得るものでも良い。
 駆動条件制御部272は、実施の形態1と同様に光送信装置100の稼働前に各種の設定値の設定が行なわれ、光送信装置100が稼動開始後、DCバイアス電圧調整モード又は駆動振幅調整モードのいずれのモードを行なうかを指示する。
 駆動条件制御部272は、DCバイアス電圧調整モード時、比較部260にて得られたDCバイアス調整用信号15aに基づき、第1の駆動条件制御用信号8を得るとともに、第3の駆動条件制御用信号16を得る。駆動条件制御部272は、DCバイアス電圧調整モードであるので第2の駆動条件制御用信号9は発生しない。
 このときの駆動条件制御部272の動作は、実施の形態1と同じであるので説明は省略する。
 一方、駆動振幅調整モード時、駆動条件制御部272は、駆動振幅調整用比較部261にて得られた駆動振幅調整用信号15bに基づき、第2の駆動条件制御用信号9を得るとともに、第4の駆動条件制御用信号25を得る。駆動条件制御部272は、駆動振幅調整モード時であるので第1の駆動条件制御用信号8は発生しない。このとき、駆動条件制御部272は第3の駆動条件制御用信号16の変わりに初期値もしくは駆動振幅調整モード直前の状態を維持させる信号を出力する。
 駆動条件制御部272が得る第3の駆動条件制御用信号16は、第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4を調整させるためのものであり、第4の駆動条件制御用信号25は、第4の観測用EA変調器234に印加される第4のDCバイアス電圧20を調整させるためのものである。
 駆動条件制御部272は、DCバイアス電圧調整モード時に実施の形態1と同様に3点DCバイアス電圧制御部280などの制御を行い、駆動振幅調整モード時、駆動振幅調整用DCバイアス電圧制御部281、第3の差動増幅部253、及び第4の差動増幅部254に対して制御を行う。
 駆動条件制御部272は、駆動振幅調整モード時の設定値として、実施の形態1にて示した設定値2に対応して設定値7が、設定値4に対応して設定8の設定が行なわれる。
 設定値7:第3のDCバイアス電圧4と第4のDCバイアス電圧20が示す電圧値の電圧差(V3-V4)である差分値β4。
 設定値8:第3の差動増幅部253の増幅率b3、第4の差動増幅部254の増幅率b4。
 3点DCバイアス電圧制御部280は、DCバイアス電圧調整モードの時、駆動条件制御部272からの第3の駆動条件制御用信号16を受けて実施の形態1と同様に動作する。
 3点DCバイアス電圧制御部280は、駆動振幅調整モード時、初期値もしくは、DCバイアス電圧調整モード後に駆動振幅調整モードが開始された場合は、DCバイアス電圧調整モード直後の状態を維持する第1のDCバイアス電圧2から第3のDCバイアス電圧4を第1の観測用EA変調器231から第3の観測用EA変調器233に印加する。この状態は駆動振幅調整モード期間維持される。
 駆動振幅調整用DCバイアス電圧制御部281は、駆動振幅調整モード時、駆動条件制御部272からの第4の駆動条件制御用信号25を受けて、初期値としてDCバイアス電圧Vbiasと差分値α2及び差分値α3の他に差分値β4が設定され、第4の観測用EA変調器234に電圧値V4がV1-α2-α3-β4=Vbias-VRF/2である第4のDCバイアス電圧20を印加する。
 駆動振幅調整用DCバイアス電圧制御部281は、駆動振幅調整モード時、駆動条件制御部272からの第4の駆動条件制御用信号25を受けて、第4の駆動条件制御用信号25がΔVRF/2減少させる信号を示すと、第4の観測用EA変調器234に電圧値V4がVbias-VRF/2-ΔVRF/2を印加する。駆動条件制御部272からの第4の駆動条件制御用信号25がΔVRF/2減少させる信号を示さなくなるまで繰り返される。
 駆動振幅調整用DCバイアス電圧制御部281は、駆動振幅調整モード時、駆動条件制御部272からの第4の駆動条件制御用信号25を受けて、第4の駆動条件制御用信号25がΔVRF/2増加させる信号を示すと、第4の観測用EA変調器234に電圧値V4がVbias-VRF/2+ΔVRF/2を印加する。駆動条件制御部272からの第4の駆動条件制御用信号25がΔVRF/2増加させる信号を示さなくなるまで繰り返される。
 光送信器制御部300を構成する、DCバイアス電圧制御部310と、変調信号生成部320と、直流交流合成部330は、実施の形態1と同様に動作する。
 図18及び図19にて示す実施の形態6の光送信装置100のハードウェア構成は、実施の形態1のハードウェア構成を示した図9のハードウェア構成に第4の観測用EA変調器234を追加した構成であり、メモリ302に記録された実施の形態1を実施するためのプログラムが実施の形態6を実施するためのプログラムに変更されている。
 メモリ302とメモリ202は、この実施の形態6では、図10、図11、及び図21に示す光送信装置100におけるイベント認識の処理フローを示すフローチャートを実行するプログラムを記憶している。
 すなわち、DCバイアス電圧調整モード及び駆動振幅調整モードの2つの調整モードの交互反復については、実施の形態1と同様に、図10に示すフローチャートに基づいて行われる。ただし、駆動振幅調整モードの詳細については図21に示すフローチャートに基づいて行われる。
 図21に示すフローチャートは、図10に示した調整モード全体における駆動振幅調整モードのステップであるステップST5に相当し、同時に、実施の形態1における駆動振幅調整モードの詳細フローチャートを示す図12に対応する。図21に示すステップSTb11からステップSTb71はそれぞれ図12に示したステップSTb1からステップSTb7に対応する。
 要するに、実施の形態6における駆動振幅調整モード(ステップST5)のフローチャートは、図21に示すように、第3の差動増幅部の増幅率b3及び第4の差動増幅部234の増幅率b4を設定するステップSTb11と、第4の観測用EA変調器234に第4のDCバイアス電圧20を印加するステップSTb21と、駆動振幅調整用比較部261にて駆動振幅調整用信号15bを得るステップSTb31及びステップSTb41と、駆動振幅VRFを減少させるステップSTb51と、駆動振幅VRFを増加させるステップSTb61と、駆動振幅調整モード時の第3のDCバイアス電圧12と第4のDCバイアス電圧22が示す電圧値の電圧差(V3-V4)である差分値β4を駆動振幅VRFに合わせて変更するステップSTb71を備えている。
 図21において、ステップSTb11は、駆動条件制御部272が調整対象を送信用変調信号1のDCバイアス電圧Vbiasから駆動振幅VRFに切替える。また、第3の差動増幅部253の増幅率をb3に、第4の差動増幅部254の増幅率をb4に設定する。
 ステップSTb21では、駆動振幅調整用DCバイアス電圧制御部281が、第4の観測用EA変調器234の第4のDCバイアス電圧20に対するDCバイアス電圧を設定し、第4の観測用EA変調器234に第4のDCバイアス電圧20を印加する。すなわち、第4の観測用EA変調器234に電圧値V4が(Vbias-α2-α3-β4)である第4のDCバイアス電圧20を印加する。また、第1の観測用EA変調器231から第3の観測用EA変調器233に印加される第1のDCバイアス電圧から第3のDCバイアス電圧はDCバイアス電圧調整モード(ステップST3)における値を維持している。ここで、差分値β4は初期値としてステップST11にて設定された値であり、その後、ステップSTb71にて駆動振幅VRFに合わせて変更、更新される。
 それぞれのDCバイアス電圧を設定することにより、図20に示すように、第1の観測用EA変調器231から第4の観測用EA変調器234において出力されるフォトカレントの差分と第1の観測用EA変調器231から第4の観測用EA変調器234に印加される第1のDCバイアス電圧2から第3のDCバイアス電圧4及び第4のDCバイアス電圧20の差分を考慮することで、EA変調器220におけるレベル3が消光カーブの非線形領域にあるかが推定できる。すなわち、レベル3が線形領域にある場合には、それぞれのフォトカレントの差分はそれぞれの印加電圧の差分(横軸)に線形比例の関係となるが、レベル3が非線形領域にある場合、図20の左側にて示したグラフから理解されるように線形比例の関係でなくなるため、これを検知し駆動振幅を小さくすることで線形比例の関係に戻すことができる。
 ステップSTb31では、ステップSTb3と同様な方法で、第4の観測用EA変調器234に対応した第4の条件変更用電流(Iph4)21、第4の条件変更用電圧(Vph4)22を得る。続いて、第3の差動増幅部253が、第1の条件変更用電圧10と第3の条件変更用電圧12が示す電圧値との差分量(Vph1-Vph3)を線形的に増幅した値である第3の中間駆動条件23を得る。また、第4の差動増幅部254が、第1の条件変更用電圧10と第4の条件変更用電圧22が示す電圧値との差分量(Vph1-Vph4)を線形的に増幅した値である第4の中間駆動条件24を得る。
 最後に、駆動振幅調整用比較部261が、第3の差動増幅部253からの第3の中間駆動条件が示す電圧値(b3×|Vph3-Vph1|)と第4の差動増幅部からの第4の中間駆動条件が示す電圧値(b4×|Vph4-Vph1|)を比較し、大小関係を2値情報とした駆動振幅調整用信号15bを得、駆動振幅調整用信号15bを駆動条件制御部272に出力する。
 ステップSTb41では、駆動振幅調整用信号15bがどのような信号であるか判断するステップである。すなわち、駆動振幅調整用信号15bが、第3の差動増幅部253から出力される第3の中間駆動条件23が示す電圧値が第4の差動増幅部254から出力される第4の中間駆動条件24が示す電圧値より大きいか否かを判定する。
 第3の中間駆動条件23が示す電圧値が第4の中間駆動条件24が示す電圧値より大きい場合(YES)、第4の観測用EA変調器234に印加される第4のDCバイアス電圧20に対応するレベル3が消光カーブの非線形性領域に存在(図20の左側のグラフに示す)し、レベル2~1間のアイ振幅がレベル3~2間のアイ振幅より大きいことを意味し、ステップSTb51に進む。
 ステップSTb51では、駆動振幅調整用比較部261が得た、推定されるレベル2~1間のアイ振幅がレベル3~2間のアイ振幅より大きいことを示す、つまり、レベル3~2間のアイ振幅が狭い状態であることを意味する駆動振幅調整用信号15bにより、ステップSTb5と同様な手順で、駆動条件制御部272が駆動振幅VRFを単位量ΔVRF減少させる。
 その後、ステップSTb71に進む。
 ステップSTb71は、第3の観測用EA変調器233と第4の観測用EA変調器234に対する印加電圧の差分値β4を、更新した駆動振幅VRFに合わせて変更する。
 すなわち、第4のDCバイアス電圧20をVbias-(VRF-ΔVRF)/2とする。
 したがって、ステップSTb51及びステップSTb71において、駆動振幅調整モードにおける1周期で変更させる調整量は次のようになる。
 駆動振幅VRFに単位量ΔVRFを減少、第4の観測用EA変調器234に印加する電圧値V4にΔVRF/2を増加、差分値β4にΔVRF/2を減少させる。DCバイアス電圧Vbias、及び第1の観測用EA変調器231から第3の観測用EA変調器233に印加する電圧値V1、V2、及びV3は設定された値を維持する。
 すなわち、駆動振幅調整モードにおいて、β4は駆動振幅VRFに合わせて調整され、α2およびα3は調整されない。
 また、ステップSTb41において、第3の中間駆動条件23が示す電圧値が第4の中間駆動条件24が示す電圧値より大きくない場合(NO)、第4の観測用EA変調器234に印加される第4のDCバイアス電圧20に対応するレベル3が消光カーブの線形性領域に存在し、レベル2~1間のアイ振幅がレベル3~2間のアイ振幅より大きくないことを意味し、ステップSTb61に進む。
 ステップSTb61は、駆動振幅調整用比較部261が得た、推定されるレベル2~1間のアイ振幅がレベル3~2間のアイ振幅より大きくないことを示す、つまり、駆動振幅VRFを増やす余地があることを意味する駆動振幅調整用信号15bにより、ステップSTb6と同様な手順で、駆動条件制御部が駆動振幅VRFを単位量ΔVRF増加させる。
 その後、ステップSTb71に進む。
 ステップSTb71は、第3の観測用EA変調器233と第4の観測用EA変調器234に対する印加電圧の差分値β4を、更新した駆動振幅VRFに合わせて変更する。
 すなわち、第4のDCバイアス電圧をVbias-(VRF+ΔVRF)/2とする。
 ステップSTb61及びステップSTb71において、駆動振幅調整モードにおける1周期で変更させる調整量は次のようになる。
 駆動振幅VRFに単位量ΔVRFを増加、第4の観測用EA変調器234に印加する電圧値V4にΔVRF/2を減少、差分値β4にΔVRF/2を増加させる。DCバイアス電圧Vbias、及び第1の観測用EA変調器231から第3の観測用EA変調器233に印加する電圧値V1、V2、及びV3は設定された値を維持する。
 すなわち、駆動振幅調整モードにおいて、β4は駆動振幅VRFに合わせて調整され、α2およびα3は調整されない。
 その後、図10に示したステップST6に進み、実施の形態1と同様の動作が行われる。
 このようにして、第4のDCバイアス電圧20は調整され、図20の右側のグラフに示すように、光変調の非線形状態は改善される。
 以上に述べたように、この発明の実施の形態6に係る光送信装置100にあっては、
 ア)第2の光変調器を構成する第1の観測用EA変調器231から第3の観測用EA変調器233によってフォトカレントの値に基づく第1の条件変更用信号5から第3の条件変更用信号7を得、第3の光変調器を構成する第4の観測用EA変調器234によってフォトカレントの値に基づく第4の条件変更用信号21を得、
 イ)駆動条件探索部200fが第1の条件変更用信号5からから第3の条件変更用信号7及び第4の条件変更用信号21による光吸収量の差分量に基づいた第1の駆動条件制御用信号及び第2の駆動条件制御用信号を出力し、
 ウ)光送信器制御部300が、DCバイアス電圧調整モードにて第1の駆動条件制御用信号に基づき、EA変調器220に印加する送信用変調信号1の直流成分である直流バイアス電圧の電圧値Vbiasを適応的に調整し、駆動振幅調整モードにて第2の駆動条件制御用信号に基づき、EA変調器220に印加する送信用変調信号1を特徴づける駆動振幅の電圧値VRFを適応的に調整することができる。
 従って、この発明の実施の形態6に係る光送信装置100にあっては、DCバイアス電圧調整モードと駆動振幅調整モードの2つの調整モードの交互反復の中で、第2の光変調器に印加する第1のDCバイアス電圧2から第3のDCバイアス電圧4を変更することなく、実施の形態1と同等な効果が得られる。
 なお、実施の形態6において、第3の光変調器を第4の観測用EA変調器234にて構成するものを示したが、これに限られるものではなく、第4の観測用EA変調器234に加えて第5の観測用EA変調器を追加するなど、複数の観測用EA変調器により構成しても良い。
 複数の観測用EA変調器により構成する場合、複数の観測用EA変調器に印加するDCバイアス電圧は全て同じにしてもよいし、それぞれ異なる電圧としてもよい。このように第3の光変調器を複数の観測用EA変調器により構成することにより、レベル3又はその他のレベルが消光カーブの非線形領域に存在するかを推定する際の精度を高めることができる。
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 100 光送信装置、200 光送信器、200a,200c,200d 光信号生成部(光素子)、200b 駆動条件探索部、210,210c,210d CW光出力部、211,211c,211d 発光部、212 CW光分岐部、213,213c 観測用CW光分岐部、214 変調光分岐部、220 EA変調器、231 第1の観測用EA変調器、232 第2の観測用EA変調器、233 第3の観測用EA変調器、234 第4の観測用EA変調器、241 第1の電流-電圧変換部、242 第2の電流-電圧変換部、243 第3の電流-電圧変換部、244 第4の電流-電圧変換部、251 第1の差動増幅部、252 第2の差動増幅部、253 第3の差動増幅部、254 第4の差動増幅部、260 比較部、261 駆動振幅調整用比較部、270、272 駆動条件制御部、271 DCバイアス電圧条件制御部、280 3点DCバイアス電圧制御部、281 駆動振幅調整用DCバイアス電圧制御部、300 光送信器制御部、310 DCバイアス電圧制御部、320 変調信号生成部、330 直流交流合成部、

Claims (18)

  1.  入力された連続レーザ光を、直流バイアス電圧と駆動振幅で特徴づけられる送信用変調信号によってパルス振幅変調を行い、光信号として出力する第1の光変調器、
     入力された連続レーザ光を、それぞれが異なる電圧値である第1のDCバイアス電圧から第3のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器、
     前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号を受け、前記第1の条件変更用信号から前記第3の条件変更用信号による光吸収量の差分量に基づいて第1の駆動条件制御用信号を得るともに、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧を出力する駆動条件探索部、
     前記駆動条件探索部が得た第1の駆動条件制御用信号に基づき、前記第1の光変調器に印加する送信用変調信号の直流成分である直流バイアス電圧の電圧値を調整する光送信器制御部、
     を備えた光送信装置。
  2.  前記駆動条件探索部は、さらに、前記第1の条件変更用信号から前記第3の条件変更用信号による光吸収量の差分量に基づいて第2の駆動条件制御用信号を得、
     前記光送信器制御部は、前記駆動条件探索部にて得た第2の駆動条件制御用信号に基づき、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を設定し、前記設定した直流バイアス電圧の電圧値と前記設定した駆動振幅の電圧値に基づき送信用変調信号を生成し、前記第1の光変調器に印加することを特徴とする請求項1記載の光送信装置。
  3.  前記第1の光変調器に印加される送信用変調信号は、直流バイアス電圧と駆動振幅の電圧値による4段階の値を取る信号であり、
     前記第1の光変調器は、前記送信用変調信号によって4段階のレベルを取る光信号を出力する電界吸収型変調器であることを特徴とする請求項1又は請求項2記載の光送信装置。
  4.  前記第2の光変調器は、
     前記連続レーザ光が入力され、入力された連続レーザ光を、第1のDCバイアス電圧が印加されて前記第1の条件変更用信号を出力する第1の観測用電界吸収型変調器と、
     前記連続レーザ光が入力され、入力された連続レーザ光を、第2のDCバイアス電圧が印加されて前記第2の条件変更用信号を出力する第2の観測用電界吸収型変調器と、
     前記連続レーザ光が入力され、入力された連続レーザ光を、第3のDCバイアス電圧が印加されて前記第3の条件変更用信号を出力する第3の観測用電界吸収型変調器を備えたことを特徴とする請求項1から請求項3のいずれか1項に記載の光送信装置。
  5.  前記第1の光変調器に入力される連続レーザ光は、連続レーザ光を出力する発光部からレーザ光分岐部を介して入力される連続レーザ光であり、
     前記第2の光変調器に入力される連続レーザ光は、前記発光部から前記レーザ光分岐部及び観測用レーザ光分岐部を介して入力される連続レーザ光であることを特徴とする請求項1から請求項4のいずれか1項に記載の光送信装置。
  6.  前記第1の光変調器に入力される連続レーザ光は、2方向に連続レーザ光を出力する発光部からの一方の連続レーザ光であり、
     前記第2の光変調器に入力される連続レーザ光は、前記発光部から観測用レーザ光分岐部を介して入力される他方の連続レーザ光であることを特徴とする請求項1から請求項4のいずれか1項に記載の光送信装置。
  7.  前記第1の光変調器に入力される連続レーザ光は、連続レーザ光を出力する発光部からの連続レーザ光であり、
     前記第2の光変調器に入力される光信号は、前記第1の光変調器から出力された光信号であることを特徴とする請求項1から請求項4のいずれか1項に記載の光送信装置。
  8.  前記駆動条件探索部は、
     前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号が示すフォトカレントの値をそれぞれ電圧値に変換して第1の条件変更用電圧から第3の条件変更用電圧を得る電流―電圧変換部と、
     前記第1の条件変更用電圧から前記第3の条件変更用電圧の電圧値に基づいて、前記第2の光変調器が有する3つの導波路間での光吸収量の差分を算出し、第1の中間駆動条件及び第2の中間駆動条件を得る差動増幅部と、
     前記第1の中間駆動条件と前記第2の中間駆動条件が示す電圧値を比較し、駆動条件調整用信号を得る比較部と、
     前記駆動条件調整用信号に基づき前記第1の駆動条件制御用信号を生成し、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧を出力する駆動条件生成部と、
     を備えることを特徴とする請求項1から請求項7のいずれか1項に記載の光送信装置。
  9.  前記駆動条件探索部は、
     前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号が示すフォトカレントの値をそれぞれ電圧値に変換して第1の条件変更用電圧から第3の条件変更用電圧を得る電流―電圧変換部と、
     前記第1の条件変更用電圧から前記第3の条件変更用電圧の電圧値に基づいて、前記第2の光変調器が有する3つの導波路間での光吸収量の差分を算出し、第1の中間駆動条件及び第2の中間駆動条件を得る差動増幅部と、
     前記第1の中間駆動条件と前記第2の中間駆動条件が示す電圧値を比較し、駆動条件調整用信号を得る比較部と、
     前記駆動条件調整用信号に基づき前記第1の駆動条件制御用信号及び前記第2の駆動条件制御用信号を生成し、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧を出力する駆動条件生成部と、
     を備えることを特徴とする請求項2から請求項7のいずれか1項に記載の光送信装置。
  10.  入力された連続レーザ光を、直流バイアス電圧と駆動振幅で特徴づけられる送信用変調信号によってパルス振幅変調を行い、光信号として出力する第1の光変調器に、前記送信用変調信号を印加するとともに、入力された連続レーザ光を、それぞれが異なる電圧値である第1のDCバイアス電圧から第3のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器に、前記第1のDCバイアス電圧から前記第3のDCバイアス電圧を印加する第1のステップと、
     前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号の直流成分である直流バイアス電圧の電圧値を更新する第2のステップと、
     前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧の電圧値を更新する第3のステップと、
     を備えた光送信方法。
  11.  前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を更新する第4のステップを備えたことを特徴とする請求項10記載の光送信方法。
  12.  入力された連続レーザ光を、直流バイアス電圧と駆動振幅で特徴づけられる送信用変調信号によってパルス振幅変調を行い、光信号として出力する第1の光変調器に、前記送信用変調信号を印加するとともに、入力された連続レーザ光を、第1のDCバイアス電圧から第3のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器に、前記直流バイアス電圧の電圧値を示す第1のDCバイアス電圧と、前記直流バイアス電圧の電圧値に第1の差分値を引いた電圧値を示す第2のDCバイアス電圧と、前記直流バイアス電圧の電圧値に第1の差分値及び第2の差分値を引いた電圧値を示す第3のDCバイアス電圧を印加する第1のステップと、
     前記第1のステップにて第1のDCバイアス電圧から第3のDCバイアス電圧が印加された前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号の直流成分である直流バイアス電圧の電圧値を更新する第2のステップと、
     前記第1のステップにて第1のDCバイアス電圧から第3のDCバイアス電圧が印加された前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧の電圧値を更新する第3のステップと、
     前記第1のDCバイアス電圧から前記第3のDCバイアス電圧が印加された前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を更新する第4のステップと、
     前記第2の光変調器に、前記直流バイアス電圧の電圧値を示す第1のDCバイアス電圧と、前記直流バイアス電圧の電圧値に第1の差分値を足した電圧値を示す第2のDCバイアス電圧と、前記直流バイアス電圧の電圧値に第1の差分値及び第2の差分値を足した電圧値を示す第3のDCバイアス電圧を印加する第5のステップと、
     前記第5のステップにて第1のDCバイアス電圧から第3のDCバイアス電圧が印加された前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を更新する第6のステップと、
     を備えた光送信方法。
  13.  コンピュータに、
     入力された連続レーザ光を、直流バイアス電圧と駆動振幅で特徴づけられる送信用変調信号によってパルス振幅変調を行い、光信号として出力する第1の光変調器に印加する前記送信用変調信号を得るとともに、入力された連続レーザ光を、それぞれが異なる電圧値である第1のDCバイアス電圧から第3のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧を得る第1の手順と、
     前記第1の手順にて得た第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号の直流成分である直流バイアス電圧の電圧値を更新する直流バイアス電圧の電圧値を得る第2の手順と、
     前記第1の手順にて得た第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧の電圧値を更新する電圧値を得る第3の手順と、
     を実行させるためのプログラム。
  14.  前記第1の手順にて得た第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を更新する駆動振幅の電圧値を得る第4の手順を実行させるための請求項13記載のプログラム。
  15.  コンピュータに、
     入力された連続レーザ光を、直流バイアス電圧と駆動振幅で特徴づけられる送信用変調信号によってパルス振幅変調を行い、光信号として出力する第1の光変調器に印加する前記送信用変調信号を得るとともに、入力された連続レーザ光を、第1のDCバイアス電圧から第3のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器に印加する、前記直流バイアス電圧の電圧値を示す第1のDCバイアス電圧と、前記直流バイアス電圧の電圧値に第1の差分値を引いた電圧値を示す第2のDCバイアス電圧と、前記直流バイアス電圧の電圧値に第1の差分値及び第2の差分値を引いた電圧値を示す第3のDCバイアス電圧を得る第1の手順と、
     前記第1の手順にて得た第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号の直流成分である直流バイアス電圧の電圧値を更新する直流バイアス電圧の電圧値を得る第2の手順と、
     前記第1の手順にて得た第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧の電圧値を更新する電圧値を得る第3の手順と、
     前記第1の手順にて得た第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を更新する駆動振幅の電圧値を得る第4の手順と、
     前記第2の光変調器に、前記直流バイアス電圧の電圧値を示す第1のDCバイアス電圧と、前記直流バイアス電圧の電圧値に第1の差分値を足した電圧値を示す第2のDCバイアス電圧と、前記直流バイアス電圧の電圧値に第1の差分値及び第2の差分値を足した電圧値を示す第3のDCバイアス電圧を得る第5の手順と、
     前記第5の手順にて得た第1の条件変更用信号から第3の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を更新する駆動振幅の電圧値を得る第6の手順と、
     を実行させるためのプログラム。
  16.  入力された連続レーザ光を、直流バイアス電圧と駆動振幅で特徴づけられる送信用変調信号によってパルス振幅変調を行い、光信号として出力する第1の光変調器、
     入力された連続レーザ光を、それぞれが異なる電圧値である第1のDCバイアス電圧から第3のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器、
     入力された連続レーザ光を、前記第1のDCバイアス電圧から前記第3のDCバイアス電圧と異なる電圧値である第4のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第4の条件変更用信号として出力する第3の光変調器、
     前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号及び前記第3の光変調器からの第4の条件変更用信号を受け、前記第1の条件変更用信号から前記第3の条件変更用信号の3つの組み合わせのうちの2つの組み合わせによる光吸収量の差分量に基づいて第1の駆動条件制御用信号を得るともに、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧を出力し、前記第1の条件変更用信号から前記第3の条件変更用信号の3つの組み合わせのうちの1つの組み合わせによる光吸収量の差分量と前記第1の条件変更用信号から前記第3の条件変更用信号のうちの一つの条件変更用信号と前記第4の条件変更用信号による光吸収量の差分量に基づいて第2の駆動条件制御用信号を得るともに、前記第3の光変調器に印加する前記第4のDCバイアス電圧を出力する駆動条件探索部、
     前記駆動条件探索部が得た第1の駆動条件制御用信号に基づき、前記第1の光変調器に印加する送信用変調信号の直流成分である直流バイアス電圧の電圧値を設定するとともに、前記駆動条件探索部が得た第2の駆動条件制御用信号に基づき、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を設定し、前記設定した直流バイアス電圧の電圧値と前記設定した駆動振幅の電圧値に基づき送信用変調信号を生成し、前記第1の光変調器に印加する光送信器制御部、
     を備えた光送信装置。
  17.  入力された連続レーザ光を、直流バイアス電圧と駆動振幅で特徴づけられる送信用変調信号によってパルス振幅変調を行い、光信号として出力する第1の光変調器に、前記送信用変調信号を印加するとともに、入力された連続レーザ光を、それぞれが異なる電圧値である第1のDCバイアス電圧から第3のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器に、前記第1のDCバイアス電圧から前記第3のDCバイアス電圧を印加する第1のステップと、
     前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号の3つの組み合わせのうちの2つの組み合わせによる光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号の直流成分である直流バイアス電圧の電圧値を更新する第2のステップと、
     前記第2の光変調器からの第1の条件変更用信号から第3の条件変更用信号の3つの組み合わせのうちの2つの組み合わせによる光吸収量の差分量に基づいて、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧の電圧値を更新する第3のステップと、
     入力された連続レーザ光を、前記第1のDCバイアス電圧から第3のDCバイアス電圧と異なる電圧値である第4のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第4の条件変更用信号として出力する第3の光変調器に、前記第4のDCバイアス電圧を印加する第4のステップと、
     前記第1の条件変更用信号から前記第3の条件変更用信号の3つの組み合わせのうちの1つの組み合わせによる光吸収量の差分量と前記第1の条件変更用信号から前記第3の条件変更用信号のうちの一つの条件変更用信号と前記第4の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を更新する第5のステップと、
     前記第1の条件変更用信号から前記第3の条件変更用信号の3つの組み合わせのうちの1つの組み合わせによる光吸収量の差分量と前記第1の条件変更用信号から前記第3の条件変更用信号のうちの一つの条件変更用信号と前記第4の条件変更用信号による光吸収量の差分量に基づいて、前記第3の光変調器に印加する前記第4のDCバイアス電圧の電圧
    値を更新する第6のステップと、
     を備えた光送信方法。
  18.  コンピュータに、
     DCバイアス電圧調整モード時、入力された連続レーザ光を、直流バイアス電圧と駆動振幅で特徴づけられる送信用変調信号によってパルス振幅変調を行い、光信号として出力する第1の光変調器に印加する前記送信用変調信号を得るとともに、入力された連続レーザ光を、それぞれが異なる電圧値である第1のDCバイアス電圧から第3のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第1の条件変更用信号から第3の条件変更用信号として出力する第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧を得る第1の手順と、
     前記第1の手順にて得た第1の条件変更用信号から第3の条件変更用信号の3つの組み合わせのうちの2つの組み合わせによる光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号の直流成分である直流バイアス電圧の電圧値を更新する直流バイアス電圧の電圧値を得る第2の手順と、
     前記第1の手順にて得た第1の条件変更用信号から第3の条件変更用信号の3つの組み合わせのうちの2つの組み合わせによる光吸収量の差分量に基づいて、前記第2の光変調器に印加する前記第1のDCバイアス電圧から前記第3のDCバイアス電圧の電圧値を更新する電圧値を得る第3の手順と、
     駆動振幅調整モード時、入力された連続レーザ光を、第1のDCバイアス電圧から第3のDCバイアス電圧と異なる電圧値である第4のDCバイアス電圧による電界吸収効果にて引き起こされたフォトカレントの値に基づく第4の条件変更用信号として出力する第3の光変調器に印加する前記第4のDCバイアス電圧を得る第4の手順と、
     前記第1の条件変更用信号から前記第3の条件変更用信号の3つの組み合わせのうちの1つの組み合わせによる光吸収量の差分量と、前記第4の手順にて得た第1の条件変更用信号から第3の条件変更用信号のうちの一つの条件変更用信号と前記第4の手順にて得た第4の条件変更用信号による光吸収量の差分量に基づいて、前記第1の光変調器に印加する送信用変調信号を特徴づける駆動振幅の電圧値を更新する駆動振幅の電圧値を得る第5の手順と、
     前記第1の条件変更用信号から前記第3の条件変更用信号の3つの組み合わせのうちの1つの組み合わせによる光吸収量の差分量と、前記第4の手順にて得た第1の条件変更用信号から第3の条件変更用信号のうちの一つの条件変更用信号と前記第4の手順にて得た第4の条件変更用信号による光吸収量の差分量に基づいて、前記第3の光変調器に印加す
    る前記第4のDCバイアス電圧の電圧値を得る第6の手順と、
     を実行させるためのプログラム。
PCT/JP2019/024468 2018-08-23 2019-06-20 光送信装置、光送信方法、及びプログラム WO2020039725A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020538203A JP6880333B2 (ja) 2018-08-23 2019-06-20 光送信装置、光送信方法、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/031157 2018-08-23
PCT/JP2018/031157 WO2020039549A1 (ja) 2018-08-23 2018-08-23 光送信装置、光送信方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2020039725A1 true WO2020039725A1 (ja) 2020-02-27

Family

ID=69592847

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/031157 WO2020039549A1 (ja) 2018-08-23 2018-08-23 光送信装置、光送信方法、及びプログラム
PCT/JP2019/024468 WO2020039725A1 (ja) 2018-08-23 2019-06-20 光送信装置、光送信方法、及びプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031157 WO2020039549A1 (ja) 2018-08-23 2018-08-23 光送信装置、光送信方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP6880333B2 (ja)
WO (2) WO2020039549A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002474A (ja) * 2009-06-16 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> 光送信モジュールとその制御方法
JP2016122910A (ja) * 2014-12-24 2016-07-07 日本オクラロ株式会社 光通信装置
JP2017216681A (ja) * 2016-05-27 2017-12-07 住友電工デバイス・イノベーション株式会社 光送信装置及び光送信装置の駆動調整方法
JP2017219686A (ja) * 2016-06-07 2017-12-14 日本オクラロ株式会社 光送信機及び光送信機の制御信号生成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235207A1 (ja) * 2017-06-21 2018-12-27 三菱電機株式会社 光送信装置および光送信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002474A (ja) * 2009-06-16 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> 光送信モジュールとその制御方法
JP2016122910A (ja) * 2014-12-24 2016-07-07 日本オクラロ株式会社 光通信装置
JP2017216681A (ja) * 2016-05-27 2017-12-07 住友電工デバイス・イノベーション株式会社 光送信装置及び光送信装置の駆動調整方法
JP2017219686A (ja) * 2016-06-07 2017-12-14 日本オクラロ株式会社 光送信機及び光送信機の制御信号生成方法

Also Published As

Publication number Publication date
JPWO2020039725A1 (ja) 2021-02-15
JP6880333B2 (ja) 2021-06-02
WO2020039549A1 (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5118157B2 (ja) 変調方法、変調プログラム、記録媒体、変調装置及び光送信器
US20110299858A1 (en) Host device with multipurpose optics drive capabilities
EP3349376B1 (en) Pam4 signal generation apparatus
JP6217152B2 (ja) 光送信器及び光送信器の制御方法
US10720995B1 (en) Unequal spacing on multilevel signals
JP4972696B2 (ja) 光送信回路および光通信システム
US7474858B2 (en) Duobinary optical transmission device using at least one semiconductor optical amplifier
US20050195872A1 (en) Continuous temperature compensation for a laser modulation current
JP2011514768A (ja) 同調可能な光識別器
JP5134104B2 (ja) 並列光送信機の光出力パワーフィードバック式モニタリング・システムの光クロストークを補償する方法及び装置
JP2018200379A (ja) 光送信器
US10890822B2 (en) Mach-zehnder optical modulator
WO2020039725A1 (ja) 光送信装置、光送信方法、及びプログラム
JP6024273B2 (ja) 光送信装置
KR101057826B1 (ko) 광 송신기의 왜곡 제어를 위한 방법 및 장치
JP2018093429A (ja) 光送信モジュール
JP6400235B1 (ja) 光送信装置および光送信方法
JP3822548B2 (ja) 光変調器制御装置
CN115698803A (zh) 用于互连收发器的光调制器控制系统
JP2008141498A (ja) 光伝送装置
JP4090708B2 (ja) 光送信器
US20240006846A1 (en) Optical device and optical transmitter
KR101469239B1 (ko) 실리콘 링 변조기의 중심 파장을 제어하는 실시간 피드백 시스템
CN117639946A (zh) 一种光发射装置和发射光信号的方法
JP2003188827A (ja) 光送信器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852343

Country of ref document: EP

Kind code of ref document: A1