JP2016073288A - 固体又は半固体培地上の微生物のキャラクタリゼーション方法 - Google Patents

固体又は半固体培地上の微生物のキャラクタリゼーション方法 Download PDF

Info

Publication number
JP2016073288A
JP2016073288A JP2015217333A JP2015217333A JP2016073288A JP 2016073288 A JP2016073288 A JP 2016073288A JP 2015217333 A JP2015217333 A JP 2015217333A JP 2015217333 A JP2015217333 A JP 2015217333A JP 2016073288 A JP2016073288 A JP 2016073288A
Authority
JP
Japan
Prior art keywords
agar
solid
microorganisms
colony
colonies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015217333A
Other languages
English (en)
Other versions
JP6186414B2 (ja
Inventor
ウォルシュ ジョン
John Walsh
ウォルシュ ジョン
ヘイマン ジョーンズ
Hyman Jones
ヘイマン ジョーンズ
ソープ サーマン
Thorpe Thurman
ソープ サーマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biomerieux Inc
Original Assignee
Biomerieux Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biomerieux Inc filed Critical Biomerieux Inc
Publication of JP2016073288A publication Critical patent/JP2016073288A/ja
Application granted granted Critical
Publication of JP6186414B2 publication Critical patent/JP6186414B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material

Abstract

【課題】自家蛍光(IF)測定値により固体又は半固体培地上の微生物を走査、検出及びモニタリングする方法及びシステムの提供。
【解決手段】固体又は半固体培地上の1以上のコロニーを、解析対象のコロニーよりも小さい直径を有する励起ビームによって解析して、前記コロニー内の微生物の自家蛍光(IF)測定値特性を生成するステップと、前記自家蛍光(IF)測定値に基づいて前記コロニー内の前記微生物の同定及び/又はキャラクタリゼーションを行うステップとを含む微生物を検出、キャラクタリゼーション、及び/又は同定する。
【選択図】なし

Description

(関連出願の相互参照)
本願は、2008年12月16日に出願した米国仮特許出願第61/122,925号
「Methods for Characterization of Microorganisms on Solid or Semi Solid Media」
の恩典を主張する。この米国仮特許出願の開示内容を本明細書に援用する。
本発明は固体又は半固体培地上の微生物を、検出、モニタリング、キャラクタリゼーシ
ョン、及び/又は同定する方法及びシステムに関するものである。
臨床診断目的で単離された微生物や、食料品、医療用組織、又は環境の汚染をモニタリ
ングするために単離された微生物は、検出された微生物の存在に対する適切な応答を決定
するためにキャラクタリゼーションを必要とする。Vitek(登録商標)、Phoen
ix(商標)、Microscan(登録商標)システムのような従来の自動化表現型同
定試験、又はAPIのような手動表現型試験では、強固な結果を得るために、微生物が適
切な発育相にあり且つ干渉する培地及び血液製剤が存在しないことが必要である。
これらのシステムでは16〜24時間かけて平板培養培地上で培養したコロニーが使用さ
れ、その後、これらのコロニーから標準懸濁液を作成し、実際のキャラクタリゼーション
試験のために、更に4〜24時間かけて培養を完了することを要する。
固有蛍光(IF)、赤外分光法(FTIR)、ラマン分光法のような光学分光法は非常
に迅速な微生物の同定を可能にする可能性があるが、「混じりけが無い」微生物懸濁液に
対して機能することだけが検証されてきた。出版物には、非常に限られた微生物セットを
用いた、又は、機能的なキャラクタリゼーションを実現するために、特異的な結合現象の
ような追加の測定方法を必要とした、IF法による微生物のキャラクタリゼーションが記
載されてきた。培養培地上の微生物の直接試験は、培地自体のスペクトルパターンへの寄
与が大きいと考えられてきたことから問題視されてきた。
本願発明は、高蛍光培地を含む蛍光固体及び/又は半固体培養培地上で直接分光解析し
た微生物同士を区別することができる方法を提供することによって、従来技術における問
題を克服する。
本発明は、固体又は半固体培地上の微生物を検出、モニタリング、キャラクタリゼーシ
ョン、及び/又は同定する方法を提供するものである。キャラクタリゼーションとは、1
つの種を実際に同定するだけではなく、微生物を大まかにカテゴリー化又は分類すること
を含む。本明細書で用いる「同定」とは、不明な微生物の属する科、属、種、及び/又は
株を決定することを意味する。例えば、不明な微生物を科、属、種、及び/又は株レベル
で同定することを意味する。本明細書で開示する方法によって、微生物の検出、キャラク
タリゼーション、及び/又は同定を従来技術よりも迅速に行うことが可能になり、(例え
ば、感染していることが既知である又は感染の可能性がある対象について)より迅速な診
断や、汚染された物質(例えば、食料品及び医薬品)の迅速な同定につながる。本発明に
よる方法において行うステップは短い時間枠で実施し、臨床的に意義のあるすぐに使用可
能な情報を生成することができる。幾つかの実施形態では、増殖の速い生物は僅か数分で
検出及び同定することができる。増殖が比較的遅い生物についても従来技術をもしいた場
合よりも迅速に検出及び同定し、有効な時間枠内で結果をもたらすことができる。同定/
キャラクタリゼーションステップは単体で数分以下で実施することができる。本方法によ
って様々な種類の微生物(例えば、異なる網及び/又は種)の微生物を(例えば、混合培
養物内で)同時に検出、モニタリング、キャラクタリゼーション、及び/又は同定するこ
とができる。有利には、幾つかの実施形態では、本発明による方法をコロニーを破壊する
ことなくインサイチュで実施することができ、これによってコロニーを更なる試験又は使
用のために温存することができる。また、本発明による方法は部分的又は全体的に自動化
することができ、これにより感染性物質を扱うリスクや及び/又は試料を汚染するリスク
を低減することができる。
本発明の第1の観点は、固体又は半固体培地上の微生物を検出及びキャラクタリゼーシ
ョンする方法に関連し、該方法は
(a)固体又は半固体培地上の1以上のコロニーを解析して、前記コロニー内の微生物
の自家蛍光(IF)測定値特性を生成するステップと、
(b)前記自家蛍光(IF)測定値に基づいて前記コロニー内の前記微生物のキャラク
タリゼーション及び/又は同定を行うステップとを含むことを特徴とする。
本発明の他の観点は、固体又は半固体培地上の微生物を検出及びキャラクタリゼーショ
ンする方法に関連し、該方法は、
(a)1以上の微生物コロニーを含むことが既知である又は含む可能性がある培地を走
査して前記培地上のコロニーを検出するステップと、
(b)前記ステップ(a)で検出した1以上のコロニーを解析して、前記コロニー内の
微生物の自家蛍光(IF)測定値特性を生成するステップと、
(c)前記自家蛍光(IF)測定値に基づいて前記コロニー内の前記微生物の検出、キ
ャラクタリゼーション、及び/又は同定を行うステップとを含むことを特徴とする。
本発明の更に他の観点は、試料内の微生物をキャラクタリゼーション及び/又は同定す
る方法に関連し、該方法は、
(a)前記固体又は半固体培地上の試料に存在する微生物を培養して少なくとも1つの
コロニーを生成するステップと、
(b)倍地上の1以上のコロニーを解析して、微生物の自家蛍光(IF)測定値特性を
生成するステップと、
(c)生成された測定値に基づいて前記コロニー内の微生物をキャラクタリゼーション
及び/又は同定するステップとを含むことを特徴とする。
本発明の追加の観点は、試料内の微生物の存在を検出する方法に関連し、該方法は
(a)微生物を含むことが既知である又は含む可能性がある試料を取得するステップと

(b)前記固体又は半固体培地上の試料に存在する微生物を培養するステップと、
(c)前記固体又は半固体培地をポイント−バイ−ポイント走査して自家蛍光(IF)
測定値を生成して、前記培地上に存在するあらゆるコロニーを検出するステップであり、
生成された前記測定値によって検出された1つ以上のコロニーの存在によって前記試料内
に微生物が存在することが示唆されることを特徴とするステップと、を含むことを特徴と
する。
一実施形態では、本発明は固体又は半固体培地上の微生物を検出、キャラクタリゼーシ
ョン、及び/又は同定するシステムに関連し、該システムは分光計と、レンズ系又は顕微
鏡のような光学系とを備えることを特徴とする。他の実施形態では、システムは更に培地
表面を走査するための機構及び/又は培地の環境(例えば、培養環境)を制御するための
機構を備えることを特徴とする。
他の実施形態では、コロニーを解析して測定値を生成し、当該測定値は、コロニーの微
生物を検出、キャラクタリゼーション、及び/又は同定するために用いることができる(
例えば、コロニーを分光法により解析することができる)。微生物は、測定値(例えば、
スペクトル)を既知の微生物から取得した同様の測定値(例えば、スペクトル)と比較す
ることによって、キャラクタリゼーション及び/又は同定することができる。他の実施形
態では、コロニーを非侵襲的に(例えば、シールされたプレート内で)解析することがで
きる。更なる操作を行うことなく、(例えば、シールされたプレート内で)コロニーに含
まれる微生物をキャラクタリゼーション及び/又は同定することができることで、微生物
同定の安全性が増す。
更に他の実施形態では、微生物の固有の特性(例えば、自家蛍光)に基づいて分光解析
を行う。他の実施形態では、本発明による方法にて添加され、特定の微生物又は微生物群
と相互作用する添加剤から得られた信号に部分的に基づいて分光解析を行う。
他の実施形態では、方法は更にコロニーを回収するステップを含み、コロニーを再懸濁
して更なる同定及び/又はキャラクタリゼーション試験(例えば、薬物耐性、毒性因子、
耐性記録)を実施するステップを含む。
以下、添付図面を参照しながら本発明の詳細な説明を行う。
接種していない、膜無し血液寒天培地(BAP)からのスペクトルである。 接種していない、培地表面に配置されたポール社製グリッド付きメトリセルブラックポリエーテルスルホンメンブレン(ポール)からのスペクトルである。 接種していない、培地表面に配置されたワットマン社製ブラック混合エステルメンブレン(WME)からのスペクトルである。 接種していない、培地表面に配置されたワットマン社製トラックエッチポリカーボネートブラックメンブレンからのスペクトルである。 BAP上のWMEメンブレン上のEC3コロニーから取得したスペクトルである。 BAP上のWMEメンブレン上のSA1コロニーから取得したスペクトルである。 SA1のスペクトルからEC3のスペクトルを差し引いた結果である。 膜無しのBAP上のEC1コロニーから取得したスペクトルである。 膜無しのBAP上のSA1コロニーから取得したスペクトルである。 膜無しのBAP上のEF1コロニーから取得したスペクトルである。 幕無しのBAP上のPA1コロニーから取得したスペクトルである。 試行Fのポイント−バイ−ポイントIFサーチ走査の3次元プロットであり、高さは蛍光輝度に相当し、6時間時点での測定値を示す。 試行Fのポイント−バイ−ポイントIFサーチ走査の3次元プロットであり、高さは蛍光輝度に相当し、8時間時点での測定値を示す。 試行Fのポイント−バイ−ポイントIFサーチ走査の3次元プロットであり、高さは蛍光輝度に相当し、10時間時点での測定値を示す。 試行Fのポイント−バイ−ポイントIFサーチ走査の3次元プロットであり、高さは蛍光輝度に相当し、12時間時点での測定値を示す。 試行Fのポイント−バイ−ポイントIFサーチ走査の3次元プロットであり、高さは蛍光輝度に相当し、16時間時点での測定値を示す。 試行Fのポイント−バイ−ポイントIFサーチ走査の3次元プロットであり、高さは蛍光輝度に相当し、24時間時点での測定値を示す。 試行Fの24時間以降のBAPの拡大図である。 対応するコロニーの位置を示す12時間の時点におけるサーチ走査から得た蛍光輝度の等高線図である。
本発明は様々な形態で実施することができる。本発明は本明細書に記載した実施形態に
限定されるものと解釈すべきではない。そうではなく、これらの実施形態は本開示が詳細
で完全なものとなり、本発明の範囲が当業者に十分伝わるようにするために提示するもの
である。例えば、一実施形態に関して例示した特徴を他の実施形態に組み込むことができ
、特定の一実施形態に関して例示した特徴をその実施形態から削除することもできる。ま
た、本開示に照らせば、本明細書に示した実施形態に対する本発明から逸脱しない様々な
変更及び追加が当業者には理解されるであろう。
別段の定めがない限り、本明細書で使用する技術用語及び科学用語はすべて本発明が属
する技術分野の当業者によって一般に理解されるのと同じ意味を有する。本明細書では、
発明の説明で使用する用語は特定の実施形態を説明するためのものであって本発明を限定
するものではない。
[定義]
本明細書で使用する「a」、「an」又は「the」は1つ又は2つ以上のものを意味する可
能性がある。例えば「細胞(a cell)」という場合は単一の細胞を意味することも複数の
細胞を意味することもある。
また、本明細書で使用する「及び/又は(and/or)」という表現は、列挙した関連アイ
テムの1つ又は複数を対象とする任意の可能な組合せに加えて選択肢(「又は(or)」)
として解釈した場合の組合せの欠如も指し、それらをすべて包含するものである。
更に、本明細書で使用する「約(about)」という用語は、化合物又は作用物質の量、
投与量、時間、温度といった測定可能な値を指すときは、指定された量の±20%、±1
0%、±5%、±1%、±0.5%又は±0.1%のばらつきを含むものとする。
本明細書で使用する「微生物」という用語は、一般に単細胞であり、研究室で繁殖及び
取扱い可能な有機体を包含する。このような有機体としてはグラム陽性又はグラム陰性バ
クテリア、イースト、カビ、寄生虫及びモリキューテスが挙げられるが、これらに限定さ
れるものではない。本発明のグラム陰性バクテリアの非限定的な例としては下記の属のバ
クテリアが挙げられるが、これらに限定されるものではない:シュードモナス属、エシェ
リキア属、サルモネラ属、赤痢菌属、エンテロバクター属、クレブシエラ属、セラチア属
、プロテウス属、カンピロバクター属、ヘモフィルス属、モルガネラ属、ビブリオ属、エ
ルシニア属、アシネトバクター属、ステノトロフォモナス属、ブレブンディモナス属、ラ
ルストニア属、アクロモバクター属、フゾバクテリウム属、プレボテラ属、ブランハメラ
亜属、ナイセリア属、バークホルデリア属、シトロバクター属、ハフニア属、エドワード
シエラ属、アエロモナス属、モラクセラ属、ブルセラ属、パスツレラ属、プロビデンシア
属及びレジオネラ属。本発明のグラム陽性バクテリアの非限定的な例は、以下の属のバク
テリアを含む:腸球菌、連鎖球菌、ブドウ球菌、バチルス属、パエニバチルス属、乳酸桿
菌属、リステリア属、ペプトストレプトコッカス属、プロピオン酸菌属、クロストリジウ
ム属、バクテロイデス属、ガードネレラ属、コクリア属、ラクトコッカス属、ロイコノス
トック属、ミクロコッカス、マイコバクテリウム属及びコリネバクテリウム属。本発明の
イースト及びカビの非限定的な例としては下記の属のイースト及びカビが挙げられるが、
これらに限定されるものではない:カンジダ属、クリプトコックス属、ノカルジア属、ア
オカビ属、アルタナリア属、ロドトルラ属、アスペルギルス属、フザリウム属、サッカロ
ミセス属及びトリコスポロン属。本発明の寄生虫の非限定的な例としては下記の属の寄生
虫が挙げられるが、これらに限定されるものではない:トリパノソーマ属、バベシア属、
リーシュマニア属、マラリア原虫属、ブケリア属(Wucheria)、ブルギア属、オンコセル
カ属及びネグレリア属。本発明のモリキューテスの非限定的な例としてはマイコプラズマ
属及びウレアプラズマ属のモリキューテスが挙げられる。
本明細書で使用する「コロニー」、「マイクロコロニー」という表現は、多数の微生物
又は微生物集団であって、相互に近接して存在し、表面に存在し、そして、単一の祖先微
生物のインサイチュ複製によるクローン子孫であるものを指す。一般的に、「コロニー」
は、人の眼で見ることができ、典型的には、直径が約50μm、60μm、80μm又は
100μmよりも大きい。しかし、本明細書で使用する場合には、特記しない限り、「コ
ロニー」という用語は50μm以上の直径を有するコロニーと、50μm以下の直径を有
する「マイクロコロニー」の両方を含むことを意味する。他の実施形態では、本願発明は
「マイクロコロニー」内の微生物を、走査し、検出し、キャラクタリゼーションし、及び
/又は、同定することを目的とする。本明細書における「マイクロコロニー」は、約2μ
m〜約50μm、又は、約10μm〜約50μmの範囲でありうる。「マイクロコロニー
」は、一般的に裸眼で見るには小さすぎる(例えば、直径約50μm未満)。
本明細書で使用する「走査(scan)」又は「走査する(scanning)」という用語は、予
め設定した領域をシステマチック若しくは予め設定したパターンで検査すること、又はラ
ンダムに検査し、これにより、検査対象(例えば、微生物コロニー)を見つけることを指
す。
例えば、集束光をシステマチック若しくは所定のパターンで、又はランダムに表面上で移
動させて、固体又は半固体培地を「走査」して、微生物コロニーを検出し、見つけ出し、
さもなければ感知することができる。本実施形態によれば、光源は約0.5mm未満、約
0.2mm未満、又は0.1mm未満の直径のビーム直径を有することが典型的である。
他の実施形態では、ビーム直径は約5μm〜約500μm、約10μm〜約100μm、
又は約20μm〜約80μmである。
一実施形態では、「走査」は、固体又は半固体培地のポイント−バイ−ポイントの「走
査」を含む。この実施形態によれば、光源(例えば、レーザービーム)を固体又は半固体
培地上の第1ポイントに移動させ、走査及び解析ステップを実施して、存在しうるあらゆ
る微生物コロニーの検出及び/又はキャラクタリゼーションを行う。或いは、固体又は半
固体培地を光源に対して移動して、固体又は半固体培地のポイント−バイ−ポイント走査
を実施することができる。続いて、光源(例えば、レーザービーム)、又は、固体又は半
固体培地を移動して、培地の第2ポイントを走査及び/又は解析することができる。この
ような、ポイント−バイ−ポイント走査のプロセスを所定の検査領域のポイント−バイ−
ポイント検査が完了するまで継続することができる。検査領域は、固体又は半固体培地(
例えば、培地プレート)の全体又はこれらの一部分であり得る。
他の実施形態では、直線軌道(例えば、培地を横断する長い直線)に沿うポイント−ト
ゥ−ポインによって、ポイント−バイ−ポイント検査を実施することができる。その後、
光源又は培地を第2の直線に移動させ、当該第2の直線の直線軌道に沿ってポイント−バ
イ−ポイント検査を実施することができる。このポイント−バイ−ポイント及びライン・
バイ・ライン検査パターン(又は、グリッド型走査)を所定の検査領域が完了するまで継
続することができる。検査領域は、固体又は半固体培地(例えば、培地プレート)全表面
又はそれらの一部であり得る。他の実施形態では、走査は連続走査(すなわち、連続ポイ
ント−バイ−ポイント走査)である。
本発明は、固体又は半固体培地上の微生物を検出、モニタリング、キャラクタリゼーシ
ョン、及び/又は同定する方法を提供する。これらの迅速な方法を用いると、微生物の検
出、キャラクタリゼーション及び/又は同定を従来技術よりも迅速に行うことができ、そ
れにより(例えば感染又は感染の疑いがある被験者の)より迅速な診断が可能となり、ま
た(例えば食品、給水及び製薬の)汚染物質のキャラクタリゼーション及び/又は同定も
可能となる。試料の採取から微生物のキャラクタリゼーション/同定に至る本発明の方法
に含まれる各ステップを非常に短い時間枠で実行して臨床的に意義のある実用的な情報を
取得することができる。いくつかの実施形態では、本発明の方法を約72時間未満、例え
ば約18、12、10、9、8、7、6、5、4、3、2、又は1時間未満で実行するこ
とができる。ある実施形態では、同定ステップを60分未満、例えば約50、40、30
、20、10、5、4、3、2、又は1分未満で実行することができる。本方法は、本明
細書に記載したあらゆる微生物をキャラクタリゼーション及び/又は同定するために用い
ることができる。一実施形態では、微生物はバクテリアである。他の実施形態では、微生
物はイーストである。別の実施形態では、微生物はカビである。本方法は、様々な種類の
微生物、例えば、異なる種、族、科、目、類、門、及び/又は界の微生物を、検出、モニ
タリング、キャラクタリゼーション及び/又は同定するために用いることができる。一実
施形態では、本発明による方法は、試料中、例えば混合培地に存在する異なる種類の微生
物の一部又は全てをキャラクタリゼーション及び/又は同定することを可能とする。他の
実施形態では、本方法を、2種類以上の異なる種類のバクテリア、2種類以上の異なる種
類のイースト、2種類以上の異なる種類のカビ、又はバクテリア、イースト、及び/又は
カビの2種類以上の異なる種類の混合物をキャラクタリゼーション及び/又は同定するた
めに用いることができる。複数の種類の微生物のそれぞれについての検出は、同時又は略
同時に行うことができる。また、本方法は部分的又は全体的に自動化可能であり、したが
って、感染性のある物質を扱うリスク及び/又は試料を汚染するリスクを低減することが
できる。
本発明の第1の観点は、固体又は半固体培地上の微生物を検出及びキャラクタリゼーシ
ョンする方法に関連し、該方法は
(a)培地上の1以上のコロニーを解析して、コロニー内の微生物の自家蛍光(IF)
測定値特性を生成するステップと、
(b)生成された測定値に基づいてコロニー内の微生物のキャラクタリゼーション及び
/又は同定を行うステップとを含むことを特徴とする。
本発明の他の観点は、固体又は半固体培地上の微生物を検出及びキャラクタリゼーショ
ン及び/又は同定する方法に関連し、該方法は、
(a)1以上の微生物コロニーを含むことが既知である又は含む可能性がある培地を走
査して培地上のコロニーを検出するステップと、
(b)ステップ(a)で検出した1以上のコロニーを解析して、コロニー内の微生物の
自家蛍光(IF)測定値特性を生成するステップと、
(c)生成された測定値に基づいてコロニー内の微生物の検出、キャラクタリゼーショ
ン、及び/又は同定を行うステップとを含むことを特徴とする。
本発明の更に他の観点は、試料内の微生物をキャラクタリゼーション及び/又は同定す
る方法に関連し、該方法は、
(a)固体又は半固体培地上の試料に存在する微生物を培養して少なくとも1つのコロ
ニーを生成するステップと、
(b)倍地上の1以上のコロニーを解析して、微生物の自家蛍光(IF)測定値特性を
生成するステップと、
(c)生成された測定値に基づいてコロニー内の微生物をキャラクタリゼーション及び
/又は同定するステップとを含むことを特徴とする。
本発明の追加の観点は、試料内の微生物の存在を検出する方法に関連し、該方法は
(a)微生物を含むことが既知である又は含む可能性がある試料を取得するステップと

(b)固体又は半固体培地上の試料に存在する微生物を培養するステップと、
(c)培地を走査して自家蛍光(IF)測定値を生成して、培地上に存在するあらゆる
コロニーを検出するステップであり、生成された測定値によって検出された1つ以上のコ
ロニーの存在によって試料内に微生物が存在することが示唆されることを特徴とするステ
ップと、を含むことを特徴とする。
本発明の方法によって試験可能な試料(すなわち試験試料)は、微生物の存在及び/又
は増殖が疑われる又は疑われる可能性がある臨床試料と非臨床試料の両方を含み、また微
生物の有無を定期的に又は臨時に検査する物質の試料も含む。利用する試料の量は方法の
汎用性及び/又は感度に応じて大きく変化する可能性がある。試料調製は当業者に既知の
任意の数の技法を利用して実行することができる。
試験可能な臨床試料としては、典型的には臨床検査室又は研究所で試験される任意のタ
イプの試料が含まれ、例えば血液、血清、血漿、血液分画、関節液、尿、精液、唾液、糞
便、脳脊髄液、胃内容物、膣分泌物、組織ホモジェネート、骨髄穿刺液、骨ホモジェネー
ト、痰、吸引液、ぬぐい液(swab)及びぬぐい液残滓(swab rinsate)、他の体液等が挙
げられるが、これらに限定されるものではない。
本発明は研究用途ならびに獣医学及び医学用途に適用される。臨床試料が採取可能な適
切な被検者は一般には哺乳類の被験者であるが、どのような動物であってもよい。本明細
書で使用する「哺乳類」という用語には、それらに限らないが、人間、人間以外の霊長類
、牛、ヒツジ、ヤギ、ブタ、ウマ、ネコ、イヌ、ウサギ、齧歯動物(例えばラット又はマ
ウス)等が含まれる。人間の被験者には新生児、乳児、幼児、成人及び老人の被験者を含
む。試料が採取可能な被験者としては哺乳類、鳥類、爬虫類、両生類及び魚類が挙げられ
るが、これらに限定されるものではない。
試験可能な非臨床試料としては、食品、飲料、医薬品、化粧品、水(例えば飲料水、非
飲料水及び廃水)、海水バラスト、空気、土壌、汚水、植物材料(例えば種、葉、茎、根
、花、果実)、血液製剤(例えば血小板、血清、血漿、白血球分画等)、ドナー臓器又は
組織試料、生物戦試料(biowarfare sample)等を含めた物質が挙げられるが、これらに
限定されるものではない。本方法は工業環境の汚染レベル、工程管理、品質管理等をモニ
タリングするための実時間試験にも特に適している。
試料体積は、培地に蒔いた場合に1又は複数のコロニーを生成するのに十分な程度に大
きい必要がある。適切な体積は、試料のソース及び試料中の微生物の予想レベルに依存す
る。例えば、感染創傷由来の臨床ぬぐい液は体積あたりの微生物レベルが汚染を試験する
飲料水試料よりも高く、このため、飲料水試料に比較して少ない体積のぬぐい液材料が必
要となる。一般的に、試料の量は少なくとも約50ml、例えば、100ml、500m
l、1000ml又はそれ以上である。他の実施形態では、試料は約50ml未満、例え
ば、約40ml、30ml、20ml、15ml、10ml、5ml、4ml、3ml、
又は2ml未満である。ある実施形態では、試料の量は約1ml以下、例えば、約750
μl、500μl、250μl、100μl、50μl、25μl、10μl、5μl、
1μl、0.5μl、0.1μl未満である。試料量が多い実施形態では、(例えば、フ
ィルター膜を介して)試料をろ過し、及び/又は従来既知の方法(例えば、遠心分離、蒸
発等)によって濃縮し、体積を減少させ、及び/又は試料中のあらゆる微生物を収集する
。フィルター膜上で収集した微生物を、再懸濁して固体若しくは半固体培地上に、又は、
半固体培地上に直接載置可能なフィルター膜上に蒔くことができる。
試験対象の試料を適切な培地上に蒔き、微生物の増殖につながる条件下で培養する。培
地は、試料内に存在する/存在が疑われる微生物の種類に基づいて選択することができる
。様々な微生物についての適切な増殖培地は当業者によく知られている。増殖培地は、適
切な栄養素を含み、微生物の動きを制限する(すなわち、局所的な増殖をもたらす)任意
の培地でありうる。幾つかの実施形態では、培地は半固体培地、例えば、寒天培地、ゼラ
チン培地、アルギン酸培地、カラギーナン培地、又はペクチン培地である。適切な培地は
、当業者によく知られている様々な機能を有する培地であり、例えば、多目的培地、選択
的培地、鑑別培地(differential media)及び/又は色素産生培地(chromogenic media
)を含むが、これらに限定されない。培地は、有意義な測定(例えば、IF測定)を得ら
れるように、選択及び/又は調節する。適切な半固体培地は、例えばAC寒天、アセトバ
クター寒天、アクリフラビン−セフタジジム寒天、アクチノミセス寒天、放線菌単離寒天
、アエロモナス単離寒天、嫌気性寒天、嫌気性血液寒天、嫌気性TVLS寒天、APT寒
天、Ashby’sマンニトール寒天、アスペルギルス鑑別寒天、ASS寒天、アウレウ
ス寒天、アザイド血液寒天、B.T.Bラクトース寒天、バシルス寒天、ベアードパーカ
ー寒天、BiGGY寒天、バイルエスクリンアジド寒天、ブリリアントグリーン胆汁酸塩
澱粉寒天、亜硫酸ビスマス寒天、血液寒天SLMB、BPL寒天、脳心臓浸出物寒天、ブ
リューワー寒天、ブリリアントグリーン寒天、ブリリアントグリーン胆汁寒天、ブリリア
ントグリーンフェノールレッド乳糖ショ糖寒天、BROLACIN寒天、BROLACI
N MUG寒天、ブルセラ寒天、BSM寒天、緩衝炭末イースト抽出物(BCYE)寒天
、カルシウムカゼイン寒天、カンピロバクター選択寒天、カンジダ同定寒天、カゼインイ
ーストマグネシウム寒天、CASO寒天、CATC寒天、セレウス選択寒天、セトリミド
寒天、チャップマンストーン寒天、チャイナブルー乳糖寒天、厚膜胞子(Chlamyd
ospore)寒天、クリステンセンクエン酸塩寒天、クリステンセン尿素寒天、クエン
酸塩寒天、CLED寒天、クロストリジウム寒天、クロストリジウムディフィシル寒天、
大腸菌寒天、コロンビア寒天、コロンビア血液寒天、コーンミール寒天、コーンミールペ
プトンイースト寒天、CPC−寒天、クランプ寒天、ツァペック・ドックス寒天、D.T
.M.寒天、デイビスミニマル寒天、DCLS寒天、デオキシコール酸クエン酸塩寒天、
デオキシリボヌクレアーゼテスト寒天、DEV ENDO寒天、DEVゼラチン寒天、D
EV栄養寒天、デキストロースカゼインペプトン(Dextrose caseinpe
ptone)寒天、デキストロース澱粉寒天、DHL寒天、ジクロランローズベンガル寒
天、トルイジン含有ジフテリア毒性(virulence)寒天、デオキシリボヌクレア
ーゼ試験寒天、大腸菌寒天、病原性大腸菌O157:H7 MUG寒天、ECC寒天、E
CC選択寒天、ECD寒天、ECD MUG寒天、EMB寒天、エンドウ寒天、エンテロ
バクターサカザキ寒天、エンテロコッカスフェシウム寒天、エンテロコッカス選択寒天、
Esculin 鉄寒天、Eugonic寒天、Fungal寒天、Fungobiot
ic寒天、ガスナー寒天、ガスナーラクトース寒天、ゼラチン鉄培地、ゼラチン塩寒天、
Germ count寒天、グルコースブロモクレゾールパープル寒天、GSP寒天、ヘ
クトエンエンテリック寒天、カナマイシンエスクリンアザイド寒天、カナマイシンカンピ
ロバクター寒天、KFストレプトコッカス寒天、King寒天、クレブシエラ選択寒天、
クリグラー寒天、KRANEP寒天、Kundrat寒天、ラクトバチルスブルガリカス
寒天、乳糖TTC寒天、LB寒天、Leifson寒天、Levine EMB寒天、リ
ステリア寒天、Listeria mono confirmatory寒天、List
eria mono differential寒天、リステリア選択寒天、リトマスラ
クトース寒天、LL寒天、LPM寒天、LS鑑別(differential)寒天、L
−トップ寒天、ルーリア寒天、リジンアルギニン鉄寒天、リジン鉄寒天、M腸球菌寒天、
M−17寒天、マッコンキー寒天、クリスタルバイオレット、塩化ナトリウム、及び0.
15%胆汁酸塩含有マッコンキー寒天、マッコンキーMUG寒天、マッコンキーソルビト
ール寒天、麦芽寒天、麦芽抽出物寒天、マンニトール塩フェノールレッド寒天、マクブラ
イド寒天、マックラングトアベ寒天、M−CP寒天、肉−肝臓寒天、膜フィルタエンテロ
コッカス選択寒天、膜ラクトースグルクロニド寒天、M−エンドー寒天、M−エンドー寒
天(LES)、MeReSa寒天、M−FC寒天、ミドルブルック7H10寒天、ミドル
ブルック7Hl 1寒天、ミルク寒天、ミティス‐サリバリウス寒天、MM寒天、修正緩
衝炭末寒天、MOX寒天、MRS寒天、MS.O157寒天、M−TEC寒天、ミューラ
ーヒントン寒天、MUGトリプトン大豆寒天、マイコプラズマ寒天、ノーブル寒天、栄養
寒天、Nutrientゼラチン、OF試験栄養寒天、OGY寒天、OGYE寒天、オレ
ンジ血清寒天、オックスフォード寒天、PALCAMリステリア選択寒天、ペンタクロロ
ローズベンガルイースト抽出物寒天、ペプトンイースト抽出物寒天、ペプトナイズドミル
ク寒天、パーフリンジェンス寒天、フェノールレッドデキストロース寒天、フェノールレ
ッドラクトース寒天、フェノールレッドマルトース寒天、フェノールレッド蔗糖寒天、フ
ェノールレッド酒石酸塩寒天、フェノールフタレインリン酸塩寒天、フェニルアラニン寒
天、プレートカウント寒天、プレートカウントMUG寒天、PLET寒天、PMインジケ
ータ寒天、ポテトデキストロース寒天、ポテトブドウ糖ローズベンガル寒天、ポテトブド
ウ糖蔗糖寒天、Pril(登録商標)マンニトール寒天、シュードモナス寒天、R−2A
寒天、ラカ−レイ寒天、エンテロコッカス簡易(Rapid enterococci)
寒天、クロストリジウム増菌寒天、米抽出物寒天、ロゴサ寒天、ロゴサSL寒天、ローズ
ベンガル寒天、ローズベンガルクロラムフェニコール寒天、S.F.P寒天、寒天、サブ
ロー2%ブドウ糖寒天、サブロー4%ブドウ糖寒天、サブローデキストロース寒天、クロ
ラムフェニコール含有サブローグルコース寒天、サルモネラ寒天、Oenozによるサル
モネラ寒天、サルモネラクロモゲン寒天、SD寒天、選択寒天、病原性菌選択寒天、SF
P寒天、S−Gal(登録商標)/LB寒天、シャプトン寒天、シモンズクエン酸塩寒天
、スキムミルク寒天、ソルビン酸寒天、スピリットブルー寒天、SPS寒天、SS−寒天
、標準栄養分寒天no.1、ブドウ球菌寒天、ストレプトコッカス選択寒天、ストレプト
コッカスサーモフィルス単離寒天、硫酸塩API寒天、硫酸鉄寒天、TBX寒天、TCB
S寒天、TCMG寒天、Tergitol(登録商標)−7寒天、サイヤーマーティン寒
天、Thermoacidurans寒天、チンスダール寒天、トマトジュース寒天、ト
リブリチン寒天、トリプルシュガー鉄寒天、トリプティックソイ(tryptic so
ya)寒天、トリプトン寒天、トリプトンドウ糖抽出物寒天、トリプトンブドウ糖イース
ト抽出物寒天、トリプトン大豆イースト抽出物寒天、トリプトンイースト抽出物寒天、ト
リプトース寒天、TSC寒天、TSN寒天、ユニバーサルビール寒天、UTI寒天、ビブ
リオ寒天、腸炎ビブリオ蔗糖寒天、バイオレットレッド胆汁寒天、バイオレットレッド胆
汁ブドウ糖寒天、バイオレットレッド胆汁ラクトース寒天、バイオレットレッド胆汁ラク
トースデキストロース寒天、ビタミンB12培養寒天、フォーゲルジョンソン寒天、VR
B MUG寒天、ウイルキンソン チャルグレン嫌気性寒天、ウィルソンブレア寒天、W
L鑑別寒天、WL栄養素寒天、ワート寒天、XLD寒天、XLT4寒天、イースト寒天、
イースト抽出物寒天、イーストモルト寒天、イーストマンニトール寒天、エルシニア単離
寒天、エルシニア選択寒天、YGC寒天、YPAD寒天、YPDG寒天、YPG寒天及び
YT寒天。一実施形態では、固体又は半固体培地を、更に1種又は複数種の追加の添加物
であって、固体又は半固体培地上の微生物コロニーの固有蛍光(IF)値を強めるか増加
させる添加物を含んで構成することも可能である。固有蛍光を強めるために適した添加物
には、1種又は複数種のタンパク質加水分解物、アミノ酸、肉及び野菜抽出物、炭水化物
源、緩衝剤、蘇生剤(resuscitating agent)、増殖因子、酵素補助因子、無機塩類、補
助金属(metal supplement)、還元化合物、キレート剤、感光剤、消光剤、還元剤、酸化
剤、洗剤、界面活性剤、殺菌剤、選択剤、代謝阻害剤、又はこれらの組み合わせが含まれ
る。
他の実施形態では、培地は、例えば半固体培地の上面に載置するフィルター(例えば、
フィルター膜又はガラスファイバーフィルター)であってもよい。他の実施形態では
フィルターを液体培地に曝した(例えば、浸した)材料(例えば、吸収パッド)の上に載
置する。幾つかの実施形態では、試料(例えば、体積の大きい試料)をフィルターを通過
させ、試料内に存在するあらゆる微生物を収集する。そして、フィルターを増殖培地の上
面に載置して、適切な条件下で培養して微生物を増殖させることができる。適切なフィル
ター膜は、当業者によく知られており、微生物を収集することに適しており、且つ/又は
、微生物の増殖をサポートすることができる、あらゆる膜を含む。膜材料は、例えば、セ
ルロース、セルロース混合エステル、ニトロセルロース、ポリビニルクロライド、ナイロ
ン、ポリテトラフルオロエチレン、ポリスルフォン、ポリエステルスルフォン、ポリカー
ボネートブラック、ブラック混合エステル(black mixed ester)、及びこれらのあらゆ
る組み合わせを含むが、これらに限定されない。フィルターは、液体をろ過するのに適し
、且つ/又は、微生物の収集に適した細孔の大きさを有し、その大きさは例えば、酵母に
対しては約1〜約25μmであり、細菌に対しては約0.05μm〜約2μm、例えば、
0.2μm〜約1μmである。
ある実施形態では、例えば、普通微生物寒天プレートのようなプレートに培地を構成す
ることができる。幾つかの実施形態では、プレートは例えばプレートあたり2、4、6、
8、12、24、32、48、64、96、128個以上のウェルを有する複数の試料を
試験するためのマルチウェルプレートである。プレートは、例えば、ポリスチレン又はガ
ラスのような微生物の増殖に適したあらゆる材料で構成される。プレートは本来、蓋を有
する。蓋がしてある時にコロニーの解析を行う場合は、蓋及び/又はプレートは紫外線、
可視光、及び/又は近赤外スペクトルに対して透過性である少なくとも1つの領域を有し
、蓋及び/又はプレートを通じて解析できるようにする。
本発明による方法では、「固体又は半固体培地上の試料内に存在する微生物を増殖する
」、「培地上に試料を載置する」という表現は、あらゆる方法で試料を培地に接触させて
、試料内に存在する微生物が増殖してコロニーを生成できるようにすることを含む。ある
実施形態では、試料を固体又は半固体培地の表面に載置する。他の実施形態では、試料を
液状の培養基と混合して(例えば、プレートに流し込み)凝固させ、増殖した全てのコロ
ニーを培地内に埋没させることができる。他の実施形態では、試料を脱水培地と混合して
、培地を再度水に戻して、凝固させることができる。
一実施形態では、固体又は半固体培地は容器の底部にあり、当該容器は培地上の液体に
懸濁された微生物を含む。容器を操作(例えば、遠心分離)して倍地上に微生物を移動さ
せることができる。そして、液体を除去して培地を培養してコロニーを成長させる。例え
ば、血液試料を液体増殖培地と、固体又は半固体培地を底部に含む血液培養管に入れるこ
とができる。その後、(任意に赤血球を溶解した後に)培養管を遠心分離して固体又は半
固体培地上に微生物を移動させ、液体を除去し、増殖した微生物を本発明による方法に従
って検出及び/又は同定する。
試料を培地上に(例えば、液体試料を標準的微生物手法を用いて培地上に広げる、及び
/又は、フィルター膜を半固体培地上に配置することにより)移動させた後、培地を試料
内に存在する微生物の成長に適した条件下で培養する。適切な条件は当業者によく知られ
ているが、これは、微生物及び培地に依存する。培地は、約20度〜約50度、例えば、
約25度〜約45度、例えば約37度で培養することができる。培養時間は、(視覚的又
は分光学的に)検出可能なコロニーが出現するのに十分な時間であり、この時間は、微生
物、温度、培地、栄養素レベル、及びその他の成長速度を決定する条件に依存する。幾つ
かの実施形態では、培養時間12時間以下、例えば、11、10、9、8、7、6、5、
4、3、2、又は1時間以下である。ある実施形態では、増殖が遅い条件下又は増殖の遅
い微生物(例えば、マイコバクテリア)を用いた場合、では、培養時間は約12時間以上
、例えば約18、24、36、48、又は72時間以上である。幾つかの実施形態では、
培地をインキュベータ内で培養し、インキュベータから培地を1回以上取り出して、装置
内に配置して、培地上で増殖するコロニーを検出及び/又は同定する。他の実施形態では
、培地を、例えば温度調節プレートホルダ等のコロニーを検出及び/又は同定するために
用いる装置内で直接培養することもできる。
1つの観点では、本発明は、固体又は半固体培地上の微生物コロニーの解析に関連し、
コロニーを構成する微生物を同定するIF測定値を取得する。1つの実施形態では、解析
は蛍光分光分析法による。解析は、非侵襲的方法にて行うことができる。すなわち、培地
上で手をつけない状態でコロニーを解析することができる。他の実施形態では、プレート
は培地を含み、解析の間コロニーは密閉(例えば、蓋を外さずに)されたままである。こ
の実施形態によれば、プレート又はその一部は、光(例えば、例えば近赤外(NIR;7
00nm〜1400nm)、紫外(UV;190nm〜400nm)及び/又は可視(V
IS;400nm〜700nm)光スペクトルの少なくとも一部分)を透過する任意の材
料で構成することができる。適切な材料の例としては、それらに限らないが、アクリル、
メタクリレート、石英、溶融シリカ、サファイヤ、環状オレフィンコポリマー(COC)
及び/又はシクロオレフィンポリマー(COP)(例えば、Zeonex(登録商標)(
カリフォルニア州サンディエゴ、Zeonex(登録商標)社)が挙げられる。微生物を
非侵襲的方法で検出及び同定する能力は、任意に同定プロセスの間プレートを密閉に維持
することや、手順の一部又は全てを自動化することと組み合わせることができ、これによ
り、感染性及び/又は有害性の微生物を含む恐れがある試料を取り扱うことによるリスク
を低減するとともに、試料を汚染するリスクを低減することができる。更に、ペレットを
更に処理(例えば、懸濁及び再プレート化及び/又は他の同定アッセイ)することなく直
接解析して微生物を同定することができる機能は、同定の迅速性を大きく増大することが
できる。他の実施形態では、コロニーを溶液に懸濁して、解析前に任意に培地から除去す
る。他の実施形態では、インサイチュ解析後にコロニーを溶液に懸濁して、更なる解析を
実施する。例えば、ラテックス凝集法試験又は自動化表現型同定試験のような、単離微生
物に適用可能であるが培地上のコロニーには適用不可の技術を懸濁微生物に対して実施す
ることができる。
幾つかの実施形態では、分光分析を用いて微生物の自家蛍光特性、例えば、染色液、色
素、結合剤等のような追加の試薬が存在しない場合における微生物内の特性を分析するこ
とができる。他の実施形態では、分光分析はIFの分析に加えて微生物の複数の外因性蛍
光特性、例えば追加の薬剤を用いることによってのみ検出することができる特性を分析す
るために用いることができる。分光分析解析法は微生物の複数の自家蛍光又は外因性蛍光
を検出及び/又は同定するために効果的であるとして当業者に既に知られているあらゆる
方法で実施可能である。例えば、前面蛍光(この場合、励起及び放出された光が同じ光学
表面にて入射及び放射され、試料が光学的に厚い場合には、励起光が試料内にて非常に短
い距離を進む(例えば、Eisinger,J及びJ.Flores、「Front−f
ace fluorometry of liquid samples」、Anal.
Biochem.94:15(1983)参照))を用いてペレット内の微生物を同定す
ることができる。他の形式の測定、例えばエピ蛍光、反射、吸収及び/又は散乱測定も本
発明二で採用することができる。
本発明の第1の観点では、(例えば、光ファイバーを用いて)分光光度計に機能的に連
結されたレンズ系又は顕微鏡設備のような合焦光学系を利用して分光分析を実施して、紫
外、可視、及び赤外帯域での観察を実施する。一実施形態では、培地(例えば、プレート
内の培地)を顕微鏡ステージに載置して、当該ステージ上にて励起源によって解析し更に
(例えば、顕微鏡を通じて)視覚的に観察することができる。一実施形態では、プレート
を手動で操作してプレート自体、又はプレートが固定されている顕微鏡ステージを移動さ
せて、解析対象のコロニー位置に移動させることができる。他の実施形態では、顕微鏡ス
テージを自動で制御して(例えば、電動ステージ)、ステージに取り付けられたプレート
を(操作対象の全部分をカバーするように構成される設定パターンで)操作できるように
する。他の実施形態では、培地を静止保持してレーザーのような合焦光線で培地を横断的
に操作して、放出光をイメージング又は非イメージング検出器で検出する。更なる実施形
態では、顕微鏡は温度制御(例えば、水浴)を有するプレート培養器を備え、プレートを
顕微鏡の下に置き、培地上における培養中に解析できるようにすることが可能である。
一実施形態では、励起源を単一のコロニーに向けてIF測定を行うことができる。照射
時点のコロニーのサイズは、正確な測定が可能である限り、いかなるサイズであっても良
い。一実施形態では、人間の眼で検出できない場合にコロニーを解析することができる。
例えば、コロニーはその大きさが約10,000以下の微生物を含むコロニー、例えば約
5000、1000、500、400、300、200又は100以下の微生物を含むコ
ロニーを解析することができる。他の実施形態では、直径約1000μm以下又は(コロ
ニーが円形でない場合)最も長い範囲の長さ約1000μm以下のコロニーを解析するこ
とができる。例えば、約900、800、700、600、500、400、300、2
00、100、50、又は25μm以下の場合にもコロニーを解析することができる。一
実施形態では、励起ビームは解析対象のコロニーよりも直径が小さく、ビーム全体をコロ
ニーに向け、培地がIF測定を実質的に阻害しないようにすることができる。ある実施形
態では、励起ビームは直径約1000μm以下、例えば約900、800、700、60
0、500、400、300、200、100、50、又は25μm以下である。励起ビ
ームのサイズや放射ビームのサイズは、例えばピンホールを用いることで制御することが
できる。幾つかの実施形態では、励起ビームをコロニーの中心に導く。他の実施形態では
、励起ビームをコロニーの他の部分(例えば、端部又は端部付近)に導くが、当該部分で
は微生物はコロニーの中心部とは異なる成長及び/又は代謝状態にある。更なる実施形態
では、例えば、共焦点顕微鏡を用いて励起ビームをコロニー内の所定の深さに導く。
コロニー照射源又は励起源は当業者に知られているような多数の適切な光源から選択さ
れうる。利用可能なデータを提供するあらゆる帯域の電磁スペクトルを用いることが可能
である。紫外、可視、及び/又は近赤外スペクトルや、電磁スペクトルの他帯域の放射を
行う光源を用いることが可能であり、これらは当業者に既知である。例えば、光源は、紫
外光を生成する重水素又はキセノンアークランプや、可視/近赤外励起光を生成するタン
グステンハロゲンランプのような連続スペクトルランプとすることができる。これらの光
源は放射帯域が広く、当業者間によく知られている光学干渉フィルタ、プリズム、及び/
又は光学グレーチングを使用することで特定の励起波長のスペクトル帯域を低減すること
ができる。
或いは、発光ダイオード及び/又はレーザのような複数の狭帯域光源を空間的に重ね合
わせて多重波長励起源を構成することも可能である。例えば、発光ダイオードは190n
m〜900nm超の波長が可能であり、ソースは20〜40nm(半値全幅)のスペクト
ル帯域幅を有する。紫外線ないし近赤外波長の離散波長のレーザーが利用可能であり、当
業者に既知の方法で多重化して採用することができる。
走査モノクロメータのようなスペクトル弁別手段を用いることで、あらゆる光源のスペ
クトル選択性を改善することができる。当業者に知られているように音響光学的可変フィ
ルター、液晶可変フィルター、光学干渉フィルターのアレイ、プリズム分光器等、及びこ
れらのあらゆる組み合わせのような、他の弁別方法を採用することも可能である。スペク
トル分光器の選択に当たって、可変域や選択性の程度を考慮する。例として、例えば、弁
別器は、10nmの選択性で波長域300〜800nmを利用することができる。一般的
にこれらのパラメータによって、可変域と選択性を達成するために必要とされる最適な技
術が定まる。
典型的に、光源は試料を励起し、その後、所定の時点又は継続的に試料から傾向が発せ
られるのを測定する。同様に、励起源と試料の相互作用に由来する反射光を測定して、検
出及び/又はキャラクタリゼーションのための適切なデータを生成する。
試料からの放射をスペクトル弁別のためのあらゆる適切な手段(幾つかの実施形態では
分光計)によって測定する。分光計は走査モノクロメータであり、特定の放射波長を検出
して光電子倍増管によってモノクロメータからからの出力を検出するか、及び/又は、分
光計をイメージング分光器として構成して、その出力を電荷結合素子(CCD)のような
イメージング検出器アレイによって検出する。一実施形態では、弁別器は(光電子倍増管
アバランシェフォトダイオード、CCD検出器アレイ、及び/又は電子倍増CCD(EM
CCD)検出器アレイのような)光検出手段によって蛍光及び/又は散乱信号を観察でき
るようにする。
分光技術を使用して、好ましくは励起発光マトリクス(EEM)測定値として提供され
る測定値を取得する。本明細書で使用するEEMは、励起と発光波長の両方の関数として
蛍光物質の発光スペクトル発光強度と定義し、フルスペクトル又はそのサブセットを含む
。この場合のサブセットは単一又は複数の励起/発光対を含む可能性がある。また、固定
の励起波長を有するEEMの断面を使用して特定の励起波長の発光スペクトルを示し、固
定の発光波長を有するEEMの断面を使用して試料の励起スペクトルを示すこともできる
。一実施形態では、複数のEEMを2つ以上の特定の励起‐発光波長対、例えば少なくと
も2、3、4、5、6、7、8、9、10、15、20、25、50又はそれ以上の特定
の励起‐発光波長対で測定する。幾つかの実施形態では、測定された励起発光波長のペア
数は、微生物の正確な種を決定するために十分な数であり、例えば、約5〜約30ペア、
例えば、約10〜約20波長ペアである。他の実施形態では励起発光波長ペア数は、少な
くとも部分的には微生物を同定するのに十分な数であり、例えば、何らかの動作を行うた
めに十分な有効情報を得るために十分な数であり、例えば、以下に記載するような分類群
を同定するために十分な情報を得るために十分な数である。例えば、分類群のような、何
らかの動作を行うために十分な有効情報を得るための励起発光波長ペアの適切な数は、約
2〜約8ペア、例えば、約3〜約5ペアであっても良い。
本発明によれば、対照測定値(control measurement)を既知の微生物のコロニーと見
なし、したがって測定したテストデータと該当する微生物のキャラクタリゼーションとの
相関付けを当業者に既知の様々な数学的方法を使用して行うことが可能となる。例えば、
当業者に既知のソフトウェアシステムを利用して試料からのデータとベースラインすなわ
ち対照測定値とを比較することができる。より詳細には、データの分析をいくつかの多変
量分析法、例えば一般判別分析(GDA)、部分最小二乗法判別分析(PLSDA)、部
分最小二乗回帰、主成分分析(PCA)、平行因子分析(PARAFAC)、ニューラル
ネットワーク分析(NNA)及び/又はサポートベクターマシン(SVM)によって行う
ことができる。これらの方法を使用することにより、先述したような有機体のモニタリン
グ、検出及び/又はキャラクタリゼーションを行うシステムを設計する際に、該当する未
知の微生物を有機体の代謝、病原性及び/又は毒性に基づいて既存の命名法に基づく関連
群及び/又は天然群に分類することができる。
また別の実施形態では、検出システムからの検出時間や培養率のような非分光測定値を
、コロニーに由来する微生物のキャラクタリゼーション及び/又は同定に役立てることが
できる。更に、固体又は半固体培地の写真像から得られる測定値は、コロニーサイズ、形
状、色、密度といったコロニー内の微生物のキャラクタリゼーション及び/又は同一性に
関する有益な情報をもたらすことができる。
本発明のいくつかの実施形態では、コロニー中の微生物のキャラクタリゼーション及び
/又は同定において必ずしも正確な種の同定を行う必要はない。キャラクタリゼーション
は、生物学的粒子の広範なカテゴリ分け又は分類だけでなく単一の種の実際の同定も包含
する。コロニーに由来する微生物の分類は、微生物の表現型及び/又は形態学的特徴の決
定を含む可能性がある。例えば、生物学的粒子のキャラクタリゼーションは組成、形状、
サイズ、クラスタリング及び/又は代謝のような観察可能な差異に基づいて達成すること
ができる。いくつかの実施形態では、該当する生物学的粒子の分類を行うにあたって所与
の生物学的粒子の特徴に関する予備知識の必要をなくすことができるが、経験的測定値と
の一貫性のある相関付けが必要となる。このため、本方法は特定の結合事象又は代謝反応
に基づく方法よりも汎用性が高くなり、容易に適合可能となる。本明細書で使用する「同
定」とは、未知の微生物がどの科、属、種及び/又は株に属するのか判定すること、例え
ば未知の微生物を科、属、種及び/又は株レベルで同定することを意味する。
いくつかの例において、キャラクタリゼーションはアクションを起こすのに十分有用な
情報をもたらす分類モデルを包含する。本明細書で使用する好ましい分類モデルは、(1
)グラム群、(2)臨床グラム群、(3)治療群、(4)機能群、及び(5)天然固有蛍
光群のうちの1つ又は複数の群への分類を含む。
(1)グラム群:このグラム群分類では、各微生物をそれぞれのグラム染色反応及び全
体のサイズに基づいて3種類の広範な分類カテゴリのうちの1つに含めることができる。
前記群は下記のうちの1つ又は複数から選択される。(a)グラム染色で紺青色に染色す
るグラム陽性微生物、(b)グラム染色で赤に染色するグラム陰性微生物及び(c)グラ
ム染色で紺青色に染色するイースト細胞(ただし、形態学的特徴及びサイズによってバク
テリアと区別される非常に大きい円形の細胞)。
(2)臨床グラム群:このグラム群は形態学的特徴によって区別されるいくつかのサブ
カテゴリに更に分割することができる。これらのサブカテゴリは熟練した研究室技術者か
ら報告された臨床的に意義のある情報をすべて含むため、陽性又は陰性グラム反応よりも
高いレベルの同定を実現する。この特定の分類は下記の理由で非常に有用である。すなわ
ち、グラム染色の品質及び/又はスミアを読み取る技術者の技術レベルに左右される懸念
が、臨床的に意義のある等価な情報に自動化システムを導入することによって解消される
からである。より詳細には、この分類モデルに基づく微生物のサブカテゴリは下記のうち
の1つ又は複数から選択することができる:(a)球菌(小さい円形細胞)、(b)双球
菌(互いに結合した2つの小さい円形細胞)、(c)矩形の桿菌(rods)及び(d)
桿状の桿状菌(bacilli)。付加的な形態学的情報によって確認可能なサブカテゴリの例
としては下記が挙げられる:(i)グラム陽性球菌、(ii)鎖状のグラム陽性球菌、(
iii)房状(すなわち「ブドウのような」房状)のグラム陽性球菌、(iv)グラム陽
性双球菌、(v)グラム陽性桿菌、(vi)内生胞子を含むグラム陽性桿菌、(vii)
グラム陰性桿菌、(viii)グラム陰性球桿菌、(ix)グラム陰性双球菌、(x)イ
ースト及び(xi)糸状の菌類。
(3)治療群:治療群は、特定の標本タイプから単離したときに同じクラスの抗生物質
又は抗生物質の混合物(「Sanford Guide to Antimicrobial Therapy 2008」参照)で処
置される複数の微生物種を含む。多くの場合、臨床医が初期の経験的治療を標的療法に近
付ける上で種レベルまでの同定は必要ない。というのも、2つ以上の種を1つ(又は複数
)の同じ抗生物質で処置することができるからである。この分類レベルはこれらの「同じ
処置の」微生物を単一の治療カテゴリに適宜含める。このキャラクタリゼーションレベル
の例としては、高度耐性腸内細菌(EB)種と感受性EB種(Enterobacter
spp.(エンテロバクター種)とE.coli(エシェリキアコリ))を区別する能
力や、フルコナゾール耐性カンジダ種(C.glabrata(カンジダグラブラータ)
及びC.kruzei(カンジダクルセイ))と感受性カンジダ種(C.albican
s(カンジダアルビカンス)及びC.parapsilosis(カンジダパラプシロシ
ス))を区別する能力等が挙げられる。
(4)機能群:本発明によれば、代謝、毒性及び/又は表現型特徴の組合せに基づくい
くつかの群に微生物を含めることもできる。非発酵性の有機体を発酵性の有機体と明確に
区別することができる。更に、溶血素を生産する微生物種を非溶血性種と別々に分類する
ことができる。場合によっては、これらの群は属レベル(例えば腸球菌属、カンジダ属)
と、より種に近いレベル(例えばコアグラーゼ陰性ブドウ球菌、α溶連菌、β溶連菌、コ
アグラーゼ陽性ブドウ球菌すなわちS.aureus(スタフィロコッカスアウレウス)
)とを区別して属レベル(例えば大腸菌、グラム陰性の非発酵性桿菌)よりも広範なカテ
ゴリとなる。
(5)天然固有蛍光(Intrinsic Fluorescence(「IF」))群:微生物の群れを成す
自然な傾向に基づき、微生物を生得的特徴及び/又は固有蛍光特徴によりカテゴリ分けす
ることもできる。これらの群のいくつかは治療群及び機能群のカテゴリに共通とすること
ができる。これらの分類は、特徴的なIFシグネチャ(IF signature)を有するE.fa
ecalis(エンテロコッカスフェカリス)、S.pyogenes(ストレプトコッ
カスピオゲネス)、P.aeruginosa(シュードモナスエルジノーサ)のような
個々の種を含むことができ、且つ/又はE.coli−K.oxytoca(大腸菌‐ク
レブシエラオキシトカ)又はE.aerogenes(エンテロバクターエロゲネス)及
びC.freundii(シロトバクターフレンディ)群のような比較的保存されたIF
シグネチャを有する有機体の小群を含むことができる。
同定を目的とする微生物の固有特性(固有蛍光等)の測定に加えて、本発明の方法は更
に、同定プロセスに役立つ付加的な同定作用物質(identifier agent)の使用を含むこと
ができる。親和性リガンドのような特定の微生物と結合する作用物質を使用することによ
り、微生物の分離、微生物のクラス又は種の同定(例えばユニークな表面タンパク質又は
受容体との結合を利用)、及び/又は微生物の特徴(例えば抗生抵抗)の同定を行うこと
ができる。有用な同定作用物質としては、それらに限らないが、単クローン及び多クロー
ン抗体ならびにそれらの断片(例えばS.aureus同定のためのanti‐Eap)
、核酸プローブ、抗生物質(例えばペニシリン、バンコマイシン、ポリミキシンB)、ア
プタマー、ペプチド模倣体、ファージ由来の結合タンパク質、レクチン、宿主先天性免疫
バイオマーカー(急性期タンパク質、LPS結合タンパク質、CD 14、マンノース結
合レクチン、トール様受容体)、宿主防御ペプチド(例えばデフェンシン、カテリシジン
、プロテオグリン(proteogrin)、マガイニン)、バクテロシン(bacterocin)(例えば
ランチビオティクス(例えばナイシン、メルサシジン、エピデルミン、ガリデルミン及び
プランタリシンC及びクラスIIペプチド)、バクテリオファージ及び核酸、脂質、炭水
化物、多糖類、カプセル/粘液(slime)もしくはタンパク質又はそれらの任意の組合せ
に対して選択的な蛍光色素が挙げられる。作用物質自体が検出可能なシグナルを示さない
場合は、作用物質をマーカーと共役させる(例えば可視状態にする又は蛍光性をもたせる
)こと等により、作用物質を標識して検出可能なシグナルが提供されるようにすることが
できる。マーカーとしては、それらに限らないが、蛍光性化合物、発光性化合物、燐光性
化合物、放射性化合物及び/又は比色化合物が挙げられる。作用物質は、本発明の方法の
任意のステップ、例えば試料が倍地上にあるとき及び/又はコロニーを検出した後に微生
物に添加することができる。いくつかの実施形態では、コロニー中の作用物質の存在及び
/又は量をコロニーの解析中に判定することができる。他の有用な同定作用物質としては
、微生物酵素の基質、キレート剤、洗浄剤、界面活性剤、消毒薬(例えばアルコール、漂
白剤、過酸化水素)、毒性化合物(例えばアジ化ナトリウム、シアン化カリウム)、シク
ロヘキサミドのような代謝阻害剤等が挙げられる。同様に、微生物細胞生存度、代謝及び
/又は膜電位の測定のための多くの蛍光性化合物を本発明の同定作用物質として使用する
ことができる。
本発明の一態様において、本方法は更にコロニーから微生物を回収し付加的な試験を実
行するステップを含むことができる。回収した微生物を適切な培地、例えば食塩水中に懸
濁させることができる。懸濁の際は、微生物を更に当業者に知られる上述の所望の試験に
かけることができる。特に、清浄な微生物試料を必要とする任意の試験を懸濁させた微生
物に対して実行することができる。いくつかの実施形態では、付加的な同定試験/キャラ
クタリゼーション試験を実行することができる。同定試験の例としては、Vitek(登
録商標)2、増殖及び非増殖核酸試験(nucleic acid test:NAT)、色素産生及びラ
テックス接着アッセイ、イムノアッセイ(例えば標識した第1又は第2抗体及び/又は他
のリガンドを利用)、質量分析(例えばMALDI‐TOF質量分析)及び/又は赤外分
光法(FTIR)やラマン分光法のような他の光学的技法が挙げられる。薬物耐性、耐性
記録、及び/又は毒性因子のような付加的なキャラクタリゼーション試験も実行すること
ができる。付加的なキャラクタリゼーションは、本方法の最初の同定ステップ中に開始し
た試験の一部とすることもできる。例えばメチシリン耐性S.aureusの検出では、
まず、コロニーの増殖に先立って蛍光標識したペニシリンを試料に加えることができる。
そして、例えばコロニー内又はコロニーから回収した微生物内の結合したペニシリンの存
在及び/又は量を判定することができる。ある実施形態では、同定ステップを実行可能な
同一のシステム内(例えば、同じ装置内)で複数の追加試験を実施することができる。一
実施形態では、特定の追加試験を多数の実施可能な試験から、行われる同定に基づいて選
択することができる。
本発明の一態様では、方法ステップの一部又は全部を自動化することができる。本明細
書で用いる用語「自動化」は、コンピュータ制御を意味する。一実施形態では、様々な蛍
光発光検出及び相関ステップが自動化され、この方法によって得られた情報はデータベー
ス構築に自動で利用される。更なる実施形態では、コロニーの検出及び解析のような方法
に含まれる他のステップを自動化することもできる。方法ステップを自動化することによ
ってより多くの試料をより迅速に試験することが可能となるだけでなく、有害性及び/又
は感染性のある微生物を含む恐れがある試料を取り扱う際の人為的ミスのリスクを低減し
、さらに、試料を汚染する機会及び/又は試料を扱う人と試料とが接触する機会を低減す
ることができる。一実施形態では、本発明は固体又は半固体培地上の微生物を検出及び/
又は同定するシステムに関し、このシステムは分光光度計及びレンズ系又は顕微鏡のよう
な合焦光学系を備える。他の実施形態では、システムは更に培地表面を走査する機構及び
/又は培地の環境(例えば、培養環境)を制御する機構を備える。
本発明の1つの観点は固体又は半固体培地上のコロニーの検出に関連するものである。
検出後に、任意でコロニー内の微生物の同定/キャラクタリゼーションを行う。一実施形
態では、試料を配置していた培地を手動で走査してコロニーの存在を調べる。一実施形態
では、肉眼で視覚的にコロニーを検出する。他の実施形態では顕微鏡を用いてコロニーを
検出する。例えば、培地は顕微鏡かで観察することができ、この場合、顕微鏡ステージに
配置した培地を顕微鏡対物レンズの下で手動で動かして培地の一部分についてコロニーの
存在を調べる。培地自体を手動で動かす(例えば、培地を含むプレートを移動させる)こ
とによって、又は、培地が配置されている顕微鏡ステージを動かすことによって、培地を
動かすことが可能である。他の実施形態では、走査を自動で行うこともできる。一実施形
態では、電動式顕微鏡ステージをプログラムして、対物レンズの下で培地表面を横断する
探査パターンで動かして、培地の各部分が順番に観察できるようにすることができる。他
の実施形態では、培地を静止保持してレーザーのような合焦光線で培地を横断的に操作し
て、放出光をイメージング又は非イメージング検出器で検出する。一実施形態では、励起
光の大きさに応じて培地を等分して(例えば、約100、250、500、又は1000
μm以上)、顕微鏡ステージをインクリメント毎にステップ移動させて、各部分が対物
レンズの下にきて解析できるようにすることができる。他の実施形態では、培地を大縮尺
で(例えば、プレート全体又はプレート中の大きな部分(例えば、1/2、1/3、1/
41、1/10以下))観察してコロニーを調べることができる。いずれの実施形態でも
、コロニーの位置は培地の走査によって生成したマップに基づいて決定される。位置実施
形態では、顕微鏡ステージをプログラムして、検出された各コロニーへと順番に移動させ
て各コロニーのIFスペクトルを取得する。一実施形態では、手動又は自動走査を定期的
な間隔(例えば、0.5、1、2、3、4、5、6、7、8、10、又は12時間後と又
はそれ以上)で繰り返して、コロニーの出現及び/又は成長をモニタリングする。本発明
の一実施形態では、可視光を用いて培地を走査してコロニー(例えば、顕微鏡かで観察可
能な程度に大きいコロニー)を検出する。他の実施形態では、培地を照射してコロニーの
自家発光特性(例えば、IF)を検出する。培地のバックグラウンドレベルを超えるIF
のピークは、コロニーの存在を示唆する。例えば、(レーザーのような)走査励起ビーム
と、簡易な非イメージング検出器を用いて培地の蛍光マップを構築することができる。他
の実施形態では、国際公開第03/022999号パンフレット及び米国特許第5,91
2,115号、第6,153,400号、第6,251,624号明細書に記載のように
、イメージキャプチャ/取得装置(例えば、CCDリニアアレイ、CCDラインスキャン
カメラ、CCD2Dアレーカメラ、レーザスキャンカメラ、又はその他の装置のようなカ
メラ又はスキャナ)を用いた広域イメージングを利用することができる。
本発明のある実施形態では、検出方法は、検出された微生物の同定を伴って又は伴わず
に試料内の微生物の存在を検出するために用いることができる。幾つかの実施形態では、
検出方法を使用して試料(例えば、食品、医薬品、飲料水等)の微生物による汚染をモニ
タリングすることができる。一実施形態において、本方法は汚染の有無を絶えずモニタリ
ングするために反復的に実行することができ、例えば1か月に一度、1週間に一度、1日
に一度、1時間に一度又は他の時間パターンで実行することができる。別の実施形態では
、試料を必要に応じて、例えば汚染が疑われるとき又は汚染が無いことを確認する必要が
あるときに試験することができる。更なる実施形態では、これらの検出方法を使用して臨
床試料、例えば創傷又は血液培養物中の微生物の有無を調べることができる。例えば、特
定の時点で血液培養物から試料を取り出し、その試料に対して検出方法を実行することに
より血液培養物が陽性であるかどうかを判定することができる。一実施形態では、培養物
の接種後のある設定時点、例えば接種の24時間後に試料を採取して血液培養物が陽性で
あるかどうかを判定することができる。他の実施形態では、血液培養物から試料を定期的
に、例えば12、6、4、2、1又は0.5時間毎に採取して陽性検出可能な陽性血液培
養物を短い時間で同定することができる。検出方法のいくつかの実施形態では、本明細書
に記載するように、任意選択で検出ステップ後に同定/キャラクタリゼーション方法を実
行することができる。他の実施形態、特に試料の反復的なモニタリングを含む実施形態で
は、検出方法を部分的に又は完全に自動化する。
ある実施形態では、本発明による方法を微生物ではなく動物又は植物細胞について実施
することができる。特に、動物細胞(例えば、哺乳類細胞、鳥類細胞、昆虫細胞)若しく
は植物細胞であって、コロニー、クランプ、若しくは他の3次元構造で成長するもの、又
は3次元基板上で成長するものについて、本明細書に記載した技法を用いて検出、モニタ
リング、キャラクタリゼーション、及び/又は同定することができる。3次元コロニーで
成長する適切な細胞は、例えば肝細胞、線維芽細胞、及び腫瘍細胞であるが、この限りで
はない。
下記の実施例では本発明について更に詳細に説明するが、下記の実施例は例示的なもの
であり本発明を決して限定するものではない。利用した技法は当業者に周知の標準的な技
法又は後で具体的に説明する技法である。
[実施例1]
プレート及び膜上のコロニーからのスペクトルの取得
ブラックメンブレンが有る/無い場合に、血液寒天培地(BAP;5%ヒツジ血液含
有トリプシン大豆寒天)上からダイレクトにコロニーの有効スペクトルを得ることができ
るかを判定するために試験を実施した(表1)。表2に示すようにE.coli(EC)
、S.aureus(SA)、E.faecalis(EF)、及びP.aerugin
osa(PA)のコロニーを成長させて、光ファイバーアダプターによってFluoro
g3分光計(ニュージャージー州エジソン、Horiba Jobin Yvon社)及
びPMT検出器に接続されたUV顕微鏡(×10対物レンズ)を用いてスペクトルを取得
した。スリット幅5nmで5nmごとに、励起(Ex)=260〜550nm、発光(E
m)=280〜600nmの波長域を通じてEEMを取得した。示唆があった場所では、
解析範囲を1mmピンホールを照射パスに配置することで、観察領域を約0.1mmに狭
めた。ピンホールを使用しない場合、コロニーに投影される励起及び発光の光の円は、直
径約1mmほどであった。各試行にて含まれた試料を表2に示す。
Figure 2016073288
膜:
無し=ヒツジ血液観点(SBA)
ポール=ポール社製グリッド付きメトリセルブラックポリエーテルスルホンメンブレン
(SBA上)
WPC=ワットマン社製トラックエッチポリカーボネートブラックメンブレン(SBA
上)
WME=ワットマン社製ブラック混合エステルメンブレン(SBA上)
Figure 2016073288
接種していないプレートについての試行A2によるスペクトルを図1A〜1Dに示す。
各図において縦軸はExの波長域であり、横軸はEmの波長域である。スペクトルは、微
生物の存在しない状態のBAP(図1A)、ポール社製メンブレン(図1B)、WMEメ
ンブレン(図1C)、及びWPCメンブレン(図1D)から取得した。最初の観察は、B
APと、ポール社製及びワットマン社製メンブレンの間のバックグラウンド蛍光の差につ
いて行った。予想外に、ブラックポールメンブレンは、膜で覆っていないBAPの場合よ
りも、微生物懸濁液の分類に重要とされていたスペクトル領域にて強い蛍光を示した。し
かし、WMEメンブレンは全ての中で最小のバックグラウンド蛍光を示した。
WMEメンブレン(BAP上)上のコロニーの試行A3からのスペクトルを図2A〜2
Cに示す。スペクトルは、EC3(図2A)及びSA1(図2B)から取得し、SA1の
スペクトルからEC3のスペクトルを差し引いた結果を図2Cに示す。コロニーのスペク
トルは、S.aureusとE.coliとの明確な差異を示す。スペクトルの幾つかの
部分はE.coliのために高く、他の部分はS.aureusのために高くなっている
という事実は、差異は単純な輝度の大きさに違いとしてではなく、全体のパターンの差異
として現れるということを示す。
膜の無いBAP上のコロニーの試行B1からのスペクトルを図3A〜3Dに示す。スペ
クトルは、EC1(図3A)、SA1(図3B)、EF1(図3C)、及びPA1(図3
D)から取得した。ブラックメンブレンの無いBAP上で直接測定したにも関わらず、様
々な測定パラメータでA3スペクトルよりもかなり高輝度を示したが、相対的なパターン
は各バクテリアの種のパターンに依然として類似している。
これらの実験は、バックグラウンド蛍光の低減のためにブラックメンブレンを用いる/
用いないBAP上でダイレクトにコロニーの自家蛍光スペクトルを顕微鏡で取得すること
ができ、観察されたパターンは様々な種類の微生物について特徴的であったということを
示した。
[実施例2]
顕微鏡によるマイクロコロニーの走査
顕微鏡下で成長する電動ステージ上のコロニーをポイント−バイ−ポイントIF測定を
用いて位置合わせし、検出された各コロニーについてのIFスペクトルを自動で収集する
ことができるか判定するために試験を実施した。UV顕微鏡を、蛍光励起源及び発光測定
装置として機能するFluorolog3(ニュージャージー州エジソンHORIBA
Jobin Yvon社)分光計に光ファイバーケーブルを介して接続した。この顕微鏡
の電動ステージには、36度に設定された循環温浴からの供給を受ける管が巻きつけられ
た小型プレート培養器が備えられている。培養器は水晶製カバースリップからなるUV透
過窓を備えている。図3に示すように、種々の寒天培地に拡散法(spread method)でE
.coli ATCC 25922(EC)及び/又はS.aureus ATCC 2
5923(SA)を接種した。いくつかの試行では、ブラックワットマン混合エステル(
WME)メンブレン又は炭のいずれかの光遮断素材を用い、培地自体からの蛍光を低減さ
せた。
接種後、顕微鏡の電動ステージをプログラムして、探索グリッドで周期的に寒天プレー
トを横断して、1つ以上の励起/発光波長ペアで各ポイントにて蛍光を測定した。Flu
orolog3をプログラムして、スリット幅を10μm、積分時間を500ms(試行
A〜E)又は1000ms(試行F〜H)に設定した。顕微鏡内の励起ビーム中にピンホ
ールを配置して、寒天の表面に投影される励起ビームは約0.1mmに絞った。このビー
ムサイズに対応して、顕微鏡ステージを0.1mmインクリメントでステップさせて、1
0ステップで1mm進むようにした。発光ビームはピンホールで制限せず、顕微鏡は測定
の間覆い、励起光によって生成されていない迷光が検出されないようにした。
試行G及びHのために、アルゴリズムを開発して、成長するコロニーの位置を自動で算
出できるようにした。試行Hのために、プログラムを更に改良して、検出された全てのコ
ロニーが顕微鏡ステージが順番にそれらの位置に移動し、IFスペクトルを収集するよう
にした。収集されたスペクトルは、全マトリクススキャンのサブセットであり、必要とさ
れる取得時間を削減するために選択された300EEMポイントを含んだ。さらに、時間
の観点から装置を僅か10コロニーのスペクトルを取得するようにプログラムした。
Figure 2016073288
試行Aでは装置に問題が生じ、6時間後に停止した。この間にコロニーは検出されなか
った。
試行Bでは、8時間の時点でバックグラウンド蛍光を辛うじて上回る1つのコロニーが
検出され、10時間の時点で2つの明りょうに視認できるコロニーが検出され、12時間
以降には3つの明りょうに視認できるコロニーが検出された。コロニー信号とバックグラ
ウンドとの差は、440〜525nm(およそバックグラウンドの4倍)で、305〜3
65nm(およそバックグラウンドの2倍)よりも大きかった。
試行Cでは、接種材料が少なかったため走査領域内でコロニーは検出されなかった。
試行Dでは8時間の時点で1つのコロニーが検出され、10時間以降に3つのコロニー
が検出された。
試行Eでは、最初視野内にコロニーが検出されなかった。12時間の時点で1つのコロ
ニーが視野の端にて成長し、14時間以降に3つのコロニーが検出された。
試行Fは混合接種材料を含み、8時間までに10個のECと判定されたコロニーを生成
し、10時間までに3つのSAコロニーを生成し、12時間以降に更に2つのSAコロニ
ーを生成した。試行Fのポイント−バイ−ポイントIFサーチ走査の3次元プロットを図
4A〜4Fに示す。高さは蛍光輝度に相当する。プロットによれば、最初に検出されたコ
ロニーを、6時間(図4A)、8時間(図4B)、10時間(図4C)、12時間(図4
D)、16時間(図4E)、及び24時間(図4F)で観察した。8時間時点で視認可能
な全てのコロニーはE.coliであり、10時間以降に観察可能な追加のコロニーはS
.aureusであった。試行Fの24時間以降のBAPの拡大図にサーチ走査領域の矩
形を付して図5Aに示し、対応するコロニーの位置を示す12時間の時点におけるサーチ
走査から得た蛍光輝度の等高線図を図5Bに示す。
試行Gでは8時間の時点で1つのECコロニーが、9時間の時点で2つのECコロニー
が検出された。10時間及び12時間の時点で装置にエラーが発生してデータの取得た停
止したが、12時間の時点で装置を再起動したときに、5つのコロニー(2つのECコロ
ニーと3つのSAコロニー)が検出された。コロニー検出アルゴリズムによって5つのコ
ロニー全ての位置を同定することに成功した。
試行Hでは、3つのECコロニーが検出されスペクトルが取得された時点である9時間
以前に行った全ての走査で、赤外光が観察窓(observation window)に集中した。同一の
3つのECコロニーがその後の走査でも検出され、13時間の開始時点で、4つのSAコ
ロニーも検出されてスペクトルが取得された。
このような実験結果は、微生物を寒天プレート上で直接成長させている状態で、背景遮
断膜又は炭の使用の有無に関わらず、自家蛍光を用いて微生物のマイクロコロニーの有無
及び数を検出することができることを示した。さらに、位置合わせを行えば分類のために
マイクロコロニーのフルスペクトルを比較的簡単に簡単にインサイチュで取得できる。
[実施例3]
寒天プレート上の微生物コロニーの分類
試験を実施して、微生物コロニーがそれらが成長した寒天プレート上から直接取得した
IFスペクトルによって分類可能であるか判定した。
それぞれ、波長260〜580nm、260〜680nmの励起(Ex)及び発光(E
m)マトリックスにわたって、330個のEEMポイントのサブセットを選択して、スペ
クトルを取得し所要取得時間を短縮した。更に、(Ex=Emの場合の)全ての反射波長
を読み込んだ。蛍光については、スリット幅は5nmバンドパス、積分時間1000ms
に設定した。各300ポイントの取得を完了するために、およそ8.1分を要した。
表4に試験された微生物を示す。20種のそれぞれについて6つの単離株を含み、トー
タルで120回の試験を行った。種とは異なるグループ分けとして用いられた、用語「臨
床グラム(Clinical Gram:ClinGram)は、グラム染色を解読する
高い技術を有する観察者によって可能な分類レベルを意味し、これは単に陽性、陰性、又
は酵母(表5)といった分類ではない。例えば、ブドウ球菌はクラスタ状のグラム陽性球
菌であり、多くの連鎖球菌は鎖状のグラム陽性球菌である。
Figure 2016073288
表5は、「Leave‐one‐out」交差検定法を用いステップ前進線形判別分析
法(Forward Stepwise Linear Discriminant Analysis)による分類モデリングの結果を
示す。「Leave‐one‐out」交差検定法を選択したのは、小さいデータセット
を効率よく利用できるからであり、他の多くの試験のように2回試験を実施することなく
、多くの「不明」試料を「教師」セットと同等に試験したかのように結果を推定できるか
らである。表中、「DAステップ数」は判別分析ステップの完了数を示し、これは、示唆
された結果を生成するために用いられたEEMポイントの実際の数である場合とそうでは
ない場合がある。典型的には、ステップ数はモデル中のExEmポイントの数に等しいが
、幾つかのステップでは、ポイントが移動したときにモデルポイント数は増えるというよ
りは少なくなる。
判別分析はデータ中のランダムな変動における誤った相関を抽出することができる。十
分に「ノイズの多い」データポイントが相当数あった場合、交差検定は所与の分類モデル
の真の成功率を推定するために重要である。概して、交差検定されていない結果はステッ
プ数が増加するにつれて100%正確であるとされがちであるが、交差検定された結果は
ピークに達した後に低下する。交差検定ピーク付近のステップ数のモデルが、所与のデー
タセットについて最適であると考えることができる。表5は、交差検定結果が最適な時点
における、交差検定を行った場合及び行わなかった場合の各分類モデル試行結果を示す。
判別分析による各微生物についての分類は、他の選択が以下に近い選択であったかに関
わらずモデルによって最初に選択された分類が微生物の実際の識別属性であった場合に正
確と判断した。さらに、表5には、微生物の実際の識別属性がモデルによる上位3つの選
択に入っていた微生物の数及び割合を示し、完全で無いにしろこれらの値は分類モデルの
予測が良好であることを示す。
コロニーから得たスペクトルは微生物の分類可能性を明示する。隣接する2つのExE
mポイントをビニングすることで結果が改善されるということから示唆されるように、デ
ータには大抵ノイズが含まれる。2つの既知の要因、すなわちコロニー上の測定ビームの
位置が不整合であることに由来すること、及び装置を経て検出器に到達する光量が少ない
ことがノイズの多いデータに寄与する。本例では、顕微鏡カメラで励起ビームをコロニー
の中心に位置合わせすることは、可視化に利用することができる光は最適でなかったため
難しい。実際、位置合わせがオフになっていたのを修正されたと見られる場合もあったが
、他の位置合わせ誤差は気づかれないままであったように見られた。検出器に到達する蛍
光エネルギーの量は微生物の懸濁液の1/1000以下であったので、蛍光シグナル自体
におけるノイズも大きかった。これは、光ファイバーと顕微鏡の構成は柔軟な研究ツール
であるがこのような測定に最適化されたものではないからである。このようなタスクのた
めに設計された光学系によってこのような問題は容易に解消することができる。
Figure 2016073288
[実施例4]
ノイズの少ないコロニーの分類の改良
試験を実施して、位置合わせを改善し、光のスループットを増加させることで自家蛍光
を用いた微生物コロニーの分類を改善することができるかを判定した。実施例3に記載の
実験を同じ装置及び同じ微生物系統と、改良した方法を用いて反復した。同じ励起(Ex
)及び蛍光(Em)帯域(Ex=260〜580nm、Em=260〜680nm)と、
スペクトルの主要領域をカバーするとともに上述したようなサブセットよりも値のビニン
グを促進することができる異なる312の波長のサブセットを用いてスペクトルを取得し
た。サブセットを利用する主たる理由は本例における装置を用いてスペクトルを収集する
ための所要時間を短縮することにある。モノクロメータスリット幅を、これまでの5nm
から7nmバンドパスに広げ、測定される蛍光をおよそ2倍に増加させた。積分時間を1
000msに維持し、各回の取得は約9.8分で完了した。
表6は、「Leave‐one‐out」交差検定法を用いステップ前進線形判別分析
法(Forward Stepwise Linear Discriminant Analysis)による分類モデリングの結果を
示す。上述のように、他の選択が以下に近い選択であったかに関わらずモデルによって最
初に選択された分類が微生物の実際の識別属性であった場合に分類が正確であると判断し
た。主レベルの分類性能を各データポイント(ビニング無し)、ExEmマトリクス上で
「L」の字に隣接する3つの蛍光読取値をビニングした値、矩形状に隣接する4つの隣接
するEEMポイントをビニングした値に基づいて示す。また、臨床グラムレベルの分類は
「3L」でビニングした値を用いて示す。
蛍光読取値と増加させた光のスループットとを結びつけるために方法を変更することで
、実際に分類成功率が改善された。主たる改善の中でも、位置合わせの改善は光のスルー
プットを増加させることよりも性能向上への寄与が大きかった。さらに、各コロニー内で
2以上の位置からの蛍光読取値を取得することで更に分類精度を向上させることができる
。本例における装置の制約により、スペクトル解像度を損なうことも走査時間をほとんど
増加させることも無く、信号を適度に2倍に増加させることが可能となるに過ぎず、依然
として蛍光スペクトル内に読み取りノイズがかなり存在する。
隣接ポイントをビニングすることで、分類成功率に影響を及ぼす他の要因に正の影響を
与えることなく読取ノイズを部分的に改善することができるが、これによってスペクトル
解像度は減少してしまう。ビニングによる補助は、最適化システムにおいて読み取りノイ
ズを改善するためにはスペクトル解像度が幾らか犠牲となることを示唆する。しかし、ビ
ニングによる改善は、これらのデータ及び従来の方法の結果の間の差異ほど大きくは無い
。このことは測定の位置合わせがより大きな役割を果たすことを示す。当業者に利用可能
な自動位置合わせ及び最適化光学系によって分類成功率をさらに改善することができる。
上記の説明は本発明を例示するものであり、本発明を限定するものと解釈すべきではな
い。本発明は添付の特許請求の範囲で定義されるものであり、各請求項には均等物も含ま
れる。本明細書に列挙した刊行物、特許出願、特許、特許文献及び他の参考文献はすべて
、参照する文及び/又は段落の教示内容全体が本明細書に援用されるものとする。
Figure 2016073288

Claims (34)

  1. 固体又は半固体培地上の微生物を検出及びキャラクタリゼーションする方法であって、
    (a)1以上の微生物コロニーを含むことが既知である又は含む可能性がある固体又は
    半固体培地を走査して前記培地上のあらゆるコロニーを検出するステップと、
    (b)前記ステップ(a)で検出した1以上のコロニーを解析して、前記コロニー内の
    微生物の自家蛍光(IF)測定値特性を生成するステップと、
    (c)前記自家蛍光(IF)測定値に基づいて前記コロニー内の前記微生物のキャラク
    タリゼーションを行うステップとを含むことを特徴とする方法。
  2. 請求項1に記載の方法であり、前記走査は、前記固体又は半固体培地の表面のポイント
    −バイ−ポイント走査であることを特徴とする、方法。
  3. 請求項1に記載の方法であり、前記コロニーは直径50μm未満のマイクロコロニーで
    あることを特徴とする、方法。
  4. 請求項1に記載の方法であり、解析する前記ステップは非侵襲的であることを特徴とす
    る、方法。
  5. 請求項1に記載の方法であり、前記微生物は1つ以上の分類モデルにキャラクタリゼー
    ションされ、前記分類モデルは、グラム群、臨床グラム群、治療群、機能群及び天然固有
    蛍光群を含む群から選択されることを特徴とする、方法。
  6. 請求項4に記載の方法であり、前記微生物を属レベル又は種レベルで同定することを特
    徴とする、方法。
  7. 請求項1に記載の方法であり、前記IF測定値を分光法で生成し、該分光法は励起発光
    マトリクス(EEM)を判定するステップを含むことを特徴とする、方法。
  8. 請求項7に記載の方法であり、前記EEMは少なくとも2つの異なる波長ペアを含むこ
    とを特徴とする、方法。
  9. 請求項6に記載の方法であり、前記EEMは既知の微生物のEEMのデータベースと比
    較されることを特徴とする、方法。
  10. 請求項1に記載の方法であり、前記培地又は試料に対して同定作用物質を添加するステ
    ップを更に含み、コロニー又は該コロニーから回収した微生物内の前記同定作用物質の有
    無及び/又は量に部分的に基づいて同定を行うことを特徴とする、方法。
  11. 請求項10に記載の方法であり、前記同定作用物質は、親和性リガンド、抗体ならびに
    それらの断片、核酸プローブ、抗生物質、アプタマー、ペプチド模倣体、ファージ由来の
    結合タンパク質、レクチン、宿主防御ペプチド、バクテロシン、バクテリオファージ、色
    素、又はこれらのあらゆる組み合わせであることを特徴とする、方法。
  12. 請求項1に記載の方法であり、前記固体又は半固体培地は1種以上の前記微生物の成長
    に有益な栄養素及び1種以上の添加物を含有し、前記1種以上の添加物は前記固体又は半
    固体培地上の前記微生物コロニーの自家蛍光測定値を強化することを特徴とする、方法。
  13. 請求項12に記載の方法であり、前記1種以上の添加物は、タンパク質加水分解物、ア
    ミノ酸、肉及び野菜抽出物、炭水化物源、緩衝剤、蘇生剤、増殖因子、酵素補助因子、無
    機塩類、補助金属、還元化合物、キレート剤、感光剤、消光剤、還元剤、酸化剤、洗剤、
    界面活性剤、殺菌剤、選択剤、代謝阻害剤を含む群から選択されることを特徴とする、方
    法。
  14. 請求項1に記載の方法であり、前記コロニーの解析はエピ蛍光の測定ステップを含むこ
    とを特徴とする、方法。
  15. 請求項1に記載の方法であり、前記コロニーの解析は反射光を測定するステップを含む
    ことを特徴とする、方法。
  16. 試料内の微生物の存在を検出する方法であって、
    (a)微生物を含むことが既知である又は含む可能性がある試料を取得するステップと

    (b)前記固体又は半固体培地上の試料に存在するあらゆる微生物を培養するステップ
    と、
    (c)前記固体又は半固体培地をポイント−バイ−ポイント走査して自家蛍光(IF)
    測定値を生成して、前記培地上に存在するあらゆるコロニーを検出するステップであり、
    生成された前記測定値によって検出された1つ以上のコロニーの存在によって前記試料内
    に微生物が存在することが示唆されることを特徴とするステップと、
    を含むことを特徴とする方法。
  17. 請求項16に記載の方法であり、前記IF測定値を分光法で生成し、該分光法は励起発
    光マトリクス(EEM)を判定するステップを含むことを特徴とする、方法。
  18. 請求項17に記載の方法であり、前記EEMは少なくとも2つの異なる波長ペアを含む
    ことを特徴とする、方法。
  19. 固体又は半固体培地上の微生物を検出及びキャラクタリゼーションする方法であって、
    (a)固体又は半固体培地上の1以上のコロニーを解析して、前記コロニー内の微生物
    の自家蛍光(IF)測定値特性を生成するステップと、
    (b)前記自家蛍光(IF)測定値に基づいて前記コロニー内の前記微生物のキャラク
    タリゼーション及び/又は同定を行うステップとを含むことを特徴とする方法。
  20. 請求項19に記載の方法であり、前記コロニーは直径50μm未満のマイクロコロニー
    であることを特徴とする、方法。
  21. 請求項19に記載の方法であり、前記微生物を含むことが既知である又は含む可能性が
    ある試料を前記固体又は半固体培地上で培養して、解析する前記ステップ(a)に先立っ
    て少なくとも1つのコロニーを生成することを特徴とする、方法。
  22. 請求項19に記載の方法であり、解析する前記ステップは非侵襲的であることを特徴と
    する、方法。
  23. 請求項19に記載の方法であり、前記微生物は1つ以上の分類モデルにキャラクタリゼ
    ーションされ、前記分類モデルは、グラム群、臨床グラム群、治療群、機能群及び天然固
    有蛍光群を含む群から選択されることを特徴とする、方法。
  24. 請求項19に記載の方法であり、前記微生物を属レベル、種レベル、又は株レベルで同
    定することを特徴とする、方法。
  25. 請求項1に記載の方法であり、前記IF測定値を分光法で生成し、該分光法は励起発光
    マトリクス(EEM)を判定するステップを含むことを特徴とする、方法。
  26. 請求項6に記載の方法であり、前記EEMは既知の微生物のEEMのデータベースと比
    較されることを特徴とする、方法。
  27. 請求項19に記載の方法であり、前記EEMは少なくとも2つの異なる波長ペアを含む
    ことを特徴とする、方法。
  28. 請求項19に記載の方法であり、前記EEMは多変量分析法を用いて比較されることを
    特徴とする、方法。
  29. 請求項19に記載の方法であり、前記培地又は試料に同定作用物質を添加するステップ
    を更に含み、コロニー又は該コロニーから回収した微生物内の前記同定作用物質の有無及
    び/又は量に部分的に基づいて同定を行うことを特徴とする、方法。
  30. 請求項29に記載の方法であり、前記同定作用物質は、親和性リガンド、抗体ならびに
    それらの断片、核酸プローブ、抗生物質、アプタマー、ペプチド模倣体、ファージ由来の
    結合タンパク質、レクチン、宿主防御ペプチド、バクテロシン、バクテリオファージ、色
    素、又はこれらのあらゆる組み合わせであることを特徴とする、方法。
  31. 請求項19に記載の方法であり、前記固体又は半固体培地は1種以上の前記微生物の成
    長に有益な栄養素及び1種以上の添加物を含有し、前記1種以上の添加物は前記固体又は
    半固体培地上の前記微生物コロニーの自家蛍光測定値を強化することを特徴とする、方法
  32. 請求項31に記載の方法であり、前記1種以上の添加物は、タンパク質加水分解物、ア
    ミノ酸、肉及び野菜抽出物、炭水化物源、緩衝剤、蘇生剤、増殖因子、酵素補助因子、無
    機塩類、補助金属、還元化合物、キレート剤、感光剤、消光剤、還元剤、酸化剤、洗剤、
    界面活性剤、殺菌剤、選択剤、代謝阻害剤を含む群から選択されることを特徴とする、方
    法。
  33. 請求項19に記載の方法であり、前記コロニーの解析はエピ蛍光の測定ステップを含む
    ことを特徴とする、方法。
  34. 請求項19に記載の方法であり、前記コロニーの解析は反射光を測定するステップを含
    むことを特徴とする、方法。
JP2015217333A 2008-12-16 2015-11-05 固体又は半固体培地上の微生物のキャラクタリゼーション方法 Active JP6186414B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12292508P 2008-12-16 2008-12-16
US61/122,925 2008-12-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011540712A Division JP5837420B2 (ja) 2008-12-16 2009-12-15 固体又は半固体培地上の微生物のキャラクタリゼーション方法

Publications (2)

Publication Number Publication Date
JP2016073288A true JP2016073288A (ja) 2016-05-12
JP6186414B2 JP6186414B2 (ja) 2017-08-23

Family

ID=42060721

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011540712A Active JP5837420B2 (ja) 2008-12-16 2009-12-15 固体又は半固体培地上の微生物のキャラクタリゼーション方法
JP2015217333A Active JP6186414B2 (ja) 2008-12-16 2015-11-05 固体又は半固体培地上の微生物のキャラクタリゼーション方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011540712A Active JP5837420B2 (ja) 2008-12-16 2009-12-15 固体又は半固体培地上の微生物のキャラクタリゼーション方法

Country Status (11)

Country Link
US (3) US8748122B2 (ja)
EP (1) EP2376914B1 (ja)
JP (2) JP5837420B2 (ja)
KR (1) KR101650017B1 (ja)
CN (2) CN102317777B (ja)
AU (1) AU2009333848B2 (ja)
BR (1) BRPI0922952B8 (ja)
CA (1) CA2745872C (ja)
MX (1) MX2011005988A (ja)
RU (1) RU2523903C2 (ja)
WO (1) WO2010077304A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529302A (ja) * 2018-06-18 2021-10-28 マー ファルマ 複雑なサンプル中のそのグラム信号に従って細菌を検出するための方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512975B2 (en) * 2008-07-24 2013-08-20 Biomerieux, Inc. Method for detection and characterization of a microorganism in a sample using time dependent spectroscopic measurements
FR2951548B1 (fr) * 2009-10-15 2011-11-11 Biomerieux Sa Procede de caracterisation d'au moins un microorganisme par spectrometrie de masse
CA2859951A1 (en) * 2011-12-19 2013-06-27 Opticul Diagnostics Inc. Spectroscopic means and methods for identifying microorganisms in culture
EP2648133A1 (fr) * 2012-04-04 2013-10-09 Biomerieux Identification de microorganismes par spectrometrie et classification structurée
US9481903B2 (en) 2013-03-13 2016-11-01 Roche Molecular Systems, Inc. Systems and methods for detection of cells using engineered transduction particles
CN110938671A (zh) 2013-03-13 2020-03-31 经纬生物科技有限公司 非复制型转导颗粒和基于转导颗粒的报告系统
JP6469088B2 (ja) 2013-05-06 2019-02-13 スリーエム イノベイティブ プロパティズ カンパニー カビコロニーを計数するための培養装置及び方法
JP2015031517A (ja) * 2013-07-31 2015-02-16 浜松ホトニクス株式会社 植物体の病原菌感染診断方法及び病原菌感染診断装置
US9540675B2 (en) 2013-10-29 2017-01-10 GeneWeave Biosciences, Inc. Reagent cartridge and methods for detection of cells
FR3030748B1 (fr) * 2014-12-17 2017-01-27 Commissariat Energie Atomique Systeme d'observation d'objets
CA2977430A1 (en) * 2015-03-06 2016-09-15 Pocared Diagnostics Ltd. Reagent-free identification of bacteria containing resistance genes using a rapid intrinsic fluorescence method
KR101907194B1 (ko) * 2015-03-24 2018-10-16 주식회사 기술과창조 복합 미생물 종균을 이용하여 제조된 사료 첨가제 및 그 제조 방법
US10351893B2 (en) 2015-10-05 2019-07-16 GeneWeave Biosciences, Inc. Reagent cartridge for detection of cells
ES2716170T3 (es) * 2016-06-16 2019-06-10 Biomerieux Sa Método y sistema de identificación del tipo de Gram de una bacteria
US11002678B2 (en) 2016-12-22 2021-05-11 University Of Tsukuba Data creation method and data use method
WO2019010348A1 (en) * 2017-07-06 2019-01-10 The Johns Hopkins University MINIATURE MICROSCOPE FOR OPTICAL IMAGING WITH MULTIPLE CONTRASTS IN ANIMALS
CA3069984A1 (en) 2017-07-27 2019-01-31 Biomerieux, Inc. Isolation tube
FR3075824B1 (fr) 2017-12-21 2022-01-14 Biomerieux Sa Procede d'identification d'une levure ou d'une bacterie
CN108872573B (zh) * 2018-07-04 2021-04-30 中国水产科学研究院东海水产研究所 基于纳米磁珠-荧光激团的单增李斯特菌快速检测方法
US20220380828A1 (en) * 2019-11-05 2022-12-01 Nuclease Probe Technologies, Inc. Microbial detection platform
US20230341318A1 (en) * 2019-11-29 2023-10-26 Intubio Aps A method and a system for analysing a fluid sample for a biological activity
DE102020105123B3 (de) * 2020-02-27 2021-07-01 Bruker Daltonik Gmbh Verfahren zum spektrometrischen Charakterisieren von Mikroorganismen
CN116472335A (zh) * 2020-06-25 2023-07-21 克维拉公司 用于对微集落中生长的微生物细胞进行分类的系统和方法
PL436653A1 (pl) * 2021-01-13 2022-07-18 Ml System Spółka Akcyjna Urządzenie i sposób do nieinwazyjnego wykrywania i identyfikacji mikroorganizmów w próbkach z materiałów stałych, ciekłych i w próbkach gazowych
CN113493815A (zh) * 2021-03-18 2021-10-12 甘肃国信润达分析测试中心 一种水质中微生物的测定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145796A (ja) * 1994-11-25 1996-06-07 Hitachi Ltd 三次元スペクトル表示装置
JP2005502354A (ja) * 2001-09-06 2005-01-27 ジェノミック プロファイリング システムズ インコーポレイティッド 複製細胞の迅速な検出

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100424B (zh) * 1985-04-01 1986-10-29 上海医疗器械研究所 恶性肿瘤固有荧光诊断仪
US4847198A (en) * 1987-10-07 1989-07-11 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Detection and indentification of bacteria by means of ultra-violet excited resonance Raman spectra
DE3903777A1 (de) * 1989-02-09 1990-08-16 Bruker Analytische Messtechnik Verfahren zur schnellen detektion von mikroorganismen in proben und vorrichtung zur durchfuehrung des verfahrens
US5112745A (en) * 1989-09-29 1992-05-12 Space Medical Systems, Inc. Rapid identification of microbial organisms and determination of antibiotic sensitivity by infrared spectroscopy
US6497872B1 (en) * 1991-07-08 2002-12-24 Neurospheres Holdings Ltd. Neural transplantation using proliferated multipotent neural stem cells and their progeny
US5474910A (en) * 1993-10-15 1995-12-12 Alfano; Robert R. Method and device for detecting biological molecules and/or microorganisms within a desired area or space
US5599717A (en) * 1994-09-02 1997-02-04 Martin Marietta Energy Systems, Inc. Advanced synchronous luminescence system
DE69417900T2 (de) * 1994-11-17 1999-11-11 Chemunex Maisons Alfort Vorrichtung und Verfahren zum schnellen und hochempfindlichen Erkennen und Zählen von Mikroorganismen mittels Fluoreszenz
US5912115A (en) 1997-12-12 1999-06-15 Akzo Nobel, N.V. Evacuated sensor device for detecting microorganisms in blood samples, and method thereof
US6571118B1 (en) * 1998-05-04 2003-05-27 Board Of Regents, The University Of Texas System Combined fluorescence and reflectance spectroscopy
US6153400A (en) 1999-03-12 2000-11-28 Akzo Nobel N.V. Device and method for microbial antibiotic susceptibility testing
US6251624B1 (en) 1999-03-12 2001-06-26 Akzo Nobel N.V. Apparatus and method for detecting, quantifying and characterizing microorganisms
US20020086289A1 (en) * 1999-06-15 2002-07-04 Don Straus Genomic profiling: a rapid method for testing a complex biological sample for the presence of many types of organisms
AU2001263776A1 (en) * 2000-06-02 2001-12-11 Medicometrics Aps Method and system for classifying a biological sample
AU2001288762A1 (en) 2000-09-08 2002-03-22 Large Scale Proteomics Corporation Detection and characterization of microorganisms
US6780602B2 (en) * 2001-11-01 2004-08-24 Microbiosystems, Limited Partnership Taxonomic identification of pathogenic microorganisms and their toxic proteins
IL162380A0 (en) * 2001-12-03 2005-11-20 Seroptix Inc A method for identifying markers
US7428045B2 (en) * 2002-01-10 2008-09-23 Chemimage Corporation Raman spectral analysis of pathogens
WO2003060444A1 (en) * 2002-01-10 2003-07-24 Chemimage Corporation Method for detection of pathogenic microorganisms
US7186990B2 (en) 2002-01-22 2007-03-06 Microbiosystems, Limited Partnership Method and apparatus for detecting and imaging the presence of biological materials
US6750006B2 (en) * 2002-01-22 2004-06-15 Microbiosystems, Limited Partnership Method for detecting the presence of microbes and determining their physiological status
JP4745959B2 (ja) * 2003-05-12 2011-08-10 リバー・ダイアグノスティクス・ビー.・ブイ. 微生物の自動特徴づけおよび分類
US20060257929A1 (en) 2003-11-12 2006-11-16 Microbiosystems, Limited Partnership Method for the rapid taxonomic identification of pathogenic microorganisms and their toxic proteins
WO2005068647A2 (en) 2003-12-09 2005-07-28 Biomerieux, Inc. Methods for detecting bacterial pathogens
US7824883B2 (en) 2003-12-31 2010-11-02 Powers Linda S Method and apparatus for detecting the presence of microbes with frequency modulated multi-wavelength intrinsic fluorescence
EP1904826B1 (en) * 2005-07-14 2019-02-20 Battelle Memorial Institute Systems and methods for biological and chemical detection
US20070037135A1 (en) 2005-08-08 2007-02-15 Barnes Russell H System and method for the identification and quantification of a biological sample suspended in a liquid
US20070111225A1 (en) * 2005-08-10 2007-05-17 California Institute Of Technology System and method for monitoring an analyte
NZ542230A (en) 2005-09-05 2008-05-30 Veritide Ltd System for spore detection
WO2008105893A2 (en) 2006-06-27 2008-09-04 Biovigilant Systems, Inc. Pathogen detection by simultaneous size/fluorescence measurement
WO2009011565A1 (en) 2007-07-17 2009-01-22 Erasmus University Medical Center Rotterdam Method for typing and identification of micro-organisms
US8280471B2 (en) * 2007-12-12 2012-10-02 Kimberly-Clark Worldwide, Inc. Fiber optic based detection of autofluorescent bacterial pathogens
BRPI0907064A2 (pt) 2008-03-26 2015-07-07 3M Innovative Properties Co "métodos e sistemas"
PT2291640T (pt) * 2008-05-20 2019-02-26 Univ Health Network Dispositivo e método para imagiologia e monitorização baseados em fluorescência
CN101498666A (zh) 2008-09-22 2009-08-05 中国海洋大学 荧光法快速测定活细菌总数
MX2011003982A (es) * 2008-10-31 2011-09-21 Bio Merieux Inc Métodos para la separación, caracterización y/o identificación de microorganismos usando espectroscopia.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145796A (ja) * 1994-11-25 1996-06-07 Hitachi Ltd 三次元スペクトル表示装置
JP2005502354A (ja) * 2001-09-06 2005-01-27 ジェノミック プロファイリング システムズ インコーポレイティッド 複製細胞の迅速な検出

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529302A (ja) * 2018-06-18 2021-10-28 マー ファルマ 複雑なサンプル中のそのグラム信号に従って細菌を検出するための方法
JP7411583B2 (ja) 2018-06-18 2024-01-11 マー ファルマ 複雑なサンプル中のそのグラム信号に従って細菌を検出するための方法

Also Published As

Publication number Publication date
US20130323718A1 (en) 2013-12-05
EP2376914A2 (en) 2011-10-19
JP6186414B2 (ja) 2017-08-23
CA2745872A1 (en) 2010-07-08
WO2010077304A3 (en) 2010-09-30
US8795983B2 (en) 2014-08-05
RU2011123155A (ru) 2013-01-27
KR101650017B1 (ko) 2016-08-23
CN104502317B (zh) 2017-10-17
CA2745872C (en) 2019-04-02
AU2009333848A1 (en) 2011-06-30
CN104502317A (zh) 2015-04-08
BRPI0922952B8 (pt) 2021-07-27
US20140335558A1 (en) 2014-11-13
MX2011005988A (es) 2011-09-01
BRPI0922952A2 (pt) 2016-01-19
KR20110106373A (ko) 2011-09-28
JP5837420B2 (ja) 2015-12-24
BRPI0922952B1 (pt) 2021-02-17
JP2012511905A (ja) 2012-05-31
RU2523903C2 (ru) 2014-07-27
US9822389B2 (en) 2017-11-21
EP2376914B1 (en) 2017-04-19
US8748122B2 (en) 2014-06-10
CN102317777A (zh) 2012-01-11
AU2009333848B2 (en) 2016-02-18
US20110033847A1 (en) 2011-02-10
CN102317777B (zh) 2015-01-07
WO2010077304A2 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP6186414B2 (ja) 固体又は半固体培地上の微生物のキャラクタリゼーション方法
EP1432786B1 (en) Rapid detection of replicating cells
RU2517618C2 (ru) Способ и система для определения количества культивируемых клеток
JP2012507712A (ja) 分光法を使用した微生物の分離、キャラクタリゼーションおよび/または同定方法
JP4911423B2 (ja) 微生物の計測方法
JP5799086B2 (ja) 分類学的階層分類を用いる微生物因子の同定及び/又はキャラクタリゼーション
CN113906285A (zh) 采用膜荧光染色和光谱强度比进行抗生素敏感性快速检测的显微镜法
US11970726B2 (en) Method for quantifying the cultivability of individual bacterial cells using culture independent parameters

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6186414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250