JP2016069207A - セラミック流路体およびこれを備える熱交換器 - Google Patents

セラミック流路体およびこれを備える熱交換器 Download PDF

Info

Publication number
JP2016069207A
JP2016069207A JP2014198613A JP2014198613A JP2016069207A JP 2016069207 A JP2016069207 A JP 2016069207A JP 2014198613 A JP2014198613 A JP 2014198613A JP 2014198613 A JP2014198613 A JP 2014198613A JP 2016069207 A JP2016069207 A JP 2016069207A
Authority
JP
Japan
Prior art keywords
region
flow path
silicon carbide
ceramic
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014198613A
Other languages
English (en)
Inventor
中村 清隆
Kiyotaka Nakamura
清隆 中村
義宜 平野
Yoshinori Hirano
義宜 平野
千種 大西
Chigusa Onishi
千種 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014198613A priority Critical patent/JP2016069207A/ja
Publication of JP2016069207A publication Critical patent/JP2016069207A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】優れた耐久性、耐食性及び気密性を有する炭化珪素質焼結体同士を接合してなるセラミック流路体及び前記セラミック流路体を備える熱交換器の提供。【解決手段】共に貫通孔を有する第1部材1と第2部材2とが接合層3を介して接合され、貫通孔の連なりが流体の流路4とされた炭化珪素質焼結体からなり、流体の流れる方向に見た接合層3の断面において、炭化珪素を主成分とする第1の領域5と、金属珪素を主成分とする第2の領域6とを有しており、第1の領域5及び第2の領域6のいずれか一方が流路4側に位置しているとともに、他方が外周側で囲繞しているセラミック流路体。【選択図】図1

Description

本発明は、炭化珪素質焼結体同士を接合してなるセラミック流路体およびこれを備える熱交換器に関する。
炭化珪素質焼結体は、機械的強度が高く、耐熱性や耐食性など優れた特性を有していることから、幅広い分野で用いられている。そして、近年では、このような特性が求められる部材を備える装置や設備の大型化に伴って、部材の大型化や長尺化、さらには、部材形状の複雑化が求められている。しかしながら、大型、長尺、複雑な形状等の成形体を一体的に形成することは困難であり、仮に、一体的な成形体を得ることができたとしても、大型、長尺、複雑な形状等では、不具合のない焼結体を得ることは困難であった。また、大型、長尺、複雑な形状等に対応するには、成形や焼成に関する大きな設備や煩雑な加工が可能な設備を準備しなければならず、作製が困難であるだけではなく、設備投資コストも大きいことから、複数の焼結体同士を接合することによって、部材の大型化、長尺化、形状の複雑化への対応が図られている。
このような接合体として、例えば、特許文献1には、2以上の炭化ケイ素セラミック部材をシリコンを用いて接合した接合体において、少なくとも1つの炭化ケイ素セラミック部材の接合部である平面の角部にC面加工が施されている炭化ケイ素セラミック接合体が提案されている。
特開2001−261459号公報
セラミックス同士を接合してなるセラミック接合体としてセラミック流路体があり、このセラミック流路体は、使用する環境および流路を流れる流体に腐食性のガスおよび液体が用いられることがある。このようなセラミック流路体は、接合強度の低下が少なく、長期間にわたって使用可能となるように、優れた耐食性および耐久性を有することが求められているとともに、接合部から流体が漏出することがあってはならないため、優れた気密性が求められている。
本発明は、上記要求を満たすべく案出されたものであり、優れた耐久性、耐食性および気密性を有するセラミック流路体と、このセラミック流路体を備える熱交換器とを提供することを目的とするものである。
本発明のセラミック流路体は、共に貫通孔を有する第1部材と第2部材とが接合層を介して接合され、前記貫通孔の連なりが流体の流路とされた炭化珪素質焼結体からなるセラミック流路体であり、炭化珪素を主成分とする第1の領域と、金属珪素を主成分とする第2の領域とを有しており、前記第1の領域および前記第2の領域のいずれか一方が前記流路側に位置しているとともに、他方が外周側で囲繞していることを特徴とするものである。
また、本発明の熱交換器は、上記構成のセラミック流路体を備えることを特徴とするも
のである。
本発明のセラミック流路体は、共に貫通孔を有する第1部材と第2部材とが接合層を介して接合され、貫通孔の連なりが流体の流路とされた炭化珪素質焼結体からなるセラミック流路体であり、接合層は、炭化珪素を主成分とする第1の領域と、金属珪素を主成分とする第2の領域とを有しており、第1の領域および第2の領域のいずれか一方が流路側に位置しているとともに、他方が外周側で囲繞していることにより、腐食性のガスおよび液体の使用環境下において、接合強度の低下が少なく、優れた耐食性および耐久性を有するとともに、接合部から流体が漏出することがなく、優れた気密性を有する。
本実施形態のセラミック流路体の一例を示す、(a)は斜視図であり、(b)は接合部分における断面図であり、(c)は流体の流れる方向に見た接合層の断面図である。 本実施形態のセラミック流路体の他の例を示す、(a)は斜視図であり、(b)は接合部分における断面図であり、(c)は流体の流れる方向に見た接合層の断面図である。 本実施形態のセラミック流路体を備えた熱交換器の用途の一例を示す集光型太陽光発電装置の概略図である。
以下、本実施形態のセラミック流路体の例について説明する。
図1および図2は、本実施形態のセラミック流路体の一例を示す、(a)は斜視図であり、(b)は接合部分における断面図であり、(c)は流体の流れる方向に見た接合層の断面図である。なお、各図においては、識別のために数字とアルファベットにより符号を付すが、図1または図2に示すセラミック流路体のみに関する記載を除き、以下の説明では、数字のみを付して説明する。
図1および図2に示す例のセラミック流路体10は、共に貫通孔を有する第1部材1と第2部材2とが接合層3を介して接合され、貫通孔の連なりが流体の流路4とされた炭化珪素質焼結体からなる。そして、図1に示す例のセラミック流路体10aは、第1部材1aおよび第2部材2aのそれぞれの形状が円柱状である例を示している。
また、図2に示す例のセラミック流路体10bは、第1部材1bの形状が円柱状であり、第2部材2bの形状が平板状である例を示している。そして、第1部材1bと第2部材2bとが接合層3bにより接合され、第2部材2bの第1部材1bが接合され側と相対する側には、貫通孔が連なるように別の第1部材1cが接合層3cを介して接合されて流路4bが形成されている例を示している。
なお、本実施形態のセラミック流路体10において、第1部材1および第2部材2の形状は限定されるものではなく、図2に示すように、第1部材1および第2部材2が形状を異にして貫通孔が連なるように接合層3を介して接合されていても構わない。また、第1部材1および第2部材2の少なくともいずれかが、流路4に連通する他の流路を有していても構わない。また、第1部材1および第2部材2が貫通孔が連なるようにして、繰り返し接合層3を介して交互に接合されていても構わない。
本実施形態のセラミック流路体10は、共に貫通孔を有する第1部材1と第2部材2とが接合層3を介して接合され、貫通孔の連なりが流体の流路4とされた炭化珪素質焼結体か
らなり、炭化珪素を主成分とする第1の領域5と、金属珪素を主成分とする第2の領域6とを有しており、第1の領域5および第2の領域6のいずれか一方が流路4側に位置しているとともに、他方が外周側で囲繞していることが好適である。
ここで、第1の領域5および第2の領域6のいずれか一方が流路4側に位置しているとともに、他方が外周側で囲繞しているということは、流体の流れる方向に見た接合層3の断面において、図1(c)および図2(c)に示す例のように、第1の領域5が流路側にあり、第2の領域6が第1の領域5を外周側で囲繞している例、あるいは図示していないが、第2の領域6が流路側にあり、第1の領域5が第2の領域6を外周側で囲繞して接合層3が構成されていることをいう。
このような構成を満たしていることにより、本実施形態のセラミック流路体10は、第1部材1と第2部材2とが強固に接合され、高い接合強度を有するセラミック流路体10となる。なお、高い接合強度が得られるのは、第1部材1と第2部材2が炭化珪素質焼結体からからなり、接合層3が炭化珪素を主成分とする第1の領域5を有しているからである。また、第2の領域6の主成分である金属珪素が、第1部材1および第2部材2の炭化珪素質焼結体への濡れ性がよいことにも起因している。金属珪素は炭化珪素との化学親和性が高いので、第1部材1および第2部材2の炭化珪素質焼結体が第2の領域6を介して隙間無く、化学的に強固に接合される。このように、隙間無く接合され、第2の領域6に空隙が少ないことにより、高温に繰り返し曝されても第2の領域6の内部にクラックが生じにくくなる。
また、接合強度を向上させるために、接合層3が第1の領域のみからなるものとし、気密性を向上するために、第2の領域6を第1部材1と第2部材2の外周からはみ出して接合層3を被覆する場合と比べると、第2の領域6の金属珪素が接合層3として、第1部材1と第2部材2との接合面に存在することにより、金属珪素に圧縮応力が働き、室温から例えば1200℃等の高温、高温から室温の温度変化の繰り返しである冷熱サイクルによる金属珪素のクラックが、第1の領域5に延伸してクラックが発生し、流体の漏れや強度の低下を引き起こすことを抑制できる。
また、第1の領域5および第2の領域6のいずれか一方が流路4側に位置しているとともに、他方が外周側で囲繞しているが、これは、第1の領域5および第2の領域6のいずれか一方が外周側で部分的に存在していると、接合面に空隙の部分が存在することになり、接合強度にとっては好ましくないからである。
なお、第2の領域6において主成分である金属珪素以外には炭化珪素が含まれていることが好適である。金属珪素以外に炭化珪素が含まれていれば、骨材の役目を成す炭化珪素の周囲に金属珪素が存在して炭化珪素同士を繋ぐとともに、炭化珪素の周囲の空隙が少なくなるため、接合強度が高まる。
また、本実施形態のセラミック流路体10は、流路4側に位置しているのが、第1の領域5であると、流路4を流れる流体が、第1の領域5の主成分である炭化珪素の周囲に存在し易い空隙を通過したとしても、第1の領域5の外周側で囲繞する第2の領域6の主成分である金属珪素が空隙を封止して流体の漏れを抑制するので、優れた気密性を有するとともに、耐食性および耐久性にも優れる。特に、流路4を流れる流体が腐食性のガスおよび液体などの有害な流体であるときには好ましい。
また、本実施形態のセラミック流路体10は、流路4側に位置しているのが、第2の領域6であると、流路4側の第2の領域6の金属珪素は緻密であるので、流体が漏れるおそれはなく、優れた気密性を有する。また、セラミック流路体10を使用する周囲の環境が腐食
性のガスおよび液体に曝される場合でも、第2の領域6を囲繞している第1の領域5は、主成分が炭化珪素であり、優れた耐食性および耐久性を有するとともに、腐食性のガスおよび液体が、炭化珪素の周囲に存在し易い空隙を通過したとしても、流路4側に位置する第2の領域の主成分である金属珪素が空隙を封止して、腐食性のガスおよび液体が流路4側へ漏れることを抑制するので、優れた気密性を有する。
それゆえ、本実施形態のセラミック流路体10において、接合層3における第1の領域5および第2の領域6の位置については、使用する流体および環境に応じて、第1の領域5および第2の領域6のいずれか一方が流路4側に位置しているとともに、他方が外周側で囲繞している態様を選択してもよい。
なお、本実施形態における炭化珪素質焼結体とは、炭化珪素質焼結体を構成する全成分100質量%のうち、炭化珪素が70質量%以上を占めるものである。また、第1の領域5に
おける主成分とは、第1の領域5を構成する全成分100質量%のうち、50質量%以上を占
める成分であり、第2の領域6における主成分とは、第2の領域6を構成する全成分100
質量%のうち、50質量%を超える成分のことである。
また、第1部材1および第2部材2の炭化珪素質焼結体における炭化珪素の含有量は、次にようにして求めることができる。まず、X線回折装置(XRD)を用いて測定し、得られた2θ(2θは、回折角度である。)の値よりJCPDSカードを用いて同定することにより、炭化珪素の存在を確認する。次に、例えばICP(Inductively Coupled Plasma)発光分光分析装置(ICP)を用いて、珪素(Si)の定量分析を行なう。そして、ICPで測定したSiの含有量を炭化珪素(SiC)に換算すればよい。
また、第1の領域5の主成分である炭化珪素および第2の領域6の主成分である金属珪素の存在の確認および含有量については、次のようにして求める。
接合層3における金属珪素と炭化珪素との存在の有無については、走査型電子顕微鏡(SEM)および付設のエネルギー分散型分析装置(EDS)を用いて確認すればよい。具体的には、接合層3を含むようにセラミック流路体10を切断し、切断面をダイヤモンド砥粒などの研磨剤を用いて鏡面に加工し、この鏡面をSEMで観察し、EDSにより、観察領域において確認される結晶粒子および結晶粒子以外の部分に電子線を照射して検出される特性X線より確認すればよい。なお、結晶粒子において珪素と炭素が観察され、結晶粒子以外の部分に珪素が確認されれば、炭化珪素および金属珪素が存在するといえる。
また、他の方法としては、電子線マイクロアナライザー(EPMA)を用いて、上述の接合層3を含むようにセラミック流路体10を切断して加工した鏡面において、炭素が確認される領域で珪素が確認されれば炭化珪素の結晶粒子が存在するとみなし、珪素が確認される領域で炭素が確認されなければ金属珪素が存在するとみなしてもよい。
次に、接合層3における金属珪素および炭化珪素のそれぞれの含有量を求めるには、珪素の含有量をICP、炭素の含有量を炭素分析装置で測定して、炭素の含有量を炭化珪素(SiC)に換算した値を炭化珪素の含有量とし、この換算で用いられた珪素以外の珪素の含有量を金属珪素の含有量とすればよい。そして、ここで得られた炭化珪素の含有量の合計が50質量%を超えていることにより、接合層3における第1の領域5の主成分といえる。また、逆に、金属珪素の含有量の合計が50質量%を超えていることにより、接合層3における第2の領域6の主成分といえる。
また、第1の領域5と第2の領域6との境界の判別については、SEMの反射電子像を用いて、例えば、150倍以上1000倍以下の倍率を適宜選択して鏡面を観察することにより
判別するか、EPMAを用いて、鏡面における流路側および外周側の間の珪素の線分析を行なって、珪素の含有量の変化、あるいは同様に、炭化珪素の含有量の変化から判別してもよい。そして、金属珪素と炭化珪素のどちらかが50質量%を超える所を境界とすればよい。
また、本実施形態のセラミック流路体10は、第1部材1および第2部材2における面積の小さい方の接合面の面積100%のうち、接合層3の面積が80%以上であることが好まし
い。
第1部材1および第2部材2における面積の小さい方の接合面の面積100%のうち、接
合層3の面積が80%以上であると、接合層3は十分な接合面積を得ることができるので優れた接合強度を有することができて好ましい。
また、本実施形態のセラミック流路体10は、第1部材1および第2部材2における面積の小さい方の接合面の面積100%のうち、第2の領域6の面積占有率が10%以上40%以下
であることが好ましい。
本実施形態のセラミック流路体10は、第2の領域6の面積占有率が10%以上40%以下であると、金属珪素を主成分とする第2の領域6の面積占有率が10%以上なので優れた気密性を有するとともに、面積占有率を40%以下とすることにより、炭化珪素を主成分とする第1の領域の面積占有率が60%を超えるものとなるので優れた接合強度を有し、耐久性および耐食性に優れるセラミック流路体10とすることができる。
また、本実施形態のセラミック流路体10は、第1の領域は金属珪素と、銅およびマンガンの少なくともいずれかとを含んでいることが好ましい。
接合層3における第1の領域5に、金属珪素を含むと、金属珪素は第1の領域5において炭化珪素同士を繋ぎ、接合強度を高めるが、高温と室温間の温度サイクル下での使用環境では体積変化を生じてクラックを生じるおそれがある。銅およびマンガンの少なくともいずれかの金属成分を含んでいると、このクラックを銅およびマンガンの金属成分が埋めることとなるので、優れた接合強度は維持され、優れた耐久性を有するものとなる。
また、銅およびマンガンの合計の含有量は、第1の領域5を構成する全成分100質量%
のうち1質量%以上40質量%以下であることが好適である。銅およびマンガンの合計の含有量が、1質量%以上40質量%以下であるときには、金属珪素と銅またはマンガンとの共晶点を高くできるため、高温環境下における第1の領域5の接合強度を優れたものとすることができる。
そして、第1の領域5における銅およびマンガンの含有量については、ICPまたはEPMAを用いることによって確認することができる。
また、本実施形態のセラミック流路体10は、第1の領域5における炭化珪素の粒子の分散度が0.3以上0.9以下であることが好ましい。
接合層3の第1の領域5における炭化珪素の粒子の分散度が0.3以上0.9以下であるときには、第1の領域5において炭化珪素の結晶粒子が分散して存在しているため、高温に繰り返し曝されて接合層3にクラックが生じて延伸したとしても炭化珪素の結晶粒子によって、その進展が遮られる。それゆえ、高温環境下においても高い接合強度を有する。
ここで、分散度とは、重心間距離の標準偏差を重心間距離の平均値で割った値であり、
接合層3の第1の領域5の断面を観察して得られた画像を画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)を用いて重心間距離法という手法で解析して導かれる値である。そして、第1の領域5の断面とは、セラミック流路体10を切断し、平均粒径が0.1μmのダイヤモンド砥粒をポリッシングクロス(例えば、日本エンギス(株)製ポリッシングクロス(コードNo.410またはNo.9450))に滴下した後、第1の領域5を研磨して得られる鏡面のことである。また、画像とは、第1の領域5の断面から炭化珪素の粒子が平均的に観察される部分を選択し、SEMを用いて1000倍の倍率として、面積が1.1×10μm(例えば、横方向の長さが128μm,縦方向の長さが86μm)となる範囲の画像のことである。なお、解析時の設定条件としては、粒子の明度を暗、2値化の方法を自動、小図形除去面積を0μmとして測定すればよい。
また、本実施形態のセラミック流路体10を構成する第1部材1および第2部材2の炭化珪素質焼結体は、相対密度がいずれも95体積%以上99体積%以下であることが好適である。第1部材1および第2部材2の炭化珪素質焼結体の相対密度は、JIS R 1634−1998に準拠して求め、この見掛密度を炭化珪素質焼結体の理論密度で除すことにより求めればよい。
そして、第1部材1と、第2部材2の炭化珪素質焼結体は、用いられる環境に応じて、相対密度の異なる組合せとしてもよい。例えば、外部から受けた熱を流体に効率よく伝えたいところに、相対密度の高い焼結体を用いたり、流体が持つ熱を放散させたくないところに、相対密度の低い焼結体を用いたりすることができる。
また、本実施形態の熱交換器は、本実施形態のセラミック流路体10を備えることにより、優れた接合強度と気密性を有し、耐食性および耐久性にも優れるものとできるので好ましい。
図3は、本実施形態のセラミック流路体を備えた熱交換器の用途の一例を示す集光型太陽光発電装置の概略図である。
図3に示す集光型太陽光発電装置20は、集光した太陽光の熱で媒体を加熱し、加熱された媒体の熱を利用して発電するものであり、低温媒体貯蔵タンク11、集熱器(熱交換器)12、高温媒体貯蔵タンク13、エネルギー変換システム14によって構成されている。発電までの流れとしては、低温媒体貯蔵タンク11から媒体を熱交換器12へ圧送し、集光した太陽光を熱交換器12に当てることによって媒体を加熱して、加熱された媒体を高温媒体貯蔵タンク13に貯蔵し、高温媒体貯蔵タンク13から圧送される加熱された媒体の熱エネルギーを使ってエネルギー変換システム14にて発電するものである。なお、熱を奪われた媒体は低温媒体貯蔵タンク11へと送られ、このサイクルを繰り返すことによって、燃料資源を使用せず、温室効果ガスを排出することなく、電気を得ることができるため経済面および環境面において有用なものである。
そして、熱交換器12には、媒体の流路が設けられたセラミック流路体10が複数組み込まれており、このセラミック流路体10は、数メートルに及ぶ長尺部材であり、集光された太陽光によって熱を受けるセラミック流路体10は、高温に耐えられるものでなければならない。なお、このセラミック流路体10は、図1に示すセラミック流路体10aと同様の構成を示すものであり、セラミック流路体10が本実施形態のセラミック流路体10aからなることにより、優れた接合強度と気密性を有していることから、長期間にわたって安定して発電することができる信頼性の高い集光型太陽光発電装置20とすることができる。
なお、本実施形態の熱交換器12は、上述の集光型太陽光発電装置20の熱交換器12で示した態様に限らず、例えば、円筒状の第1部材1と平板状の第2部材2との貫通孔を連ねて
接合し、本実施形態のセラミック流路体10を備える熱交換器12としても構わない。
次に、本実施形態のセラミック流路体の製造方法の一例について説明する。
まず、第1部材1および第2部材2の炭化珪素質焼結体をそれぞれ準備する。次に、第1部材1および第2部材2のいずれか一方の接合面に、接合層3となる第1の領域5および第2の領域6用のペースト(例えば、それぞれ有機溶媒中に、炭化珪素粉末、金属珪素粉末、炭素粉末、エチルセルロースまたはアクリル系のバインダーなどを含む)を塗布した後、接合面を合わせて接合面に垂直な方向から加圧する。なお、接合層3における第1の領域5の主成分を炭化珪素とするには、炭化珪素粉末およびその他の原料粉末(例えば、金属珪素粉末、炭素粉末など)の質量合計100質量%のうち、炭化珪素粉末の質量を50
質量%以上、好ましくは、70質量%以上とすればよい。接合層3における第2の領域6の主成分を金属珪素とするには、金属珪素粉末およびその他の原料粉末(例えば、炭化珪素粉末、炭素粉末など)の質量合計100質量%のうち、金属珪素の質量が50質量%を超える
、好ましくは、70質量%以上にすればよい。また、第1の部材1および第2の部材2を接合するときの加圧は、接合する部材それぞれの自重によるものであってもよい。
ここで、前述の接合層3の第1の領域5が銅およびマンガンの少なくともいずれかを含むセラミック流路体10を得るには、第1の領域5となるペーストに、銅の粉末およびマンガンの粉末の少なくともいずれかを含ませればよい。
また、接合層3の第1の領域5における炭化珪素の粒子の分散度が0.3以上0.9以下であるセラミック流路体10を得るには、攪拌脱泡装置を用い、この攪拌脱泡装置内の収納容器に、例えば、有機溶媒、炭化珪素粉末、エチルセルロースまたはアクリル系のバインダー、炭素粉末を投入して、収納容器の回転数を2000rpmとして2〜12分回転させた後、回転数を2200rpmとして30秒逆回転させればよい。
そして、加圧した状態で、温度を80℃以上200℃以下、保持時間を8時間以上14時間以
下として乾燥する。
その後、アルゴン等の不活性ガス雰囲気中、圧力を1気圧、保持温度を1400℃以上1500℃以下、保持時間を30分以上90分以下として熱処理することにより、本実施形態のセラミック流路体10を得ることができる。なお、1100℃から保持温度までの昇温速度は、例えば、2℃/分以上2.5℃/分以下とすることが好適である。
以上の製造方法により、セラミック流路体10を製造することができる。
以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
まず、炭化珪素質焼結体からなる、形状がいずれも角形の筒状体で同一形状の第1部材および第2部材を準備した。なお、実施例1において作製するセラミック流路体は、JIS R 1624−2010に準拠した試験片(縦3mm×横4mm×長さ50mm)を接合層を含んで切り出すことができる寸法とした。
そして、第1部材の接合面に、接合層の厚みが40μmとなるように接合層となるペースト(有機溶媒であるテルピネオール中に、炭化珪素粉末、金属珪素粉末、炭素粉末、エチルセルロースを含む)を塗布した。なお、粉末の合計100質量部に対し、テルピネオール
については30質量部とし、エチルセルロースについては12質量部とした。さらに、接合面
への垂直方向の加圧は、第2の炭化珪素質焼結体の自重によるものとした。
また、試料No.1〜7については、セラミック流路体の接合層における流路側に第1の領域が位置するようにし、外周側に第2の領域が第1の領域を囲繞するように作製した。このとき、第1の領域として、接合層の炭化珪素粉末、金属珪素粉末、炭素粉末の質量比率が炭化珪素粉末90、金属珪素粉末9、炭素粉末1となるようにした。また、第2の領
域は、炭化珪素粉末9、金属珪素粉末90、炭素粉末1とした。
試料No.8〜12については、セラミック流路体の流路側に第2の領域が位置するようにし、外周側に第1の領域が第2の領域を囲繞するようにした。そして、第1の領域および第2の領域の接合層の炭化珪素粉末、金属珪素粉末、炭素粉末の質量比率は試料No.1〜7と同じにした。
試料No.13、14については流路側が第2の領域、外周側が第1の領域となるようにした。試料No.13の第1の領域および第2の領域の接合層の炭化珪素粉末、金属珪素粉末、炭素粉末の質量比率は、試料No.1と同じである。試料No.14の第1の領域および
第2の領域の接合層の炭化珪素粉末、金属珪素粉末、炭素粉末の質量比率は、試料No.12と同じである。
試料No.13は、流路側が第2の領域、外周側が第1の領域となるようにし、第1の領域の炭化珪素粉末、金属珪素粉末、炭素粉末の質量比率は、試料No.1と同じとし、第
2の領域の炭化珪素粉末、金属珪素粉末、炭素粉末の質量比率は、39:60:1とした。
また、試料No.14は、流路側が第1の領域、外周側が第2の領域となるようにし、第1の
領域の炭化珪素粉末、金属珪素粉末、炭素粉末の質量比率は、60:39:1とし、第2の領域の接合層の炭化珪素粉末、金属珪素粉末、炭素粉末の質量比率は、試料No.1〜7と同じとした。
試料No.15については、炭化珪素を主成分とする第1の領域のみとし、試料No.1の第1の領域の質量比率と同じとした。試料No.16については、金属珪素を主成分とする第1の領域のみとし、試料No.1の第2の領域と同じ質量比率とした。
なお、第1部材と第2部材の間の接合面の面積を100面積%としたときに、接合層が占
める面積の割合を、表1に接合層の面積割合(%)で示した。
また、接合面の面積100%のうち、第2の領域の面積占有率を表1に示した。
次に、セラミック流路体のそれぞれを140℃で11時間保持して乾燥させた。その後、ア
ルゴン雰囲気中、圧力を1気圧、保持温度を1430℃、保持時間を60分、1100℃から保持温度の1430℃までの昇温速度は、いずれも2.2℃/分として熱処理することにより、第1部
材と第2部材とが接合された試料No.1〜16のセラミック流路体を得た。そして、このセラミック流路体から切り出しし、縦3mm×横4mm×長さ50mmの試験片を得た。
そして、JIS R 1624−2010に準拠して4点曲げ強度を測定した。この接合強度を表1の接合強度Aの欄に記載した。
同様に作製した試料No.1〜16を用いて、室温(25℃程度)から加熱して、600℃10分
で保持し、さらに室温へ冷却する冷熱サイクル(室温から600℃での保持を1サイクル)
を10回繰り返した。その後、試験片を切り出し上記と同様に接合強度を測定した。
また、同様に作製した試料No.1〜16を用いてJIS Z 2331−2006で規定する真
空吹付け法(スプレー法)に準拠して、接合部におけるヘリウムガスのリーク量を常温で測定した。なお、ヘリウムガスの流れは試験片における流路側から外周側方向とした。そして、リーク量が10−9Pa・m/秒を超えた試料を「0」を、リーク量が10−10Pa・m/秒以上10−9Pa・m/秒以下の試料については「1」を、リーク量が10−10Pa・m/秒未満の試料については「2」をそれぞれ表1に記入した。
また、同様に作製した試料No.1〜7の試験片に、セラミック流路体の流路側に相当する部分を除き耐フッ化水素性のコーティングを施し、流路側に相当する部分のみがフッ化水素(HF)の濃度が1質量%の水溶液に浸るようにして10日間放置した。同様に、試料No.8〜14については、セラミック流路体の外周側のみがHFの濃度が1質量%の水溶液に浸るようにして10日間放置した。試料No.15、16については、共にセラミック流路体の流路側のみをHFの濃度が1質量%の水溶液に浸るようにして、10日間放置したものを評価した。その後、JIS R 1624−2010に準拠して4点曲げ強度を測定した。この接合強度を表1の接合強度Bの欄に記載した。
Figure 2016069207
結果を表1に示す。なお、試料No.1〜14の冷熱サイクル後の接合強度は接合強度Aからの低下は見られなかったため、表1には記載していない。
試料No.1〜7は、接合層の流路側に主成分が炭化珪素の第1の領域、外周側に金属珪素が主成分の第2の領域が位置しているので、腐食性ガスや液体の環境下であっても優れた接合強度を有し、冷熱サイクルを経ても接合強度は300MPa以上であって、耐食性
、耐久性に優れ、リークも少ないことから気密性にも優れることが分かる。試料No.15は、接合強度は優れるが、リークにおいては劣り、気密性に問題があることが分かる。また、試料No.16は、接合強度が不足していることが分かる。
また、試料No.8〜12は、接合層の流路側に主成分が金属珪素の第2の領域、外周側
に炭化珪素が主成分の第1の領域が位置しているので、流路を流れる流体が腐食性ガスや液体であっても、優れた接合強度を有し、冷熱サイクルを経ても接合強度は300MPa以
上であって、耐食性、耐久性に優れ、リークも少ないことから気密性にも優れることが分かる。
また、試料No.3と試料No.6および7とを比較すると、接合層の面積割合は80%以上だとより好ましいことが分かる。
また、試料No.13は、第2の領域の金属珪素の含有量を90質量%から60質量%としたものであるが、含有量を減少させても優れた接合強度、耐食性および耐急性と気密性に優れることが分かる。
また、試料No.14は、第1の領域の炭化珪素の含有量を90質量%から60質量%としたものであるが、接合強度に影響する炭化珪素を減少しても接合強度は維持でき、優れた耐久性および耐食性を有することが分かる。
また、金属珪素が主成分の第2の領域の面積占有率は、5%であると気密性が抑制される傾向があり、45%だと接合強度が抑制される傾向がある点から10%〜40%が好ましいことが分かる。
以上のことから、本実施例のセラミック流路体は、耐食性のガスや液体の環境下であっても優れた接合強度、耐食性および耐久性を有し、気密性も優れていることが分かる。
接合層となるペーストに銅およびマンガンのうち少なくとも1種を合計で3質量%含むこと以外は実施例1の試料No.1と同様にして試料(角形の筒状体)を作製し、評価した。銅およびマンガンの両方を含む場合は、銅とマンガンの質量比は同じとした。EDSを用いて接合層および第1の被覆層に含まれる金属成分を確認した。
そして、各試料を熱処理装置内に配置した後、昇温して、酸素分圧が10−9MPaであり水蒸気を含む雰囲気において1250℃で10時間保持した後、常温まで降温した。そして、この昇温、保持および降温するという処理を1サイクルとし、この処理を50サイクル繰り返すサイクル試験を実施した。
そして、JIS R 1624−2010に準拠して、サイクル試験前の試料およびサイクル試験後の試料の常温における4点曲げ強度を測定し、得られた値をそれぞれ接合強度σ、σとして表2に示した。また、接合強度の低下率Δσ(%:(σ−σ)/σ×100)を算出して表2に示した。
また、サイクル試験を施した試料をJIS Z 2331−2006で規定する真空吹付け法(スプレー法)に準拠して、接合部におけるヘリウムガスのリーク量を常温で測定した。なお、ヘリウムガスの流れは試験片における流路側から外周側方向とした。リーク量が10−10Pa・m/秒以上10−9Pa・m/秒以下の試料については「1」を、リーク量が10−10Pa・m/秒未満の試料については「2」をそれぞれ表2に記入した。
また、EDSを用いて接合層および第1の被覆層に含まれる金属成分を確認した。結果を表2に示す。なお、表2に示す試料のうち、試料No.17は実施例1の表1に示す試料No.1と同じである。
Figure 2016069207
表2に示すように、試料No.18〜20は試料No.17に比べ、接合強度の低下率が低いことが分かった。それゆえ、接合層が、金属珪素と、金属成分として銅およびマンガンの少なくともいずれかとを含んでいることから、冷熱サイクルを繰り返しても優れた接合強度が維持でき、また、リーク量も少ないことから気密性も向上して優れた耐久性を有していることが分かった。
まず、実施例2の試料No.17で用いた第1の領域となるペーストを用意した。また、炭化珪素の分散度が異なるペーストを作製するために、炭化珪素粉末と、炭化珪素粉末100質量部に対し、30質量部のテルピネオールと、12質量部のエチルセルロースとを用意し
た。そして、これらを攪拌脱泡装置内の収納容器に投入して、収納容器の回転数を2000rpmとして表3に示す時間で回転させた後、回転数を2200rpmとして30秒逆回転させることにより、接合層の第1の領域となるペーストを得た。そして、実施例2の試料No.17と同様の方法により各試料を作製した。なお、表3に示す試料のうち、試料No.21は実施例2の試料No.17と同じである。
そして、実施例2と同様の方法によりサイクル試験を行ない、JIS R 1624−2010に準拠して、サイクル試験前の試料およびサイクル試験後の試料の常温における4点曲げ強度を測定し、得られた値をそれぞれ接合強度σ、σとして表3に示した。また、接合強度の低下率Δσを算出して表3に示した。また、実施例2と同様の方法により、接合部におけるヘリウムガスのリーク量を測定するとともに評価した。
また、各試料を接合層を確認できるように切断し、平均粒径が0.1μmのダイヤモンド
砥粒をポリッシングクロス(日本エンギス(株)製ポリッシングクロス(コードNo.410))に滴下した後、SEMを用いて1000倍の倍率で観察した。そして、接合層において炭化珪素の粒子が平均的に観察される部分を選択し、面積が1.1×10μm(横方向の長さが128μm,縦方向の長さが86μm)となる範囲の画像を画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)を用いて重心間距離法という手法で接合層における炭化珪素の粒子の分散度を求め、その値を表3に示した。なお、解析時の設定条件としては、粒子の明度を暗、2値化の方法を自動、小図形除去面積を0μmとして測定した。結果を表3に示す。なお、表3に示す試料のうち、試料No.21は実施例2の表2に示す試料No.17と同じである。
Figure 2016069207
表3に示すように、接合層における炭化珪素の粒子の分散度が0.3以上0.9以下である試料No.22〜24は、サイクル試験を施しても接合強度の低下率が低く、リーク量も少ないことから、優れた耐久性を有していることがわかった。
1:第1部材
2:第2部材
3:接合層
4:流路
5:第1の領域
6:第2の領域
10:セラミック流路体
12:熱交換器
20:集光型太陽光発電装置

Claims (8)

  1. 共に貫通孔を有する第1部材と第2部材とが接合層を介して接合され、前記貫通孔の連なりが流体の流路とされた炭化珪素質焼結体からなるセラミック流路体であり、炭化珪素を主成分とする第1の領域と、金属珪素を主成分とする第2の領域とを有しており、前記第1の領域および前記第2の領域のいずれか一方が前記流路側に位置しているとともに、他方が外周側で囲繞していることを特徴とするセラミック流路体。
  2. 前記流路側に位置しているのが、前記第1の領域であることを特徴とする請求項1に記載のセラミック流路体。
  3. 前記流路側に位置しているのが、前記第2の領域であることを特徴とする請求項1に記載のセラミック流路体。
  4. 前記第1部材および前記第2部材における面積の小さい方の接合面の面積100%のうち、前記接合層の面積が80%以上であることを特徴とする請求項1乃至請求項3のいずれかに記載のセラミック流路体。
  5. 前記第1部材および前記第2部材における面積の小さい方の接合面の面積100%のうち、前記第2の領域の面積占有率が10%以上40%以下であることを特徴とする請求項1乃至請求項4のいずれかに記載のセラミック流路体。
  6. 前記第1の領域は、金属珪素と、銅およびマンガンの少なくともいずれかとを含んでいることを特徴とする請求項1乃至請求項5のいずれかに記載のセラミック流路体。
  7. 前記第1の領域における前記炭化珪素の粒子の分散度が0.3以上0.9以下であることを特徴とする請求項1乃至請求項6のいずれかに記載のセラミック流路体。
  8. 請求項1乃至請求項7のいずれかに記載のセラミック流路体を備えることを特徴とする熱交換器。
JP2014198613A 2014-09-29 2014-09-29 セラミック流路体およびこれを備える熱交換器 Pending JP2016069207A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014198613A JP2016069207A (ja) 2014-09-29 2014-09-29 セラミック流路体およびこれを備える熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198613A JP2016069207A (ja) 2014-09-29 2014-09-29 セラミック流路体およびこれを備える熱交換器

Publications (1)

Publication Number Publication Date
JP2016069207A true JP2016069207A (ja) 2016-05-09

Family

ID=55866046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198613A Pending JP2016069207A (ja) 2014-09-29 2014-09-29 セラミック流路体およびこれを備える熱交換器

Country Status (1)

Country Link
JP (1) JP2016069207A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124778A1 (ko) * 2017-12-19 2019-06-27 주식회사 티씨케이 접합 세라믹 및 이의 제조방법
WO2019124779A1 (ko) * 2017-12-19 2019-06-27 주식회사 티씨케이 유체 흐름이 가능한 유로가 형성된 접합 세라믹 및 이의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124778A1 (ko) * 2017-12-19 2019-06-27 주식회사 티씨케이 접합 세라믹 및 이의 제조방법
WO2019124779A1 (ko) * 2017-12-19 2019-06-27 주식회사 티씨케이 유체 흐름이 가능한 유로가 형성된 접합 세라믹 및 이의 제조방법
US11390566B2 (en) 2017-12-19 2022-07-19 Tokai Carbon Korea Co., Ltd Bonded ceramic and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP6001761B2 (ja) セラミック接合体および流路体
JP2006083057A (ja) セラミック構成要素を低変形拡散溶接するための方法
Paul et al. Formation and characterization of uniform SiC coating on 3-D graphite substrate using halide activated pack cementation method
CN110160385B (zh) 一种传热组件内部低温烧结的毛细结构及其制造方法
JP2016069207A (ja) セラミック流路体およびこれを備える熱交換器
Koga et al. Fabrication of nanoporous Cu sheet and application to bonding for high-temperature applications
KR102102625B1 (ko) 세라믹 접합체
Zhou et al. Dual atmosphere isothermal aging and rapid thermal cycling of Ag-Ni and Ag-CuO stainless steel to zirconia braze joints
CN104711457A (zh) 一种高温焊料及其应用
JP6306723B2 (ja) セラミック接合体およびこれを備える熱交換器
Bobzin et al. Influence of filler and base material on the pore development during reactive air brazing
Berard et al. Influence of a sealing treatment on the behavior of plasma-sprayed alumina coatings operating in extreme environments
JP2013216500A (ja) 炭化珪素質接合体およびこれからなる伝熱管ならびにこの伝熱管を備える熱交換器
JP2016108170A (ja) セラミック流路体およびこれを備える熱交換器
CN114315405B (zh) 前驱体、多孔介质燃烧器及制法、改善SiC抗氧化方法
JP6864470B2 (ja) セラミック接合体
CN112593184B (zh) 提高铌基合金抗氧化性能的方法、应用及抗氧化铌基合金
JP2015160776A (ja) セラミック接合体および流路体
CN104177113B (zh) 一种SiC粘结的陶瓷基复合材料及其制备方法
WO2016002852A1 (ja) セラミック構造体および流路体ならびに電極内蔵プレート
JP6449680B2 (ja) セラミック接合体およびセラミック流路体ならびにこれを備える熱交換器
RU2812432C1 (ru) Способ получения пористой опоры из нержавеющей стали для твердооксидных топливных элементов и пористая опора, полученная указанным способом
JP6208544B2 (ja) セラミック接合体
JP6926217B2 (ja) 構造体
Hu High Performance Silver-Based Brazes, Current Collectors, and Electrical Contacts Fabricated Via a Novel Particle Interlayer Directed Wetting and Spreading Technique