WO2016002852A1 - セラミック構造体および流路体ならびに電極内蔵プレート - Google Patents

セラミック構造体および流路体ならびに電極内蔵プレート Download PDF

Info

Publication number
WO2016002852A1
WO2016002852A1 PCT/JP2015/069030 JP2015069030W WO2016002852A1 WO 2016002852 A1 WO2016002852 A1 WO 2016002852A1 JP 2015069030 W JP2015069030 W JP 2015069030W WO 2016002852 A1 WO2016002852 A1 WO 2016002852A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic structure
recess
pores
aluminum nitride
bonding
Prior art date
Application number
PCT/JP2015/069030
Other languages
English (en)
French (fr)
Inventor
瑞穂 大田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2016002852A1 publication Critical patent/WO2016002852A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals

Definitions

  • the present invention relates to a ceramic structure, a flow path body, and an electrode built-in plate made of an aluminum nitride ceramics joined body.
  • aluminum nitride Since aluminum nitride has high thermal conductivity, it is used for various heat radiating members and plates with built-in electrodes, such as aluminum nitride itself, heat exchangers by flowing fluid through channels made of aluminum nitride, etc. Yes.
  • Such a heat radiating member is required to have a complicated shape or a hollow shape in order to improve use and heat dissipation characteristics.
  • Various joining methods have been studied.
  • a sintered body made of aluminum nitride is bonded using a glass material or a brazing material, or a paste containing a powder and a binder having the same composition as the molded body is applied to the bonding surface of the molded body, cold still water, etc.
  • a method of joining by performing a heat-pressing process followed by a heat treatment.
  • patent document 1 it adjoins the content of the yttrium compound which produces
  • a method of superposing and hot-pressing in any combination different from each other has been proposed, and for the obtained bonded body, aluminum nitride particles at the bonding interface between bonded bodies made of ceramics mainly composed of aluminum nitride are used. It is described that yttrium aluminum oxide is sintered together as a grain boundary phase.
  • the present invention has been devised to satisfy the above-described requirements, and provides a ceramic structure and a flow path body, and a plate with a built-in electrode comprising a joined body of aluminum nitride ceramics having excellent durability against a thermal cycle. It is intended to do.
  • the ceramic structure of the present invention is a ceramic structure in which a first member made of aluminum nitride ceramics and a second member are joined via a joining layer made of aluminum nitride ceramics, and a joining surface in the joining layer
  • the cross-section perpendicular to the surface has 1000 to 1400 pores per 1 mm 2 , and the average circle equivalent diameter of the pores is 2 to 6 ⁇ m.
  • the flow path body of the present invention includes an annular first concave portion on the side of the joining surface of at least one of the first member and the second member, and the first concave portion is a flow path, It is characterized by having a fluid inlet / outlet connected to the flow path.
  • the electrode built-in plate according to the present invention includes an annular first recess on the side of the joining surface of at least one of the first member and the second member, and an electrode made of metal in a region corresponding to the first recess. It is characterized by that.
  • the ceramic structure of the present invention has excellent durability against a cooling cycle.
  • the flow path body and the electrode built-in plate of the present invention have excellent durability against a cooling cycle, they can be used for a long period of time.
  • FIG. 1A is a plan view showing an example of the ceramic structure of the present embodiment
  • FIG. 1B is a cross-sectional view taken along line A-A ′ in FIG. 1A
  • FIG. 2A is a plan view
  • FIG. 2B is a cross-sectional view taken along the line BB ′ in FIG. 2A
  • FIG. 2C is an enlarged view of a portion E in FIG. 2B, showing another example of the ceramic structure of the present embodiment.
  • FIG. 1A is a plan view showing an example of the ceramic structure of the present embodiment
  • FIG. 1B is a cross-sectional view taken along line A-A ′ in FIG. 1A
  • FIG. 2A is a plan view
  • FIG. 2B is a cross-sectional view taken along the line BB ′ in FIG. 2A
  • FIG. 2C is an enlarged view of a portion E in FIG. 2B, showing another example of the ceramic structure of the present embodiment.
  • FIG. 1 shows an example of the ceramic structure of the present embodiment
  • FIG. 1a is a plan view
  • FIG. 1b is a cross-sectional view taken along line A-A 'in FIG. 1a.
  • the same members are denoted by the same reference numerals.
  • the ceramic structure 10 of the example shown in FIGS. 1a and 1b is formed by bonding a first member 1 and a second member 2 made of aluminum nitride ceramics via a bonding layer 3 made of aluminum nitride ceramics.
  • 1a and 1b show an example in which the first member 1 has a disk shape and the second member 2 has a thicker disk shape than the first member 1.
  • aluminum nitride ceramics will contain 70 mass% or more of aluminum nitride among the total 100 mass% of the component which comprises the 1st member 1. The same applies to the second member 2 and the bonding layer 3.
  • the ceramic structure 10 of the present embodiment has 1000 or more and 1400 or less pores per 1 mm 2 in a cross section perpendicular to the joining surface in the joining layer 3, and the average value of the equivalent circle diameters of the pores Is 2 ⁇ m or more and 6 ⁇ m or less.
  • the number of pores per 1 mm 2 is less than 1000, the above-described effects such as stress relaxation and crack propagation when subjected to a thermal cycle cannot be sufficiently obtained.
  • the number of pores per 1 mm 2 exceeds 1400, the distance between the pores is close, so that cracks caused by the stress when subjected to the thermal cycle are likely to progress, and before the thermal cycle is received This results in low bonding strength.
  • the ceramic structure 10 is cut perpendicular to the joint surface.
  • the cut surface is polished to give a mirror surface.
  • the image can be obtained by capturing an image in a range in which the length in the vertical direction is 415 ⁇ m) with a CCD camera and performing particle analysis using image analysis software “A Image-kun” (registered trademark, manufactured by Asahi Kasei Engineering Corp.). .
  • the measurement is performed at at least three locations.
  • the cross section as shown in FIG. 1b is used as the measurement surface, the first concave portion and the two concave portions located about 1 mm inside from both outer surface sides Measurements are made at a total of three locations in the center between 4, and the average value is taken as the average value of the number of pores per 1 mm 2 and the equivalent circle diameter of the pores.
  • the brightness is set to light
  • the binarization method is manually set
  • the small figure removal area is set to 0 ⁇ m
  • a threshold value that is an index indicating the brightness of the image is set to each point in the image. 1 to 2.5 times the peak value of the histogram indicating the brightness of each pixel.
  • FIG. 1 a and FIG. 1 b an example is shown in which the first concave portion 4 connected in a ring shape is formed as a hollow portion by being covered with the first member 1.
  • the ceramic structure 10 can be reduced in weight while being densified by improving the sinterability.
  • the ceramic structure 10 can be used as a flow path body. If a hole connected to the first recess 4 is provided, a paste containing a metal powder is poured into the first recess 4 from this hole, and firing is performed in a firing atmosphere and firing temperature that matches the metal powder used in the paste. It can be. Since the flow path body and the electrode-embedded plate having the above-described structure have excellent durability with respect to the thermal cycle, they can be used for a long period of time.
  • the average value of the aspect ratio of the pores in the cross section perpendicular to the bonding surface of the bonding layer 3 is 1.5 or less.
  • the lower limit of the average value of the aspect ratio is 1.
  • the average value of the aspect ratio of the pores is the same as the method for measuring the number of pores per 1 mm 2 and the average value of the equivalent circle diameter of the pores.
  • the particle analysis can be performed using the image analysis software, and the same setting conditions can be used.
  • FIG. 2 shows another example of the ceramic structure of the present embodiment
  • FIG. 2a is a plan view
  • FIG. 2b is a cross-sectional view taken along line BB ′ in FIG. 2a
  • FIG. It is an enlarged view of the E section in 2b.
  • the ceramic structure 20 of the example shown in FIGS. 2a to 2c is similar to the ceramic structure 10 of the example shown in FIGS. 1a and 1b, in which the first member 1 and the second member 2 made of aluminum nitride ceramics are nitrided. It joins via the joining layer 3 which consists of aluminum ceramics.
  • 2A and 2B show an example in which the first member 1 has a disk shape and the second member 2 has a thicker disk shape than the first member 1.
  • the second member 2 has an annular first recess 4 on the joint surface side with the first member 1, and an annular second recess 5 located on the inner side of the first recess 4 and the second member 2.
  • the example which has the 3rd recessed part 6 located in the outer side rather than the 1 recessed part 4 is shown.
  • the first recesses 4 are wide and deep recesses in the cross section as shown in FIG.
  • the ceramic structure 20 having such a configuration includes the second recess 5 and the third recess 6, thereby allowing the bonding paste used at the time of bonding to be the first. Since the flow into the first concave portion 4 can be reduced, the region formed by the first member 1 and the first concave portion 4 is rarely reduced. Therefore, if the first recess 4 is a fluid flow path, the flow of the fluid is less likely to be hindered by the formation of the joining paste flowing in, and the fluid flow is good. Can be used as a body. Further, when the fluid discharged from the flow path is discharged into a product manufacturing environment, for example, environmental pollution due to particles composed of the components of the bonding layer 3 can be reduced.
  • the third recess 6 is not limited to a V-shaped cross section as shown in FIG.
  • the bottom part round like a U-shaped cross section, it is possible to reduce the flow of paste used during bonding while suppressing the partial concentration of mechanical and thermal stress. .
  • the bonding layer 3 has an inner layer inside the first recess 4 and an outer layer outside the first recess 4, and the outer layer is provided so as to surround the periphery of the first recess 4. And when the 1st recessed part 4 side in an outer layer is made into an internal area
  • the average number of pores in the inner region and the outer region can be measured by the same method as the method for measuring pores described above, about the inner region about 1 mm inside from the first recess 4 side, about the outer region, What is necessary is just to make inside about 1 mm from an outer surface side into a measurement location.
  • the content of aluminum nitride in the first member 1 and the second member 2 is preferably 99.8% by mass or more.
  • the content of aluminum nitride is 99.8% by mass or more, it has excellent corrosion resistance, and particularly excellent plasma resistance.
  • the crystal phase is identified by analyzing the first member and the second member using an X-ray diffraction apparatus (XRD).
  • XRD X-ray diffraction apparatus
  • the intensity of the peak indicating aluminum nitride is the highest
  • the method of converting the content of nitrogen (N) or aluminum (Al) to aluminum nitride (AlN) results in a wide range of analysis errors.
  • the content of aluminum nitride is determined by subtracting the total content from 100 and determining the content of aluminum nitride.
  • XRD results when the intensity of the peak indicating aluminum nitride is the highest, qualitative analysis is performed using an X-ray fluorescence analyzer (XRF) or an energy dispersive analyzer (EDS) attached to the SEM. Elements contained in the first member and the second member other than aluminum and oxygen (O) are confirmed. Then, the identified elements are quantitatively analyzed using an ICP emission spectroscopic analyzer (ICP) and converted into oxides.
  • XRF X-ray fluorescence analyzer
  • EDS energy dispersive analyzer
  • Si silicon
  • Fe iron
  • a molded body to be the first member 1 having a disk shape whose main component is made of aluminum nitride is prepared by a known manufacturing method.
  • a molded body that becomes the second member 2 including the first concave portion 4 on the joint surface side with the first member 1 is prepared by cutting one main surface of the molded body obtained by a known manufacturing method.
  • a main component is a component contained 70 mass% or more among 100 mass% of all the components which comprise a sintered compact.
  • aluminum nitride powder and an organic solvent for example, diethylene glycol, dipropylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol
  • an organic solvent for example, diethylene glycol, dipropylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol
  • Polytetramethylene glycol, polyethylene glycol, or cyclohexanedimethanol are weighed in predetermined amounts, placed in a storage container in a stirrer, and stirred to prepare a bonding paste that becomes the bonding layer 3.
  • the average particle size of the aluminum nitride powder is 0.9 ⁇ m or more and 1.1 ⁇ m or less, the powder filling rate in the bonding paste is 25 volume% or more and 35 volume% or less, and the viscosity of the bonding paste is 4 Pa ⁇ s or more and 7 Pa or less.
  • rotation speed shall be 800 rpm or more and 1200 rpm, and rotation time shall be 8 minutes or more and 16 minutes or less. In order to make the average aspect ratio of the pores 1.5 or less, the rotation time may be 12 minutes or more and 16 minutes or less.
  • the bonding paste is dried by holding at room temperature for 24 hours or more and 48 hours or less. Thereafter, in the air atmosphere, the temperature is raised at a rate of temperature rise of 8 ° C./hour to 16 ° C./hour and degreased by holding at a temperature of 450 ° C. to 550 ° C. for 8 hours to 12 hours. Get the body.
  • this ceramic structure 10 of this embodiment can be obtained by hold
  • the thickness of the joining layer 3 in the obtained ceramic joined body 10 is 50 micrometers or more and 65 micrometers or less, for example.
  • either the molded body to be the first member 1 or the molded body to be the second member 2 is used. Processing to provide two or more holes connected to the first recess 4 or processing to provide two or more holes connected to the first recess 4 in either the first member 1 or the second member 2 after firing. Should be done.
  • a paste containing metal powder is poured into the first recess 4 from the hole provided by processing, and then the paste What is necessary is just to bake by the baking atmosphere and baking temperature according to the metal powder used for this.
  • the bonding layer 3 is composed of an inner layer inside the first recess 4 and an outer layer outside the first recess 4, the first recess 4 side of the outer layer is an internal region and the outer surface side is an external region.
  • the particle size of the aluminum nitride powder used for the inner layer bonding paste is varied by changing the particle size of the aluminum nitride powder as a starting material. What is necessary is just to make a diameter smaller than the particle size of the aluminum nitride powder used for the joining paste for outer layers.
  • a molded body to be a disk-shaped first member whose main component is aluminum nitride was prepared by a known manufacturing method. Moreover, the molded object used as the 2nd member which has a cyclic
  • the bonding paste was dried by holding at room temperature for 36 hours. Thereafter, the temperature was raised at a rate of 12 ° C./hour in the air atmosphere, and degreasing was carried out by holding at a temperature of 500 ° C. for 10 hours to obtain a degreased body.
  • the obtained degreased body was fired in a nitrogen atmosphere at a temperature of 1980 ° C. for 6.5 hours to obtain a sample No. having the structure shown in FIG. 1-7 were obtained.
  • a plurality of samples were prepared. Further, the content of aluminum nitride in the sintered body was 99.9% by mass, and the value of the 4-point bending strength in the portion not including the bonding layer was 230 MPa.
  • the sample was cut perpendicularly to the bonding surface, and the cut surface was polished into a mirror surface while supplying diamond abrasive grains having an average particle size of 0.1 ⁇ m to a tin lapping machine. Then, after cleaning the mirror surface obtained by polishing, the bonding layer was observed at a magnification of 200 times using an optical microscope, and the area was 2.49 ⁇ 10 5 ⁇ m 2 (the horizontal length was 600 ⁇ m, the vertical direction The image of a range of 415 ⁇ m) is captured with a CCD camera, and the particle analysis is performed by the above-described image analysis software, whereby the average number of pores per 1 mm 2 of the bonding layer and the equivalent circle diameter of the pores is obtained. Asked.
  • the brightness is set to light
  • the binarization method is set manually
  • the small figure removal area is set to 0 ⁇ m
  • a threshold value that is an index indicating the brightness of the image is set to each point in the image. It was set to 2.2 times the peak value of the histogram indicating the brightness of the.
  • a cycle test after placing each sample in a heat treatment apparatus, a process of raising the temperature to 700 ° C. and lowering the temperature to normal temperature in an air atmosphere was set as one cycle, and this test was repeated 100 cycles. .
  • a sample that has been subjected to this test is referred to as a post-test sample, and a sample that has not been tested is referred to as an untested sample.
  • the leak amount of helium gas in the bonding layer was measured at room temperature in accordance with the vacuum spraying method (spray method) defined in JIS Z 2331-2006.
  • Table 1 shows “1” for samples with a leak amount of 10 ⁇ 8 Pa ⁇ m 3 / sec or more and “2” for samples with a leak amount of less than 10 ⁇ 8 Pa ⁇ m 3 / sec. The results are shown in Table 1.
  • the rotation time in the stirrer was set to the time shown in Table 2, and the sample No. 1 was prepared in the same manner as in Example 1 except that the pressure after application of the bonding paste was 24.5 kPa. 8-11 were obtained.
  • Example 2 the number of pores per 1 mm 2 of the bonding layer, the average value of the equivalent circle diameter of the pores, and the average value of the aspect ratio of the pores were obtained.
  • the number of pores per 1 mm 2 was in the range of 1000 to 1400, and the average circle equivalent diameter of the pores was in the range of 2 ⁇ m to 6 ⁇ m.
  • Table 2 shows the average aspect ratio of the pores and the results of the bonding strength.
  • sample No. Samples Nos. 9 to 11 are sample Nos. After the cycle test. A bonding strength higher than 8 is obtained, and since the average value of the aspect ratio of the pores is 1.5 or less, there are few acute angle portions in the outline of the pores. It was found that cracks starting from the contour are less likely to occur.
  • Raw materials with different contents of components other than aluminum nitride were prepared, and the plasma resistance was compared.
  • each sample was produced by the method similar to Example 1 except the used aluminum nitride raw material differing. Then, a test for generating plasma in the first recess is performed, the surface of the first recess after the test is observed, the corrosion state by the plasma is confirmed, the sample having the best plasma resistance is set to 1, and the numerical ranking I did.
  • the first member was used as a measurement sample, and qualitative analysis was performed using XRF, and elements other than nitrogen, aluminum, and oxygen were confirmed. .
  • the identified elements were quantitatively analyzed using ICP and converted to oxides. And the content of aluminum nitride was calculated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

 冷熱サイクルに対して優れた耐久性を有する窒化アルミニウム質セラミックスの接合体からなるセラミック構造体および流路体ならびに電極内蔵プレートを提供する。本発明のセラミック構造体10は、窒化アルミニウム質セラミックスからなる第1部材1および第2部材2が、窒化アルミニウム質セラミックスからなる接合層3を介して接合されてなり、接合層3における接合面に垂直な断面において、1mm当たりに1000個以上1400個以下の気孔を有しており、該気孔の円相当径の平均値が2μm以上6μm以下である。

Description

セラミック構造体および流路体ならびに電極内蔵プレート
 本発明は、窒化アルミニウム質セラミックスの接合体からなるセラミック構造体および流路体ならびに電極内蔵プレートに関する。
 窒化アルミニウムは、高い熱伝導性を有しているため、窒化アルミニウムそのものや、窒化アルミニウムで形成された流路に流体を流すことによる熱交換器など種々の放熱部材や電極内蔵プレートに用いられている。そして、このような放熱部材は、用途や、放熱特性の向上のため、複雑な形状としたり、中空形状にしたりすることが求められているためこれらの形状を組み合わせて作製するにあたり、窒化アルミニウムの接合方法が種々検討されている。
 例えば、ガラス材やろう材を用いて窒化アルミニウムからなる焼結体同士を接合したり、成形体における接合面に成形体と同組成の粉末とバインダを含有するペーストを塗布し、冷間静水等方加圧プレス処理した後、熱処理することによって接合する方法が提案されている。
 また、特許文献1では、窒化アルミニウムを主成分とする成形体、脱脂体、仮焼体および焼結体を、焼成によって液相の酸化イットリウムアルミニウムを生成するイットリウム化合物の含有量を隣接するもの同士で異ならせた任意の組み合わせで重ね合わせてホットプレスする方法が提案されており、得られた接合体について、窒化アルミニウムを主成分とするセラミックスからなる被接合体同士の接合界面における窒化アルミニウム粒子が酸化イットリウムアルミニウムを粒界相として互いに焼結されていることが記載されている。
特開2004-83366号公報
 複雑形状や中空形状とするために接合強度の向上を図るべく、接合層における気孔の数を減らすことができる種々の接合方法が検討されてきたが、その接合強度の評価は、接合によって得られた接合体、すなわち、冷熱サイクルを受ける前の接合体によって行なわれていた。
 それ故、冷熱サイクルを受ける前において、高い接合強度を有する接合体であったとしても、冷熱サイクルを受けると、生じた応力によってクラックが生じ、クラックの伸展が進むことによって、接合強度が大きく低下する場合があった。そのため、このような接合体には、冷熱サイクルによる接合強度の低下が少ないことが求められている。
 本発明は、上記要求を満たすべく案出されたものであり、冷熱サイクルに対して優れた耐久性を有する窒化アルミニウム質セラミックスの接合体からなるセラミック構造体および流路体ならびに電極内蔵プレートを提供することを目的とするものである。
 本発明のセラミック構造体は、窒化アルミニウム質セラミックスからなる第1部材および第2部材が、窒化アルミニウム質セラミックスからなる接合層を介して接合されてなるセラミック構造体であり、前記接合層における接合面に垂直な断面において、1mm当たりに1000個以上1400個以下の気孔を有しており、該気孔の円相当径の平均値が2μm以上6μm以下であることを特徴とするものである。
 また、本発明の流路体は、前記第1部材および前記第2部材の少なくともいずれかの前記接合面側に環状の第1凹部を備え、該第1凹部が流路とされており、該流路に繋がる流体の出入口を備えることを特徴とするものである。
 さらに、本発明の電極内蔵プレートは、前記第1部材および前記第2部材の少なくともいずれかの前記接合面側に環状の第1凹部を備え、該第1凹部にあたる領域に金属からなる電極を備えていることを特徴とするものである。
 本発明のセラミック構造体は、冷熱サイクルに対して優れた耐久性を有する。
 また、本発明の流路体および電極内蔵プレートは、冷熱サイクルに対して優れた耐久性を有しているため、長期間にわたって使用することができる。
本実施形態のセラミック構造体の一例を示す、図1aは平面図であり、図1bは図1aにおけるA-A’線での断面図である。 本実施形態のセラミック構造体の他の例を示す、図2aは平面図であり、図2bは図2aにおけるB-B’線での断面図であり、図2cは図2bにおけるE部の拡大図である。
 以下、本実施形態のセラミック構造体の例について、図面を用いて説明する。
 図1は、本実施形態のセラミック構造体の一例を示す、図1aは平面図であり、図1bは図1aにおけるA-A’線での断面図である。なお、以降の図において同一の部材には、同一の符号を付す。
 図1aおよび図1bに示す例のセラミック構造体10は、窒化アルミニウム質セラミックスからなる第1部材1および第2部材2が、窒化アルミニウム質セラミックスからなる接合層3を介して接合されてなる。なお、図1aおよび図1bにおいては、第1部材1が円板状であり、第2部材2が、第1部材1よりも厚肉の円板状である例を示している。また、第2部材2については、第1部材1との接合面側に環状に繋がる第1凹部4を有している例を示している。
 なお、窒化アルミニウム質セラミックスとは、第1部材1を例に挙げれば、第1部材1を構成する成分の合計100質量%のうち、窒化アルミニウムを70質量%以上含むもののことである。第2部材2および接合層3についても同様である。
 そして、本実施形態のセラミック構造体10は、接合層3における接合面に垂直な断面において、1mm当たりに1000個以上1400個以下の気孔を有しており、気孔の円相当径の平均値が2μm以上6μm以下である。このような構成を満たしていることにより、冷熱サイクルを受けた際、気孔の存在が応力を緩和する緩衝材の役割を為すとともに、応力によってクラックが生じたとしても、その進展を気孔によって遮ることができる。それ故、本実施形態のセラミック構造体10は、冷熱サイクルに対して優れた耐久性を有する。
 なお、1mm当たりにおける気孔の個数が1000個未満では、冷熱サイクルを受けた際の応力緩和やクラックの進展を遮るといった上述した効果が十分に得られない。また、1mm当たりにおける気孔の個数が1400個を超えるときには、気孔間の距離が近いために、冷熱サイクルを受けた際の応力によって生じたクラックが進展しやすくなるとともに、冷熱サイクルを受ける前時点での接合強度が低いものとなってしまう。
 次に、接合層3の接合面に垂直な断面における1mm当たりの気孔の個数および気孔の円相当径の平均値の測定方法を説明する。まず、セラミック構造体10を接合面に垂直に切断する。次に、平均粒径が0.05~0.15μmのダイヤモンド砥粒を錫製のラップ盤に供給しながら、切断面を研磨して鏡面とする。そして、研磨によって得られた鏡面を洗浄した後、光学顕微鏡または走査型電子顕微鏡(SEM)を用いて200倍の倍率で観察し、2.49×10μm(横方向の長さが600μm、縦方向の長さが415μm)となる範囲の画像をCCDカメラで取り込み、画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)による粒子解析を行なうことで求めることができる。
 なお、測定は少なくとも3カ所において行ない、例えば、図1bに示すような断面を測定面とした場合であれば、両方の外表面側から1mm程度内側に入った部分の2カ所と、第1凹部4の間の中央の1箇所の計3カ所について測定を行ない、この平均値を、1mm当たりの気孔の個数および気孔の円相当径の平均値とする。
 そして、粒子解析の設定条件としては、例えば、明度を明とし、2値化の方法を手動、小図形除去面積を0μm、画像の明暗を示す指標であるしきい値を、画像内の各点(各ピクセル)が有する明るさを示すヒストグラムのピーク値の1倍以上2.5倍以下とする。
 そして、図1aおよび図1bにおいては、環状に繋がる第1凹部4が、第1部材1に覆われていることによって中空部とされている例を示している。このように、環状の第1凹部4を備えているときには、焼結性の向上によって緻密化を図ることができるともに、セラミック構造体10の軽量化を図ることができる。
 また、環状の第1凹部4を備えているときには、このような構成に加えて、セラミック構造体10の外面から第1凹部4に繋がる孔を2カ所設け、これらの孔を流体の出入口とし、第1凹部4を流体の流路とすれば、セラミック構造体10は、流路体として用いることができる。また、第1凹部4に繋がる孔を設け、この孔より金属粉末を含むペーストを第1凹部4に流し込み、ペーストに使用した金属粉末に合わせた焼成雰囲気および焼成温度で焼成すれば、電極内蔵プレートとすることができる。上述した構造の流路体および電極内蔵プレートは、冷熱サイクルに対して優れた耐久性を有しているため、長期間にわたって使用することができる。
 また、本実施形態のセラミック構造体10は、接合層3の接合面に垂直な断面における気孔のアスペクト比の平均値が1.5以下であることが好適である。なお、アスペクト比が1である場合が真円であることから、アスペクト比の平均値の下限値は1である。
 上記構成を満たしているときには、気孔の輪郭に鋭角部分が少ないため、冷熱サイクルを受けた際の応力によって気孔の輪郭を起点とするクラックが生じにくくなる。
 なお、気孔のアスペクト比の平均値は、1mm当たりの気孔の個数および気孔の円相当径の平均値の測定方法と同様に、接合層3における接合面に垂直な断面を測定面とし、上述した画像解析ソフトによる粒子解析を行ない、同じ設定条件を用いて求めることができる。
 また、図2は、本実施形態のセラミック構造体の他の一例を示す、図2aは平面図であり、図2bは図2aにおけるB-B’線での断面図であり、図2cは図2bにおけるE部の拡大図である。
 図2a~図2cに示す例のセラミック構造体20は、図1aおよび図1bに示す例のセラミック構造体10と同様に、窒化アルミニウム質セラミックスからなる第1部材1および第2部材2が、窒化アルミニウム質セラミックスからなる接合層3を介して接合されてなる。なお、図2aおよび図2bにおいては、第1部材1が円板状であり、第2部材2が、第1部材1よりも厚肉の円板状である例を示している。また、第2部材2については、第1部材1との接合面側に環状の第1凹部4を有しているとともに、第1凹部4よりも内側に位置する環状の第2凹部5および第1凹部4よりも外側に位置する第3凹部6を有している例を示している。そして、環状の凹部を複数有するものであるとき、図2bに示すような断面において、幅が広く深さの深い凹部が第1凹部4である。
 このような構成のセラミック構造体20は、図1aおよび図1bに示す例のセラミック構造体10に比べ、第2凹部5および第3凹部6を備えていることにより、接合時に用いる接合ペーストの第1凹部4への流れ込みを少なくすることができるため、第1部材1と第1凹部4とで形成される領域が小さくなることが少ない。それ故、第1凹部4を流体の流路とすれば、接合ペーストが流れ込みによる形成物によって流体の流れが阻害されることが少なく、流体の流れ性が良好であるため、長期間にわたって流路体として使用することができる。また、この流路から排出された流体が、例えば、製品の製造環境に排出される場合、接合層3の成分からなるパーティクルによる環境汚染を少なくすることができる。
 なお、第3凹部6は、図2(c)に示したような断面がV字形状に限定されない。例えば、断面がU字などのように底部が丸みを帯びた形状とすることにより、機械的・熱的応力の部分的な集中を抑制しつつ、接合時に用いるペーストの流れ込みを少なくすることができる。
 さらに、図2aおよび図2bに示すセラミック構造体20における第1凹部4にあたる領域に金属からなる電極を備えた場合には、接合時に用いる接合ペーストの流れ込み、電極が部分的に接合層3で覆われることによって、電極特性にばらつきが生じることが少ないことから、優れた信頼性を有する電極内蔵プレートとすることができる。
 また、接合層3は、第1凹部4よりも内側の内層と、第1凹部4よりも外側の外層とを有し、外層は、第1凹部4の周囲を囲むように設けられている。そして、外層における第1凹部4側を内部領域、外表面側を外部領域としたとき、内部領域における平均気孔数が、外部領域における平均気孔数よりも少ないことが好適である。このような構成を満たし、例えば、第1凹部4をプラズマ発生領域としたときには、プラズマに対する耐食性が向上する。また、流体に対する耐食性も向上する。なお、内部領域と外部領域における平均気孔数は、上述した気孔の測定方法と同様の方法により測定することができ、内部領域については、第1凹部4側から1mm程度内側、外部領域については、外表面側から1mm程度内側を測定箇所とすればよい。
 次に、第1部材1および第2部材2における窒化アルミニウムの含有量は、99.8質量%以上であることが好適である。このように、窒化アルミニウムの含有量が99.8質量%以上であるときには、優れた耐食性を有するものとなり、特に優れた耐プラズマ性を有するものとなる。
 ここで、第1部材および第2部材における窒化アルミニウムの含有量の求め方について説明する。まず、第1部材および第2部材を、X線回折装置(XRD)を用いて分析することにより、結晶相の同定を行なう。ここで、窒化アルミニウムを示すピークの強度が最も大きいときには、窒素(N)やアルミニウム(Al)の含有量から窒化アルミニウム(AlN)に換算する方法では、分析誤差の範囲が広くなってしまうことから、窒化アルミニウム以外の含有成分量を求めて、その合計を100から差し引くことにより窒化アルミニウムの含有量を求める。
 例えば、XRDの結果において、窒化アルミニウムを示すピークの強度が最も大きいときには、蛍光X線分析装置(XRF)やSEMに付設のエネルギー分散型分析器(EDS)を用いて定性分析を行ない、窒素、アルミニウムおよび酸素(O)以外の第1部材および第2部材に含まれる元素を確認する。そして、確認された元素につき、ICP発光分光分析装置(ICP)を用いて定量分析を行ない、酸化物に換算する。
 定性分析において、例えば、珪素(Si)と鉄(Fe)が確認された場合、ICPによりSiとFeの定量分析を行ない、SiがSiO換算で0.01質量%であり、FeがFe換算で0.005質量%であれば、窒化アルミニウムの含有量は、100から0.015を差し引けばよいので99.985質量%である。
 次に、本実施形態のセラミック構造体の製造方法の一例として、図1aおよび図1bに示すセラミック構造体10の製造方法について説明する。
 まず、公知の製造方法により、主成分が窒化アルミニウムからなる円板状の第1部材1となる成形体を用意する。また、公知の製造方法によって得られた成形体の一方主面に切削加工を施すことにより、第1部材1との接合面側に第1凹部4を備える第2部材2となる成形体を用意する。なお、主成分とは、焼結体を構成する全成分100質量%のうち、70質量%以上含有する成分のことである。
 次に、窒化アルミニウム粉末と、有機溶媒(例えば、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ポリテトラメチレングリコール、ポリエチレングリコールまたはシクロヘキサンジメタノール)と、増粘剤とを所定量秤量し、攪拌装置内の収納容器に入れ、攪拌して、接合層3となる接合ペーストを作製する。
 なお、窒化アルミニウム粉末の平均粒径は、0.9μm以上1.1μm以下とし、接合ペーストにおける粉体充填率は25体積%以上35体積%以下とし、接合ペーストの粘度が、4Pa・s以上7Pa・s以下となるように、有機溶媒量および増粘剤量で調整する。そして、攪拌条件としては、大気中において、回転数を800rpm以上1200rpmとし、回転時間を8分以上16分以下とする。また、気孔のアスペクト比の平均を1.5以下とするには、回転時間を12分以上16分以下とすればよい。
 次に、第2部材2となる成形体の第1凹部4以外の表面(接合面)に接合ペーストを塗布した後、第1部材1となる成形体で覆い、接合面に垂直な方向から、6.1kPa以上24.5kPa以下の圧力を加える。
 次に、常温で24時間以上48時間以下保持することにより、接合ペーストを乾燥させる。その後、大気雰囲気中で、昇温速度を8℃/時間以上16℃/時間以下として昇温し、450℃以上550℃以下の温度で、8時間以上12時間以下保持することにより脱脂し、脱脂体を得る。
 そして、この脱脂体を窒素雰囲気中で、1930℃以上2030℃以下の温度で、5時間以上8時間以下保持して焼成することにより、本実施形態のセラミック構造体10を得ることができる。なお、得られたセラミック接合体10における接合層3の厚みは、例えば、50μm以上65μm以下である。
 なお、図2a~図2cに示す例のセラミック構造体20を得るには、公知の製造方法によって得られた第2部材2となる成形体の一方主面に切削加工を施し、第1凹部4の他に、第1凹部4よりも内側に位置する環状の第2凹部5と、第1凹部4よりも外側に位置する環状の第3凹部6を形成したこと以外は上述した方法により製造すればよい。
 また、本実施形態の流路体を得るには、上述したセラミック構造体10、20の製造方法に加えて、第1部材1となる成形体または第2部材2となる成形体のいずれかに、第1凹部4に繋がる孔を2カ所以上設ける加工を行なったり、焼成後の第1部材1または第2部材2のいずれかに、第1凹部4に繋がる孔を2カ所以上設けたりする加工を行なえばよい。
 さらに、本実施形態の電極内蔵プレートを得るには、例えば、上述した流路体の製造方法に加えて、加工によって設けた孔より金属粉末を含むペーストを第1凹部4に流し込んだ後、ペーストに使用した金属粉末に合わせた焼成雰囲気および焼成温度で焼成すればよい。
 また、接合層3が、第1凹部4よりも内側の内層と、第1凹部4よりも外側の外層からなり、外層における第1凹部4側を内部領域、外表面側を外部領域としたとき、内部領域における平均気孔数が、外部領域における平均気孔数よりも少ないものとするには、出発原料である窒化アルミニウム粉末の粒径を異ならせ、内層用の接合ペーストに用いる窒化アルミニウム粉末の粒径が、外層用の接合ペーストに用いる窒化アルミニウム粉末の粒径よりも小さくすればよい。
 以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 まず、公知の製造方法により、主成分が窒化アルミニウムからなる円板状の第1部材となる成形体を用意した。また、公知の製造方法によって得られた成形体の一方主面に切削加工を施すことにより、第1部材との接合面側に環状の第1凹部を有する第2部材となる成形体を用意した。
 次に、窒化アルミニウム粉末とジエチレングリコールと増粘剤とを攪拌装置内の収納容器に入れて攪拌して粘度が5.5Pa・sの接合ペーストを得た。なお、接合ペーストの作製にあたっては、平均粒径が1.0μmの窒化アルミニウム粉末を用い、粉体充填率は30体積%とした。また、攪拌条件としては、回転数を1000rpmとし、回転時間は表1に示す時間とした。
 次に、第2部材となる成形体の第1凹部以外の表面(接合面)に、60μmの接合層となる接合ペーストを塗布した後、第1部材となる成形体で覆い、接合面に垂直な方向から、6.1kPaの圧力を加えた。
 次に、常温で36時間保持することにより、接合ペーストを乾燥させた。その後、大気雰囲気中で、昇温速度を12℃/時間で昇温し、500℃の温度で10時間保持することにより脱脂し、脱脂体を得た。
 そして、得られた脱脂体を窒素雰囲気中で、1980℃の温度で6.5時間保持して焼成することにより、図1に示す構成を有する試料No.1~7を得た。なお、各試料について複数個作製した。また、焼結体における窒化アルミニウムの含有量は、99.9質量%であり、接合層を含まない部分における4点曲げ強度の値は、230MPaであった。
 次に、接合面に垂直に試料を切断し、平均粒径が0.1μmのダイヤモンド砥粒を錫製のラップ盤に供給しながら、切断面を鏡面に研磨した。そして、研磨によって得られた鏡面を洗浄した後、光学顕微鏡を用いて200倍の倍率で接合層を観察し、面積が2.49×10μm(横方向の長さが600μm、縦方向の長さが415μm)となる範囲の画像をCCDカメラで取り込み、上述した画像解析ソフトによる粒子解析を行なうことで、接合層の1mm当たりにおける気孔の個数および気孔の円相当径の平均値を求めた。なお、両方の外表面側から1mm程度内側に入った部分の2カ所と、第1凹部の間の中央の1箇所の計3カ所を測定箇所とした。何れの試料も、気孔の円相当径の平均値は4μmであり、20μmを超える気孔は存在しなかった。
 そして、粒子解析の設定条件としては、明度を明に設定し、2値化の方法を手動、小図形除去面積を0μm、画像の明暗を示す指標であるしきい値を、画像内の各点が有する明るさを示すヒストグラムのピーク値の2.2倍とした。
 次に、サイクル試験として、各試料を熱処理装置内に配置した後、大気雰囲気中、700℃まで昇温して常温まで降温するという処理を1サイクルとし、この処理を100サイクル繰り返す試験を実施した。なお、以下においては、この試験を行なった試料を試験後試料と称し、試験を行なっていない試料を未試験試料と称す。
 そして、試験後試料と、未試験試料を用いて、それぞれJIS R 1624-2010に準拠し、接合層が中心となる試験片を切り出し、接合層が試料の両端側で支える支点間の中央になるように配置した状態で、常温における4点曲げ強度を測定した。なお、この4点曲げ強度の値を接合強度の値とし、未試験試料の接合強度をσ、試験後試料の接合強度をσとして表1に示した。
 また、それぞれの値を用いて、接合強度の低下率(Δσ(%)=(σ-σ)/σ×100)を算出した。
 また、試験後試料を用いて、JIS Z 2331-2006で規定する真空吹付け法(スプレー法)に準拠して、接合層におけるヘリウムガスのリーク量を常温で測定した。リーク量が10-8Pa・m/秒以上の試料については「1」を、リーク量が10-8Pa・m/秒未満の試料について「2」を表1に記入した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料No.1は、接合箇所を含まない4点曲げ強度と同じ値の接合強度が得られているものの、接合強度の低下率が大きかった。また、試料No.7は、リーク量が10-8Pa・m/秒以上であった。これに対し、試料No.2~6は、接合強度の低下率が小さく、リーク量が10-8Pa・m/秒未満であった。この結果より、接合層における接合面に垂直な断面において、1mm当たりに1000個以上1400個以下の気孔を有しており、気孔の円相当径の平均値が2μm以上6μm以下であるセラミック構造体は、冷熱サイクルに対して優れた耐久性を有するものであることがわかった。
 攪拌装置における回転時間を表2に示す時間とし、接合ペースト塗布後の圧力を24.5kPaとしたこと以外は実施例1と同様の方法により、試料No.8~11を得た。
 そして、実施例1と同様に、サイクル試験を実施するとともに、常温における接合強度σ、σを測定した。また、接合強度の低下率Δσを算出した。
 また、実施例1と同様の方法により、接合層の1mm当たりにおける気孔の個数、気孔の円相当径の平均値および気孔のアスペクト比の平均値を求めた。1mm当たりの気孔の個数は、1000個以上1400個以下の範囲内であり、気孔の円相当径の平均値は、2μm以上6μm以下の範囲内であった。気孔のアスペクト比の平均値および接合強度の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試料No.9~11は、サイクル試験後において、試料No.8よりも高い接合強度が得られており、気孔のアスペクト比の平均値が1.5以下であることにより、気孔の輪郭に鋭角部分が少ないため、冷熱サイクルを受けた際の応力によって気孔の輪郭を起点とするクラックが生じにくくなることがわかった。
 窒化アルミニウム以外の成分の含有量の異なる原料を用意し、耐プラズマ性の比較を行なった。なお、用いた窒化アルミニウム原料が異なること以外は、実施例1と同様の方法により、各試料を作製した。そして、第1凹部にプラズマを発生させる試験を実施し、試験後の第1凹部における表面を観察し、プラズマによる腐蝕状態を確認し、耐プラズマ性の一番よい試料を1とし、数字による順位付けを行なった。
 次に、第1部材と第2部材は同じ原料からなるものであるため、第1部材を測定試料とし、XRFを用いて定性分析を行ない、窒素、アルミニウムおよび酸素以外に含まれる元素を確認した。そして、確認された元素につき、ICPを用いて定量分析を行ない、酸化物に換算した。そして、酸化物に換算した値の合計を100から差し引くことにより窒化アルミニウムの含有量を求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、窒化アルミニウムの含有量が高いことにより、優れた耐食性を有するものとなることがわかった。
 10、20:セラミック構造体
 1:第1部材
 2:第2部材
 3:接合層
 4:第1凹部
 5:第2凹部
 6:第3凹部

Claims (8)

  1.  窒化アルミニウム質セラミックスからなる第1部材および第2部材が、窒化アルミニウム質セラミックスからなる接合層を介して接合されてなるセラミック構造体であり、接合層における接合面に垂直な断面において、1mm当たりに1000個以上1400個以下の気孔を有しており、該気孔の円相当径の平均値が2μm以上6μm以下であることを特徴とするセラミック構造体。
  2.  前記断面における前記気孔のアスペクト比の平均値が1.5以下であることを特徴とする請求項1に記載のセラミック構造体。
  3.  前記第1部材および前記第2部材のいずれかの前記接合面側に、環状の第1凹部を備えることを特徴とする請求項1乃至請求項3のいずれかに記載のセラミック構造体。
  4.  前記第1部材および前記第2部材のいずれかの前記接合面側に、前記第1凹部よりも内側に位置する環状の第2凹部と、前記第1凹部よりも外側に位置する環状の第3凹部とを備えることを特徴とする請求項3に記載のセラミック構造体。
  5.  前記接合層が、前記第1凹部よりも外側の外層を含み、該外層における前記第1凹部側を内部領域、外表面側を外部領域としたとき、内部領域における平均気孔数が、外部領域における平均気孔数よりも少ないことを特徴とする請求項3または請求項4に記載のセラミック構造体。
  6.  前記第1部材および前記第2部材における窒化アルミニウムの含有量が99.8質量%以上であることを特徴とする請求項1乃至請求項5のいずれかに記載のセラミック構造体。
  7.  請求項3乃至請求項5のいずれかに記載のセラミック構造体における前記第1凹部が流路とされており、該流路に繋がる流体の出入口を備えることを特徴とする流路体。
  8.  請求項3乃至請求項5のいずれかに記載のセラミック構造体における前記第1凹部にあたる領域に金属からなる電極を備えていることを特徴とする電極内蔵プレート。
PCT/JP2015/069030 2014-07-01 2015-07-01 セラミック構造体および流路体ならびに電極内蔵プレート WO2016002852A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-135949 2014-07-01
JP2014135949 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016002852A1 true WO2016002852A1 (ja) 2016-01-07

Family

ID=55019382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069030 WO2016002852A1 (ja) 2014-07-01 2015-07-01 セラミック構造体および流路体ならびに電極内蔵プレート

Country Status (1)

Country Link
WO (1) WO2016002852A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333066A (ja) * 1989-06-30 1991-02-13 Toshiba Corp 窒化アルミニウム構造物の製造方法
JPH0672770A (ja) * 1992-08-26 1994-03-15 Toshiba Corp 窒化アルミニウム製シート状成形体
JPH08109069A (ja) * 1994-10-11 1996-04-30 Toshiba Corp 窒化アルミニウム焼結体
JPH0987034A (ja) * 1995-07-19 1997-03-31 Tokuyama Corp 窒化アルミニウム接合構造体
JPH1171184A (ja) * 1997-08-22 1999-03-16 Toshiba Ceramics Co Ltd AlN焼結体用接合剤、その製造方法及びそれを用いたAlN焼結体の接合方法
JPH11157951A (ja) * 1997-11-28 1999-06-15 Kyocera Corp 窒化アルミニウム接合構造体とその製造方法
JP2004083366A (ja) * 2002-08-28 2004-03-18 Toshiba Ceramics Co Ltd 窒化アルミニウムセラミックス接合体及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333066A (ja) * 1989-06-30 1991-02-13 Toshiba Corp 窒化アルミニウム構造物の製造方法
JPH0672770A (ja) * 1992-08-26 1994-03-15 Toshiba Corp 窒化アルミニウム製シート状成形体
JPH08109069A (ja) * 1994-10-11 1996-04-30 Toshiba Corp 窒化アルミニウム焼結体
JPH0987034A (ja) * 1995-07-19 1997-03-31 Tokuyama Corp 窒化アルミニウム接合構造体
JPH1171184A (ja) * 1997-08-22 1999-03-16 Toshiba Ceramics Co Ltd AlN焼結体用接合剤、その製造方法及びそれを用いたAlN焼結体の接合方法
JPH11157951A (ja) * 1997-11-28 1999-06-15 Kyocera Corp 窒化アルミニウム接合構造体とその製造方法
JP2004083366A (ja) * 2002-08-28 2004-03-18 Toshiba Ceramics Co Ltd 窒化アルミニウムセラミックス接合体及びその製造方法

Similar Documents

Publication Publication Date Title
US20180257997A1 (en) Residual stress free joined silicon carbide ceramics and processing method of the same
JP6001761B2 (ja) セラミック接合体および流路体
JP6512401B2 (ja) 反応焼結炭化珪素部材
KR102387056B1 (ko) 세라믹 접합체 및 그 제조 방법
WO2016002852A1 (ja) セラミック構造体および流路体ならびに電極内蔵プレート
US10689300B2 (en) Ceramic bonded body
JP6363485B2 (ja) セラミック流路体およびこれを備える熱交換器
JP2020196662A (ja) 載置用部材、検査装置および加工装置
JP2005205507A (ja) 真空吸着装置およびその製造方法
JP6215668B2 (ja) セラミック焼結体、これを用いた流路部材ならびに半導体検査装置および半導体製造装置
JP2017105707A (ja) 多孔質体、多孔質接合体、金属溶湯用濾過フィルタ、焼成用治具および多孔質体の製造方法
JP2016069207A (ja) セラミック流路体およびこれを備える熱交換器
JP2010208898A (ja) 窒化珪素基板及びその製造方法並びにそれを使用した回路基板
CN116143549A (zh) 一种中小型SiCf/SiC复合材料局部损伤和微裂纹的修补方法
KR20190085482A (ko) 소성용 세터
EP3406583A1 (en) Ceramic bonded body
JP6306723B2 (ja) セラミック接合体およびこれを備える熱交換器
JP6441690B2 (ja) プローバ用チャックおよびこれを備えたプローバ
Khounsary et al. Design, fabrication, and evaluation of an internally cooled silicon carbide mirror
JP6449680B2 (ja) セラミック接合体およびセラミック流路体ならびにこれを備える熱交換器
WO2021201108A1 (ja) 流路部材およびその製造方法
JP6864470B2 (ja) セラミック接合体
JP6208544B2 (ja) セラミック接合体
JP2015160776A (ja) セラミック接合体および流路体
JP2006151777A (ja) セラミックス−金属複合体およびその製造方法ならびにこれを用いた導電部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15815777

Country of ref document: EP

Kind code of ref document: A1