WO2019124778A1 - 접합 세라믹 및 이의 제조방법 - Google Patents

접합 세라믹 및 이의 제조방법 Download PDF

Info

Publication number
WO2019124778A1
WO2019124778A1 PCT/KR2018/014501 KR2018014501W WO2019124778A1 WO 2019124778 A1 WO2019124778 A1 WO 2019124778A1 KR 2018014501 W KR2018014501 W KR 2018014501W WO 2019124778 A1 WO2019124778 A1 WO 2019124778A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
bonded
base material
ceramic base
substrate
Prior art date
Application number
PCT/KR2018/014501
Other languages
English (en)
French (fr)
Inventor
설창욱
Original Assignee
주식회사 티씨케이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티씨케이 filed Critical 주식회사 티씨케이
Priority to CN201880078239.7A priority Critical patent/CN111448174B/zh
Priority to JP2020534484A priority patent/JP2021506719A/ja
Priority to US16/956,190 priority patent/US11390566B2/en
Publication of WO2019124778A1 publication Critical patent/WO2019124778A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B2037/0092Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding in which absence of adhesives is explicitly presented as an advantage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles

Definitions

  • the present invention relates to a bonded ceramic and a method of manufacturing the same, and more particularly, to a bonded ceramic bonded with an adhesive layer and a method of manufacturing the same.
  • Ceramic materials are used in various fields in electronic parts, biomaterials, heat-resisting abrasion resistant structural parts, and the like.
  • ceramic materials are used exclusively, and they are utilized through bonding between ceramic materials and bonding between ceramic materials and metal materials.
  • the bonding between the ceramic materials and the bonding between the ceramic material and the metallic material are generally performed by an adhesive made of an epoxy resin or the like.
  • the adhesive strength of the epoxy resin falls to less than half under the temperature condition of 80 ⁇ , as compared with the case of the temperature condition of 25 ⁇ . Therefore, conventional ceramic bonding is difficult to use in a high temperature environment, and it is difficult to use in applications requiring high strength in a high temperature environment due to low bonding strength.
  • An object of the present invention is to provide a bonded ceramic having a high strength in a high temperature environment without a separate adhesive layer and a method for manufacturing the same.
  • the first ceramic substrate and the second ceramic substrate may include grains located over the first ceramic substrate and the second ceramic substrate.
  • the size of the grains positioned over the first ceramic substrate and the second ceramic substrate may be 0.1 ⁇ m to 100 ⁇ m.
  • the first ceramic base material and the second ceramic base material each include at least one of silicon carbide (SiC), silicon nitride (SiN4), aluminum oxide (Al2O3), aluminum nitride (AlN), zirconium oxide (ZrO2) (SiO2), zirconia toughened alumina (ZTA), magnesium oxide (MgO), cordierite, mullite, and cordierite.
  • SiC silicon carbide
  • SiN4 silicon nitride
  • Al2O3 aluminum oxide
  • AlN aluminum nitride
  • ZrO2 zirconium oxide
  • ZTA zirconia toughened alumina
  • MgO magnesium oxide
  • cordierite cordierite
  • mullite mullite
  • the first ceramic base material and the second ceramic base material are the same material and may be heterogeneous material-free.
  • a ceramic substrate comprising a plurality of ceramic substrates, and the plurality of ceramic substrates may be laminated and adhered to the first ceramic substrate or the second ceramic substrate with an adhesive layer.
  • the first ceramic base and the second ceramic base may each have a thickness of 1 mm to 100 mm.
  • the total thickness of the bonded ceramic may be from 2 mm to 200 mm.
  • it can have a strength of at least 70% greater than a bulk single ceramic substrate.
  • a method of manufacturing a bonded ceramic according to an embodiment of the present invention includes: polishing one surface of a first ceramic substrate and one surface of a second ceramic substrate; And bonding one surface of the polished first ceramic base and one surface of the polished second ceramic base so as to contact each other.
  • a grain positioned over the first ceramic base and the second ceramic base may be formed.
  • the size of the grain formed over the first ceramic base material and the second ceramic base material may be 0.1 mu m to 100 mu m.
  • the joining includes: a step of joining the first ceramic base material and the second ceramic base material together in such a manner that a temperature range of 60% to 90% of the melting temperature of the first ceramic base material and a temperature range of 60% , And may be carried out under a pressure condition of 0.1 kg / cm 2 to 100 kg / cm 2 .
  • An application comprising a bonded ceramic according to an embodiment of the present invention is a bonded ceramic according to any one of claims 1 to 8 or a method of manufacturing a bonded ceramic according to any one of claims 9 to 12
  • the bonded ceramic is applied to at least one selected from the group consisting of a reflector of the aerospace industry, a viewing window, and a vacuum chuck for wafer fixing in the semiconductor industry.
  • the bonded ceramic according to the present invention is bonded by the grain growth of the material itself without using a bonding material, it is excellent in strength and can be used in a high temperature environment. It can be used for a mirror of a defense industry in the aerospace industry, A vacuum chuck, and the like.
  • FIG. 1 is an SEM image of a bonded ceramic joint surface according to an embodiment of the present invention.
  • a member when a member is located on another member, it includes not only when a member is in contact with another member but also when another member exists between the two members.
  • the first ceramic substrate and the second ceramic substrate may include grains located over the first ceramic substrate and the second ceramic substrate.
  • the bonding ceramic according to the present invention is an adhesive layer-free bonding ceramic that does not use a bonding material, and a grain positioned over two ceramic bases is formed by grain growth of the ceramic ceramic itself. Accordingly, the bonded ceramic according to the present invention has excellent strength and can be used in a high temperature environment.
  • the size of the grains positioned over the first ceramic substrate and the second ceramic substrate may be 0.1 ⁇ m to 100 ⁇ m.
  • the first ceramic base material and the second ceramic base material form grains on their respective bonding surfaces before bonding. If the grain size of each of the bonding surfaces is too small or too large, there may arise a problem that no grain positioned over the two ceramic substrates is formed. Therefore, it is preferable that the size of the grain positioned over the finally produced first ceramic base material and the second ceramic base material is 0.1 mu m to 100 mu m.
  • the first ceramic base material and the second ceramic base material each include at least one of silicon carbide (SiC), silicon nitride (SiN4), aluminum oxide (Al2O3), aluminum nitride (AlN), zirconium oxide (ZrO2) (SiO2), zirconia toughened alumina (ZTA), magnesium oxide (MgO), cordierite, mullite, and cordierite.
  • SiC silicon carbide
  • SiN4 silicon nitride
  • Al2O3 aluminum oxide
  • AlN aluminum nitride
  • ZrO2 zirconium oxide
  • ZTA zirconia toughened alumina
  • MgO magnesium oxide
  • cordierite cordierite
  • mullite mullite
  • cordierite mullite
  • the first ceramic base material and the second ceramic base material are the same material and may be heterogeneous material-free. That is, when a bonded ceramic material according to an embodiment of the present invention which does not use a heterogeneous material is subjected to instrumental analysis, a heterogeneous material is not detected.
  • a ceramic substrate comprising a plurality of ceramic substrates, and the plurality of ceramic substrates may be laminated and adhered to the first ceramic substrate or the second ceramic substrate with an adhesive layer.
  • This lamination is carried out by the growth of grains, as described above, and the grains of the plurality of ceramic substrates are joined together by the grains located over the respective interface.
  • the first ceramic base and the second ceramic base may each have a thickness of 1 mm to 100 mm.
  • the total thickness of the bonded ceramic may be from 2 mm to 200 mm.
  • it can have a strength of at least 70% greater than a bulk single ceramic substrate.
  • the ceramic base material has an optimum thickness depending on the type of the ceramic base material. If the ceramic base material is thin or thick, the strength of the ceramic base material may be large and the ceramic base material may break easily.
  • the bonded ceramic according to the present invention can freely adjust the total thickness of the bonded ceramic by joining a plurality of ceramic substrates without a bonding layer, and can have a strength of 70% or more as compared with a bulk single ceramic base.
  • a method of manufacturing a bonded ceramic according to an embodiment of the present invention includes: polishing one surface of a first ceramic substrate and one surface of a second ceramic substrate; And bonding one surface of the polished first ceramic base and one surface of the polished second ceramic base so as to contact each other.
  • a grain positioned over the first ceramic base and the second ceramic base may be formed.
  • the size of the grain formed over the first ceramic base material and the second ceramic base material may be 0.1 mu m to 100 mu m.
  • the method for producing a bonded ceramic according to the present invention is a method for producing an adhesive layer-free bonded ceramic without using a bonding material. More specifically, grains located on both ceramic substrates by abrasive grain growth of the two ceramic substrates, by grinding the grains present on one side of each of the ceramic materials as possible without bending, and then joining the polished one side . As a result, it is possible to realize a bonded ceramic which is excellent in strength and can be used in a high temperature environment.
  • the joining includes: a step of joining the first ceramic base material and the second ceramic base material together in such a manner that a temperature range of 60% to 90% of the melting temperature of the first ceramic base material and a temperature range of 60% ≪ / RTI >
  • the choice of temperature is proportional to the melting temperature of each material, and 60% to 90% of the melting temperature is bonded.
  • the bonding step is performed at a temperature condition exceeding 90% of the melting temperature, there may occur a problem that extreme deformation or melting of the material occurs, and when the temperature is less than 60%, sufficient diffusion is not achieved There is a possibility that a problem of not joining occurs.
  • the step of bonding may be performed within a temperature range of 72 ° C to 90 ° C when the melting temperature of the first ceramic base material is 100 ° C and the melting temperature of the second ceramic base material is 120 ° C.
  • a step of bonding is performed within a temperature range of 700 ° C to 2500 ° C, more preferably, a temperature range of 1700 ° C to 2300 ° C .
  • the bonded ceramic according to one embodiment of the present invention or the method of manufacturing a bonded ceramic according to an embodiment of the present invention is composed of a reflector of an aerospace industry, a viewing window, and a vacuum chuck for fixing a wafer in the semiconductor industry Lt; / RTI > to at least one selected from the group.
  • the bonding ceramics of the present invention can be used as the reflector of the aerospace industry. Ceramic substrates applied to applications in the aerospace industry must maintain strength in harsh environmental conditions. INDUSTRIAL APPLICABILITY As described above, the bonded ceramic according to the present invention is a bonded ceramic bonded by grain growth of a material itself without using a bonding material, and therefore has excellent strength and can be used in a high temperature environment. That is, as the reflector of the aerospace industry, the bonding ceramics of the present invention can be used.
  • the bonded surfaces of two sheets of silicon carbide having a grain size of about 10 ⁇ and a thickness of 2 mm were polished, laminated so that the polished surfaces were facing each other, and maintained at a temperature of 2000 ⁇ and a load of 10 kg / cm 2 for 10 hours.
  • the bonded surfaces of two sheets of silicon carbide having a grain size of 3 mm and a thickness of 2 mm were polished, laminated so that the polished surfaces were facing each other, and maintained at a temperature of 2000 ° C and a load of 10 kg / cm 2 for 10 hours.
  • FIG. 1 is an SEM image of a bonded ceramic joint surface according to an embodiment of the present invention.
  • the bonded ceramic produced according to the embodiment includes a grain 300 positioned over the first silicon carbide substrate 100 and the second silicon carbide substrate 200.
  • no joint boundary line (boundary layer) is observed, and only pores 400 are observed on the joint surface of the ceramic. This means that the first silicon carbide (100) substrate and the second silicon carbide (200) substrate are joined together without using an adhesive.
  • the bonded ceramic produced according to the comparative example had no bonding at all. This means that the size of the grain is too large to be diffused.
  • Table 1 is a table showing the strength of the bonded ceramic according to the embodiment of the present invention and a bulk single silicon carbide substrate without performing bonding.
  • the bonded material obtained by bonding the silicon carbide base material according to the embodiment of the present invention has a strength of 70% or more as compared with a bulk single ceramic base material.
  • the bonded ceramic according to the embodiment of the present invention is analyzed through EDS (Energy Dispersive X-ray Spectroscopy), there is no heterogeneous material other than silicon (Si) and carbon (C) , which means that two silicon carbide substrates were bonded without an adhesive.
  • EDS Electronic Dispersive X-ray Spectroscopy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

본 발명은 접합 세라믹 및 이의 제조방법에 관한 것으로서, 더욱 자세하게는, 제1 세라믹 기재; 및 제2 세라믹 기재;를 포함하고, 상기 제1 세라믹 기재 및 상기 제2 세라믹 기재는 접착층-프리로 접합된 것이며, 상기 제1 세라믹 기재와 상기 제2 세라믹 기재의 접합면을 따라 형성된 0.01 ㎛ 내지 50 ㎛ 크기의 기공을 포함하는 것인, 접합 세라믹 및 이의 제조방법에 관한 것이다.

Description

접합 세라믹 및 이의 제조방법
본 발명은 접합 세라믹 및 이의 제조방법에 관한 것으로서, 더욱 자세하게는, 접착층-프리로 접합된 접합 세라믹 및 이의 제조방법에 관한 것이다.
전자 부품, 생체재료, 내열내마모성구조 부품 등에 있어서, 각 종 세라믹 재료는 다방면으로 이용되고 있다. 세라믹 재료 이용 시, 세라믹 재료가 단독으로 이용되는 것은 예외적이며, 세라믹 재료간의 접합 및 세라믹 재료와 금속재료와의 접합 등을 통해 활용된다. 세라믹 재료간의 접합 및 세라믹 재료와 금속재료와의 접합은, 일반적으로 에폭시 수지 등으로 이루어지는 접착제에 의해 수행된다.
한편, 에폭시 수지의 접착 강도는 25 ℃의 온도조건일 때와 비교하여, 80 ℃의 온도조건에서 절반 이하로 떨어진다. 이 때문에, 기존 세라믹 접합은 고온환경에서 사용이 어렵고, 접합강도가 낮아 고온환경에서 고강도를 요구하는 응용분야에서 사용이 어렵다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 별도의 접착층 없이, 고온환경에서 고강도를 가지는 접합 세라믹 및 이의 제조방법을 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 접합 세라믹은, 제1 세라믹 기재; 및 제2 세라믹 기재;를 포함하고, 상기 제1 세라믹 기재 및 상기 제2 세라믹 기재는 접착층-프리로 접합된 것이며, 상기 제1 세라믹 기재와 상기 제2 세라믹 기재의 접합면을 따라 형성된 0.01 ㎛ 내지 50 ㎛ 크기의 기공을 포함하는 것이다.
일 측면에 따르면, 상기 제1 세라믹 기재 및 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인을 포함하는 것일 수 있다.
일 측면에 따르면, 상기 제1 세라믹 기재와 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인의 크기는, 0.1 ㎛ 내지 100 ㎛인 것일 수 있다.
일 측면에 따르면, 상기 제1 세라믹 기재 및 제2 세라믹 기재는, 각각, 탄화 규소(SiC), 질화규소(SiN4), 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 산화 지르코늄(ZrO2), 산화 규소(SiO2), ZTA(Zirconia Toughened Alumina) , 산화 마그네슘(MgO), 근청석, 멀라이트 및 코디에라이트로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것일 수 있다.
일 측면에 따르면, 상기 제1 세라믹 기재 및 상기 제2 세라믹 기재는, 동일 물질이며, 이종물질-프리인 것일 수 있다.
일 측면에 따르면, 복수의 세라믹 기재;를 더 포함하고, 상기 복수의 세라믹 기재는, 상기 제1 세라믹 기재 또는 제2 세라믹 기재 상에 접착층-프리로 적층되어 접합된 것일 수 있다.
일 측면에 따르면, 상기 제1 세라믹 기재 및 제2 세라믹 기재는, 각각, 1 mm 내지 100 mm 두께를 가지는 것일 수 있다.
일 측면에 따르면, 상기 접합 세라믹 전체 두께는 2 mm 내지 200 mm 인 것일 수 있다.
일 측면에 따르면, 벌크(bulk)한 단일 세라믹 기재 대비 70 % 이상의 강도를 가질 수 있다.
본 발명의 일 실시예에 따른 접합 세라믹의 제조방법은, 제1 세라믹 기재의 일면 및 제2 세라믹 기재의 일면을 연마(polishing)하는 단계; 및 상기 연마한 제1 세라믹 기재의 일면 및 상기 연마한 제2 세라믹 기재의 일면을 접하도록 접합하는 단계;를 포함한다.
일 측면에 따르면, 상기 접합하는 단계에서, 상기 제1 세라믹 기재 및 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인이 형성되는 것일 수 있다.
일 측면에 따르면, 상기 제1 세라믹 기재와 상기 제2 세라믹 기재에 걸쳐서 형성되는 그레인의 크기는, 0.1 ㎛ 내지 100 ㎛인 것일 수 있다.
일 측면에 따르면, 상기 접합하는 단계;는, 상기 제1 세라믹 기재의 용융온도의 60 % 내지 90 %의 온도 범위와 상기 제2 세라믹 기재의 용융온도의 60 % 내지 90 %의 온도 범위의 중복 온도 범위 내에서 수행되고, 0.1 kg/cm 2 내지 100 kg/cm 2의 압력 조건에서 수행되는 것일 수 있다.
본 발명의 일 실시예에 따른 접합 세라믹을 포함하는 어플리케이션은, 제1항 내지 제8항 중 어느 한 항의 접합 세라믹 또는 제9항 내지 제12항 중 어느 한 항의 접합 세라믹의 제조방법에 따라 제조된 접합 세라믹을 항공우주산업의 반사경, 투시창 및 반도체산업의 웨이퍼 고정용 진공척으로 이루어진 군으로부터 선택된 적어도 하나에 적용하는 것이다.
본 발명에 따른 접합 세라믹은, 접합재를 사용하지 않고 소재 자체의 그레인 성장에 의해 접합되므로, 강도가 우수하고 고온 환경에서 사용이 가능하며, 항공우주방위산업의 반사경, 투시창, 반도체 산업의 웨이퍼 고정용 진공척으로 이루어진 군으로부터 선택된 적어도 하나에 적용되어 사용될 수 있다.
도 1은, 본 발명의 실시예에 따른 접합 세라믹 접합면을 촬영한 SEM 이미지이다.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명의 접합 세라믹 및 이의 제조방법에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.
본 발명의 일 실시예에 따른 접합 세라믹은, 제1 세라믹 기재; 및 제2 세라믹 기재;를 포함하고, 상기 제1 세라믹 기재 및 상기 제2 세라믹 기재는 접착층-프리로 접합된 것이며, 상기 제1 세라믹 기재와 상기 제2 세라믹 기재의 접합면을 따라 형성된 0.01 ㎛ 내지 50 ㎛ 크기의 기공을 포함하는 것이다.
본 발명의 일 실시예에 따른 접합 세라믹은, 접합면에 접합경계선(경계층)이 관찰되지 않으며, 접합면을 따라 형성된 기공만을 포함한다.
일 측면에 따르면, 상기 제1 세라믹 기재 및 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인을 포함하는 것일 수 있다.
본 발명에 따른 접합 세라믹은, 접합재를 사용하지 않는 접착층-프리 접합 세라믹이며, 세라믹 소재 자체의 그레인 성장에 의해 두 세라믹 기재에 걸쳐서 위치하는 그레인이 형성된다. 이에 따라 본 발명에 따른 접합 세라믹은, 강도가 우수하고 고온 환경에서 사용이 가능하다.
일 측면에 따르면, 상기 제1 세라믹 기재와 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인의 크기는, 0.1 ㎛ 내지 100 ㎛인 것일 수 있다.
상기 제1 세라믹 기재와 상기 제2 세라믹 기재는, 접합되기 전에 각각의 접합면에 그레인을 형성하고 있다. 상기 각각의 접합면의 그레인 크기가 너무 작거나 너무 클 경우, 상기 두 세라믹 기재에 걸쳐서 위치하는 그레인이 형성되지 않는 문제점이 발생할 수 있다. 따라서, 최종적으로 생성되는 상기 제1 세라믹 기재와 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인의 크기는, 0.1 ㎛ 내지 100 ㎛인 것이 바람직하다.
일 측면에 따르면, 상기 제1 세라믹 기재 및 제2 세라믹 기재는, 각각, 탄화 규소(SiC), 질화규소(SiN4), 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 산화 지르코늄(ZrO2), 산화 규소(SiO2), ZTA(Zirconia Toughened Alumina) , 산화 마그네슘(MgO), 근청석, 멀라이트 및 코디에라이트로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것일 수 있다. 다만, 이에 제한되는 것은 아니다.
일 측면에 따르면, 상기 제1 세라믹 기재 및 상기 제2 세라믹 기재는, 동일 물질이며, 이종물질-프리인 것일 수 있다. 즉, 이종물질을 사용하지 않는, 본 발명의 일 실시예에 따른 접합 세라믹 소재를 기기분석할 경우, 이종물질이 검출되지 않는다.
일 측면에 따르면, 복수의 세라믹 기재;를 더 포함하고, 상기 복수의 세라믹 기재는, 상기 제1 세라믹 기재 또는 제2 세라믹 기재 상에 접착층-프리로 적층되어 접합된 것일 수 있다.
이러한 적층은, 상술한 것과 마찬가지로, 그레인의 성장에 의해 수행되며, 복수의 세라믹 기재들의 그레인이 각각의 경계면에 걸쳐서 위치하는 그레인에 의해 접합된다.
일 측면에 따르면, 상기 제1 세라믹 기재 및 제2 세라믹 기재는, 각각, 1 mm 내지 100 mm 두께를 가지는 것일 수 있다.
일 측면에 따르면, 상기 접합 세라믹 전체 두께는 2 mm 내지 200 mm 인 것일 수 있다.
일 측면에 따르면, 벌크(bulk)한 단일 세라믹 기재 대비 70 % 이상의 강도를 가질 수 있다.
세라믹 기재는, 종류에 따라 최적의 두께가 있으며, 두께가 얇거나, 두꺼우면 세라믹 기재의 강도가 크게 떨어져 쉽게 깨지는 문제점이 발생할 수 있다. 그러나, 본 발명에 따른 접합 세라믹은, 복수의 세라믹 기재를 접합층 없이 접합함으로써, 접합 세라믹 전체 두께를 자유롭게 조절할 수 있으며, 벌크(bulk)한 단일 세라믹 기재 대비 70 % 이상의 강도를 가질 수 있다.
본 발명의 일 실시예에 따른 접합 세라믹의 제조방법은, 제1 세라믹 기재의 일면 및 제2 세라믹 기재의 일면을 연마(polishing)하는 단계; 및 상기 연마한 제1 세라믹 기재의 일면 및 상기 연마한 제2 세라믹 기재의 일면을 접하도록 접합하는 단계;를 포함한다.
일 측면에 따르면, 상기 접합하는 단계에서, 상기 제1 세라믹 기재 및 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인이 형성되는 것일 수 있다.
일 측면에 따르면, 상기 제1 세라믹 기재와 상기 제2 세라믹 기재에 걸쳐서 형성되는 그레인의 크기는, 0.1 ㎛ 내지 100 ㎛인 것일 수 있다.
본 발명에 따른 접합 세라믹의 제조방법은, 접합재를 사용하지 않는 접착층-프리 접합 세라믹의 제조방법이다. 더욱 자세하게, 세라믹 소재 각각의 일면에 존재하는 그레인을 가능한 굴곡 없게 연마한 후, 상기 연마된 일면을 접합하는 방식을 통해, 두 세라믹 기재의 연마된 그레인 성장에 의해 두 세라믹 기재에 걸쳐서 위치하는 그레인이 형성된다. 이에 따라 강도가 우수하고 고온 환경에서 사용이 가능한 접합 세라믹을 구현할 수 있다.
일 측면에 따르면, 상기 접합하는 단계;는, 상기 제1 세라믹 기재의 용융온도의 60 % 내지 90 %의 온도 범위와 상기 제2 세라믹 기재의 용융온도의 60 % 내지 90 %의 온도 범위의 중복 온도 범위 내에서 수행되고,
0.1 kg/cm 2 내지 100 kg/cm 2의 압력 조건에서 수행되는 것일 수 있다.
온도의 선택은 각 소재의 용융온도에 비례하며, 용융온도의 60 % 내지 90 %가 접합하다. 용융온도의 90 %를 초과하는 온도 조건에서 상기 접합하는 단계를 수행할 경우 소재의 극심한 변형 또는 용융이 발생하는 문제점이 발생할 수 있고, 60 % 미만의 온도조건에서 수행할 경우 충분한 확산이 이루어지지 않아 접합이 되지 않는 문제점이 발생할 수 있다.
일 예로, 제1 세라믹 기재의 용융온도가 100 ℃이고, 제2 세라믹 기재의 용융온도가 120 ℃일 경우, 72 ℃ 내지 90 ℃의 온도 범위 내에서 접합하는 단계를 수행하는 것일 수 있다.
또 다른 일 예로, 제1 세라믹 기재 및 제2 세라믹 기재가 탄화규소일 경우, 700 ℃ 내지 2500 ℃의 온도 범위 내에서, 더욱 바람직하게는 1700 ℃ 내지 2300 ℃의 온도 범위 내에서 접합하는 단계를 수행하는 것일 수 있다.
한편, 100 kg/cm 2 를 초과하는 하중 조건에서 상기 접합하는 단계가 수행될 경우 소재의 극심한 변형이 발생할 수 있고, 0.1 kg/cm2 미만의 하중 조건에서는 충분한 확산이 이루어지지 않아 접합이 되지 않는 문제점이 발생할 수 있다.
본 발명의 일 실시예에 따른 접합 세라믹 또는 본 발명의 일 실시예에 따른 접합 세라믹의 제조방법에 따라 제조된 접합 세라믹은, 항공우주산업의 반사경, 투시창 및 반도체산업의 웨이퍼 고정용 진공척으로 이루어진 군으로부터 선택된 적어도 하나에 적용되는 것일 수 있다.
특히, 항공우주산업의 반사경으로서, 본 발명의 접합 세라믹을 사용할 수 있다. 항공우주산업에서 사용되는 어플리케이션에 적용되는 세라믹 기재는, 가혹한 환경조건 속에서 강도가 유지되어야 한다. 상술한 바와 같이 본 발명의 접합 세라믹은, 접합재를 사용하지 않고 소재 자체의 그레인 성장에 의해 접합된 접합 세라믹 이므로, 강도가 우수하고 고온 환경에서 사용이 가능하다. 즉, 항공우주산업의 반사경으로서, 본 발명의 접합 세라믹을 사용할 수 있다.
이하, 실시예 및 비교예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.
단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예
그레인의 크기가 약 10 ㎛이며 두께가 2 mm인 탄화규소 2장의 접합면을 연마(Polishing)하고 연마면이 서로 바라보도록 적층하고 2000 ℃ 온도와 10 kg/cm 2 하중에서 10시간 유지하였다.
비교예
그레인의 크기가 3 mm이며 두께가 2 mm인 탄화규소 2장의 접합면을 연마(Polishing)하고 연마면이 서로 바라보도록 적층하고 2000 ℃ 온도와 10 kg/cm 2 하중에서 10시간 유지하였다.
도 1은, 본 발명의 실시예에 따른 접합 세라믹 접합면을 촬영한 SEM 이미지이다.
도 1을 참조하면, 실시예를 따라 제조된 접합 세라믹은, 제1 탄화규소 기재(100) 및 제2 탄화규소 기재(200)에 걸쳐서 위치하는 그레인(300)을 포함하는 것을 알 수 있다. 또한, 접합경계선(경계층)이 관찰되지 않고, 세라믹의 접합면에 기공(400)만이 관찰되는 것을 알 수 있다. 이는 접착재를 사용하지 않고, 제1 탄화규소(100) 기재와 제2 탄화규소(200) 기재가 접합되었음을 의미한다.
반면, 비교예를 따라 제조된 접합 세라믹은 접합이 전혀 이루어지지 않았음을 확인하였다. 이는 그레인의 크기가 너무 커 확산이 이루어지지 않았음을 의미한다.
표 1은, 본 발명의 실시예에 따른 접합 세라믹 및 접합을 수행하지 않은 벌크(bulk)한 단일 탄화규소 기재의 강도를 나타낸 표이다.
Figure PCTKR2018014501-appb-img-000001
상기 표 1을 참조하면, 본 발명의 실시예에 따라 탄화규소 기재를 접합한 접합소재는, 벌크(bulk)한 단일 세라믹 기재와 비교하여, 70 % 이상의 강도를 가지는 것을 알 수 있다.
또한, EDS(Energy Dispersive X-ray Spectroscopy)를 통하여, 본 발명의 실시예에 따른 접합 세라믹을 분석할 경우, 선택영역인 접합면에서 규소(Si)와 탄소(C) 외에 이종의 물질이 없음을 확인하였으며, 이는 접착제 없이 두 개의 탄화규소 기재가 접합되었음을 의미한다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (14)

  1. 제1 세라믹 기재; 및
    제2 세라믹 기재;를 포함하고,
    상기 제1 세라믹 기재 및 상기 제2 세라믹 기재는 접착층-프리로 접합된 것이며,
    상기 제1 세라믹 기재와 상기 제2 세라믹 기재의 접합면을 따라 형성된 0.01 ㎛ 내지 50 ㎛ 크기의 기공을 포함하는 것인,
    접합 세라믹.
  2. 제1항에 있어서,
    상기 제1 세라믹 기재 및 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인을 포함하는 것인,
    접합 세라믹.
  3. 제1항에 있어서,
    상기 제1 세라믹 기재와 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인의 크기는, 0.1 ㎛ 내지 100 ㎛인 것인,
    접합 세라믹.
  4. 제1항에 있어서,
    상기 제1 세라믹 기재 및 제2 세라믹 기재는, 각각, 탄화 규소(SiC), 질화규소(SiN4), 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 산화 지르코늄(ZrO2), 산화 규소(SiO2), ZTA(Zirconia Toughened Alumina) , 산화 마그네슘(MgO), 근청석, 멀라이트 및 코디에라이트로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것인,
    접합 세라믹.
  5. 제1항에 있어서,
    상기 제1 세라믹 기재 및 상기 제2 세라믹 기재는, 동일 물질이며,
    이종물질-프리인 것인,
    접합 세라믹.
  6. 제1항에 있어서,
    복수의 세라믹 기재;를 더 포함하고,
    상기 복수의 세라믹 기재는, 상기 제1 세라믹 기재 또는 제2 세라믹 기재 상에 접착층-프리로 적층되어 접합된 것인,
    접합 세라믹.
  7. 제1항에 있어서,
    상기 제1 세라믹 기재 및 제2 세라믹 기재는, 각각, 1 mm 내지 100 mm 두께를 가지는 것인,
    접합 세라믹.
  8. 제1항에 있어서,
    상기 접합 세라믹 전체 두께는 2 mm 내지 200 mm 인 것인,
    접합 세라믹.
  9. 제1항에 있어서,
    벌크(bulk)한 단일 세라믹 기재 대비 70 % 이상의 강도를 가지는,
    접합 세라믹.
  10. 제1 세라믹 기재의 일면 및 제2 세라믹 기재의 일면을 연마(polishing)하는 단계; 및
    상기 연마한 제1 세라믹 기재의 일면 및 상기 연마한 제2 세라믹 기재의 일면을 접하도록 접합하는 단계;를 포함하는,
    접합 세라믹의 제조방법.
  11. 제10항에 있어서,
    상기 접합하는 단계에서,
    상기 제1 세라믹 기재 및 상기 제2 세라믹 기재에 걸쳐서 위치하는 그레인이 형성되는 것인,
    접합 세라믹의 제조방법.
  12. 제11항에 있어서,
    상기 제1 세라믹 기재와 상기 제2 세라믹 기재에 걸쳐서 형성되는 그레인의 크기는, 0.1 ㎛ 내지 100 ㎛인 것인,
    접합 세라믹의 제조방법.
  13. 제10항에 있어서,
    상기 접합하는 단계;는,
    상기 제1 세라믹 기재의 용융온도의 60 % 내지 90 %의 온도 범위와 상기 제2 세라믹 기재의 용융온도의 60 % 내지 90 %의 온도 범위의 중복 온도 범위 내에서 수행되고,
    0.1 kg/cm 2 내지 100 kg/cm 2의 압력 조건에서 수행되는 것인,
    접합 세라믹의 제조방법.
  14. 제1항의 접합 세라믹 또는 제10항의 접합 세라믹의 제조방법에 따라 제조된 접합 세라믹은,
    항공우주산업의 반사경, 투시창 및 반도체산업의 웨이퍼 고정용 진공척으로 이루어진 군으로부터 선택된 적어도 하나에 적용되는 것인,
    접합 세라믹을 포함하는 어플리케이션.
PCT/KR2018/014501 2017-12-19 2018-11-23 접합 세라믹 및 이의 제조방법 WO2019124778A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880078239.7A CN111448174B (zh) 2017-12-19 2018-11-23 粘合陶瓷及其制备方法
JP2020534484A JP2021506719A (ja) 2017-12-19 2018-11-23 接合セラミック及びその製造方法
US16/956,190 US11390566B2 (en) 2017-12-19 2018-11-23 Bonded ceramic and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0175077 2017-12-19
KR1020170175077A KR102069423B1 (ko) 2017-12-19 2017-12-19 접합 세라믹 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2019124778A1 true WO2019124778A1 (ko) 2019-06-27

Family

ID=66992732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014501 WO2019124778A1 (ko) 2017-12-19 2018-11-23 접합 세라믹 및 이의 제조방법

Country Status (5)

Country Link
US (1) US11390566B2 (ko)
JP (1) JP2021506719A (ko)
KR (1) KR102069423B1 (ko)
CN (1) CN111448174B (ko)
WO (1) WO2019124778A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960844B (zh) * 2020-07-31 2022-08-02 广东工业大学 一种陶瓷连接件及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261458A (ja) * 2000-03-16 2001-09-26 Toshiba Ceramics Co Ltd 炭化珪素接合体および炭化珪素接合体の製造方法
KR20030007929A (ko) * 2001-04-12 2003-01-23 이비덴 가부시키가이샤 세라믹 접합체 및 그 제조방법, 반도체 웨이퍼용 세라믹구조체
JP2015224152A (ja) * 2014-05-27 2015-12-14 株式会社ブリヂストン 炭化ケイ素セラミックの接合方法
JP2016069207A (ja) * 2014-09-29 2016-05-09 京セラ株式会社 セラミック流路体およびこれを備える熱交換器
KR20170021255A (ko) * 2014-05-21 2017-02-27 세람텍-에텍 게엠베하 세라믹 링잉

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3338593B2 (ja) * 1995-09-19 2002-10-28 日本碍子株式会社 半導体処理装置およびその製造方法
EP1418160A1 (en) * 2001-07-19 2004-05-12 Ibiden Co., Ltd. CERAMIC CONNECTION BODY, METHOD OF CONNECTING THE CERAMIC BODIES, AND CERAMIC STRUCTURAL BODY
WO2004110957A1 (ja) * 2003-06-13 2004-12-23 Tokuyama Corporation 窒化アルミニウム接合体及びその製造方法
DE102004044942A1 (de) * 2004-09-16 2006-03-30 Esk Ceramics Gmbh & Co. Kg Verfahren zum verformungsarmen Diffusionsschweißen von keramischen Komponenten
JP4890968B2 (ja) * 2006-06-27 2012-03-07 黒崎播磨株式会社 低熱膨張セラミックス接合体及びその製造方法
JP5781271B2 (ja) * 2007-03-14 2015-09-16 サンーゴバン アブレイシブズ,インコーポレイティド ボンド研磨物品および製造方法
JP5270306B2 (ja) * 2008-11-10 2013-08-21 太平洋セメント株式会社 セラミックス接合体及びその製造方法
US8956484B2 (en) * 2012-11-26 2015-02-17 Corning Incorporated Method for bonding zircon substrates
US9428423B2 (en) * 2013-05-03 2016-08-30 Advanced Bonding Technologies, Inc. Self-bonding of chemically vapor deposited SiC articles
JP2017188676A (ja) * 2016-03-30 2017-10-12 新日鉄住金マテリアルズ株式会社 放熱基板
KR101960264B1 (ko) * 2017-03-10 2019-03-20 서울시립대학교 산학협력단 잔류응력이 없는 탄화규소 접합체 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261458A (ja) * 2000-03-16 2001-09-26 Toshiba Ceramics Co Ltd 炭化珪素接合体および炭化珪素接合体の製造方法
KR20030007929A (ko) * 2001-04-12 2003-01-23 이비덴 가부시키가이샤 세라믹 접합체 및 그 제조방법, 반도체 웨이퍼용 세라믹구조체
KR20170021255A (ko) * 2014-05-21 2017-02-27 세람텍-에텍 게엠베하 세라믹 링잉
JP2015224152A (ja) * 2014-05-27 2015-12-14 株式会社ブリヂストン 炭化ケイ素セラミックの接合方法
JP2016069207A (ja) * 2014-09-29 2016-05-09 京セラ株式会社 セラミック流路体およびこれを備える熱交換器

Also Published As

Publication number Publication date
CN111448174A (zh) 2020-07-24
KR20190073863A (ko) 2019-06-27
US11390566B2 (en) 2022-07-19
JP2021506719A (ja) 2021-02-22
US20200331812A1 (en) 2020-10-22
CN111448174B (zh) 2021-06-18
KR102069423B1 (ko) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2019124779A1 (ko) 유체 흐름이 가능한 유로가 형성된 접합 세라믹 및 이의 제조방법
WO2010101423A2 (ko) 리프트 핀 및 이를 포함하는 웨이퍼 처리 장치
WO2019124778A1 (ko) 접합 세라믹 및 이의 제조방법
WO2016068559A1 (ko) 이형필름 박리안정성 측정방법 및 이형필름 적층체
US10109598B2 (en) Composite carrier for warpage management
WO2019139324A1 (ko) 곡면 접합 유리의 제조 방법 및 이에 의해 제조된 곡면 접합 유리
WO2020105953A1 (ko) 폴더블 백플레이트 필름 및 폴더블 백플레이트 필름의 제조방법
WO2018012783A1 (ko) 반도체 후공정용 척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 칩 분리 장치
JPH10270540A (ja) 静電チャックデバイスおよび静電チャック用基台
WO2002060834A1 (fr) Procede d'assemblage de pieces en ceramique de haute purete
WO2016060391A1 (ko) 유리 면취가공용 발열장치
WO2018038571A1 (ko) 지문인식센서용 커버의 제조방법
WO2016004862A1 (zh) 波长转换装置及光源系统
WO2018124317A1 (ko) 방열 그래핀 시트 및 이의 제조방법
WO2012144872A2 (en) Apparatus and method for fabricating ingot
WO2021095917A1 (ko) 통신용 복합 유리 및 이의 제조 방법
JPH0437047A (ja) 真空ピンセット
WO2017069398A1 (ko) 세라믹 회로기판 및 이의 제조방법
WO2012015258A2 (en) Method for manufacturing silicon carbide sintered material using ball
JP4338994B2 (ja) 高剛性低熱膨張セラミックス部材
WO2023249322A1 (ko) 질화규소 기판의 분석 방법
WO2022158894A1 (ko) 인쇄회로용 기판의 제조방법
WO2019132370A1 (ko) 엣지부에 대한 점착력이 우수한 보호시트 및 이를 포함하는 디스플레이 장치
CN115745577B (zh) 一种超薄低温烧结陶瓷基板的制备方法
WO2017122966A1 (ko) 세라믹 회로기판 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891090

Country of ref document: EP

Kind code of ref document: A1