WO2016004862A1 - 波长转换装置及光源系统 - Google Patents

波长转换装置及光源系统 Download PDF

Info

Publication number
WO2016004862A1
WO2016004862A1 PCT/CN2015/083507 CN2015083507W WO2016004862A1 WO 2016004862 A1 WO2016004862 A1 WO 2016004862A1 CN 2015083507 W CN2015083507 W CN 2015083507W WO 2016004862 A1 WO2016004862 A1 WO 2016004862A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
sub
reflective layer
layer
conversion device
Prior art date
Application number
PCT/CN2015/083507
Other languages
English (en)
French (fr)
Inventor
杨佳翼
胡飞
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2016004862A1 publication Critical patent/WO2016004862A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings

Definitions

  • the present invention relates to the field of optical technology, and more particularly to a wavelength conversion device and a light source system.
  • the wavelength conversion device includes a substrate 11, a phosphor layer 13, and a motor 14 .
  • the substrate 11 is usually an aluminum nitride ceramic.
  • the wavelength conversion device of such a configuration when the excitation light illuminates the wavelength conversion device, a part of the laser light emitted from the wavelength conversion device is partially opposite to the direction of the excitation light, but a part of the laser is directed to the direction of the laser light.
  • the direction of the excitation light is the same. At this time, whether the laser is collected and utilized in the direction opposite to the direction of the excitation light or in the same direction as the direction of the excitation light, there is a loss of light, thereby reducing the light utilization efficiency.
  • the present invention provides a wavelength conversion device to solve the problem of low utilization of light emitted from the wavelength conversion device.
  • the present invention provides the following technical solutions:
  • a wavelength conversion device comprising a substrate and a wavelength conversion layer, further comprising a reflective layer disposed on a surface of the substrate, the wavelength conversion layer being disposed on a surface of the reflective layer facing away from the substrate.
  • the reflective layer comprises an aluminum oxide layer formed on the surface of the substrate by a predetermined oxidation method.
  • the reflective layer further comprises at least one sub-reflective layer, the at least one sub-reflective layer is disposed on the aluminum oxide layer, and the plurality of the sub-reflective layers are stacked.
  • the reflective layer comprises at least two laminated sub-reflective layers.
  • each of the sub-reflective layers is sintered by the reflective particles and the bonding material.
  • the adjacent two layers of the sub-reflective layer have different reflective particles and/or bonding materials.
  • the present invention also provides a light source system including the above wavelength conversion device.
  • the reflective layer includes an aluminum oxide layer formed on the surface of the substrate and / or at least two layers of the sub-reflective layer are stacked, so that the reflectivity of the reflective layer can be improved, thereby making the reflective layer thinner and improving thermal conductivity.
  • 1 is a structural diagram of a wavelength conversion device provided by the prior art
  • FIG. 2 is a schematic structural diagram of a wavelength conversion device according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a wavelength conversion device according to a second embodiment of the present invention.
  • 4 and 5 are schematic structural diagrams of a wavelength conversion device according to a third embodiment of the present invention.
  • 6 and 7 are schematic structural diagrams of a wavelength conversion device according to a fourth embodiment of the present invention.
  • FIGS. 8 and 9 are schematic structural diagrams of a wavelength conversion device according to a fifth embodiment of the present invention.
  • the invention provides a
  • the wavelength conversion device includes a substrate and a wavelength conversion layer, and further includes a reflective layer disposed on a surface of the substrate, the wavelength conversion layer being disposed on a surface of the reflective layer facing away from the substrate.
  • the reflective layer comprises an aluminum oxide layer formed on the surface of the substrate by a predetermined oxidation method, or the reflective layer comprises an aluminum oxide layer and at least one sub-reflective layer laminated on the aluminum oxide layer, or the reflective layer comprises At least two layers of sub-reflective layers are stacked.
  • the present invention also provides a light source system comprising the wavelength conversion device as described above.
  • the wavelength conversion device of the present invention by providing a reflective layer between the substrate and the wavelength conversion layer, the light emitted from the wavelength conversion layer can be reflected by the reflective layer to improve light utilization efficiency.
  • the reflective layer includes an aluminum oxide layer formed on the surface of the substrate and / or at least two layers of the sub-reflective layer are stacked, so that the reflectivity of the reflective layer can be improved, thereby making the reflective layer thinner and improving thermal conductivity.
  • the wavelength conversion device includes a substrate 21 and a reflective layer 22 And the wavelength conversion layer 23 . among them:
  • the substrate 21 is an aluminum-containing compound, and the substrate 21 may be a ceramic substrate.
  • the main material of the ceramic substrate is aluminum nitride.
  • the substrate 21 The shape can be any shape, such as a circle or a square.
  • the substrate 21 has two surfaces.
  • the reflective layer 22 is disposed on one of the surfaces of the substrate 21.
  • the wavelength conversion layer 23 is disposed on the surface of the reflective layer 22 facing away from the substrate 21.
  • the wavelength conversion layer 23 The wavelength conversion material layer or the wavelength conversion layer is sintered by a wavelength conversion material and a binder.
  • wavelength conversion materials include, but are not limited to, phosphors, luminescent dyes, nano luminescent materials, quantum dots, fluorescent dyes and the like.
  • the wavelength conversion device further includes a drive device 24.
  • the drive unit 24 The drive wavelength conversion device moves in accordance with a predetermined path.
  • This embodiment provides another wavelength conversion device, as shown in FIG.
  • the wavelength conversion device differs from the wavelength conversion device of the first embodiment in that the reflective layer in this embodiment is an aluminum oxide layer 321 formed by a predetermined oxidation method on the surface of the substrate.
  • the reflective layer is an aluminum oxide layer formed by a predetermined oxidation method on the surface of the aluminum nitride substrate.
  • the preset oxidation mode includes, but is not limited to, high temperature oxidation.
  • the high temperature means that an aluminum oxide layer can be formed on the surface of the substrate 21 321
  • the required temperature such as the high temperature range, is 1100-1600 degrees.
  • the aluminum oxide layer 321 when the aluminum oxide layer 321 is formed on the surface of the substrate 21 by high-temperature oxidation, it can be on the substrate 21
  • the surface forms an aluminum oxide layer 321 having pores.
  • the specific process of the high-temperature oxidation may be any one of the methods provided by the prior art, and details are not described herein again.
  • a dense aluminum oxide layer having pores can be formed on the surface of the aluminum nitride substrate, and since the reflectance of the aluminum oxide layer is very high, In the case of the required reflectance, when the aluminum oxide layer is used as the reflective layer, the reflective layer can be made thinner. To achieve the desired reflectance, the thickness of the general aluminum oxide layer is 10um The following is fine.
  • the reflective layer can be thinner, so that the reflective layer has better thermal conductivity, so that the heat generated by the wavelength conversion layer can be quickly transferred to the aluminum nitride substrate through the aluminum oxide layer, thereby speeding up The heat dissipation speed further increases the conversion efficiency of the wavelength conversion layer.
  • the present invention is in contrast to the manner of sintering the reflective layer on the surface of the aluminum nitride substrate. The embodiment provides a way to make the bond between the reflective layer and the aluminum nitride substrate stronger. Again, since the wettability between the wavelength converting layer and the alumina is very good, the wavelength converting layer can be more firmly bonded to the aluminum oxide layer, enhancing the bonding strength of the wavelength converting layer.
  • This embodiment provides another wavelength conversion device, which is different from the wavelength conversion device described in the second embodiment in that the reflective layer in the embodiment includes a surface formed on the surface by a predetermined oxidation method.
  • the aluminum oxide layer 421 is the same as the aluminum oxide layer in the second embodiment, and will not be described again.
  • Each of the sub-reflective layers above is sintered by the reflective particles and the bonding material.
  • the reflective particles include, but are not limited to, alumina, titanium oxide, quartz powder, glass powder, etc.
  • the bonding materials include, but are not limited to, low temperature glass.
  • At least one sub-reflective layer is two or more sub-reflective layers
  • different reflective particles and/or bonding materials are used between adjacent two-layer reflective layers, and between adjacent sub-reflecting layers Reflected particles used and / Or the bonding materials may be the same or different.
  • the reflective particles in each of the sub-reflective layers may be uniformly distributed or unevenly distributed.
  • the reflective particles are spherical or otherwise shaped.
  • a sub-reflective layer 422 is disposed on the aluminum oxide layer 421 according to the embodiment.
  • the manner in which the sub-reflective layer 422 is disposed over the aluminum oxide layer 421 includes, but is not limited to, sintering or the like.
  • the thickness of the sub-reflective layer 422 can be very thin, such as a thickness of 0.05. Mm or less.
  • the reflective layer 42 includes an aluminum oxide layer 421 and a sub-reflective layer 422 disposed over the aluminum oxide layer 421. Since the aluminum oxide layer 421 and the sub-reflective layer 422 constitute two dielectric layers, since both dielectric layers have better reflectivity, the superposition of the two dielectric layers can cause most of the light to be reflected. In addition, when the aluminum oxide layer When the 421 and the sub-reflective layer 422 are different dielectric layers, since the light generates a large amount of reflection between the two different dielectric layers, the reflectance of the reflective layer 42 can be further improved, and the reflective layer 42 It can be thinner and further improve thermal conductivity.
  • FIG. 5 is provided in the aluminum oxide layer 421 of the embodiment.
  • the structure of the wavelength conversion device provided with the two-layer sub-reflection layer is provided.
  • the two sub-reflective layers are a first sub-reflective layer 423 and a second sub-reflective layer 424, respectively.
  • the first sub-reflective layer 423 and the second sub-reflective layer 424 is stacked on top of the aluminum oxide layer 421 in any order.
  • the first sub-reflective layer 423 and the second sub-reflective layer 424 are stacked on the aluminum oxide layer 421
  • the above methods include, but are not limited to, sintering and the like.
  • the first sub-reflective layer 423 and the second sub-reflective layer 424 are each sintered by reflecting particles and a bonding material.
  • First sub-reflective layer 423 The reflective particles and/or the bonding material of the second sub-reflective layer 424 are different.
  • the first sub-reflective layer 423 and the second sub-reflective layer 424 may each have a thickness of 0.05 mm or less, such as a first sub-reflective layer. Both 423 and the second sub-reflective layer 424 may have a thickness of less than 40 um.
  • the reflective layer includes an aluminum oxide layer 421, a first sub-reflective layer 423, and a second sub-reflective layer 424.
  • the reflective particles and/or bonding material are different such that the aluminum oxide layer 421, the first sub-reflective layer 423, and the second sub-reflective layer 424 Forming three different dielectric layers, since light rays generate a large amount of reflection between two different dielectric layers, three different dielectric layers can further improve the reflectivity of the reflective layer, and each dielectric layer can be very thin, thereby The reflective layer comprising the three dielectric layers can also be made thinner, further improving the thermal conductivity of the reflective layer.
  • the sub-reflective layer formed by sintering the bonding material utilizes the principle that light rays generate a large amount of reflection between two different dielectric layers to improve the reflectivity of the reflective layer, which is not mentioned here.
  • This embodiment provides another wavelength conversion device, which is different from the wavelength conversion devices described in Embodiments 1, 2, and 3 in the base. 61.
  • the reflective layer in this embodiment includes at least two laminated sub-reflective layers disposed on the substrate 61.
  • the substrate 61 in this embodiment is a ceramic substrate, and the material of the ceramic substrate 61 may be aluminum nitride or aluminum oxide.
  • the structure of the wavelength conversion device provided with the two-layer sub-reflection layer is provided.
  • the two sub-reflective layers are a first sub-reflective layer 623 and a second sub-reflective layer 624, respectively.
  • First sub-reflective layer 623 and second sub-reflective layer 624 The thickness may be 0.05 mm or less, and the thickness of the first sub-reflective layer 423 and the second sub-reflective layer 424 may be less than 40 ⁇ m.
  • the first sub-reflective layer 623 and the second sub-reflective layer 624 are stacked on the substrate 61 in any order.
  • First sub-reflective layer The manner in which the 623 and the second sub-reflective layer 624 are stacked on the substrate 61 includes, but is not limited to, sintering or the like.
  • the first sub-reflective layer 623 and the second sub-reflective layer 624 are each sintered by reflecting particles and a bonding material.
  • First sub-reflective layer 623 And the reflective particles of the second sub-reflective layer 624 and Or the bonding material is different.
  • the reflective particles include, but are not limited to, alumina, titanium oxide, quartz powder, glass powder, etc.
  • the bonding materials include, but are not limited to, low temperature glass, silica gel, and the like.
  • the first sub-reflective layer 623 and the second sub-reflective layer 624 may each have a thickness of 0.05 mm or less, such as the first sub-reflective layer. Both 623 and the second sub-reflective layer 624 may have a thickness of less than 40 um.
  • the reflective layer includes a first sub-reflective layer 623 and a second sub-reflective layer 624.
  • the reflective particles and/or bonding material are different such that the first sub-reflective layer 623 and the second sub-reflective layer 624 Forming two different dielectric layers, because light will generate a large amount of reflection between two different dielectric layers, so that two different dielectric layers can further improve the reflectivity of the reflective layer, and each dielectric layer can be very thin, thereby The reflective layer comprising two dielectric layers can also be made thinner, further improving the thermal conductivity of the reflective layer.
  • the three-layer sub-reflective layer is a first sub-reflective layer 723, a second sub-reflective layer 724, and a third sub-reflective layer 725, respectively.
  • First sub-reflective layer 723 The thickness of the second sub-reflective layer 724 and the third sub-reflective layer 725 may be 0.05 mm or less, and the thicknesses of the first sub-reflective layer 423 and the second sub-reflective layer 424 may be lower than 40um.
  • the first sub-reflective layer 723, the second sub-reflective layer 724, and the third sub-reflective layer 725 Both are formed by sintering the reflective particles and the bonding material, wherein the reflective particles include, but are not limited to, alumina, titanium oxide, quartz powder, glass powder, etc., and the bonding materials include, but are not limited to, low temperature glass, silica gel, and the like.
  • the first sub-reflective layer 723 and the second sub-reflective layer 724 are different from the reflective particles and/or the bonding material, and the second sub-reflecting layer 724 is different from the reflective particles and/or bonding materials used by the third sub-reflective layer 725, and the reflective particles and the first sub-reflective layer 723 and the third sub-reflective layer 725 are used.
  • the bonding materials may be the same or different.
  • the reflective layer in this embodiment may further include a plurality of sub-reflective layers stacked on the substrate, wherein the reflective particles of the adjacent two sub-reflective layers and /
  • the reflective particles and/or the bonding material used for the non-adjacent sub-reflective layers may be the same or different, or different bonding materials.
  • the reflective layer includes a first sub-reflective layer 723, a second sub-reflective layer 724, and a third sub-reflective layer 725.
  • the first sub-reflective layer 723 and the second sub-reflective layer 724 The reflective particles and/or bonding materials used are different, and the second sub-reflective layer 724 and the third sub-reflective layer 725 are made of reflective particles and/or Or the bonding material is different, because the light will generate a large amount of reflection between the two different dielectric layers, so the three different dielectric layers can further improve the reflectivity of the reflective layer, and each dielectric layer can be very thin, so that the inclusion The reflective layer of the three dielectric layers can also be thinner, further improving the thermal conductivity of the reflective layer.
  • the present embodiment provides another wavelength conversion device, which is different from the wavelength conversion devices of the first to fourth embodiments in that the wavelength conversion device of the embodiment further includes a heat sink.
  • the heat sink is disposed on the substrate 61 It faces away from the surface of the reflective layer 62.
  • FIG. 8 is a schematic structural diagram of a wavelength conversion device including a heat sink 84 according to the embodiment.
  • the radiator 85 For metal plates.
  • FIG. 9 is a schematic structural diagram of a wavelength conversion device including a heat sink 95 according to the embodiment.
  • the heat sink 95 It is a special-shaped metal plate with fins.
  • the wavelength conversion device further includes a heat sink, the heat dissipation performance of the wavelength conversion device can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种波长转换装置及光源系统,该波长转换装置包括基底(21)和波长转换层(23),还包括反射层(22),所述反射层(22)设置于所述基底(21)的一表面,所述波长转换层(23)设置于所述反射层(22)的背离所述基底(21)的表面。通过设置所述反射层(22),可以对所述波长转换层(23)出射的光进行反射,提高光利用率。该反射层可包括在所述基底(21)的表面形成的氧化铝层和/或至少两层层叠设置的子反射层(423,424),从而可提高该反射层(22)的反射率,进而使该反射层(22)可以薄型化,改善导热性能。

Description

波长转换装置及光源系统 技术领域
本发明涉及光学技术领域,更具体地说,涉及波长转换装置及光源系统。
背景技术
传统的波长转换装置如图 1 所示,该波长转换装置包括基底 11 、荧光粉层 13 以及马达 14 。为了保证荧光粉层的散热,通常基底 11 为氮化铝陶瓷。
采用这种结构的波长转换装置,当激发光照射该波长转换装置时,该波长转换装置出射的受激光中,有一部分受激光的方向与激发光的方向相反,但有一部分受激光的方向与激发光的方向相同,此时,无论与激发光的方向相反的方向上还是在与激发光的方向相同的方向上对受激光进行收集并利用,都会存在光的损失,从而降低了光利用率。
技术问题
有鉴于此,本发明提供了一种波长转换装置,以解决波长转换装置出射的光的利用率低的问题。
为实现上述目的,本发明提供如下技术方案:
一种波长转换装置,包括基底和波长转换层,还包括反射层,所述反射层设置于所述基底的一表面,所述波长转换层设置于所述反射层的背离所述基底的表面。
优选的,所述反射层包括在所述基底的表面采用预设的氧化方式形成的氧化铝层。
优选的,所述反射层还包括至少一子反射层,所述至少一子反射层设置于所述氧化铝层上,多层所述子反射层层叠设置。
优选的,所述反射层包括至少两层层叠设置的子反射层。
优选的,每层所述子反射层通过反射颗粒与粘接材料烧结而成。
优选的,相邻两层所述子反射层的反射颗粒和 / 或粘接材料不同。
本发明还提供了一种包括上述波长转换装置的光源系统。
与现有技术相比,本发明所提供的技术方案具有以下优点:
本发明通过在波长转换装置的基底与波长转换层之间设置反射层,通过反射层可以对波长转换层出射的光进行反射,提高光利用率。同时该反射层包括在基底的表面形成的氧化铝层和 / 或至少两层层叠设置的子反射层,从而可提高该反射层的反射率,进而使该反射层可以薄型化,改善导热性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图 1 为现有技术提供的波长转换装置的结构图;
图 2 为本发明第一实施例提供的波长转换装置的结构示意图;
图 3 为本发明第二实施例提供的波长转换装置的结构示意图;
图 4 、 5 为本发明第三实施例提供的波长转换装置的结构示意图;
图 6 、 7 为本发明第四实施例提供的波长转换装置的结构示意图;
图 8 、 9 为本发明第五实施例提供的波长转换装置的结构示意图。
本发明的实施方式
本发明提供了一种 波长转换装置,包括基底和波长转换层,还包括反射层,所述反射层设置于所述基底的一表面,所述波长转换层设置于所述反射层的背离所述基底的表面。
其中反射层包括在所述基底的表面采用预设的氧化方式形成的氧化铝层,或者,反射层包括氧化铝层以及层叠设置在氧化铝层之上的至少一子反射层,或者反射层包括至少两层层叠设置的子反射层。
本发明还提供了一种光源系统,包括如上所述的波长转换装置。
本发明所提供的波长转换装置通过在基底与波长转换层之间设置反射层,通过反射层可以对波长转换层出射的光进行反射,提高光利用率。同时该反射层包括在基底的表面形成的氧化铝层和 / 或至少两层层叠设置的子反射层,从而可提高该反射层的反射率,进而使该反射层可以薄型化,改善导热性能。
以上是本发明的核心思想,为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似应用,因此本发明不受下面公开的具体实施例的限制。
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
下面通过几个实施例详细描述。
实施例一
本实施例提供了一种波长转换装置,如图 2 所示,该波长转换装置包括基底 21 ,反射层 22 和波长转换层 23 。其中:
基底 21 为含铝的化合物,如基底 21 可以为陶瓷基底。其中陶瓷基底的主要材质为氮化铝。该基底 21 的形状可以为任意形状,如圆形或者方形等。该基底 21 具有两个表面。
反射层 22 设置在基底 21 的其中一个表面。
波长转换层 23 设置于反射层 22 的背离基底 21 的表面。该波长转换层 23 为波长转换材料层,或者该波长转换层通过波长转换材料与粘接剂烧结而成。其中波长转换材料包括但不限于荧光粉,发光染料,纳米发光材料,量子点,荧光染料等。
在本发明另一实施例中,该波长转换装置还包括驱动装置 24 。该驱动装置 24 驱动波长转换装置按照预定路径运动。
实施例二
本实施例提供了另一种波长转换装置,如图 3 所示,该波长转换装置与实施例一所述的波长转换装置的区别在于,本实施例中的反射层为在所述基底的表面采用预设的氧化方式形成的氧化铝层 321 。如当基底 21 为氮化铝基底时,则该反射层为在氮化铝基底的表面采用预设的氧化方式形成的氧化铝层。
其中预设的氧化方式包括但不限于高温氧化方式。其中高温是指可以在基底 21 的表面形成氧化铝层 321 所需的温度,如高温的温度范围为 1100-1600 度等。
在本实施例中,当采用高温氧化方式在基底 21 的表面形成氧化铝层 321 时,可以在基底 21 的表面形成具有孔隙的氧化铝层 321 。其中高温氧化的具体过程可以采用现有技术提供的任意一种方式,在此不再赘述。
在本实施例中,氮化铝基底在高温氧化后,可在该氮化铝基底的表面形成一层致密的具有孔隙的氧化铝层,由于氧化铝层的反射率非常高,因此,在达到所需要的反射率的情况下,将氧化铝层作为反射层时,该反射层可以更薄,如要达到需要的反射率,一般氧化铝层的厚度在 10um 以下就可以。由于将氧化铝层作为反射层时,该反射层可以更薄,从而该反射层的导热性能更好,使得波长转换层产生的热量可以经氧化铝层快速的传导至氮化铝基底上,加快散热速度,进而提高波长转换层的转换效率。其次,由于是采用高温氧化的方式直接在氮化铝基底的表面形成氧化铝层,使得该氧化铝层具有孔隙,因此,相对于将反射层烧结在氮化铝基底的表面的方式,本发明实施例提供的方式使得反射层与氮化铝基底之间结合的更牢固。再次,由于波长转换层与氧化铝之间的浸润性非常好,因此,波长转换层可以与氧化铝层结合的更牢固,增强了波长转换层的粘接强度。
实施例三
本实施例提供了另一种波长转换装置,该波长转换装置与实施例二所述的波长转换装置的区别在于,本实施例中的反射层包括在基底的表面采用预设的氧化方式形成的氧化铝层 421 以及设置在该氧化铝层 421 之上的至少一子反射层。其中氧化铝层 421 与实施例二中的氧化铝层相同,在此不再赘述。
其中设置在氧化铝层 421 之上的每层子反射层通过反射颗粒与粘接材料烧结而成。其中反射颗粒包括但不限于氧化铝、氧化钛,石英粉、玻璃粉等,粘接材料包括但不限于低温玻璃等。
设置在氧化铝层 421 之上的至少一子反射层为两层或者两层以上子反射层时,相邻两层子反射层之间采用的反射颗粒和 / 或粘接材料不同,不相邻的子反射层之间采用的反射颗粒和 / 或粘接材料可以相同,也可以不同。
每层子反射层中的反射颗粒可以均匀分布,也可以不均匀分布。其中反射颗粒呈球形或者其他形状。
请参阅图 4 ,为本实施例提供的在氧化铝层 421 之上设置有一层子反射层 422 的波长转换装置的结构。其中子反射层 422 设置在氧化铝层 421 之上的方式包括但不限于烧结等。该子反射层 422 的厚度可以很薄,如厚度可以在 0.05 毫米或者以下。
在本实施例中,该反射层 42 包括氧化铝层 421 和设置在氧化铝层 421 之上的子反射层 422 ,由于氧化铝层 421 和子反射层 422 构成两层介质层,由于两层介质层均具有较好的反射率,因此两层介质层的叠加可以使绝大部分的光得到反射。另外当氧化铝层 421 与子反射层 422 是不同介质层时,由于光线在两个不同介质层之间会产生大量的反射,从而可以进一步提高反射层 42 的反射率,进而该反射层 42 可以更薄,进一步提高导热性能。
请参阅图 5 ,为本实施例提供的在氧化铝层 421 之上设置有两层子反射层的波长转换装置的结构。该两层子反射层分别为第一子反射层 423 和第二子反射层 424 。其中第一子反射层 423 和第二子反射层 424 按照任意顺序层叠设置于氧化铝层 421 之上。第一子反射层 423 和第二子反射层 424 层叠设置在氧化铝层 421 之上的方式包括但不限于烧结等。
该第一子反射层 423 和第二子反射层 424 均通过反射颗粒与粘接材料烧结而成。第一子反射层 423 和第二子反射层 424 的反射颗粒和 / 或粘接材料不同。第一子反射层 423 和第二子反射层 424 的厚度均可以在 0.05 毫米或者以下,如第一子反射层 423 和第二子反射层 424 的厚度均可以低于 40um 。
在本实施例中,该反射层包括氧化铝层 421 、第一子反射层 423 和第二子反射层 424 共三层介质层,由于三层介质层均具有较好的反射率,因此三层介质层的叠加可以使绝大部分的光得到反射。另外,由于第一子反射层 423 和第二子反射层 424 的反射颗粒和 / 或粘接材料不同,使得氧化铝层 421 、第一子反射层 423 和第二子反射层 424 构成三层不同的介质层,由于光线在两个不同介质层之间会产生大量的反射,从而三层不同的介质层可以进一步提高反射层的反射率,且每层介质层可以非常薄,从而使包含三层介质层的该反射层也可以更薄,进一步提高反射层的导热性能。
可以理解,还可以在氧化铝层 421 之上层叠设置更多层由不同反射颗粒和 / 或粘接材料烧结而成的子反射层,利用光线在两个不同介质层之间会产生大量的反射的原理,来提高反射层的反射率,在此不再一一例举。
实施例四
本实施例提供了另一种波长转换装置,该波长转换装置与实施例一、二、三所述的波长转换装置的区别在于基底 61 ,且本实施例中的反射层包括设置在基底 61 之上的至少两层层叠设置的子反射层。
其中本实施例中的基底 61 为陶瓷基底,该陶瓷基底 61 的材质可以为氮化铝或者氧化铝等。
请参阅图 6 ,为本实施例提供的在基底 61 之上设置有两层子反射层的波长转换装置的结构。该两层子反射层分别为第一子反射层 623 和第二子反射层 624 。第一子反射层 623 和第二子反射层 624 的厚度均可以在 0.05 毫米或者以下,如第一子反射层 423 和第二子反射层 424 的厚度均可以低于 40um 。
该第一子反射层 623 和第二子反射层 624 按照任意顺序层叠设置于基底 61 之上。第一子反射层 623 和第二子反射层 624 层叠设置在基底 61 之上的方式包括但不限于烧结等。
该第一子反射层 623 和第二子反射层 624 均通过反射颗粒与粘接材料烧结而成。第一子反射层 623 和第二子反射层 624 的反射颗粒和 / 或粘接材料不同。其中反射颗粒包括但不限于氧化铝、氧化钛,石英粉、玻璃粉等,粘接材料包括但不限于低温玻璃、硅胶等。
第一子反射层 623 和第二子反射层 624 的厚度均可以在 0.05 毫米或者以下,如第一子反射层 623 和第二子反射层 624 的厚度均可以低于 40um 。
在本实施例中,该反射层包括第一子反射层 623 和第二子反射层 624 共两层介质层,由于两层介质层均具有较好的反射率,因此两层介质层的叠加可以使大部分的光线得到反射。另外,由于第一子反射层 623 和第二子反射层 624 的反射颗粒和 / 或粘接材料不同,使得第一子反射层 623 和第二子反射层 624 构成两层不同的介质层,由于光线在两层不同介质层之间会产生大量的反射,从而两层不同的介质层可以进一步提高反射层的反射率,且每层介质层可以非常薄,从而使包含两层介质层的该反射层也可以更薄,进一步提高反射层的导热性能。
请参阅图 7 ,为本实施例提供的在基底 61 之上设置有三层子反射层的波长转换装置的结构。该三层子反射层分别为第一子反射层 723 、第二子反射层 724 以及第三子反射层 725 。第一子反射层 723 、第二子反射层 724 、第三子反射层 725 的厚度均可以在 0.05 毫米或者以下,如第一子反射层 423 和第二子反射层 424 的厚度均可以低于 40um 。
该第一子反射层 723 、第二子反射层 724 、第三子反射层 725 均通过反射颗粒与粘接材料烧结而成,其中反射颗粒包括但不限于氧化铝、氧化钛,石英粉、玻璃粉等,粘接材料包括但不限于低温玻璃、硅胶等。
其中第一子反射层 723 与第二子反射层 724 采用的反射颗粒和 / 或粘接材料不同,第二子反射层 724 与第三子反射层 725 采用的反射颗粒和 / 或粘接材料不同,第一子反射层 723 与第三子反射层 725 采用的反射颗粒和 / 或粘接材料可以相同,也可以不同。
可以理解,本实施例中的反射层还可以包括层叠设置在基底之上的更多数量的子反射层,其中相邻两层子反射层采用的反射颗粒和 / 或粘接材料不同,不相邻的子反射层采用的反射颗粒和 / 或粘接材料可以相同,也可以不同。
在本实施例中,该反射层包括第一子反射层 723 、第二子反射层 724 以及第三子反射层 725 共三层介质层,由于三层介质层均具有较好的反射率,因此三层介质层的叠加可以使大部分的光线得到反射。另外,由于第一子反射层 723 与第二子反射层 724 采用的反射颗粒和 / 或粘接材料不同,第二子反射层 724 与第三子反射层 725 采用的反射颗粒和 / 或粘接材料不同,由于光线在两层不同介质层之间会产生大量的反射,从而三层不同的介质层可以进一步提高反射层的反射率,且每层介质层可以非常薄,从而使包含三层介质层的该反射层也可以更薄,进一步提高反射层的导热性能。
实施例五
本实施例提供了另一种波长转换装置,该波长转换装置与实施例一至四所述的波长转换装置的区别在于,本实施例的波长转换装置还包括散热器。该散热器设置于基底 61 的背离反射层 62 的表面。
请参阅图 8 ,为本实施例提供的包括散热器 84 的波长转换装置的结构示意图。该散热器 85 为金属板。
请参阅图 9 ,为本实施例提供的包括散热器 95 的波长转换装置的结构示意图。该散热器 95 为带有鳍片的异形金属板。
在本实施例中,由于该波长转换装置还包括散热器,因此,可以进一步提高波长转换装置的散热性能。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或者直接、间接运用在其他相关的技术领域,均视为包括在本发明的专利保护范围内。

Claims (12)

  1. 一种波长转换装置,包括基底和波长转换层,其特征在于,还包括反射层,所述反射层设置于所述基底的一表面,所述波长转换层设置于所述反射层的背离所述基底的表面。
  2. 如权利要求 1 所述的波长转换装置,其特征在于,所述反射层包括在所述基底的表面采用预设的氧化方式形成的氧化铝层。
  3. 如权利要求 2 所述的波长转换装置,其特征在于,所述预设的氧化方式包括高温氧化方式。
  4. 如权利要求2或3所述的波长转换装置,其特征在于,所述基底为氮化铝基底。
  5. 如权利要求2所述的波长转换装置,其特征在于,所述反射层还包括至少一子反射层,所述至少一子反射层设置于所述氧化铝层上,多层所述子反射层层叠设置。
  6. 如权利要求1所述的波长转换装置,其特征在于,所述反射层包括至少两层层叠设置的子反射层。
  7. 如权利要求5或6所述的波长转换装置,其特征在于,每层所述子反射层通过反射颗粒与粘接材料烧结而成。
  8. 如权利要求7所述的波长转换装置,其特征在于,相邻两层所述子反射层的反射颗粒和/或粘接材料不同。
  9. 如权利要求7所述的波长转换装置,其特征在于,每层所述子反射层中的反射颗粒均匀分布,所述反射颗粒呈球形。
  10. 如权利要求1所述的波长转换装置,其特征在于,所述波长转换装置还包括:
    散热器,所述散热器设置于所述基底的背离所述反射层的表面。
  11. 如权利要求10所述的波长转换装置,其特征在于,所述散热器为金属板或者带有鳍片的异形金属板。
  12. 一种光源系统,其特征在于,所述光源系统包括所述权利要求1至11任一项所述波长转换装置。
PCT/CN2015/083507 2014-07-09 2015-07-08 波长转换装置及光源系统 WO2016004862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410325211.2A CN105276525A (zh) 2014-07-09 2014-07-09 波长转换装置及光源系统
CN201410325211.2 2014-07-09

Publications (1)

Publication Number Publication Date
WO2016004862A1 true WO2016004862A1 (zh) 2016-01-14

Family

ID=55063586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083507 WO2016004862A1 (zh) 2014-07-09 2015-07-08 波长转换装置及光源系统

Country Status (2)

Country Link
CN (1) CN105276525A (zh)
WO (1) WO2016004862A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151199A (ja) * 2016-02-23 2017-08-31 セイコーエプソン株式会社 波長変換装置、照明装置、およびプロジェクター
CN205447345U (zh) * 2016-03-01 2016-08-10 深圳市绎立锐光科技开发有限公司 一种波长转换装置和光源系统
CN109424942A (zh) * 2017-07-21 2019-03-05 深圳光峰科技股份有限公司 波长转换装置、包含其的光源及投影装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437272A (zh) * 2011-11-25 2012-05-02 深圳市光峰光电技术有限公司 波长转换装置和发光装置
CN102478187A (zh) * 2010-11-24 2012-05-30 宏腾光电股份有限公司 显示器背光模块与其制造方法
JP2014015359A (ja) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd 波長変換部材の製造方法、波長変換部材及び発光デバイス
CN203489180U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN203489181U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 色轮及其光源系统、投影系统
CN103762181A (zh) * 2014-01-02 2014-04-30 上海申和热磁电子有限公司 氮化铝覆铜陶瓷基板的制备方法
CN103792767A (zh) * 2012-10-31 2014-05-14 深圳市绎立锐光科技开发有限公司 波长转换器件、其制造方法以及相关波长转换装置
CN103792768A (zh) * 2012-10-31 2014-05-14 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN103838068A (zh) * 2012-11-23 2014-06-04 深圳市光峰光电技术有限公司 发光装置及其相关投影系统
CN103836542A (zh) * 2012-11-22 2014-06-04 深圳市光峰光电技术有限公司 波长转换装置、光源系统及其相关投影系统
CN104100933A (zh) * 2013-04-04 2014-10-15 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制作方法、相关发光装置
CN104595852A (zh) * 2013-10-30 2015-05-06 深圳市绎立锐光科技开发有限公司 一种波长转换装置、漫反射层、光源系统及投影系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201637868U (zh) * 2010-03-03 2010-11-17 华美电子股份有限公司 高反射率的多层镀膜

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478187A (zh) * 2010-11-24 2012-05-30 宏腾光电股份有限公司 显示器背光模块与其制造方法
CN102437272A (zh) * 2011-11-25 2012-05-02 深圳市光峰光电技术有限公司 波长转换装置和发光装置
JP2014015359A (ja) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd 波長変換部材の製造方法、波長変換部材及び発光デバイス
CN103792767A (zh) * 2012-10-31 2014-05-14 深圳市绎立锐光科技开发有限公司 波长转换器件、其制造方法以及相关波长转换装置
CN103792768A (zh) * 2012-10-31 2014-05-14 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN103836542A (zh) * 2012-11-22 2014-06-04 深圳市光峰光电技术有限公司 波长转换装置、光源系统及其相关投影系统
CN103838068A (zh) * 2012-11-23 2014-06-04 深圳市光峰光电技术有限公司 发光装置及其相关投影系统
CN104100933A (zh) * 2013-04-04 2014-10-15 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制作方法、相关发光装置
CN203489180U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN203489181U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 色轮及其光源系统、投影系统
CN104595852A (zh) * 2013-10-30 2015-05-06 深圳市绎立锐光科技开发有限公司 一种波长转换装置、漫反射层、光源系统及投影系统
CN103762181A (zh) * 2014-01-02 2014-04-30 上海申和热磁电子有限公司 氮化铝覆铜陶瓷基板的制备方法

Also Published As

Publication number Publication date
CN105276525A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
US20210404631A1 (en) Wavelength conversion device, manufacturing method thereof, and related illumination device
JP6348189B2 (ja) 波長変換装置及びその関連発光装置
KR101954126B1 (ko) 파장 변환 장치의 제조 방법
TWI673252B (zh) 波長轉換構件及使用其之發光裝置
JP6367461B2 (ja) 多層構造のガラス蛍光体シート、その製作方法及び発光装置
CN203489181U (zh) 色轮及其光源系统、投影系统
WO2016173525A1 (zh) 一种波长转换装置、发光装置及投影装置
WO2016173527A1 (zh) 一种波长转换装置、荧光色轮及发光装置
JP5989268B2 (ja) 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置
WO2016192623A1 (zh) 波长转换装置、光源系统和投影系统
WO2016165570A1 (zh) 一种漫反射层的制备方法及波长转换装置
WO2016004862A1 (zh) 波长转换装置及光源系统
WO2018095211A1 (zh) 发光陶瓷结构及其制备方法、相关发光装置和投影装置
CN105716039A (zh) 光转换装置及其制备方法和应用
TW201541669A (zh) 光源系統及其波長轉換裝置
WO2016173526A1 (zh) 波长转化装置、光源系统和投影设备
WO2020052228A1 (zh) 波长转换装置及光源系统
CN111164769A (zh) 制造发光器件的方法
CN112666780B (zh) 波长转换装置
CN214544900U (zh) 一种散热性能好的多层陶瓷线路板
WO2016132888A1 (ja) 蛍光体セラミックスの製造方法
WO2020135296A1 (zh) 波长转换装置及其制造方法
CN114077134A (zh) 波长转换装置及其制备方法
WO2018196196A1 (zh) 波长转换器件、发光光源和投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818268

Country of ref document: EP

Kind code of ref document: A1