WO2020135296A1 - 波长转换装置及其制造方法 - Google Patents
波长转换装置及其制造方法 Download PDFInfo
- Publication number
- WO2020135296A1 WO2020135296A1 PCT/CN2019/127275 CN2019127275W WO2020135296A1 WO 2020135296 A1 WO2020135296 A1 WO 2020135296A1 CN 2019127275 W CN2019127275 W CN 2019127275W WO 2020135296 A1 WO2020135296 A1 WO 2020135296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength conversion
- layer
- reflective layer
- reflective
- conversion device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/30—Elements containing photoluminescent material distinct from or spaced from the light source
- F21V9/32—Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
- F21K9/64—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/40—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
- F21V9/45—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
Definitions
- the invention relates to the field of wavelength conversion, in particular to a wavelength conversion device and a manufacturing method thereof.
- Laser light sources excite fluorescent materials to generate color light sequences, which have the advantages of high conversion efficiency, inefficient drop, high brightness, small size, and good controllability.
- the selection and processing technology of fluorescent materials, and the selection and processing technology of reflective coatings have a crucial impact on the light output efficiency of the light source.
- the process used in the industry is mainly to use fluorescent materials and reflective materials in the form of powder to make a suitable slurry. Then, the slurry is used to make the wavelength conversion layer and the reflective layer on a substrate with good heat dissipation by a specific process, and finally cured or co-fired together.
- the wavelength conversion layer and the reflection layer manufactured by the existing process have a problem that voids and holes easily occur between the wavelength conversion layer and the reflection layer.
- the invention provides a method for manufacturing a wavelength conversion device, including the following steps:
- the wavelength conversion layer as a carrier, coating the reflective layer slurry on the surface of the wavelength conversion layer;
- the slurry of the reflective layer is cured to form a solid reflective layer on the wavelength conversion layer.
- the invention also provides a wavelength conversion device, including:
- the reflective layer is provided on the wavelength conversion layer
- the reflective layer is a solid reflective layer formed by coating a reflective layer paste on the wavelength conversion layer and curing the reflective layer paste.
- a wavelength conversion layer is independently prepared in advance and used as a substrate.
- the reflective layer slurry is coated on the wavelength conversion layer, and the reflective layer slurry is cured to form a solid reflective layer on the wavelength conversion layer.
- a natural transition interface is formed between the reflective layer and the wavelength conversion layer to solve the problem of gaps and holes that are prone to occur in the existing process of manufacturing the wavelength conversion layer and the reflection layer, and the provision of the buffer layer can reduce the gap heat during operation
- the shrinkage caused by the stress avoids the problem of cracking caused by long-term high-frequency thermal shock of the connecting layer such as the reflective layer and the wavelength conversion layer.
- FIG. 1 is a flowchart of a method for manufacturing a wavelength conversion device according to an embodiment of the invention.
- FIG. 2 is a schematic cross-sectional view of the wavelength conversion device of the first embodiment.
- 3 is a schematic cross-sectional view of the wavelength conversion device of the second embodiment.
- FIG. 4 is a schematic cross-sectional view of a wavelength conversion device of a third embodiment.
- FIG. 5 is a schematic cross-sectional view of a wavelength conversion device according to a fourth embodiment.
- Color wheel 100 300 Fixed fluorescent film 200, 400 Wavelength conversion layer 101, 201 Reflective layer 102, 202
- Bonding layer 103, 108, 203, 208 Heat dissipation substrate 104, 204 Cooling fins 105, 205 motor 106, 206
- a method for manufacturing a wavelength conversion device includes the following steps.
- Step S1 The wavelength conversion layer is made independently.
- phosphor powder, glass powder (silicon dioxide, lead oxide, titanium dioxide and other electronic-grade raw materials are mixed and then subjected to a solid phase reaction at a high temperature to form a glass homogeneous body with a disordered structure) and an organic carrier is mixed and sintered
- the wavelength conversion layer 101 in the form of a solid plate is formed.
- ceramic powder may be used instead of the glass powder to sinter the wavelength conversion layer 101.
- Step S2 coating the reflective layer paste on the wavelength conversion layer.
- a reflective layer paste is coated on the surface of the wavelength conversion layer 101.
- the reflective layer slurry in this embodiment may be formed by dispersing a powdery inorganic reflective material in an organic binder in the liquid phase, the organic binder may be silicone rubber, silicone resin, silane coupling agent, ethyl acetate Based on one or a combination of several types of cellulose, the inorganic reflective material may be one or a combination of several types of alumina, magnesium oxide, barium sulfate, titanium oxide, and the like.
- Step S3 curing the reflective layer paste to form a solid reflective layer on the wavelength conversion layer.
- the reflective layer paste is cured at a low temperature to form a solid reflective layer 102 on the wavelength conversion layer 101.
- the low temperature curing temperature is 120°C to 250°C, and the curing time is 0.5 to 6 hours.
- the organic binder is cross-linked and cured to fix the inorganic reflective material in the organic binder.
- the main components of the reflective layer are the cross-linked and cured organic binder and the inorganic reflective material dispersed in the cured organic binder.
- Step S4 Laminating the heat dissipation substrate.
- a heat dissipation base 104 is provided on the side of the reflection layer 102 away from the wavelength conversion layer 101, and an adhesive layer 103 is provided between the reflection layer 102 and the heat dissipation base 104 to fix the reflection layer 102 and Heat dissipation base 104.
- the adhesive layer 103 is an organic adhesive, such as organic silicone.
- the reflective layer slurry is formed by dispersing inorganic solid powder in an organic vehicle, and the reflective layer slurry is coated on the wavelength conversion layer 101.
- the inorganic solid powder includes an inorganic binder and an inorganic reflective material, wherein the inorganic binder can be glass powder (the main components are silica, lead oxide, and titanium dioxide), and the inorganic reflective material can be alumina, oxide One or more of magnesium, barium sulfate, titanium oxide, etc., and the organic substance carrier may be an organic material such as terpineol.
- step S4 the reflective layer paste and the wavelength conversion layer 101 need to be sintered and solidified together, so that the reflective material forms a solid, inorganic reflective layer 102 on the wavelength conversion layer 101.
- the organic carrier overflows and burns and decomposes.
- the wavelength conversion layer 101 and the reflective layer slurry coated on the wavelength conversion layer 101 can be placed together in a muffle furnace and set at a temperature of 600° C. or more, so that the reflective layer slurry is completely cured and the wavelength conversion layer A solid, inorganic reflective layer 102 is formed on 101.
- the binder of the reflective layer 10 is an inorganic binder (such as glass frit)
- the inorganic binder performs a solid-phase reaction at high temperature, and fixes the reflective material on the wavelength conversion layer 101 to form a solid reflective layer 102.
- the main components of the reflective layer 102 are an inorganic binder and an inorganic reflective material, wherein the inorganic binder is glass frit, and the inorganic reflective material is aluminum oxide, magnesium oxide, barium sulfate, and titanium oxide One or a combination of several.
- the manufacturing method of the wavelength conversion device further includes: before the step S4, in the reflective layer A buffer layer 107 is provided in advance on the side away from the wavelength conversion layer 101, and an adhesive layer 103 is provided between the reflective layer 102 and the buffer layer 107 to fix the reflective layer 102 and the buffer layer 107; A heat dissipation base 104 is provided on one side of the layer 102, and an additional adhesive layer 108 is provided between the buffer layer 107 and the heat dissipation base 104 to fix the buffer layer 107 and the heat dissipation base 104.
- the adhesive layer 103 and the adhesive layer 108 may be organic adhesives.
- the buffer layer 107 is formed of a high thermal conductivity inorganic material having a thermal expansion coefficient between the heat dissipation base 104 and the reflective layer 102, and the high thermal conductivity inorganic material may be silicon carbide, aluminum nitride, aluminum oxide, or the like.
- the buffer layer 107 can alleviate the shrinkage of the wavelength conversion device caused by gap thermal stress during operation of the wavelength conversion device.
- a solid reflective layer 102 is formed on the wavelength conversion layer 101. While solving the problem that voids and holes easily occur in the wavelength conversion layer 101 and the reflective layer 102 manufactured by the existing process, the manufacturing process is simplified.
- the wavelength conversion device will be described below in conjunction with specific embodiments.
- the first embodiment of the present invention provides a wavelength conversion device.
- the wavelength conversion device in this embodiment is a color wheel.
- the color wheel 100 includes a wavelength conversion layer 101, a reflective layer 102 disposed on the wavelength conversion layer 101, and a heat dissipation base 104 disposed on the side of the reflective layer 102 away from the wavelength conversion layer 101.
- the reflective layer 102 and the heat dissipation base 104 are bonded by providing an adhesive layer 103. That is, an adhesive layer 103 is provided between the reflective layer 102 and the heat dissipation base 104.
- the heat dissipation base 104 is away from the adhesive layer 103 and has heat dissipation fins 105.
- the center position of the heat dissipation base 104 is connected to the motor 106. That is, the motor 106 is disposed on the side of the heat dissipation base 104 away from the reflective layer 102.
- the wavelength conversion layer 101 is a fluorescent ceramic or fluorescent glass with high luminous efficiency and high thermal conductivity, and is independently prepared and molded in advance.
- the wavelength conversion layer 101 is used as a substrate, and the reflective layer paste is used to form a coating on the wavelength conversion layer 101.
- the reflective layer paste and the wavelength conversion layer 101 are cured at a low temperature to form a solid reflection layer 102 on the wavelength conversion layer 101.
- the reflection layer 102 and the wavelength conversion layer 101 are tightly combined.
- the adhesive layer 103 is provided between the reflective layer 102 and the heat dissipation base 104 so that the reflective layer 102 and the wavelength conversion layer 101 can be firmly adhered.
- the reflective layer paste in this embodiment can be formed by mixing and dispersing organic binders such as silicone rubber, silicone resin, silane coupling agent, ethyl cellulose, and inorganic reflective materials such as aluminum oxide, magnesium oxide, barium sulfate, and titanium oxide.
- organic binders such as silicone rubber, silicone resin, silane coupling agent, ethyl cellulose, and inorganic reflective materials such as aluminum oxide, magnesium oxide, barium sulfate, and titanium oxide.
- the heat dissipation base 104 provides support and transmission for the entire device, and at the same time provides a dynamic balance adjustment position, and plays a role in heat dissipation.
- the central position of the heat dissipation base 104 is connected to the motor 106.
- the motor 106 is used to drive the heat dissipation base 104 to rotate.
- the motor 106 is disposed on the side of the heat dissipation base 104 away from the reflective layer 102.
- heat dissipation fins 105 are provided, which enlarges the heat dissipation area of the surface of the color wheel 100, so that when the color wheel 100 rotates at high speed, the heat dissipation efficiency of the fluorescent wheel is improved.
- the second embodiment of the present invention provides another wavelength conversion device.
- the wavelength conversion device in this embodiment is a modified embodiment of a color wheel.
- the structure of the color wheel 300 of this embodiment is basically the same as that of the color wheel 100 of the first embodiment.
- the reflective layer 102 of this example contains at least silicon dioxide, lead oxide, and titanium dioxide.
- One, and a buffer layer 107 and an adhesive layer 108 are additionally provided between the adhesive layer 103 and the heat dissipation substrate 104; as shown in FIG. 2, the reflective layer 102 of the color wheel 100 of the first embodiment is an organic reflective material,
- the adhesive layer 103 is in direct contact with the heat dissipation base 104 and is stacked. As shown in FIG.
- the buffer layer 107 is disposed on the side of the adhesive layer 103 away from the reflective layer 102, and the heat dissipation base 104 is disposed on the side of the buffer layer 107 away from the adhesive layer 103 .
- An adhesive layer 108 is provided between the buffer layer 107 and the heat dissipation base 104.
- the inorganic solid powder is dispersed by an organic carrier to form a reflective layer slurry, and the reflective layer slurry is coated on the wavelength conversion layer 101, and the reflective layer slurry is cured to form a solid state on the wavelength conversion layer 101 ⁇ 102 ⁇ The wavelength conversion layer 102.
- the main components of the reflective layer 102 are an inorganic binder and an inorganic reflective material, wherein the inorganic binder is glass frit, and the inorganic reflective material is aluminum oxide, magnesium oxide, barium sulfate, and titanium oxide One or a combination of several.
- the buffer layer 107 is made of an inorganic material with a high thermal conductivity between the heat dissipation base 104 and the reflective layer 102. Therefore, the buffer layer 107 can relieve the shrinkage caused by the gap thermal stress during the operation of the color wheel 300, avoid the problem of cracking at the connection interface between the reflective layer 102 and the heat dissipation base 104 caused by long-term high-frequency thermal shock, and improve the reliability of the color wheel.
- An adhesive layer 108 is provided between the buffer layer 107 and the heat dissipation base 104.
- the adhesive layer 108 can be firmly bonded to the heat dissipation base 104 and the buffer layer 107.
- a third embodiment of the present invention provides a wavelength conversion device.
- the wavelength conversion device in this embodiment is a fixed fluorescent sheet.
- the fixed fluorescent sheet 200 includes a heat dissipation substrate 204, a reflective layer 202 disposed on the heat dissipation substrate 204, and a wavelength conversion layer 201 disposed on the side of the reflective layer 202 away from the heat dissipation substrate 204.
- An adhesive layer 203 is provided between the heat dissipation base 204 and the reflective layer 202 to fix the positions of the reflection layer 202 and the heat dissipation base 204.
- the wavelength conversion layer 201 is independently pre-formed using fluorescent ceramic or fluorescent glass as a material.
- the reflective layer 202 is coated with the reflective layer slurry on the wavelength conversion layer 201 and cured together at a low temperature to form a solid reflective layer 202 on the wavelength conversion layer 201.
- the reflective layer paste in this embodiment is the same as the reflective layer paste in the first embodiment, and the adhesive layer 203 is an organic binder.
- the fourth embodiment of the present invention provides another wavelength conversion device.
- the wavelength conversion device in this embodiment is a modified embodiment of a fixed fluorescent sheet.
- the fixed fluorescent sheet 400 of this embodiment is basically the same as the fixed fluorescent sheet 200 of the third embodiment, and the main difference between the two is that: the reflective layer 20 of the fourth embodiment uses glass frit as an adhesive, Moreover, a buffer layer 207 and an adhesive layer 208 are additionally provided between the adhesive layer 203 and the heat dissipation base 204.
- the adhesive layer 203 is in direct contact with the heat dissipation base 204 and is stacked.
- the buffer layer 207 is disposed on the side of the adhesive layer 203 away from the reflective layer 202
- the heat dissipation substrate 204 is disposed on a side of the buffer layer 207 away from the adhesive layer 203. side.
- An adhesive layer 208 is provided between the buffer layer 207 and the heat dissipation base 204.
- the reflective layer 102 is formed by coating the reflective layer paste on the wavelength conversion layer 101 and sintering together.
- the main components of the reflective layer paste in this embodiment are the same as the reflective layer paste in the color wheel 300 in the second embodiment.
- the adhesive layer 203 and the adhesive layer 208 can be organic adhesives.
- the buffer layer 207 is made of an inorganic material with a high thermal conductivity between the heat dissipation base 204 and the reflective layer 202. Therefore, the buffer layer 207 can alleviate the shrinkage caused by the thermal stress in the gap of the fixed fluorescent sheet 400, avoid the problem of cracking of the connection layer caused by long-term work, and improve the reliability of the color wheel.
- the main component of the buffer layer 207 may be silicon carbide, aluminum nitride, aluminum oxide, or the like.
- An adhesive layer 208 is provided between the buffer layer 207 and the heat dissipation base 204.
- the adhesive layer 208 can be firmly adhered to the heat dissipation base 204 and the buffer layer 207.
- the wavelength conversion device in the present invention uses a solid wavelength conversion layer as a substrate, and a reflective layer is formed thereon, and a natural transition interface can be formed between the liquid slurry and the solid plate by co-firing or low-temperature curing to realize a seamless connection.
- the small stress causes fewer or no voids or holes between the wavelength conversion layer and the reflective layer.
- this method avoids the step of adding a separate transition layer at the interface of the solid-state reflection layer and the solid-state wavelength conversion layer, which makes the process easier.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Optical Filters (AREA)
Abstract
一种波长转换装置的制造方法和波长转换装置,波长转换装置的制造方法包括以下步骤:制作波长转换层(101、201);以波长转换层(101、201)作为载体,在波长转换层(101、201)的表面上涂布反射层浆料;将反射层浆料固化,以在波长转换层(101、201)上形成一固态的反射层(102、202)。可以解决波长转换层(101、201)与反射层(102、202)连接时易出现空隙和孔洞的问题。
Description
本发明涉及波长转换领域,尤其涉及一种波长转换装置及其制造方法。
近年来,激光光源应用于显示领域的技术越来越成熟,激光光源激发荧光材料产生色彩光序列,具有转换效率高、无效率骤降、亮度高、体积小以及可控性好等优势。而荧光材料的选型及加工工艺,反射涂层的选材和加工工艺都对光源出光效率有着至关重要的影响。
目前行业内采用的工艺主要是应用粉体形式的荧光材料和反射材料,制作成合适的浆料。然后利用所述浆料在具有良好散热性的基板上以特定的工艺进行波长转换层和反射层的制作,最后再一同进行固化或共烧。然而以现有工艺所制作的波长转换层和反射层,存在波长转换层和反射层之间容易出现空隙和孔洞的问题。
发明内容
有鉴于此,有必要提供一种波长转换装置的制造方法,以解决现有工艺中波长转换层和反射层之间易出现空隙和孔洞的问题。
本发明提一种波长转换装置的制造方法,包括以下步骤:
制作波长转换层;
以波长转换层作为载体,在所述波长转换层的表面上涂布反射层浆料;
将所述反射层浆料固化,以在所述波长转换层上形成一固态的反射层。
本发明还提供一种波长转换装置,其包括:
波长转换层;
反射层,设置于所述波长转换层上;
所述反射层为在所述波长转换层上涂布反射层浆料并将所述反射层浆料固化所形成的固态的反射层。
本发明通过独立预先制作波长转换层,并将其作为基板。在波长转换层上涂布反射层浆料,并将反射层浆料固化,以在波长转换层上形成固体状态的反射层。在反射层以及波长转换层之间形成一个自然过渡的界面,以解决现有工艺制作波长转换层与反射层,易出现空隙和孔洞的问题,且缓冲层的设置可减缓工作时出现的间隙热应力引起的收缩,避免了反射层、波长转换层等连接层因长期高频热震引起的开裂的问题。
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例的波长转换装置制造方法的流程图。
图2为第一实施例的波长转换装置的剖面示意图。
图3为第二实施例的波长转换装置的剖面示意图。
图4为第三实施例的波长转换装置的剖面示意图。
图5为第四实施例的波长转换装置的剖面示意图。
主要元件符号说明
色轮 | 100、300 |
固定荧光片 | 200、400 |
波长转换层 | 101、201 |
反射层 | 102、202 |
粘结层 | 103、108、203、208 |
散热基体 | 104、204 |
散热鳍片 | 105、205 |
马达 | 106、206 |
缓冲层 | 107、207 |
如下具体实施方式将结合上述附图进一步说明本发明。
以下将结合附图对本发明的具体实施方式做详细的说明。
请一并参阅图1及图2。本发明一实施例的波长转换装置的制造方法,包括以下步骤。
步骤S1:独立制作波长转换层。
本实施例中,采用荧光粉、玻璃粉(二氧化硅、氧化铅、二氧化钛等电子级原料混匀后,并高温进行固相反应,形成无序结构的玻璃均质体)和有机载体混合烧结形成固态板状的波长转换层101。其它实施例中,也可以采用陶瓷粉替代所述玻璃粉来烧结波长转换层101。
步骤S2:在所述波长转换层上涂布反射层浆料。
具体地,以波长转换层101作为载体,在波长转换层101的表面涂布反射层浆料。本实施例中的反射层浆料可通过将粉末状的无机反射材料分散在液相的有机粘结剂中形成,所述有机粘结剂可为硅橡胶、硅树脂、硅烷偶联剂、乙基纤维素等中的一种或者几种的组合,所述无机反射材料可以为氧化铝、氧化镁、硫酸钡、氧化钛等中的一种或者几种的组合。
步骤S3:将所述反射层浆料固化,以在所述波长转换层上形成一固态的反射层。
本实施例中,通过低温固化上述反射层浆料,以在波长转换层101上形成一固态的反射层102。其中低温固化的温度为120℃~250℃,固化时长为0.5~6小时。在所述低温固化过程中,所述有机粘结剂交联固化将所述无机反射材料固定在有机粘结剂中。所述 反射层主要成分为交联固化的所述有机粘结剂及分散在所述固化的有机粘结剂中的所述无机反射材料。
步骤S4:贴合散热基体。
具体地,如图2所示,在反射层102远离波长转换层101一侧设置一散热基体104,并通过在反射层102与散热基体104之间设置粘结层103,以固定反射层102与散热基体104。粘结层103为有机粘结剂,例如有机硅胶。
在另一实施例中,步骤S2中,所述反射层浆料通过将无机固体粉末分散在有机载体中形成,并将反射层浆料涂布在波长转换层101上。其中无机固体粉末包括无机粘结剂和无机反射材料,其中所述无机粘结剂可为玻璃粉(主要成分为二氧化硅、氧化铅和二氧化钛),所述无机反射材料可为氧化铝、氧化镁、硫酸钡、氧化钛等中的一种或者多种,而有机物载体则可为松油醇等有机材料。则在步骤S4中需通过将所述反射层浆料与波长转换层101一同烧结固化,以使所述反射材料在波长转换层101上形成一固体的、无机的反射层102。在所述烧结固化过程中,所述有机物载体溢出并燃烧分解。例如可通过将波长转换层101和涂布在波长转换层101上的反射层浆料一同放置于马弗炉中且设置温度为600℃以上,以使反射层浆料完全固化并在波长转换层101上形成一固态的、无机的反射层102。当反射层10的粘结剂为无机粘结剂时(例如玻璃粉),无机粘结剂在高温下进行固相反应,并将反射材料固定在波长转换层101上以形成一固态的反射层102。此时,所述反射层102的主要成分为无机粘结剂和无机反射材料,其中所述无机粘结剂为玻璃粉,所述无机反射材料为氧化铝、氧化镁、硫酸钡及氧化钛中的一种或几种的组合。
请一并参阅图3,为了缓冲平衡反射层102与散热基体104之间的热膨胀系数,减少二者之间的应力,所述波长转换装置的制造方法还进一步包括:在步骤S4之前在反射层102远离波长转换层101一侧预先设置一缓冲层107,并通过在反射层102与缓冲层107之间设置粘结层103,以固定反射层102与缓冲层107;然后在缓冲 层107远离反射层102一侧设置一散热基体104,并通过在缓冲层107与散热基体104之间增设粘结层108,以固定缓冲层107与散热基体104。且其中粘结层103、粘结层108可为有机粘结剂。缓冲层107由热膨胀系数介于散热基体104和反射层102的高导热率无机材料形成,所述高导热率无机材料可为碳化硅、氮化铝、氧化铝等。缓冲层107可缓解波长转换装置工作时的间隙热应力引起的波长转换装置的收缩。
通过在固态的波长转换层101上涂布反射层浆料,并固化反射层浆料,以在波长转换层101上形成固态的反射层102。在解决现有工艺制作波长转换层101与反射层102中易出现空隙和孔洞的问题的同时,简化了制作流程。
以下结合具体实施例对波长转换装置进行说明。
本发明第一实施例提供一种波长转换装置,本实施例中的波长转换装置为一色轮。
请参阅图2,该色轮100包括:波长转换层101、设置在波长转换层101上的反射层102、设置在反射层102远离波长转换层101一侧的散热基体104。反射层102与散热基体104通过设置粘结层103进行贴合。即反射层102与散热基体104之间设有粘结层103。散热基体104远离粘结层103一侧,设有散热鳍片105。散热基体104的中心位置与马达106连结。即马达106设置于散热基体104远离反射层102的一侧。
如图2所示,波长转换层101为高发光效率、高热导率的荧光陶瓷或荧光玻璃,且独立预先制作成型。本实施例中,以波长转换层101作为基板,并以反射层浆料在波长转换层101上制作涂层。且将反射层浆料与波长转换层101一同低温固化,以在波长转换层101上形成固态的反射层102。反射层102与波长转换层101紧密结合。粘结层103设置于反射层102与散热基体104之间,以使反射层102和波长转换层101能够牢固地贴合。本实施例中的反射层浆料可由硅橡胶、硅树脂、硅烷偶联剂、乙基纤维素等有机粘结剂和氧化铝、氧化镁、硫酸钡、氧化钛等无机反 射材料混合分散形成。
散热基体104为整个装置提供支撑和传动作用,同时提供动平衡调节位置,且起到散热作用。散热基体104的中心位置与马达106连接,马达106用以驱动散热基体104旋转。马达106设置于散热基体104远离反射层102一侧。在散热基体104远离粘结层108的一侧,设有散热鳍片105,扩增了色轮100表面的散热面积,以便于色轮100高速旋转时,提升了荧光轮的散热效率。
本发明第二实施例提供另一种波长转换装置,本实施例中的波长转换装置为一色轮的变更施例。
请参阅图3,本实施例的色轮300与第一实施例的色轮100的结构基本相同,二者主要区别在于:本实例的反射层102至少含有二氧化硅、氧化铅、二氧化钛中的一种,且在粘结层103与散热基体104之间还增设有缓冲层107、粘结层108;如图2所示,第一实施例的色轮100的反射层102为有机反射材料,粘结层103与散热基体104直接接触且层叠设置。如图3所示,即在本实施例的色轮300中,缓冲层107设置于粘结层103远离反射层102的一侧,散热基体104设置与缓冲层107远离粘结层103的一侧。缓冲层107与散热基体104之间设有粘结层108。通过有机载体对无机固体粉末进行分散,以形成反射层浆料,并将反射层浆料涂布在波长转换层101上,并固化所述反射层浆料以在波长转换层101上形成一固态的波长转换层102。此时,所述反射层102的主要成分为无机粘结剂和无机反射材料,其中所述无机粘结剂为玻璃粉,所述无机反射材料为氧化铝、氧化镁、硫酸钡及氧化钛中的一种或几种的组合。
缓冲层107由热膨胀系数介于散热基体104和反射层102的高导热率无机材料所制作。故缓冲层107可缓解色轮300工作时的间隙热应力引起的收缩,避免了因长期高频热震引起的反射层102与散热基体104的连接界面开裂的问题,提高色轮可靠性。
缓冲层107与散热基体104之间设有一粘结层108。粘结层 108与散热基体104和缓冲层107均能够牢固地粘接。
本发明第三实施例提供一种波长转换装置,本实施例中的波长转换装置为一固定荧光片。
请参阅图4,该固定荧光片200包括散热基体204、设置在散热基体204上的反射层202、设置在反射层202远离散热基体204一侧的波长转换层201。散热基体204与反射层202之间设有粘结层203,以固定反射层202与散热基体204的位置。
其中波长转换层201为以荧光陶瓷或荧光玻璃为材料独立预先成型。反射层202为在波长转换层201上涂布反射层浆料,并经一同低温固化后,在波长转换层201形成一固态的反射层202。本实施例中的反射层浆料与第一实施例中的反射层浆料一致,粘结层203为有机粘结剂。
本发明第四实施例提供另一种波长转换装置,本实施例中的波长转换装置为一固定荧光片的变更施例。
请参阅图5,本实施例的固定荧光片400与第三实施例的固定荧光片200基本相同,二者的主要区别在于:第四实施例的反射层20中以玻璃粉作为粘结剂,且在粘结层203与散热基体204之间还增设有缓冲层207、粘结层208。粘结层203与散热基体204直接接触且层叠设置。如图5所示,即在本实施例的固定荧光片400中,缓冲层207设置于粘结层203远离反射层202的一侧,散热基体204设置与缓冲层207远离粘结层203的一侧。缓冲层207与散热基体204之间设有粘结层208。
本实施例中,反射层102为以反射层浆料涂布在波长转换层101上,并共同烧结而形成。且本实施例中的反射层浆料与第二实施例中的色轮300的反射层浆料的主要成分一致。而粘结层203、粘结层208可为有机粘结剂。
缓冲层207由热膨胀系数介于散热基体204和反射层202的高导热率无机材料所制作。故缓冲层207可缓解固定荧光片400间隙热应力引起的收缩,避免了因长期工作引起的连接层开裂的问题,提高色轮可靠性。而缓冲层207可主要成分为碳化硅、氮化 铝、氧化铝等。
缓冲层207与散热基体204之间设有一粘结层208。粘结层208与散热基体204和缓冲层207均能够牢固地粘接。
本发明中的波长转换装置以固态的波长转换层为基板,在其上面制作反射层,液态浆料和固态板材之间通过共烧或低温固化可以形成自然过渡的界面,实现无缝连接,界面应力小,使波长转换层和反射层之间较少或不出现空隙和孔洞。且该方法避免了采用固态形式的反射层与固态的波长转换层直接连接需要在其界面处增加单独的过渡层的步骤,使工艺变得更简单。
以上实施例仅用以说明本发明的技术方案而非限制,图示中出现的上、下、左及右方向仅为了方便理解,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。
Claims (15)
- 一种波长转换装置的制造方法,包括以下步骤:制作波长转换层;以波长转换层作为载体,在所述波长转换层的表面上涂布反射层浆料;将所述反射层浆料固化,以在所述波长转换层上形成一固态的反射层。
- 如权利要求1所述的波长转换装置的制造方法,其特征在于,所述反射层浆料通过将粉末状的无机反射材料分散在液相的有机粘结剂中形成,将所述反射层浆料固化的步骤包括将所述反射层浆料与所述波长转换层一同低温固化。
- 如权利要求2所述的波长转换装置的制造方法,其特征在于,所述方法还包括在所述反射层远离所述波长转换层的一侧设置一散热基体。
- 如权利要求2所述的波长转换装置的制造方法,其特征在于,所述有机粘结剂为硅橡胶、硅树脂、硅烷偶联剂、乙基纤维素中的一种或几种的组合,所述无机反射材料为氧化铝,氧化镁,硫酸钡、氧化钛中的一种或几种的组合。
- 如权利要求1所述的波长转换装置的制造方法,其特征在于,所述反射层浆料通过将无机固体粉末分散在有机载体中形成,将所述反射层浆料固化的步骤包括将所述反射层浆料与波长转换层共同烧结固化。
- 如权利要求5所述的波长转换装置的制造方法,其特征在于,所述方法还包括在所述反射层远离所述波长转换层一侧设置一缓冲层以及在所述缓冲层远离所述反射层一侧设置一散热基体,且所述缓冲层的热膨胀系数介于所述反射层与散热基体的热膨胀系数之间。
- 如权利要求5所述的波长转换装置的制造方法,其特征在于,所述有机载体为松油醇;所述无机固体粉末包括无机粘结剂和无机 反射材料,其中所述无机粘结剂为玻璃粉,所述无机反射材料为氧化铝、氧化镁、硫酸钡及氧化钛中的一种或几种的组合。
- 如权利要求1所述的波长转换装置的制造方法,其特征在于,制作所述波长转换层的步骤包括采用玻璃粉或陶瓷粉、荧光粉和有机载体混合烧结形成固态板状的波长转换层。
- 一种波长转换装置,其包括:波长转换层;反射层,设置于所述波长转换层上;其特征在于:所述反射层为在所述波长转换层上涂布反射层浆料并将所述反射层浆料固化所形成的固态的反射层。
- 如权利要求9所述的波长转换装置,其特征在于,所述反射层远离所述波长转换层的一侧设有一散热基体。
- 如权利要求10所述的波长转换装置,其特征在于,所述反射层与所述散热基体之间设有一缓冲层。
- 如权利要求11所述的波长转换装置,其特征在于,所述缓冲层的热膨胀系数介于所述散热基体与所述反射层的热膨胀系数之间。
- 如权利要求9所述的波长转换装置,其特征在于,所述波长转换层的材质为荧光陶瓷或荧光玻璃。
- 如权利要求9所述的波长转换装置,其特征在于,所述反射层的主要成分为交联固化的有机粘结剂及分散在固化的有机粘结剂中的无机反射材料。
- 如权利要求9所述的波长转换装置,其特征在于,所述反射层的主要成分为无机粘结剂和无机反射材料,其中所述无机粘结剂为玻璃粉,所述无机反射材料为氧化铝、氧化镁、硫酸钡及氧化钛中的一种或几种的组合。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811613929.6 | 2018-12-27 | ||
CN201811613929.6A CN111380037A (zh) | 2018-12-27 | 2018-12-27 | 波长转换装置及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020135296A1 true WO2020135296A1 (zh) | 2020-07-02 |
Family
ID=71127610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/127275 WO2020135296A1 (zh) | 2018-12-27 | 2019-12-23 | 波长转换装置及其制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111380037A (zh) |
WO (1) | WO2020135296A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203489181U (zh) * | 2013-10-15 | 2014-03-19 | 深圳市光峰光电技术有限公司 | 色轮及其光源系统、投影系统 |
CN104566229A (zh) * | 2013-10-15 | 2015-04-29 | 深圳市光峰光电技术有限公司 | 波长转换装置的制造方法 |
CN106287580A (zh) * | 2015-06-02 | 2017-01-04 | 深圳市光峰光电技术有限公司 | 波长转换装置及其制备方法、相关发光装置和投影系统 |
WO2017169117A1 (ja) * | 2016-03-29 | 2017-10-05 | 日本特殊陶業株式会社 | 波長変換部材、その製造方法および発光装置 |
CN108930919A (zh) * | 2017-05-19 | 2018-12-04 | 深圳市光峰光电技术有限公司 | 一种波长转换装置及其制备方法、光源 |
CN108954039A (zh) * | 2017-05-19 | 2018-12-07 | 深圳市光峰光电技术有限公司 | 波长转换装置及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11329722A (ja) * | 1998-05-20 | 1999-11-30 | Toshiba Corp | Elパネルの製造方法およびelパネル |
CN202246834U (zh) * | 2011-09-16 | 2012-05-30 | 北京京东方光电科技有限公司 | 一种薄膜沉积设备和均热板 |
CN103094296B (zh) * | 2013-01-23 | 2015-09-23 | 豪威科技(上海)有限公司 | 背照式cmos影像传感器及其制造方法 |
CN104061531B (zh) * | 2013-03-21 | 2015-11-25 | 深圳市绎立锐光科技开发有限公司 | 一种波长转换装置的制作方法 |
JP6232951B2 (ja) * | 2013-11-08 | 2017-11-22 | 日本電気硝子株式会社 | プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス |
CN106702333A (zh) * | 2015-07-29 | 2017-05-24 | 宁波江丰电子材料股份有限公司 | 靶材组件的制造方法 |
CN105762239B (zh) * | 2016-04-12 | 2018-11-06 | 杨阳 | 光转换装置及其制备方法和应用 |
-
2018
- 2018-12-27 CN CN201811613929.6A patent/CN111380037A/zh active Pending
-
2019
- 2019-12-23 WO PCT/CN2019/127275 patent/WO2020135296A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203489181U (zh) * | 2013-10-15 | 2014-03-19 | 深圳市光峰光电技术有限公司 | 色轮及其光源系统、投影系统 |
CN104566229A (zh) * | 2013-10-15 | 2015-04-29 | 深圳市光峰光电技术有限公司 | 波长转换装置的制造方法 |
CN106287580A (zh) * | 2015-06-02 | 2017-01-04 | 深圳市光峰光电技术有限公司 | 波长转换装置及其制备方法、相关发光装置和投影系统 |
WO2017169117A1 (ja) * | 2016-03-29 | 2017-10-05 | 日本特殊陶業株式会社 | 波長変換部材、その製造方法および発光装置 |
CN108930919A (zh) * | 2017-05-19 | 2018-12-04 | 深圳市光峰光电技术有限公司 | 一种波长转换装置及其制备方法、光源 |
CN108954039A (zh) * | 2017-05-19 | 2018-12-07 | 深圳市光峰光电技术有限公司 | 波长转换装置及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111380037A (zh) | 2020-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6826559B2 (ja) | 多層構造のガラス蛍光体シート | |
JP6348189B2 (ja) | 波長変換装置及びその関連発光装置 | |
WO2016173527A1 (zh) | 一种波长转换装置、荧光色轮及发光装置 | |
JP6923941B2 (ja) | 固体蛍光体集積光源のデュアルチャンネル伝熱パッケージング構造及びパッケージング方法 | |
JP6800307B2 (ja) | 波長変換装置の製造方法 | |
WO2016173525A1 (zh) | 一种波长转换装置、发光装置及投影装置 | |
TWI697728B (zh) | 投影機及波長轉換裝置 | |
JP2018531415A (ja) | はんだ取付を伴う蛍光体要素を用いる高光学パワー光変換デバイス | |
JP2018531415A6 (ja) | はんだ取付を伴う蛍光体要素を用いる高光学パワー光変換デバイス | |
WO2018205694A1 (zh) | 波长转换装置和激光荧光转换型光源 | |
US20140141205A1 (en) | Method for producing a conversion element, and conversion element | |
US20230167357A1 (en) | Phosphor wheel with inorganic binder | |
WO2020015363A1 (zh) | 波长转换装置 | |
CN105716039A (zh) | 光转换装置及其制备方法和应用 | |
US20170137328A1 (en) | Method of making a ceramic wavelength converter assembly | |
WO2020088161A1 (zh) | 波长转换装置及其制备方法、发光装置和投影装置 | |
JP2024052910A (ja) | 改良された無機結合剤を伴う光変換デバイス | |
WO2020135296A1 (zh) | 波长转换装置及其制造方法 | |
CN109681846B (zh) | 波长转换装置及其制备方法 | |
CN113583675A (zh) | 激光激发金属衬底荧光膜、荧光转换模块及制备方法和应用 | |
CN108527960B (zh) | 一种荧光陶瓷与蓝宝石复合陶瓷材料及其制备方法 | |
WO2019010910A1 (zh) | 一种波长转换装置及光源 | |
CN112666780B (zh) | 波长转换装置 | |
WO2018188326A1 (zh) | 发光装置及其制备方法 | |
CN111063810B (zh) | 发光装置及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19904365 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19904365 Country of ref document: EP Kind code of ref document: A1 |