WO2018188326A1 - 发光装置及其制备方法 - Google Patents

发光装置及其制备方法 Download PDF

Info

Publication number
WO2018188326A1
WO2018188326A1 PCT/CN2017/109313 CN2017109313W WO2018188326A1 WO 2018188326 A1 WO2018188326 A1 WO 2018188326A1 CN 2017109313 W CN2017109313 W CN 2017109313W WO 2018188326 A1 WO2018188326 A1 WO 2018188326A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
functional layer
light
phosphor
functional
Prior art date
Application number
PCT/CN2017/109313
Other languages
English (en)
French (fr)
Inventor
陈雨叁
李乾
徐梦梦
许颜正
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018188326A1 publication Critical patent/WO2018188326A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention belongs to the field of optical technologies, and in particular, to a light emitting device and a method for fabricating the same.
  • a light wavelength conversion material prepared by using phosphor powder of glass frit (or alumina powder) and YAG phase as a main raw material, such as luminescent glass, wherein glass frit is used as a transparent bonding medium, and a phosphor of YAG phase is used as a luminescent material.
  • Body has gradually been applied to high-power LEDs and laser sources.
  • the prepared composite phase phosphor needs to be subjected to grinding, polishing, and the like during the application process.
  • the wear rates of the two are different under the same grinding conditions, and therefore, after the polishing and polishing, the light-emitting device There will be a "embossing" phenomenon on the surface, which will cause many process problems in the later coating process.
  • a method for preparing a luminescent ceramic by using a gradient concentration that is, an end surface of a porous ceramic is immersed in a fluorescent substance solution, and a capillary siphon is used to cause a fluorescent substance solution to enter the ceramic, and then heat treatment is performed.
  • Luminescent ceramics with different concentration gradients but there are a large number of holes in the luminescent ceramic structure prepared in this way, which is not dense enough, and the concentration distribution is uncontrollable, and the fluorinating substance infiltrated by this siphoning effect is very limited, which is difficult to achieve. High concentration is uncomfortable.
  • a method of slurry printing is used to fabricate a light-emitting device having a gradient concentration structure, and a phosphor of different concentrations is added to a large amount of an organic carrier (such as a resin, an auxiliary agent, a solvent, etc.) together with the sintered bonding material. It is made into a printable paste and then printed layer by layer. This way, the next layer of printing between each layer needs to wait for the upper layer to be pre-baked and dried before being processed.
  • an organic carrier such as a resin, an auxiliary agent, a solvent, etc.
  • the purpose is to remove small Molecular organic matter (low boiling point solvent and auxiliary agent), because it is printed by particle slurry, the surface of the interface at two concentrations is uneven, and the combination of the two is due to the inflow or infiltration of the organic carrier in the second concentration layer.
  • the dry surface of the concentration layer is therefore mainly rich in liquid organic carrier and small particle solid material at the interface; after entering the sintering process, the organic macromolecule begins to decompose into small molecules and volatilizes at a certain temperature range, and each concentration layer When the temperature rises further, the resin begins to decompose and vaporize.
  • the space occupied by the original organic resin will form defects such as holes and pores; as the temperature continues to rise, the bond
  • the material of the medium begins to melt and gradually becomes a liquid phase, which flows between the previously formed pores and pores, and the volume of each concentration layer begins.
  • the binder medium phase fills most of the pores and pores. Due to the infiltration problem of the liquid phase and the fluorescent material of the bonding medium, and the surface tension problem, most of the pores cannot be filled, or only some of the pores are filled.
  • the so-called closed pores are formed; the pores that cannot be filled form the pores of the mouth, which are the same as the outside, which is the most harmful to the polishing process of ceramics and cannot be completely removed by processing. Since the organic carrier medium aggregates at the first concentration and the second concentration surface, the above phenomenon is more pronounced and severely causes cracking; the disadvantage of this process is that the porosity is high and the density is low.
  • the present invention provides a light-emitting device having a gradient concentration, and by designing a low-concentration layer by controlling the mass fraction and distribution of the fluorescent material in each layer, on the one hand, the prior art is solved.
  • the "floating" structure of the coating interface caused by the difference in hardness between the luminescent material and the bonding medium causes a problem of increasing difficulty in the coating process; on the other hand, the porosity of the interface of each concentration layer of the structure is low, and there is no excessive difference in concentration. The situation avoids quality problems such as splitting, peeling and shedding caused by large difference in expansion coefficient during sintering;
  • the present invention provides a light-emitting device, the composition comprising a phosphor and an adhesive for bonding, the light-emitting device being a functional layer including a light-emitting layer and laminated on the light-emitting layer An integrated sintered body; the light emitting layer includes a first light emitting layer, and a mass fraction of the phosphor in the first light emitting layer is 50% to 99%,
  • the first luminescent layer has a thickness of 150 to 200 ⁇ m ;
  • the functional layer includes a first functional layer, and the mass fraction of the phosphor in the first functional layer is 5% to 50 ⁇ 3 ⁇ 4, and the first functional layer
  • the thickness is 5 to 50 ⁇ m ; a continuous dense transition layer exists between the light-emitting layer and the functional layer; and the phosphor has a different Mohs hardness than the adhesive.
  • the first functional layer is composed of at least two first sub-functional layer layers, and each of the first sub-functional layers has a continuous dense transition layer, and each of the first sub-functions
  • the mass fraction of the phosphor in the layer is increased by a specific gradient in a direction extending from the first functional layer toward the first luminescent layer, the specific gradient ranging from 5% to 10%; each of the first sub- The phosphors in the functional layer are evenly distributed.
  • the first illuminating layer is composed of a stack of at least two first sub luminescent layers, and each of the first sub luminescent layers has a continuous dense transition layer, and each of the first sub illuminating layers
  • the mass fraction of the phosphor in the layer is increased by a specific gradient in a direction extending from the first functional layer toward the first luminescent layer, the specific gradient ranging from 5% to 10%; each of the first sub- The phosphor in the luminescent layer is uniformly distributed.
  • the first functional layer is composed of at least two first sub-functional layer layers, and each of the first sub-functional layers has a continuous dense transition layer, and each of the first sub-functions
  • the mass fraction of the phosphor in the layer is increased by a specific gradient in a direction extending from the first functional layer toward the first luminescent layer, the specific gradient ranging from 5% to 10%; each of the first sub- The phosphor in the functional layer is evenly distributed;
  • the first luminescent layer is composed of at least two first sub-emissive layers, and each of the first sub-emissive layers has a continuous dense transition layer, the first illuminating layer
  • the mass fraction of the phosphors in each of the first sub-emissive layers in the layer is increased by the same specific gradient, and the phosphors in each of the first sub-emissive layers are evenly distributed; the adjacent first sub-luminescent layers and the first The difference in mass fraction of phosphors in a sub-functional layer is 0 or the specific gradient
  • the transition layer has a porosity of 2 ⁇ 3 ⁇ 4 ⁇ 6.4 ⁇ 3 ⁇ 4.
  • an optical coating is disposed on the first functional layer away from the first light emitting layer, and the optical coating includes a reflective film and an antireflection film.
  • the functional layer further includes a second functional layer, wherein the second functional layer is stacked on the first functional layer and away from the first light emitting layer side, and forms with the first functional layer.
  • the integrated sintered body, the phosphor mass fraction in the second functional layer is 0, the second functional layer has a thickness of 0.1 to 5 ⁇ m, and the second functional layer and the first functional layer are continuously dense. Transition layer.
  • the functional layer further includes a third functional layer laminated on the first light emitting layer and away from the side of the first functional layer, and stacked on the third functional layer and away from the first a fourth functional layer of the light-emitting layer, wherein a phosphor mass fraction in the third functional layer is 5% to 50 ⁇ 3 ⁇ 4, and a thickness of the third functional layer is 5 to 50 ⁇ ;
  • the phosphor mass fraction is 0, the thickness of the fourth functional layer is 0.1-5 ⁇ m;
  • the transition layer is continuously dense between the first luminescent layer and the third functional layer; There is a continuous dense layer of the transition layer between the layer and the third functional layer.
  • the phosphor is Y 3 Al 5 0 12: Ce 3+ phosphor or Lu 3 Al 5 0 12: Ce 3+ phosphor;
  • the binder is glass powder or alumina powder Or Y 3 A1 5 0 12 powder or Lu 3 A1 5 0 12 powder.
  • the present invention also provides a method for fabricating a light-emitting device, comprising the following steps:
  • Step S1 mixing; ball milling to obtain a ball-milled blank; adding phosphor to the ball-milling blank
  • Step S2 charging; loading the mixed preliminary material into the mold;
  • Step S3 pre-pressing; pre-compressing the mixed preliminary material in the mold to obtain a preform;
  • Step S4 sintering; the preform is subjected to cold isostatic pressing to obtain a prime a blank, the green body is sintered to obtain the light-emitting device;
  • the step S1 further includes dividing the mixed blank into at least two portions including a first portion and a second portion, wherein the mass ratio of the first portion to the adhesive in the first portion is 1 to 99 a phosphor of 1:1, wherein the second portion is added with a phosphor having a mass ratio of 1:1 to 19 in the second portion, and then ball milling is continued to obtain a first mixed preliminary material and a second mixed initial
  • the step S2 is specifically to sequentially load the first mixed preliminary material and the second mixed preliminary material into the mold;
  • the green body obtained in the step S4 includes a mass fraction of 50% to 99 ⁇ a phosphor layer of a phosphor and a functional layer comprising a phosphor having a mass fraction of 5% to 50 ⁇ 3 ⁇ 4, the thickness of the illuminant layer being greater than the thickness of the functional layer.
  • the light-emitting device of the present invention and the method of fabricating the same are designed to have different concentrations, even gradient difference concentrations, to form a low-concentration layer in which the plating film is polished. Because the hardness of the phosphor and the bonding medium are different, the polishing state is different in the polishing of the high concentration layer, and the "embossing" is formed.
  • the low concentration layer has less or no phosphor, and the polished surface is relatively flat, which is convenient for coating.
  • the invention passes through a low concentration layer Adjusting the phosphor content, thereby solving the difference in the hardness of the two-phase medium in the light-emitting device of the composite material, which causes the surface to be seriously uneven after polishing, and the processing is simple and convenient; due to the phosphor content in the light-emitting device Directly affecting its luminous efficiency, therefore, in the same level of fluorescence efficiency of the main body, the appropriate gradient concentration adjustment in the superficial layer, so that the polishing surface is close to the pure phase, reducing the polishing defects of the surface; the phosphor concentration of the same layer Controllable, avoiding the inconsistent volume shrinkage of the sintered crucible and causing the detachment phenomenon in different concentration layers. Due to the integral molding, the porosity between the layers is lower, further avoiding the phenomenon of sintering and detachment, improving the reliability of the illuminating device and Finished product yield.
  • FIG. 1 is a schematic structural view of a first embodiment of a light-emitting device according to the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a light-emitting device according to the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of a light-emitting device according to the present invention.
  • FIG. 4 is a schematic structural view of a fourth embodiment of a light-emitting device according to the present invention.
  • FIG. 5 is a schematic structural view of a fifth embodiment of a light-emitting device according to the present invention.
  • FIG. 6 is a schematic structural view of a sixth embodiment of a light-emitting device according to the present invention.
  • FIG. 7 is a flow chart showing a method of fabricating a light-emitting device according to the present invention.
  • FIG. 8 is a block diagram showing the flow of the mixing step in FIG. 7.
  • the present invention provides a light-emitting device 10 comprising a phosphor and a binder for bonding.
  • the phosphor is a commercially available Y 3 Al 5 0 12: Ce 3+ phosphor; the binder is glass powder or alumina powder or ⁇ 3 1 5 0 12 powder, mainly It acts to bond several other components.
  • the hardness of the binder is different from the hardness of the phosphor, for example, the glass powder has a Mohs hardness of 5.5 to 6, and the phosphor has a Mohs hardness of 8 to 8.5, and the alumina powder has a hardness of 8 to 8.5.
  • the Mohs hardness is 9.
  • the illuminating device of the present invention is designed with a low concentration layer in which the coating can be polished.
  • the polishing state is different in the polishing of the high concentration layer, and the "embossing" is formed.
  • the low concentration layer has less or no phosphor, and the polished surface is relatively flat, which is convenient for coating.
  • the light-emitting device 10 is designed to perform sheet sintering by using a differential concentration ratio method, which is an integral sintered body including the light-emitting layer 11 and the functional layer 12 laminated on the light-emitting layer 11.
  • the light emitting layer 11 includes a first light emitting layer 111, and the mass fraction of the phosphor in the first light emitting layer 111 is 50% to 99 ⁇ 3 ⁇ 4. Since the first light-emitting layer 111 is generally used as a main wavelength conversion layer, the inventors have experimentally obtained that when the concentration of the fluorescent material is the same, the light effect increases as the thickness of the first light-emitting layer 111 increases, when the first The thickness of the light-emitting layer 111 is increased to 150 ⁇ , and the slope of the curve at this point is close to 0, indicating that the light effect is close to the maximum, and when the thickness is increased to 200 ⁇ or more, the slope of the curve is 0, and the light effect is maximized. Therefore, in the embodiment, the thickness of the first light-emitting layer 111 is 150 to 200 ⁇ m.
  • the functional layer 12 includes a first functional layer 121.
  • the first functional layer 121 has a phosphor mass fraction of 5% to 50%, and the first functional layer 121 has a thickness of 5 to 50 ⁇ m.
  • the first functional layer 121 is mainly used as a plating layer, it is necessary to take into consideration processing precision and loss of light efficiency.
  • the sintering process after filling and assembly of the high-concentration layer and the low-concentration layer may have different shrinkage rates. If the thickness is too small, the processing is uncontrollable, and if the thickness is too large, the cracking phenomenon may occur.
  • the first luminescent layer 111 is the main wavelength conversion layer, the light source is incident from the side of the first luminescent layer 111 away from the first functional layer 121, and the excitation light first enters the first luminescent layer 111.
  • the first received laser light is emitted by the phosphor of the first luminescent layer 111, and the first received laser light enters the first functional layer 121.
  • the layer in addition, a portion of the excitation light that is not completely absorbed by the phosphor in the first luminescent layer 111 also penetrates the first luminescent layer 111 and enters the first functional layer 121 by the first functional layer 121.
  • the phosphor absorbs and emits a second laser beam, and the second laser beam passes through the layer; if the first functional layer 121 is too thick, the first laser beam is transmitted through the layer, and lateral propagation occurs, causing light. Loss; If the first functional layer 121 is too thin, the excitation light that is not completely absorbed by the phosphor in the first light-emitting layer 111 easily penetrates the first functional layer 121, causing light loss.
  • the inventors have experimentally obtained that the thickness of the first functional layer 121 is controlled to be 5 to 50 ⁇ m.
  • the specific thickness setting of the first functional layer 121 and the first luminescent layer 111 needs to be determined according to the ratio of volume shrinkage after sintering, and only needs to satisfy the thickness of the luminescent layer of the illuminating device obtained by sintering to satisfy 150 ⁇ 200 ⁇
  • the thickness of the functional layer satisfies 5 ⁇ 50 ⁇ .
  • the transition layer is continuously dense, and the porosity is detected to be 2 ⁇ 3 ⁇ 4 to 6.4 ⁇ 3 ⁇ 4.
  • the phosphor may also be a Lu 3 Al 5 0 12: Ce 3 + phosphor; correspondingly, the binder is glass powder or alumina powder or Lu 3 A1 5 0 12 powder.
  • the present invention provides a light-emitting device 20 comprising a phosphor and a binder for bonding.
  • the phosphor is a commercially available Y 3 Al 5 0 12: Ce 3+ phosphor; the binder is glass powder or alumina powder or ⁇ 3 1 5 0 12 powder, mainly It acts to bond several other components.
  • the hardness of the binder is different from the hardness of the phosphor, for example, the glass powder has a Mohs hardness of 5.5 to 6, and the phosphor has a Mohs hardness of 8 to 8.5, and the alumina powder has a hardness of 8 to 8.5.
  • the Mohs hardness is 9.
  • the light-emitting device 20 is designed to perform sheet-sintering using a differential concentration ratio method having a gradient, and includes a light-emitting layer 21 and an integral sintered body of the functional layer 22 laminated on the light-emitting layer 21.
  • the light emitting layer 21 includes a first light emitting layer 211, and the mass fraction of the phosphor in the first light emitting layer 211 is 50% to 99 ⁇ 3 ⁇ 4. Since the first light-emitting layer 211 is generally used as a main wavelength conversion layer, the inventors have experimentally obtained that when the concentration of the fluorescent material is the same, the light effect increases as the thickness of the first light-emitting layer 211 increases, when the first The thickness of the light-emitting layer 211 is increased to 150 ⁇ , and the slope of the curve at this point is close to 0, indicating light. The effect is close to the maximum. When the thickness is increased to 200 ⁇ or more, the slope of the curve is 0, and the light effect is maximized. Therefore, in the embodiment, the thickness of the first light-emitting layer 211 is 150 to 200 ⁇ m.
  • the functional layer 22 includes a first functional layer 221, wherein the first functional layer 221 has a phosphor mass fraction of 5% to 50%, and the first functional layer 221 has a thickness of 5 to 50 ⁇ m. There is a continuous dense transition layer (not shown) between the luminescent layer and the functional layer.
  • the first functional layer 221 is mainly used as a plating layer, it is necessary to take into consideration processing precision and loss of light efficiency.
  • the sintering process after filling and assembly of the high-concentration layer and the low-concentration layer may have different shrinkage rates. If the thickness is too small, the processing is uncontrollable, and if the thickness is too large, the cracking phenomenon may occur.
  • the first luminescent layer 211 is the main wavelength conversion layer, the light source is incident from the side of the first luminescent layer 211 away from the first functional layer 221, and the excitation light first enters the first luminescent layer 211.
  • the first received laser light is emitted by the phosphor of the first light-emitting layer 211, the first laser light enters the first functional layer 221, and is emitted through the layer; in addition, a portion of the phosphor in the first light-emitting layer 211 is not
  • the fully absorbed excitation light also penetrates the first luminescent layer 211 into the first functional layer 221 and is absorbed by the phosphor of the first functional layer 221 to emit a second laser, and the second laser is transmitted through the layer; If the first functional layer 221 is too thick, the first laser light is transmitted laterally through the layer, and the light is lost. If the first functional layer 221 is too thin, the first functional layer 221 is not thin.
  • the inventors have experimentally obtained that the thickness of the first functional layer 221 is optimally controlled at 5 to 50 ⁇ m.
  • the first functional layer 221 is composed of at least two first sub-functional layers 2211, and each of the first sub-functional layers 2211 has a continuous dense transition layer ( Not shown), the mass fraction of the phosphor in each of the first sub-functional layers 2211 is increased by a specific gradient in a direction extending from the first functional layer 221 toward the first luminescent layer 211, the specific gradient The range is 5% ⁇ 10 ⁇ 3 ⁇ 4 ; the phosphors in each of the first sub-functional layers 2211 are evenly distributed.
  • the optical coating 23 may be disposed on the first functional layer 221 away from the first luminescent layer 211.
  • the optical coating 23 includes a reflective film and an anti-reflection film.
  • the coating method includes but is not limited to Magnetron sputtering, vacuum evaporation.
  • the wear state may be different in the polishing of the high concentration layer to form a "embossing"; and directly reducing the concentration of the phosphor of the luminescent layer may affect the luminous efficiency, so the design first Work
  • the energy layer 221 is coated on the first functional layer 221, and it is also considered that if the concentration of the first functional layer 221 is too low, the first light-emitting layer 211 and the first functional layer 221 may appear in the subsequent sintering process. The difference in shrinkage coefficient is too large to break.
  • the first functional layer 221 is composed of at least two first sub-function layers 2211, and each of the first sub-function layers 2211 exists. a continuously dense transition layer, each of the first sub-functional layers 2211 has a different phosphor content, and is increased in a specific gradient along a direction extending from the first functional layer 221 toward the first luminescent layer 211.
  • the structure has the advantage that the phosphor concentration in the first sub-functional layer 2211 adjacent to the first luminescent layer 211 is higher, and the difference in phosphor concentration in the first luminescent layer 211 is smaller or even equal; and away from the first luminescent layer 211
  • the phosphor concentration in the first sub-functional layer 2211 is relatively low, close to the pure phase, and even the concentration is zero. It is much easier to plate the optical film 23 on the first sub-functional layer 2211 away from the first light-emitting layer 211. Such a change in the gradient concentration does not occur at a certain point due to excessive difference in the contraction coefficient, and the luminous efficiency of the first light-emitting layer 211 is ensured.
  • the transition layer has a porosity of 2% to 6.4 ⁇ 3 ⁇ 4.
  • the phosphor may also be a Lu 3 Al 5 0 12: Ce 3 + phosphor; the binder is correspondingly glass powder or alumina powder or Lu 3 A1 5 0 12 powder.
  • the specific thickness setting of the first functional layer 221 and the first luminescent layer 211 needs to be determined according to the ratio of volume shrinkage after sintering, and only needs to satisfy the thickness of the luminescent layer of the illuminating device obtained by sintering to satisfy 150 ⁇ 200 ⁇
  • the thickness of the functional layer satisfies 5 ⁇ 50 ⁇ .
  • the specific thickness of each of the first sub-functional layers 2211 can also be determined by referring to the above conditions.
  • the present invention provides a light-emitting device 30 comprising a phosphor and a binder for bonding.
  • the phosphor is a commercially available Y 3 Al 5 0 12: Ce 3+ phosphor; the binder is glass powder or alumina powder or ⁇ 3 1 5 0 12 powder, mainly It acts to bond several other components.
  • the hardness of the binder is different from the hardness of the phosphor, for example, the glass powder has a Mohs hardness of 5.5 to 6, and the phosphor has a Mohs hardness of 8 to 8.5, and the alumina powder has a hardness of 8 to 8.5.
  • the Mohs hardness is 9.
  • the illuminating device of the present invention is designed to have a gradient concentration to form a low concentration layer in which the coating is polished.
  • the hardness of the dielectric is different. In the high-concentration layer, the wear state will be different, and the "embossing" will be formed.
  • the low concentration layer has less or no phosphor, and the polished surface is relatively flat, which is convenient for coating.
  • the light-emitting device 30 of the present embodiment is similar to the light-emitting device of the first embodiment, and includes an integrated sintered body of the light-emitting layer 31 and the functional layer 32 laminated on the light-emitting layer 31.
  • the luminescent layer 31 includes a first luminescent layer 311, and the mass fraction of the phosphor in the first luminescent layer 311 is 50% ⁇ 99 ⁇ 3 ⁇ 4.
  • the thickness of the first light-emitting layer 311 is 15 0 to 200 ⁇ m.
  • the thickness setting of the first luminescent layer 311 is as described in the first embodiment, and details are not described herein.
  • the functional layer 32 includes a first functional layer 321, the mass fraction of the phosphor in the first functional layer 321 is 5% to 50%, and the thickness of the first functional layer 321 is 5 to 50 ⁇ m.
  • the thickness setting of the first functional layer 321 is as described in the first embodiment, and will not be described herein.
  • the first light-emitting layer 311 is composed of at least two first sub-light-emitting layers 3111, and each of the first sub-light-emitting layers 3111 has a continuous dense transition layer.
  • the mass fraction of the phosphor in the first sub-light-emitting layer 3111 is increased by a specific gradient along a direction extending from the first functional layer 321 to the first light-emitting layer 311, and the specific gradient ranges from 5% to 10%.
  • the phosphors in each of the first sub-light-emitting layers 3111 are uniformly distributed.
  • the design of the gradient concentration as described in the second embodiment on the first functional layer 321 is relatively high, if it is used in an environment where the luminous efficiency requirements are not particularly high.
  • the illuminating device has a correspondingly high cost. Therefore, in this embodiment, the gradient difference concentration is designed in the first light-emitting layer 311. Since the thickness of the first light-emitting layer 311 is high, designing a plurality of first sub-light-emitting layers 3111 having gradient concentration changes to form the first light-emitting layer 311 is easy to implement.
  • the difference between the phosphor concentration in the first sub-light-emitting layer 311 1 near the first functional layer 321 and the phosphor concentration in the first functional layer 321 is small, even equal; away from the first sub-light-emitting layer 3111 of the first functional layer 321
  • the phosphor concentration is designed to be higher, thus ensuring luminous efficiency.
  • an optical plating film 33 may be disposed on a side of the first functional layer 321 away from the first light emitting layer 311, and the optical coating film 33 includes a reflective film and an antireflection film, and the coating method includes However, it is not limited to magnetron sputtering and vacuum evaporation.
  • the advantages of the illuminating device 30 described in this embodiment are the same as those of the illuminating device described in the second embodiment, that is, the phosphor concentration in the illuminating device 30 changes as a whole, and no cracking occurs in the sintered squeezing. Inches Since the concentration is controllable, designing a low concentration on the first functional layer 321 makes the coating process easy to implement.
  • the transition layer has a porosity of 2% to 6.4 ⁇ 3 ⁇ 4.
  • the phosphor described in this embodiment may also be a Lu 3 Al 5 0 12: Ce 3 + phosphor; the binder is correspondingly glass powder or alumina powder or Lu 3 A1 5 0 12 powder.
  • the embodiment is an extension to the foregoing embodiment 2 and the third embodiment, and the second embodiment and the second embodiment are combined into the fourth embodiment:
  • the first functional layer 421 of the light-emitting device 40 is composed of at least two first sub-functional layer layers 4211, and each of the first sub-functional layers 4211 has a continuous dense transition layer ( Not shown), the mass fraction of the phosphor in each of the first sub-functional layers 4211 is increased by a specific gradient in a direction extending from the first functional layer 421 toward the first luminescent layer 411, the specific gradient The range is 5% ⁇ 10 ⁇ 3 ⁇ 4 ; the phosphors in each of the first sub-functional layers 4211 are evenly distributed.
  • the first light-emitting layer 411 of the light-emitting layer 41 is composed of at least two first sub-light-emitting layers 4111, and each of the first sub-light-emitting layers 4111 has a continuous dense transition layer.
  • the mass fraction of the phosphor in each of the first sub-light-emitting layers 4111 in the first light-emitting layer 411 is increased by the same specific gradient, and it is to be noted that the specific gradients described above are incremented, that is: when each The mass fraction of the phosphor in the first sub-functional layer 4211 is increased by 6% in a direction extending from the first functional layer 421 toward the first luminescent layer 411, and the first luminescent layer 411
  • the mass fraction of the phosphor in each of the first sub-emissive layers 4111 is also increased by a gradient of 6%; the phosphors in each of the first sub-emissive layers 4111 are evenly distributed; the adjacent first sub-emissive layers 4111 and The difference in mass fraction of the phosphor in the first sub-functional layer 4211 is 0 or the specific gradient.
  • different specific gradients may be incremented, that is, different two values are selected within a range of 5% to 10 ⁇ 3 ⁇ 4 of the specific gradient, and then the first functional layer 421 is selected.
  • the incremental gradients are different from the incremental gradients of the first luminescent layer 411, and are respectively changed by respective specific gradients, for example: the mass fraction of the phosphor in each of the first sub-functional layers 4211 is along the first functional layer The direction in which the 421 extends toward the first light-emitting layer 411 is increased by a gradient of 6%, and the mass of the phosphor in each of the first sub-light-emitting layers 4111 The number increases in a direction extending from the first functional layer 421 toward the first light-emitting layer 411 by a gradient of 7%.
  • the phosphors in each of the first sub-luminescent layers 4111 are evenly distributed; the difference in mass fraction of the phosphors in the adjacent first sub-luminescent layer 4111 and the first sub-
  • the first light-emitting layer 411 is used as a main wavelength conversion layer, and the first functional layer 421 is used as a plating layer.
  • the phosphor quality fraction of the wavelength conversion layer is considered in consideration of the performance optimization problem of the entire light-emitting device. 50 ⁇ 3 ⁇ 4 ⁇ 99 ⁇ 3 ⁇ 4, thickness 150 ⁇ 200 ⁇ , after the wavelength conversion layer concentration gradient distribution, each layer can be divided into 5% ⁇ 10 ⁇ 3 ⁇ 4 mass fraction (ie specific gradient). The tolerance dl) is incremented or decremented.
  • each layer ie, the first emissive layer 411
  • a phosphor gradient concentration layer, ⁇ 2 ( M max - M min ) / d2, wherein M max is a maximum value of the phosphor mass fraction in the first functional layer 421, and M m in is the first function
  • the phosphor mass fraction in layer 421 is the minimum; d2 is the concentration tolerance of the first functional layer 421, d2 is any value of 5% ⁇ 10 ⁇ 3 ⁇ 4; d2 may also be 0, that is, the fluorescence in the first functional layer 421
  • the whole body is evenly distributed.
  • dl and d2 may be the same or different.
  • the optical coating 43 may be disposed on the first functional layer 421 away from the first luminescent layer 411.
  • the optical coating 43 includes a reflective film and an anti-reflection coating. However, it is not limited to magnetron sputtering and vacuum evaporation.
  • Embodiment 5 is another extension of Embodiments 1 through 4. That is, the functional layer 52 of the light-emitting device 50 in the present embodiment further includes a second functional layer 522 (ie, includes the first functional layer 521, based on the light-emitting device of any one of the embodiments 1 to 4). And the second functional layer 522 is stacked on the first functional layer 521 and away from the first luminescent layer 511 - side of the luminescent layer 51, and is integrated with the first functional layer 521 Sintered body.
  • a second functional layer 522 ie, includes the first functional layer 521, based on the light-emitting device of any one of the embodiments 1 to 4.
  • the second functional layer 522 is stacked on the first functional layer 521 and away from the first luminescent layer 511 - side of the luminescent layer 51, and is integrated with the first functional layer 521 Sintered body.
  • the phosphor has a mass fraction of 0 in the second functional layer 522, the second functional layer 522 has a thickness of 0.1 to 5 ⁇ m, and the second functional layer 522 and the first functional layer 521 are continuously dense.
  • a transition layer (not shown) having a porosity of 2% to 6.4 ⁇ 3 ⁇ 4. Except for this, the present embodiment is the same as any of the first embodiment to the fourth embodiment, and details are not described herein.
  • the optical coating film 53 may be disposed on the second functional layer 522 away from the first luminescent layer 521, and the optical coating 53 includes a reflective film and an antireflection film. Coating methods include, but are not limited to, magnetron sputtering and vacuum evaporation.
  • this embodiment is extended on the basis of any of the first embodiment to the fifth embodiment.
  • the functional layer 62 of the light-emitting device 60 further includes the first light-emitting layer 611 laminated on the light-emitting layer 61 and away from the first functional layer 621 -
  • the third functional layer 623 and the fourth functional layer 624 are stacked on the third functional layer 623 and away from the first light emitting layer 611. That is, the first functional layer 621, the second functional layer 622, the third functional layer 623, and the fourth functional layer 624 are included.
  • the phosphor mass fraction in the third functional layer 623 is 5% to 50 ⁇ 3 ⁇ 4 , and the thickness of the third functional layer 523 is 5 to 50 ⁇ m ; the phosphor quality in the fourth functional layer 624 a score of 0, the fourth functional layer 624 has a thickness of 0.1 to 5 ⁇ m ; and the transition layer (not shown) is continuously dense between the first light-emitting layer 611 and the third functional layer 623; The transition layer (not shown) is continuously dense between the fourth functional layer 624 and the third functional layer 623, and the transition layer has a porosity of 2% to 6.4%.
  • the third functional layer 623 may have a uniform distribution of phosphor concentrations, and
  • the second functional layer 622 as described in the second embodiment may have a gradient concentration distribution by setting a plurality of sub-functional layers, which are easily conceivable by those skilled in the art, and are not described herein again.
  • the second functional layer 622 is away from the first light-emitting layer 611-side
  • the fourth functional layer 624 is away from the first light-emitting layer 611-side.
  • the optical coatings on both sides are either reflective films or antireflection films; or one of them is a reflective film and the other side is an antireflection film, which is easily conceivable to those skilled in the art.
  • the functional layer 63 may include at least one layer of the first functional layer 621, the second functional layer 622, the third functional layer 623, and the fourth functional layer 624, and the optical coating 63 is disposed.
  • the first functional layer 621 or the second functional layer 622 or the third functional layer 623 or the fourth functional layer 624 that is away from the light emitting layer 61 for example:
  • the optical coating 63 is disposed on the side of the first functional layer 621 away from the light-emitting layer 61;
  • the second functional layer 622 is located away from the light emitting of the first functional layer 621 a layer 61-side, the optical coating 63 is disposed on the side of the second functional layer 622 away from the light-emitting layer 61;
  • the first functional layer 621, the second functional layer 622, and the third functional layer 623 are stacked on the light emitting layer, the first functional layer 621 and the second functional layer 622 are located in the light emitting layer. The same side of the 61 and the second functional layer 622 are located away from the side of the light emitting layer 61.
  • the third functional layer 623 is located away from the first functional layer 621 of the light emitting layer 61.
  • the optical coating 63 may be disposed on a side of the second functional layer 622 away from the light emitting layer 61 or/and the third functional layer 623 away from the light emitting layer 61.
  • the present invention further provides a method for preparing a light-emitting device, the method comprising the following steps: [0103] Step S1, mixing: [0104] The organic vehicle and the binder are mixed and ball-milled to obtain a ball-milled blank; a phosphor is added to the ball-milled blank, and ball milling is continued to obtain a mixed preliminary material.
  • step S1 includes step S1 l, alumina powder (or glass powder or Y 3 A1 5 0 12 powder or Lu 3 Al 5)
  • Step S12 The mixed raw materials are placed in a ball mill tank for ball milling, and the spheroidal ink is treated for 4 to 8 hours to form a ball mill blank.
  • Step S13 dividing the ball mill blank into at least two portions including a first portion and a second portion, wherein the mass ratio of the first portion to the binder in the first portion is 1 to 99:1 Phosphor, wherein the second portion is added with a phosphor having a mass ratio of 1:1 to 19 in the second portion, and then ball milling is continued, and the ball mill is set to 30 to 60 minutes. Further, drying is carried out at 80 ° C to remove the anhydrous ethanol, and then separately separated and sieved to obtain the mixed preliminary material, including the first mixed primary material and the second mixed preliminary material.
  • the number of divided parts of the mixed billet is not limited thereto, and may be further divided into more fractions (parts).
  • the mixed blank further comprises a divided third portion; the first portion is added with a phosphor having a component content of 50% to 75 ⁇ 3 ⁇ 4, and the second portion is added with a component content. It is a phosphor of 5% ⁇ 15 ⁇ 3 ⁇ 4; the third part is not added with a phosphor.
  • Step S2 charging:
  • the mixed preliminary material is loaded into a mold.
  • the first mixed preliminary material and the second mixed preliminary material are sequentially loaded into the mold.
  • Step S3 pre-compression:
  • the mixed preliminary material in the mold is laid flat, and pre-compression is performed by applying a pressure of 80 to 100 kg/cm 2 to obtain a preform.
  • Step S4 heat treatment, molding:
  • the temperature is adjusted to the decomposition temperature of the binder, and after 5 to 10 small crucibles, the hydraulic pressure of cold isostatic pressing is placed. In the cavity, the pressure was maintained at a pressure of 250 Mp a to 300 MPa for 1 minute, and formed into a green body by cold isostatic pressing.
  • the green body obtained in this step includes a luminescent layer containing a phosphor having a mass fraction of 50% to 99% and A functional layer containing a phosphor having a mass fraction of 5% to 50%, the thickness of the illuminant blank being greater than the thickness of the functional layer.
  • the specific turn of the protection in the high temperature furnace may depend on the volume of the preform.
  • Step S5 sintering:
  • the green body is placed in a vacuum tungsten furnace, and the temperature is maintained in the range of 10 - 4 Pa and 1500 ° C to 1800 ° C for 4 to 10 hours, and vacuum sintering is performed.
  • the illuminating device is obtained.
  • the above preparation method adopts a process of tableting sintering, after the particles of the powder are mixed, stacked together, pre-compressed, and then discharged at a high temperature to remove organic matter, although some pores are formed, but then proceed.
  • Cold isostatic pressing applying high pressure to the sample again, makes the powder more dense, and eliminates the hole to some extent.
  • the liquid phase bonding material is further filled, and the porosity is more dense than the printing method.
  • the above preparation method can also adopt hot press sintering. In this way, it is not necessary to add organic components in the powder compound, and it is not necessary to perform a process such as debinding, and directly use the glass powder (or alumina powder or ⁇ 3 ⁇ 5 0). 12 powder or Lu 3 Al 5 0 12 powder) as a binder, that is, the mixing process of the step S1 described in the above preparation method does not add an organic vehicle, and the binder is directly ball-milled to obtain a ball-milling raw material, such that the step S4 heat treatment step Can be omitted.
  • the powder is directly filled according to the gradient concentration, and then the sintering process is performed, and the sintering is performed while sintering; the density of the material is further increased, and the porosity can be further reduced. .
  • the light-emitting device of the present invention and the method of manufacturing the same have a difference in concentration, even a gradient difference concentration, to form a low-concentration layer, and the coating can be polished in the layer. Because the hardness of the phosphor and the adhesive are different, the polishing state is different in the polishing of the high concentration layer, and the "embossing" is formed.
  • the low concentration layer has less or no phosphor, and the polished surface is relatively flat, which is convenient for coating.
  • the invention adjusts the phosphor content of the low-concentration layer, thereby solving the difference in the hardness of the two-phase medium in the light-emitting device of the multi-phase material, which causes the surface to be seriously uneven after polishing, and the processing is simple and convenient;
  • the content of the phosphor directly affects the luminous efficiency. Therefore, in order to ensure the fluorescence efficiency of the main body, the appropriate gradient concentration adjustment is made in the superficial layer, so that the polishing surface is close to the pure phase, and the polishing defects of the surface are reduced;
  • the phosphor concentration of each layer is controllable, which avoids the inconsistent volume shrinkage of the sintered crucible and causes the detachment phenomenon in different concentration layers. Due to the integral molding, the porosity between the layers is lower, further avoiding The sintering detachment phenomenon improves the reliability and yield of the illuminating device.

Abstract

一种发光装置(10)及其制备方法,其组份包括荧光粉和用于起粘结作用的粘结剂,发光装置(10)为包括发光层(11)、层叠于发光层(11)上的功能层(12)的一体烧结体;发光层(11)包括第一发光层(111),第一发光层(111)中荧光粉的质量分数为50%~99%,第一发光层(111)的厚度为150~200μm;功能层(12)包括第一功能层(121),第一功能层(121)中荧光粉的质量分数为5%~50%,第一功能层(121)的厚度为5~50μm;发光层(11)与功能层(12)之间存在连续致密的过渡层;荧光粉与粘接剂的莫氏硬度不同。解决了复相材料发光装置存在的抛光平整度不一致而难以镀膜的问题,同时层与层之间的气孔率较低,进一步避免烧结脱离现象,提高了发光装置的可靠性和成品良率。

Description

发明名称:发光装置及其制备方法
技术领域
[0001] 本发明属于光学技术领域, 具体涉及一种发光装置及其制备方法。
背景技术
[0002] 近年来, 随着高品质绿色照明及高端显示技术的飞速发展, 激光半导体 (laser diodes, LD) 、 大功率白光 LED等高能量密度激发方式的应用对荧光材料耐辐照 性能及结构稳定性提出了更高的要求, 以荧光粉和硅胶为主要原材料的光波长 转换材料已被广泛应用于激光光源和 LED(Light Emitting Diode, 发光二极管)光 源中。 随着人们对于亮度的要求不断提高, 激发光的光功率也越来越高, 这种 以荧光粉和硅胶制备的光波长转换片, 在耐高温和导热方面已经很难满足应用 的要求。
技术问题
[0003] 目前, 以玻璃粉 (或氧化铝粉) 和 YAG相的荧光粉为主要原材料制备的光波长 转换材料, 如发光玻璃, 其中玻璃粉作为透明粘结介质, YAG相的荧光粉作为 发光体, 已逐渐被应用在大功率的 LED和激光光源之中。 但是, 这种制备成的复 相荧光体在应用过程中需要进行研磨、 抛光等加工过程。 由于玻璃粉 (或氧化 铝粉) 的 Mohs硬度与 YAG相的所述荧光粉的 Mohs硬度不同, 在相同的研磨条件 下, 二者的磨损速率不同, 因此, 经过研磨抛光后, 所述发光装置表面会存在" 浮凸"现象, 从而使得在后期的镀膜工艺中, 会存在许多的工艺问题。
[0004] 另外, 相关技术中采用梯度浓度制备发光陶瓷的方法, 即采用多孔陶瓷的一个 端面浸渍在荧光物质溶液中, 利用毛细虹吸的作用使得荧光物质溶液进入陶瓷 之中, 再进行热处理, 制得不同浓度梯度的发光陶瓷, 但这种方式制备的发光 陶瓷结构中会存在大量的孔洞, 不够致密, 另外浓度的分布不可控, 且这种虹 吸作用渗入的荧光物质非常有限, 很难做到高浓度的惨杂。
[0005] 又或者, 采用浆料印刷的方法来制作梯度浓度结构的发光装置, 将不同浓度的 荧光粉与烧结粘结材料一起加入大量的有机载体 (如树脂、 助剂、 溶剂等) , 配制成可印刷的浆料, 再进行逐层的印刷, 该方式使每层之间在印刷下一层的 吋候, 需要等待上一层预烘烤干燥固化后方可进行操作, 目的是除去小分子有 机物 (低沸点的溶剂和助剂) , 由于是颗粒浆料印刷, 因此在两个浓度界面表 面是不平整的, 二者的结合是由于第二浓度层中的有机载体流入或者渗入第一 浓度层的干燥面, 因此在界面处主要富集液态的有机载体和小颗粒的固体材料 ; 进入烧结制程后, 到一定温度段吋, 有机物大分子幵始分解成小分子并挥发 , 各个浓度层幵始收缩; 随着温度进一步升高, 树脂幵始分解气化, 这吋候, 原本有机树脂所占的位置空间, 就会形成一些孔洞, 孔道等缺陷; 随着温度再 继续上升, 粘结介质的物质材料幵始熔融, 逐渐变成液相, 在之前形成的孔洞 和孔道间流动, 这吋各个浓度层的体积幵始进一步收缩, 粘结介质液相会填补 大部分孔洞和孔道, 由于粘结介质液相与荧光材料的浸润问题, 以及表面张力 问题, 会有大部分的孔洞无法填补, 或者只填补了部分的孔洞, 形成所谓的闭 合气孔; 无法填补的孔道形成幵口气孔, 这种气孔与外界相同, 对陶瓷的抛光 加工危害最大, 是无法通过加工完全去除的。 由于有机载体介质在第一浓度和 第二浓度面聚集, 因此上述现象更加明显, 严重会造成幵裂; 这种工艺的缺点 就是气孔率高, 致密度低。
[0006] 因此, 实有必要提供一种新的发光装置及其制备方法解决上述问题。
问题的解决方案
技术解决方案
[0007] 针对以上现有技术的不足, 本发明提出一种具有梯度浓度的发光装置, 通过控 制荧光材料在各层的质量分数和分布, 设计低浓度层, 一方面解决了现有技术 中因发光材料和粘结介质硬度不同产生的镀膜界面"浮凸"结构而造成镀膜工艺难 度增加的问题; 另一方面该结构的各浓度层界面之间气孔率较低, 也不存在浓 度差异过大的情况, 避免了烧结过程中因膨胀系数差异大造成的幵裂、 剥离和 脱落等质量问题;
[0008] 本发明提供了一种发光装置, 其组份包括荧光粉和用于起粘结作用的粘结剂, 所述发光装置为包括发光层、 层叠于所述发光层上的功能层的一体烧结体; 所 述发光层包括第一发光层, 所述第一发光层中荧光粉的质量分数为 50%~99%, 所述第一发光层的厚度为 150~200μηι; 所述功能层包括第一功能层, 所述第一功 能层中荧光粉的质量分数为 5%~50<¾, 所述第一功能层的厚度为 5~50μηι; 所述 发光层与所述功能层之间存在连续致密的过渡层; 所述荧光粉与所述粘接剂的 莫氏硬度不同。
[0009] 优选的, 所述第一功能层由至少两个第一子功能层层叠组成, 每个所述第一子 功能层之间存在连续致密的过渡层, 每个所述第一子功能层中荧光粉的质量分 数沿自所述第一功能层向所述第一发光层延伸的方向以特定梯度递增, 所述特 定梯度的范围为 5%~10%; 每个所述第一子功能层中的荧光粉均匀分布。
[0010] 优选的, 所述第一发光层由至少两个第一子发光层层叠组成, 每个所述第一子 发光层之间存在连续致密的过渡层, 每个所述第一子发光层中荧光粉的质量分 数沿自所述第一功能层向所述第一发光层延伸的方向以特定梯度递增, 所述特 定梯度的范围为 5%~10%; 每个所述第一子发光层中的荧光粉均匀分布。
[0011] 优选的, 所述第一功能层由至少两个第一子功能层层叠组成, 每个所述第一子 功能层之间存在连续致密的过渡层, 每个所述第一子功能层中荧光粉的质量分 数沿自所述第一功能层向所述第一发光层延伸的方向以特定梯度递增, 所述特 定梯度的范围为 5%~10%; 每个所述第一子功能层中的荧光粉均匀分布; 所述第 一发光层由至少两个第一子发光层层叠组成, 每个所述第一子发光层之间存在 连续致密的过渡层, 所述第一发光层中各个第一子发光层中荧光粉的质量分数 以相同的所述特定梯度递增, 每个所述第一子发光层中的荧光粉均匀分布; 相 邻接的第一子发光层与第一子功能层中荧光粉的质量分数差为 0或所述特定梯度
[0012] 优选的, 所述过渡层气孔率为 2<¾~6.4<¾。
[0013] 优选的, 在所述第一功能层上远离所述第一发光层一侧设置有光学镀膜, 所述 光学镀膜包括反射膜、 增透膜。
[0014] 优选的, 所述功能层还包括第二功能层, 所述第二功能层层叠于所述第一功能 层并远离所述第一发光层一侧, 与所述第一功能层形成一体烧结体, 所述第二 功能层中的荧光粉质量分数为 0, 所述第二功能层厚度为 0.1~5μηι, 所述第二功 能层与所述第一功能层之间存在连续致密的过渡层。 [0015] 优选的, 所述功能层还包括层叠于所述第一发光层并远离所述第一功能层一侧 的第三功能层和层叠于所述第三功能层并远离所述第一发光层的第四功能层, 所述第三功能层中的荧光粉质量分数为 5%~50<¾, 所述第三功能层的厚度为 5~50 μηΐ; 所述第四功能层中的荧光粉质量分数为 0, 所述第四功能层的厚度为 0.1~5μ m; 所述第一发光层与所述第三功能层之间存在连续致密的所述过渡层; 所述第 四功能层与所述第三功能层之间存在连续致密的所述过渡层。
[0016] 优选的, 所述的荧光粉为 Y 3Al 50 12:Ce 3+荧光粉或 Lu 3Al 50 12:Ce 3+荧光粉; 所 述粘结剂为玻璃粉或氧化铝粉或 Y 3A1 50 12粉或 Lu 3A1 50 12粉。
[0017] 本发明还提供一种发光装置的制备方法, 包括如下步骤:
[0018] 步骤 S1 : 混料; 将粘结剂经球磨得到球磨坯料; 向所述球磨坯料中加入荧光粉
, 继续球磨得到混合初料;
[0019] 步骤 S2: 装料; 将所述混合初料装填于模具中;
[0020] 步骤 S3: 预压制; 将所述模具中的所述混合初料预压制得到预成型坯体; [0021] 步骤 S4: 烧结; 所述预成型坯体经冷等静压处理得到素坯, 将所述素坯烧结以 获得所述发光装置;
[0022] 所述步骤 S1还包括将所述混合坯料分为包括第一部分和第二部分的至少两部分 , 所述第一部分中加入与所述第一部分中粘接剂的质量比为 1~99:1的荧光粉, 所 述第二部分加入与所述第二部分中粘接剂的质量比为 1:1~19的荧光粉, 分别再继 续球磨得到第一混合初料和第二混合初料; 所述步骤 S2具体为将所述第一混合 初料和所述第二混合初料依次装填于所述模具中; 所述步骤 S4得到的素坯包括 含有质量分数为 50%~99<¾的荧光粉的发光素坯层和含有质量分数为 5%~50<¾的荧 光粉的功能素坯层, 所述发光素坯层的厚度大于功能素坯层的厚度。
发明的有益效果
有益效果
[0023] 与相关技术相比, 本发明的发光装置及其制备方法设计具有差异的浓度, 甚至 梯度差异浓度, 形成一个低浓度层, 在该层抛光镀膜。 因为荧光粉和粘接介质 硬度不同, 在高浓度层抛光会出现磨损状态不同, 形成"浮凸"。 而低浓度层的荧 光粉较少, 甚至没有, 抛光的表面较为平整, 便于镀膜。 本发明通过低浓度层 的荧光粉含量调整, 从而解决了这种复相材料的所述发光装置中由于两相介质 的硬度差异使得表面抛光后严重不平整, 加工简单方便; 由于所述发光装置中 , 荧光粉的含量直接影响到其发光效率, 因此, 在保证了主体荧光效率的同吋 , 在浅表层做适当梯度浓度调整, 使得抛光表面接近纯相, 降低了表面的抛光 缺陷; 同吋各层的荧光粉浓度可控, 避免了烧结吋体积收缩不一致而使得在不 同浓度层的脱离现象, 由于一体成型, 层与层之间气孔率较低, 进一步避免烧 结脱离现象, 提高了所述发光装置的可靠性和成品良率。
对附图的简要说明
附图说明
[0024] 下面结合附图详细说明本发明。 通过结合以下附图所作的详细描述, 本发明的 上述或其他方面的内容将变得更清楚和更容易理解。 附图中:
[0025] 图 1为本发明发光装置实施例一结构示意图;
[0026] 图 2为本发明发光装置实施例二结构示意图;
[0027] 图 3为本发明发光装置实施例三结构示意图;
[0028] 图 4为本发明发光装置实施例四结构示意图;
[0029] 图 5为本发明发光装置实施例五结构示意图;
[0030] 图 6为本发明发光装置实施例六结构示意图;
[0031] 图 7为本发明发光装置的制备方法的流程框图;
[0032] 图 8为图 7中混料步骤流程框图。
[0033]
Figure imgf000007_0001
本发明的实施方式
[0034] 下面结合附图详细说明本发明的具体实施方式。
[0035] 在此记载的具体实施方式 /实施例为本发明的特定的具体实施方式, 用于说明 本发明的构思, 均是解释性和示例性的, 不应解释为对本发明实施方式及本发 明范围的限制。 除在此记载的实施例外, 本领域技术人员还能够基于本申请权 利要求书和说明书所公幵的内容采用显而易见的其它技术方案, 这些技术方案 包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案, 都在本发明的保护范围之内。
[0036] 实施例一
[0037] 请参图 1, 本发明提供了一种发光装置 10, 其组份包括荧光粉和用于起粘结作 用的粘结剂。
[0038] 本实施方式中, 所述荧光粉为市售 Y 3Al 50 12:Ce 3+荧光粉; 所述粘结剂为玻璃 粉或氧化铝粉或¥ 3 1 50 12粉, 主要起到粘结其他几种组分的作用。 所述粘结剂 的硬度与所述荧光粉的硬度存不相同, 比如: 所述玻璃粉的 Mohs硬度为 5.5~6 , 所述荧光粉的 Mohs硬度为 8~8.5, 所述氧化铝粉的 Mohs硬度为 9。 本发明的发 光装置设计一个低浓度层, 可在该层抛光镀膜。 因为荧光粉和粘接介质硬度不 同, 在高浓度层抛光会出现磨损状态不同, 形成"浮凸"。 而低浓度层的荧光粉较 少, 甚至没有, 抛光的表面较为平整, 便于镀膜。
[0039] 所述发光装置 10采用差异浓度配比方式设计进行压片烧结, 其为包括发光层 11 、 层叠于所述发光层 11上的功能层 12的一体烧结体。
[0040] 所述发光层 11包括第一发光层 111, 所述第一发光层 111中荧光粉的质量分数为 50%~99<¾。 由于所述第一发光层 111通常作为主要的波长转换层, 发明人通过实 验得到当荧光材料浓度一样吋, 光效随着所述第一发光层 111的厚度增加而增加 , 当所述第一发光层 111的厚度增加到 150μηι吋, 该点的曲线斜率接近 0, 说明光 效接近最大, 当厚度增加到 200μηι以上吋曲线斜率为 0, 光效达到最大。 因此, 为了保证光效特征, 本实施方式中, 所述第一发光层 111的厚度为 150~200μηι。
[0041] 所述功能层 12包括第一功能层 121, 所述第一功能 121层中荧光粉的质量分数为 5%~50% , 所述第一功能层 121的厚度为 5~50μηι。 所述发光层 11与所述功能层 12 之间存在连续致密的过渡层 (未图示) 。
[0042] 由于所述第一功能层 121主要作为镀膜层, 需要考虑到加工精度及光效损失。
由于膨胀系数的不同, 高浓度层和低浓度层填充装配后的烧结工艺会出现收缩 率不同的情况, 厚度太小则加工不可控, 厚度太大会出现幵裂现象。 另一方面 , 由于所述第一发光层 111作为主要的波长转换层, 光源从第一发光层 111的远 离第一功能层 121的一侧入射, 激发光先进入所述第一发光层 111, 被所述第一 发光层 111荧光粉吸收发出第一受激光, 第一受激光进入所述第一功能层 121, 并透过该层出射; 此外, 一部分未被第一发光层 111内荧光粉完全吸收的激发光 同样穿透第一发光层 111进入所述第一功能层 121被所述第一功能层 121的荧光粉 吸收发出第二受激光, 第二受激光透过该层出射; 如果所述第一功能层 121过厚 则第一受激光在透过该层出射吋会出现横向传播的现象, 造成光损失; 如果所 述第一功能层 121过薄, 则未被所述第一发光层 111内荧光粉完全吸收的激发光 很容易穿透所述第一功能层 121, 造成光损失。 综合加工精度和光损失情况, 本 实施方式中, 发明人通过实验得出所述第一功能层 121厚度控制在 5~50μηι最佳。
[0043] 所述第一功能层 121和所述第一发光层 111的具体厚度设置需要根据烧结后发生 体积收缩的比例来确定, 只需要满足烧结得到的发光装置的发光层厚度满足 150 ~200μηι, 功能层厚度满足 5~50μηι。
[0044] 另外, 本实施方式中, 由于采用压片烧结方式, 因此过渡层连续致密, 气孔率 经检测为 2<¾~6.4<¾。
[0045] 本实施方式中, 具体的, 所述的荧光粉还可以是 Lu 3Al 50 12:Ce 3+荧光粉; 相应 的, 所述粘结剂为玻璃粉或氧化铝粉或 Lu 3A1 50 12粉。
[0046]
[0047] 实施例二
[0048] 请结合参图 2, 本发明提供了一种发光装置 20, 其组份包括荧光粉和用于起粘 结作用的粘结剂。
[0049] 本实施方式中, 所述荧光粉为市售 Y 3Al 50 12:Ce 3+荧光粉; 所述粘结剂为玻璃 粉或氧化铝粉或¥ 3 1 50 12粉, 主要起到粘结其他几种组分的作用。 所述粘结剂 的硬度与所述荧光粉的硬度存不相同, 比如: 所述玻璃粉的 Mohs硬度为 5.5~6 , 所述荧光粉的 Mohs硬度为 8~8.5, 所述氧化铝粉的 Mohs硬度为 9。
[0050] 所述发光装置 20采用具有梯度的差异浓度配比方式设计进行压片烧结, 其包括 发光层 21、 层叠于所述发光层 21上的功能层 22的一体烧结体。
[0051] 所述发光层 21包括第一发光层 211, 所述第一发光层 211中荧光粉的质量分数为 50%~99<¾。 由于所述第一发光层 211通常作为主要的波长转换层, 发明人通过实 验得到当荧光材料浓度一样吋, 光效随着所述第一发光层 211的厚度增加而增加 , 当所述第一发光层 211的厚度增加到 150μηι吋, 该点的曲线斜率接近 0, 说明光 效接近最大, 当厚度增加到 200μηι以上吋曲线斜率为 0, 光效达到最大。 因此, 为了保证光效特征, 本实施方式中, 所述第一发光层 211的厚度为 150~200μηι。
[0052] 所述功能层 22包括第一功能层 221, 所述第一功能 221层中荧光粉的质量分数为 5%~50% , 所述第一功能层 221的厚度为 5~50μηι。 所述发光层与所述功能层之间 存在连续致密的过渡层 (未图示) 。
[0053] 由于所述第一功能层 221主要作为镀膜层, 需要考虑到加工精度及光效损失。
由于膨胀系数的不同, 高浓度层和低浓度层填充装配后的烧结工艺会出现收缩 率不同的情况, 厚度太小则加工不可控, 厚度太大会出现幵裂现象。 另一方面 , 由于所述第一发光层 211作为主要的波长转换层, 光源从第一发光层 211的远 离第一功能层 221的一侧入射, 激发光先进入所述第一发光层 211, 被所述第一 发光层 211荧光粉吸收发出第一受激光, 第一受激光进入所述第一功能层 221, 并透过该层出射; 此外, 一部分未被第一发光层 211内荧光粉完全吸收的激发光 同样穿透第一发光层 211进入所述第一功能层 221被所述第一功能层 221的荧光粉 吸收发出第二受激光, 第二受激光透过该层出射; 如果所述第一功能层 221过厚 则第一受激光在透过该层出射吋会出现横向传播的现象, 造成光损失; 如果所 述第一功能层 221过薄, 则未被所述第一发光层 211内荧光粉完全吸收的激发光 很容易穿透所述第一功能层 221, 造成光损失。 综合加工精度和光损失情况, 本 实施方式中, 发明人通过实验得出所述第一功能层 221厚度控制在 5~50μηι最佳。
[0054] 与实施例一不同的是: 所述第一功能层 221由至少两个第一子功能层 2211层叠 组成, 每个所述第一子功能层 2211之间存在连续致密的过渡层 (未图示), 每个所 述第一子功能层 2211中荧光粉的质量分数沿自所述第一功能层 221向所述第一发 光层 211延伸的方向以特定梯度递增, 所述特定梯度的范围为 5%~10<¾ ; 每个所 述第一子功能层 2211中的荧光粉均匀分布。
[0055] 本实施例中, 可以在第一功能层 221上远离所述第一发光层 211—侧设置光学镀 膜 23, 所述光学镀膜 23包括反射膜、 增透膜, 镀膜方式包括但不限于磁控溅镀 、 真空蒸镀。
[0056] 由于荧光粉和粘接剂硬度不同, 在高浓度层抛光会出现磨损状态不同, 形成" 浮凸"; 而直接将发光层的荧光粉的浓度降低会影响发光效率, 因此设计第一功 能层 221, 并在第一功能层 221上镀膜, 同吋又需要考虑到若第一功能层 221的浓 度过低将在后续的烧结工艺中出现第一发光层 211与第一功能层 221因收缩系数 差异过大而断裂。
[0057] 因此与第一实施例不同的是, 本实施例中所述第一功能层 221由至少两个第一 子功能层 2211层叠组成, 每个所述第一子功能层 2211之间存在连续致密的过渡 层, 每个所述第一子功能层 2211的荧光粉含量不同, 并沿自所述第一功能层 221 向所述第一发光层 211延伸的方向以特定的梯度递增, 该结构的优点在于, 靠近 第一发光层 211的第一子功能层 2211中荧光粉浓度较高, 与第一发光层 211中的 荧光粉浓度差值小, 甚至相等; 而远离第一发光层 211的第一子功能层 2211中荧 光粉浓度较低, 接近纯相, 甚至浓度为 0。 在远离第一发光层 211的第一子功能 层 2211上镀光学膜 23则容易的多。 这种梯度浓度的变化不会存在某一处因收缩 系数差异过大而断裂, 且保证了第一发光层 211的发光效率。 另外, 本实施方式 中, 所述过渡层气孔率为 2%~6.4<¾。
[0058] 同样的, 本实施方式中, 所述的荧光粉还可以是 Lu 3Al 50 12:Ce 3+荧光粉; 所述 粘结剂相应为玻璃粉或氧化铝粉或 Lu 3A1 50 12粉。
[0059] 所述第一功能层 221和所述第一发光层 211的具体厚度设置需要根据烧结后发生 体积收缩的比例来确定, 只需要满足烧结得到的发光装置的发光层厚度满足 150 ~200μηι, 功能层厚度满足 5~50μηι。 当然, 各个所述的第一子功能层 2211的具体 厚度也可参考按上述条件来确定。
[0060]
[0061] 实施例三
[0062] 请结合参图 3, 本发明提供了一种发光装置 30, 其组份包括荧光粉和用于起粘 结作用的粘结剂。
[0063] 本实施方式中, 所述荧光粉为市售 Y 3Al 50 12:Ce 3+荧光粉; 所述粘结剂为玻璃 粉或氧化铝粉或¥ 3 1 50 12粉, 主要起到粘结其他几种组分的作用。 所述粘结剂 的硬度与所述荧光粉的硬度存不相同, 比如: 所述玻璃粉的 Mohs硬度为 5.5~6 , 所述荧光粉的 Mohs硬度为 8~8.5, 所述氧化铝粉的 Mohs硬度为 9。 本发明的发 光装置设计梯度浓度, 形成一个低浓度层, 在该层抛光镀膜。 因为荧光粉和粘 接介质硬度不同, 在高浓度层抛光会出现磨损状态不同, 形成"浮凸"。 而低浓度 层的荧光粉较少, 甚至没有, 抛光的表面较为平整, 便于镀膜。
[0064] 本实施例的发光装置 30与实施例一所述的发光装置类似, 其包括发光层 31、 层 叠于所述发光层 31上的功能层 32的一体烧结体。
[0065] 所述发光层 31包括第一发光层 311, 所述第一发光层 311中荧光粉的质量分数为 50%~99<¾。 为了保证光效特征, 本实施方式中, 所述第一发光层 311的厚度为 15 0~200μηι。 第一发光层 311的厚度设定依据在实施例一中已描述, 此处不再赘述
[0066] 所述功能层 32包括第一功能层 321, 所述第一功能层 321中荧光粉的质量分数为 5%~50% , 所述第一功能层 321的厚度为 5~50μηι。 第一功能层 321的厚度设定依 据在实施例一中已描述, 此处也不再赘述。 所述发光层 31与所述功能层 32之间 存在连续致密的过渡层 (未图示)。 与实施例一不同的是: 所述第一发光层 311由 至少两个第一子发光层 3111层叠组成, 每个所述第一子发光层 3111之间存在连 续致密的过渡层, 每个所述第一子发光层 3111中荧光粉的质量分数沿自所述第 一功能层 321向所述第一发光层 311延伸的方向以特定梯度递增, 所述特定梯度 的范围为 5%~10%; 每个所述第一子发光层 3111中的荧光粉均匀分布。
[0067] 由于第一功能层 321的厚度较低, 在第一功能层 321上进行如实施例二所描述的 梯度浓度的设计要求较高, 如果在一些对发光效率要求不是特别高的环境使用 该发光装置, 其成本相应较高。 因此, 本实施例在第一发光层 311设计梯度差异 浓度, 由于第一发光层 311厚度较高, 设计多个具有梯度浓度变化的第一子发光 层 3111组成第一发光层 311将易于实现, 靠近第一功能层 321的第一子发光层 311 1中荧光粉浓度与第一功能层 321中荧光粉浓度差值较小, 甚至相等; 远离第一 功能层 321的第一子发光层 3111中荧光粉浓度设计的更高, 这样保证发光效率。
[0068] 同实施例二理, 可在所述第一功能层 321远离所述第一发光层 311的一侧设置光 学镀膜 33, 所述光学镀膜 33包括反射膜、 增透膜, 镀膜方式包括但不限于磁控 溅镀、 真空蒸镀。
[0069] 本实施例中所述的发光装置 30优点与实施例二所述的发光装置优点相同, 即发 光装置 30中的荧光粉浓度整体呈梯度变化, 在烧结吋不会出现断裂现象, 同吋 由于浓度可控, 在第一功能层 321上设计低浓度使镀膜工艺也易于实现。
[0070] 本实施方式中, 所述过渡层气孔率为 2%~6.4<¾。
[0071] 同样, 本实施方式中所述的荧光粉还可以是 Lu 3Al 50 12:Ce 3+荧光粉; 所述粘结 剂相应为玻璃粉或氧化铝粉或 Lu 3A1 50 12粉。
[0072] 各层厚度的确定可参考实施例一或实施例二, 此处不再赘述。
[0073]
[0074] 实施例四
[0075] 请结合参图 4, 本实施方式为对于上述实施例二和实施例三的扩展, 即将实施 例二和实施例二组合成实施例四:
[0076] 即所述发光装置 40的所述第一功能层 421由至少两个第一子功能层层 4211叠组 成, 每个所述第一子功能层 4211之间存在连续致密的过渡层 (未图示) , 每个 所述第一子功能层 4211中荧光粉的质量分数沿自所述第一功能层 421向所述第一 发光层 411延伸的方向以特定梯度递增, 所述特定梯度的范围为 5%~10<¾; 每个 所述第一子功能层 4211中的荧光粉均匀分布。
[0077] 所述发光层 41的所述第一发光层 411由至少两个第一子发光层 4111层叠组成, 每个所述第一子发光层 4111之间存在连续致密的过渡层, 所述第一发光层 411中 各个第一子发光层 4111中荧光粉的质量分数以相同的所述特定梯度递增, 需要 说明的是此处所述的以相同的所述特定梯度递增, 即: 当每个所述第一子功能 层 4211中荧光粉的质量分数沿自所述第一功能层 421向所述第一发光层 411延伸 的方向按 6%的梯度递增吋, 所述第一发光层 411中各个第一子发光层 4111中荧光 粉的质量分数也以 6%的梯度递增; 每个所述第一子发光层 4111中的荧光粉均匀 分布; 相邻接的第一子发光层 4111与第一子功能层 4211中荧光粉的质量分数差 为 0或所述特定梯度。
[0078] 当然, 本实施例中还可以以不同的所述特定梯度递增, 即在特定梯度的范围 5 %~10<¾内选取不同的两个数值, , 此吋所述第一功能层 421的递增梯度与所述第 一发光层 411的递增梯度不同, 分别以各自的特定梯度变化, 例如: 每个所述第 一子功能层 4211中荧光粉的质量分数沿自所述第一功能层 421向所述第一发光层 411延伸的方向按 6%的梯度递增, 每个所述第一子发光层 4111中荧光粉的质量分 数沿自所述第一功能层 421向所述第一发光层 411延伸的方向按 7%的梯度递增。 每个所述第一子发光层 4111中的荧光粉均匀分布; 相邻接的第一子发光层 4111 与第一子功能层 4211中荧光粉的质量分数差可以为 0。
[0079] 在进行各个所述第一子功能层 4211和 /或各个所述第一子发光层 4111厚度设计 吋, 可参考如下方法:
[0080] 通常所述第一发光层 411作为主要的波长转换层, 所述第一功能层 421作为镀膜 层, 由于考虑到整个所述发光装置的性能优化问题, 波长转换层的荧光粉质量 分数为 50<¾~99<¾, 厚度为 150~200μηι, 在进行波长转换层浓度梯度分配吋, 每 层之间可以按 5%~10<¾的质量分数 (即特定梯度) 差异 (记为浓度公差 dl) 递增 或递减, 浓度梯度分级主要考虑到荧光粉含量, 对烧结后的体积收缩影响, 因 此每两层之间浓度差异不能过大。 因此所述第一发光层 411 (即波长转换层) 的 荧光粉梯度浓度层数 Tl=(N max - N min)/dl, 其中, N max
为各个所述第一子发光层 4111中荧光粉质量分数最大值, N 为各个所述第一 子功能层 4211中荧光粉质量分数最小值; 则每层 (即所述第一发光层 411的每层 所述第一子发光层 4111) 厚度 h与荧光粉浓度的对应关系为, 厚度 hl=Hl Tl, HI 为所述第一发光层 411厚度, Η1=150~200μηι。 dl可以为 0, 即所述第一发光层 41 1中荧光粉整体呈均匀分布。
[0081] 同理, 所述功能层 42的所述第一功能层 421的每层所述第一子功能层 4211厚度 h 2=Η2 Γ2, Τ2为所述第一功能层 421 (即镀膜层) 的荧光粉梯度浓度层数, Τ2=( M max - M min)/d2, 其中, M max为所述第一功能层 421中荧光粉质量分数最大值, M min为所述第一功能层 421中荧光粉质量分数最小值; d2为第一功能层 421的浓度公 差, d2为 5%~10<¾的任一值; d2还可以为 0, 即所述第一功能层 421中荧光体整体 呈均匀分布。 如前所述 dl和 d2可以相同也可以不同。
[0082] 同样, 本实施例中, 也可以在第一功能层 421上远离所述第一发光层 411一侧设 置光学镀膜 43, 所述光学镀膜 43包括反射膜、 增透膜, 镀膜方式包括但不限于 磁控溅镀、 真空蒸镀。
[0083] 本实施例中关于荧光粉和粘接剂的选择可参考上述实施例一至三任一项的说明
, 此处不再赘述。 [0084]
[0085] 实施例五
[0086] 请结合参图 5, 实施例五为实施例一到四的另一种扩展。 即在实施例一到四中 任一实施例的所述发光装置基础上, 本实施方式中的所发光装置 50的所述功能 层 52还包括第二功能层 522 (即包括第一功能层 521和第二功能层 522) , 所述第 二功能层 522层叠于所述第一功能层 521并远离所述发光层 51的第一发光层 511— 侧, 与所述第一功能层 521形成一体烧结体。 所述第二功能层 522中的荧光粉质 量分数为 0, 所述第二功能层 522厚度为 0.1~5μηι, 所述第二功能层 522与所述第 一功能层 521之间存在连续致密的过渡层 (未图示), 所述过渡层气孔率为 2%~6.4 <¾。 除此之外, 本实施方式与实施例一到实施例四中任一实施例相同, 在此不在 赘述。
[0087] 当选择本实施例的结构吋, 相应的可以在第二功能层 522上远离所述第一发光 层 521—侧设置光学镀膜 53, 所述光学镀膜 53包括反射膜、 增透膜, 镀膜方式包 括但不限于磁控溅镀、 真空蒸镀。
[0088]
[0089] 实施例六
[0090] 请结合参图 6, 本实施方式为在实施例一至实施例五任一实施例的基础上进行 扩展。
[0091] 即区别在于: 本实施方式中, 所述发光装置 60所述功能层 62还包括层叠于所述 发光层 61的所述第一发光层 611并远离所述第一功能层 621—侧的第三功能层 623 和层叠于所述第三功能层 623并远离所述第一发光层 611的第四功能层 624。 即包 括第一功能层 621、 第二功能层 622、 第三功能层 623和第四功能层 624。
[0092] 所述第三功能层 623中的荧光粉质量分数为 5%~50<¾, 所述第三功能层 523的厚 度为 5~50μηι; 所述第四功能层 624中的荧光粉质量分数为 0, 所述第四功能层 624 的厚度为 0.1~5μηι; 所述第一发光层 611与所述第三功能层 623之间存在连续致密 的所述过渡层 (未图示) ; 所述第四功能层 624与所述第三功能层 623之间存在 连续致密的所述过渡层 (未图示) , 所述过渡层气孔率为 2%~6.4%。
[0093] 本实施例中, 所述第三功能层 623可以是其荧光粉浓度整体呈均匀分布的, 也 可以是如实施例二中所述的第二功能层 622—样通过设置多个子功能层呈梯度浓 度分布, 这都是本领域技术人员容易想到的, 此处不再赘述。
[0094] 当然, 也可在本实施方式的基础上, 在所述第四功能层 624远离所述第一发光 层 611—侧层叠光学镀膜 63, 这也是可行的。
[0095] 需要说明的是: 在所述第二功能层 622远离所述第一发光层 611—侧, 及在所述 第四功能层 624远离所述第一发光层 611—侧均层叠光学镀膜 63吋: 两侧的光学 镀膜均为反射膜或均为增透膜; 或者其中一侧为反射膜, 另一侧为增透膜, 这 都是本领域技术人员容易想到的。
[0096] 另外, 所述功能层 63可包括第一功能层 621、 第二功能层 622、 第三功能层 623 及第四功能层 624中的至少一层吋, 所述光学镀膜 63的设置均位于所述第一功能 层 621或第二功能层 622或第三功能层 623或第四功能层 624的远离所述发光层 61 的一侧, 比如:
[0097] 当只包括层叠于所述发光层 61—侧的第一功能层 621吋, 所述光学镀膜 63设于 所述第一功能层 621远离所述发光层 61—侧;
[0098] 当包括依次层叠于所述发光层 61的同一侧的第一功能层 621和第二功能层 622吋 , 所述第二功能层 622位于所述第一功能层 621的远离所述发光层 61—侧, 所述 光学镀膜 63设于所述第二功能层 622远离所述发光层 61—侧;
[0099] 当包括叠于所述发光层的第一功能层 621、 第二功能层 622和第三功能层 623, 所述第一功能层 621与所述第二功能层 622位于所述发光层 61同一侧且所述第二 功能层 622位于所述第一功能层 621远离所述发光层 61—侧, 所述第三功能层 623 位于所述发光层 61的远离所述第一功能层 621的一侧吋, 所述光学镀膜 63可设于 所述第二功能层 622远离所述发光层 61—侧或 /和所述第三功能层 623远离所述发 光层 61—侧。
[0100] 以此类推, 这都是可行的, 其原理都一样, 本领域技术人员依据上述描述很容 易想到并实现。
[0101]
[0102] 请参图 7-8, 本发明还提供了一种发光装置的制备方法,该方法包括如下步骤: [0103] 步骤 Sl、 混料: [0104] 将有机载体和粘结剂经混合、 球磨得到球磨坯料; 向所述球磨坯料中加入荧光 粉, 继续球磨得到混合初料。
[0105] 具体的, 步骤 S1包括步骤 Sl l、 将氧化铝粉 (或玻璃粉或 Y 3A1 50 12粉或 Lu 3Al 5
0 12粉) 加入无水乙醇作为液相介质, 加入浓度为 1%~5<¾的 PVA或 PVB作为粘结 齐 1J, 经混合得到混合原料。
[0106] 步骤 S12、 将所述混合原料放入球磨罐中进行球磨混料, 球墨处理 4~8小吋, 形 成球磨坯料。
[0107] 步骤 S13、 将所述球磨坯料分为包括第一部分和第二部分的至少两部分, 所述 第一部分中加入与所述第一部分中粘接剂的质量比为 1~99:1的荧光粉, 所述第二 部分中加入与所述第二部分中粘接剂的质量比为 1:1~19的荧光粉, 分别再继续进 行球磨, 球磨吋间设定为 30~60分钟, 再在 80°C的条件下烘干以去除所述无水乙 醇, 然后分别分离出并进行研磨过筛, 得到所述混合初料, 包括第一混合初料 和第二混合初料。
[0108] 当然, 所述混合胚料分成的份数并不限于此, 还可以分为更多分数 (部分) 。
本步骤中, 更优的, 所述混合胚料还包括被分的第三部分; 所述第一部分加入 组份含量为 50%~75<¾的荧光粉, 所述第二部分加入组份含量为 5%~15<¾的荧光粉 ; 所述第三部分不添加荧光粉。
[0109] 步骤 S2、 装料:
[0110] 将所述混合初料装填于模具中。
[0111] 具体为将所述第一混合初料和所述第二混合初料依次装填于所述模具中。
[0112] 步骤 S3、 预压制:
[0113] 将所述模具中的所述混合初料铺平, 并施加 80~100kg/cm 2的压力预压制得到预 成型坯体。
[0114] 步骤 S4、 热处理、 成型:
[0115] 将所述预成型坯体放入高温炉中脱脂排胶后, 使温度调节为所述粘结剂的分解 温度, 保持 5~10个小吋后, 放入冷等静压的液压腔体中, 在 250Mpa~300Mpa的 压强下保压 1分钟, 经冷等静压处理成型为素坯。
[0116] 本步骤中使得到的素坯包括含有质量分数为 50%~99%的荧光粉的发光素坯层和 含有质量分数为 5%~50%的荧光粉的功能素坯层, 所述发光素坯层的厚度大于功 能素坯层的厚度。
[0117] 当然, 高温炉中保护的具体吋间可依据所述预成型坯体的体积大小而定。
[0118] 步骤 S5、 烧结:
[0119] 将所述素坯放入真空钨丝炉中, 在真空度为 10 -4Pa的范围内、 1500°C~1800°C温 度的条件下, 保温 4~10小吋, 真空烧结以得到所述发光装置。
[0120] 上述制备方法采用压片烧结的工艺, 粉体的颗粒经过混合后, 堆积在一起, 经 过预压成型, 再高温排胶, 排除有机物, 这吋虽然也会形成一些孔洞, 但接着 进行冷等静压, 再次对样品施加高压, 让粉体之间的更加致密, 在一定程度上 消除了孔洞, 进入烧结制程后, 液相粘结材料进一步填补, 孔隙率较上印刷方 式致密度更高;
[0121] 当然, 上述制备方法还可以采用热压烧结, 这种方式粉体配料中无需添加有机 成分, 不需要进行排胶等工艺, 直接使用玻璃粉 (或氧化铝粉或¥ 3^ 50 12 粉或 Lu 3Al 50 12粉) 作为粘接剂, 即上述制备方法所述的步骤 S1的混料工艺不添 加有机载体, 直接将粘接剂进行球磨得到球磨原料, 这样步骤 S4热处理步骤可 省略。 由于该方法没有排胶工艺, 不会增加气孔率, 因此直接按照梯度浓度填 装粉料, 后再进行烧结制程, 边烧结边加压; 使得材料的致密度更进一步提升 , 气孔率能够进一步降低。
[0122] 与相关技术相比, 本发明的发光装置及其制备方法设计具有差异的浓度, 甚至 梯度差异浓度, 形成一个低浓度层, 可在该层抛光镀膜。 因为荧光粉和粘接剂 硬度不同, 在高浓度层抛光会出现磨损状态不同, 形成"浮凸"。 而低浓度层的荧 光粉较少, 甚至没有, 抛光的表面较为平整, 便于镀膜。 本发明通过低浓度层 的荧光粉含量调整, 从而解决了这种复相材料的所述发光装置中由于两相介质 的硬度差异使得表面抛光后严重不平整, 加工简单方便; 由于所述发光装置中 , 荧光粉的含量直接影响到其发光效率, 因此, 在保证了主体荧光效率的同吋 , 在浅表层做适当梯度浓度调整, 使得抛光表面接近纯相, 降低了表面的抛光 缺陷; 同吋各层的荧光粉浓度可控, 避免了烧结吋体积收缩不一致而使得在不 同浓度层的脱离现象, 由于一体成型, 层与层之间的气孔率较低, 进一步避免 烧结脱离现象, 提高了所述发光装置的可靠性和成品良率。

Claims

权利要求书
[权利要求 1] 1、 一种发光装置, 其组份包括荧光粉和用于起粘结作用的粘结剂, 其特征在于: 所述发光装置为包括发光层、 层叠于所述发光层上的功 能层的一体烧结体;
所述发光层包括第一发光层, 所述第一发光层中荧光粉的质量分数为
50%~99%, 所述第一发光层的厚度为 150~200μηι;
所述功能层包括第一功能层, 所述第一功能层中荧光粉的质量分数为 5%~50% , 所述第一功能层的厚度为 5~50μηι;
所述发光层与所述功能层之间存在连续致密的过渡层;
所述荧光粉与所述粘接剂的莫氏硬度不同。
[权利要求 2] 2、 根据权利要求 1所述的发光装置, 其特征在于, 所述第一功能层由 至少两个第一子功能层层叠组成, 每个所述第一子功能层之间存在连 续致密的过渡层, 每个所述第一子功能层中荧光粉的质量分数沿自所 述第一功能层向所述第一发光层延伸的方向以特定梯度递增, 所述特 定梯度的范围为 5%~10%; 每个所述第一子功能层中的荧光粉均匀分 布。
[权利要求 3] 3、 根据权利要求 1所述的发光装置, 其特征在于, 所述第一发光层由 至少两个第一子发光层层叠组成, 每个所述第一子发光层之间存在连 续致密的过渡层, 每个所述第一子发光层中荧光粉的质量分数沿自所 述第一功能层向所述第一发光层延伸的方向以特定梯度递增, 所述特 定梯度的范围为 5%~10%; 每个所述第一子发光层中的荧光粉均匀分 布。
[权利要求 4] 4、 根据权利要求 1所述的发光装置, 其特征在于, 所述第一功能层由 至少两个第一子功能层层叠组成, 每个所述第一子功能层之间存在连 续致密的过渡层, 每个所述第一子功能层中荧光粉的质量分数沿自所 述第一功能层向所述第一发光层延伸的方向以特定梯度递增, 所述特 定梯度的范围为 5%~10%; 每个所述第一子功能层中的荧光粉均匀分 布; 所述第一发光层由至少两个第一子发光层层叠组成, 每个所述第 一子发光层之间存在连续致密的过渡层, 所述第一发光层中各个第一 子发光层中荧光粉的质量分数以相同的所述特定梯度递增, 每个所述 第一子发光层中的荧光粉均匀分布; 相邻接的第一子发光层与第一子 功能层中荧光粉的质量分数差为 0或所述特定梯度。
5、 根据权利要求 1~4任一项所述的发光装置, 其特征在于, 所述过渡 层气孔率为 2<¾~6.4<¾。
6、 根据权利要求 5所述的发光装置, 其特征在于, 在所述第一功能层 上远离所述第一发光层一侧设置有光学镀膜, 所述光学镀膜包括反射 膜、 增透膜。
7、 根据权利要求 5所述的发光装置, 其特征在于, 所述功能层还包括 第二功能层, 所述第二功能层层叠于所述第一功能层并远离所述第一 发光层一侧, 与所述第一功能层形成一体烧结体, 所述第二功能层中 的荧光粉质量分数为 0, 所述第二功能层厚度为 0.1~5μηι, 所述第二 功能层与所述第一功能层之间存在连续致密的过渡层。
8、 根据权利要求 6或 7所述的发光装置, 其特征在于, 所述功能层还 包括层叠于所述第一发光层并远离所述第一功能层一侧的第三功能层 和层叠于所述第三功能层并远离所述第一发光层的第四功能层, 所述 第三功能层中的荧光粉质量分数为 5%~50%, 所述第三功能层的厚度 为 5~50μηι; 所述第四功能层中的荧光粉质量分数为 0, 所述第四功能 层的厚度为 0.1~5μηι; 所述第一发光层与所述第三功能层之间存在连 续致密的所述过渡层; 所述第四功能层与所述第三功能层之间存在连 续致密的所述过渡层。
9、 根据权利要求 1~4或 6或 7任一项所述的发光装置, 其特征在于, 所 述的荧光粉为 Y 3A1 50 12:Ce 3+荧光粉或 Lu 3A1 50 12:Ce 3+荧光粉; 所述 粘结剂为玻璃粉或氧化铝粉或 Y 3A1 50 12粉或 Lu 3A1 50 12粉。
10、 一种发光装置的制备方法, 包括如下步骤:
步骤 S1 : 混料; 将粘结剂球磨得到球磨坯料; 向所述球磨坯料中加入 荧光粉, 继续球磨得到混合初料; 步骤 S2: 装料; 将所述混合初料装填于模具中;
步骤 S3: 预压制; 将所述模具中的所述混合初料预压制得到预成型坯 体;
步骤 S4: 烧结; 所述预成型坯体经冷等静压处理得到素坯, 将所述素 坯进行烧结以获得所述发光装置;
其特征在于:
所述步骤 S1还包括将所述球磨坯料分为包括第一部分和第二部分的至 少两部分, 所述第一部分中加入与所述第一部分中粘接剂的质量比为 1~99: 1的荧光粉, 所述第二部分加入与所述第二部分中粘接剂的质量 比为 1: 1~19的荧光粉, 分别再继续球磨得到第一混合初料和第二混合 初料;
所述步骤 S2具体为将所述第一混合初料和所述第二混合初料依次装填 于所述模具中;
所述步骤 S4得到的素坯包括含有质量分数为 50%~99%的荧光粉的发 光素坯层和含有质量分数为 5%~50<¾的荧光粉的功能素坯层, 所述发 光素坯层的厚度大于功能素坯层的厚度。
PCT/CN2017/109313 2017-04-10 2017-11-03 发光装置及其制备方法 WO2018188326A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710228640.1 2017-04-10
CN201710228640.1A CN108695422B (zh) 2017-04-10 2017-04-10 发光装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2018188326A1 true WO2018188326A1 (zh) 2018-10-18

Family

ID=63793080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109313 WO2018188326A1 (zh) 2017-04-10 2017-11-03 发光装置及其制备方法

Country Status (2)

Country Link
CN (1) CN108695422B (zh)
WO (1) WO2018188326A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357424A (zh) * 2019-06-26 2019-10-22 中国计量大学 一种复相荧光玻璃及其低温高压烧结制备方法
CN115846899B (zh) * 2022-11-30 2023-07-18 广州星熠新材料科技有限公司 一种cvd金刚石片的加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042686A (ja) * 2005-07-29 2007-02-15 Toshiba Lighting & Technology Corp 発光ダイオード装置
US20080029778A1 (en) * 2006-08-04 2008-02-07 Samsung Electronics Co., Ltd. LED module and method of manufacturing the same
CN102376847A (zh) * 2010-08-25 2012-03-14 海洋王照明科技股份有限公司 复合光学器件,模具,制备方法及光学系统
CN104953014A (zh) * 2014-03-28 2015-09-30 深圳市绎立锐光科技开发有限公司 一种多层结构玻璃荧光粉片及其制备方法及发光装置
CN204894707U (zh) * 2015-04-14 2015-12-23 苏州东冠晶源光电科技股份有限公司 一种荧光体的结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173958A1 (en) * 2008-01-04 2009-07-09 Cree, Inc. Light emitting devices with high efficiency phospor structures
US20150123153A1 (en) * 2013-11-06 2015-05-07 General Electric Company Led package with red-emitting phosphors
CN104112812A (zh) * 2014-02-18 2014-10-22 张红卫 一种白光led光源封装时可有效消除边缘色差效应的陶瓷荧光体及其制备方法
MY177277A (en) * 2014-03-03 2020-09-10 Covalent Mat Corporation Wavelength converting member
CN103978750B (zh) * 2014-05-16 2016-01-20 福耀玻璃工业集团股份有限公司 一种光致发光夹层玻璃及其制备方法
CN105674214B (zh) * 2014-11-21 2018-10-09 深圳市光峰光电技术有限公司 一种波长转换结构的制备方法及相关波长转换结构
CN104529442B (zh) * 2015-01-16 2017-02-22 河南理工大学 一种功能梯度压电材料无压浸渗制备工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042686A (ja) * 2005-07-29 2007-02-15 Toshiba Lighting & Technology Corp 発光ダイオード装置
US20080029778A1 (en) * 2006-08-04 2008-02-07 Samsung Electronics Co., Ltd. LED module and method of manufacturing the same
CN102376847A (zh) * 2010-08-25 2012-03-14 海洋王照明科技股份有限公司 复合光学器件,模具,制备方法及光学系统
CN104953014A (zh) * 2014-03-28 2015-09-30 深圳市绎立锐光科技开发有限公司 一种多层结构玻璃荧光粉片及其制备方法及发光装置
CN204894707U (zh) * 2015-04-14 2015-12-23 苏州东冠晶源光电科技股份有限公司 一种荧光体的结构

Also Published As

Publication number Publication date
CN108695422A (zh) 2018-10-23
CN108695422B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
JP6826559B2 (ja) 多層構造のガラス蛍光体シート
TWI524130B (zh) 一種波長轉換裝置及其製作方法
US10930821B2 (en) Wavelength conversion member and light emitting device
TW201515289A (zh) 一種波長轉換裝置之製造方法
WO2015180630A1 (zh) 波长转换装置及其相关发光装置
EP3543221B1 (en) Light-emitting ceramic and light-emitting device
CN104061531B (zh) 一种波长转换装置的制作方法
WO2018188326A1 (zh) 发光装置及其制备方法
JP2012036367A (ja) 蛍光体複合部材
JPH0748190A (ja) 窒化アルミニウムセラミックスとその製造方法
WO2020063154A1 (zh) 光反射材料、反射层及其制备方法
CN116813327A (zh) 一种复合荧光陶瓷制备方法
KR20130123957A (ko) 계면결합력이 우수한 복합재 방열 기판 및 이의 제조방법
CN105084760B (zh) 一种超薄发光玻璃的制备方法及相关发光装置
CN110416387B (zh) 一种高散热白光激光片及制备方法
WO2020057297A1 (zh) 一种漫反射装置及其制备方法、波长转换装置
Li et al. All-inorganic color converter based on a phosphor in bismuthate glass for white laser diode lighting
WO2021056133A1 (zh) 一种新型陶瓷基金刚石复合片及其制备方法
CN113568262A (zh) 波长转换装置及其制造方法
CN117353146A (zh) 一种具有高反射层的激光照明用荧光器件及其制备方法
WO2019024365A1 (zh) 荧光芯片及其制造方法和发光装置
JPS62106636A (ja) 炭化珪素質複合体からなる電子回路用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905714

Country of ref document: EP

Kind code of ref document: A1