WO2021056133A1 - 一种新型陶瓷基金刚石复合片及其制备方法 - Google Patents

一种新型陶瓷基金刚石复合片及其制备方法 Download PDF

Info

Publication number
WO2021056133A1
WO2021056133A1 PCT/CN2019/107227 CN2019107227W WO2021056133A1 WO 2021056133 A1 WO2021056133 A1 WO 2021056133A1 CN 2019107227 W CN2019107227 W CN 2019107227W WO 2021056133 A1 WO2021056133 A1 WO 2021056133A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
ceramic
sintering
layer
powder
Prior art date
Application number
PCT/CN2019/107227
Other languages
English (en)
French (fr)
Inventor
王成勇
胡小月
wa宏建
张凤林
郑李娟
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to PCT/CN2019/107227 priority Critical patent/WO2021056133A1/zh
Publication of WO2021056133A1 publication Critical patent/WO2021056133A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide

Definitions

  • the invention belongs to the technical field of composite materials, and specifically relates to a novel ceramic-based diamond composite sheet and a preparation method thereof.
  • Ceramics are the mainstream materials for manufacturing parts due to their excellent properties, such as high strength, high hardness, high toughness, and good chemical stability.
  • the thermal conductivity of ceramic materials is much lower than that of diamond.
  • Diamond is currently the hardest material and has excellent thermal conductivity (thermal conductivity of 1000-1200). It is an excellent heat dissipation material.
  • the heat sink made of diamond is expensive and the hardness of diamond is high. It is difficult to grind and polish, and it is difficult to process. Into a heat sink of appropriate thickness.
  • the diamond material is added in a layered form to the ceramic-based material, and then the ceramic-based diamond composite material can be obtained by sintering.
  • the ceramic-based diamond composite material can be obtained by sintering.
  • As a new type of composite material it has both the advantages of ceramic and diamond. Through the different layered combination of ceramic and diamond materials, it can effectively improve the heat dissipation performance of the material and realize the precise control of heat dissipation performance and direction. Where thickness and size of heat sink are required.
  • the diamond powder is directly mixed with ceramic powder for sintering, and the sintered material is distributed with diamond particles. Because of the high hardness of diamond particles, it is difficult to perform sintering. Subsequent grinding and polishing are used to produce heat sinks with a specific thickness; the direction of heat dissipation is fixed, and the bond between diamond and the material matrix is weak, which seriously affects the material properties.
  • Huang et al. reported the use of spark plasma sintering technology to prepare Si 3 N 4 matrix diamond composite materials (Journal of the European Ceramic Society 33 (2013) 1237-1247).
  • a relatively dense composite material is obtained at a higher temperature, but the diamond has undergone significant graphitization, which affects the material properties, and the hardness of the composite material is equivalent to that of pure Si 3 N 4 ceramics, which does not give play to the performance advantages of diamond.
  • a new type of ceramic-based diamond composite sheet characterized in that it comprises a ceramic substrate provided with a diamond layer; the diamond layer is composed of diamond, and the diamond is in the form of powder or film, and the diamond layer
  • the distribution mode in the ceramic matrix is single-layer or multi-layer distribution, and the distribution position of the diamond layer in the ceramic matrix is located in the middle area or the surface area.
  • the diamond is a diamond thin film
  • the thickness of the diamond thin film is 5 to 200 ⁇ m
  • the shape of the diamond thin film is a disc or a polygon
  • the ceramic matrix includes a single layer or multiple diamond layers, and each layer of diamond The number of diamond films placed in layers is single or multiple.
  • the diamond is diamond powder, and the diamond powder has a particle size of 5 to 200 ⁇ m; the ceramic matrix includes a single or multiple diamond layers, and the arrangement of the diamond powder in each diamond layer is equidistant. Any one of arrangement, gradient arrangement, or irregular arrangement.
  • the ceramic substrate is any one or a combination of oxide ceramics, nitride ceramics, and carbide ceramics.
  • the oxide ceramic is any one of Al 2 O 3 , MgO, and ZrO 2 and is not limited to these;
  • the nitride ceramic is any one of Si 3 N 4 , BN, and AIN , And not limited to these types;
  • the carbide ceramic is any one of TiC, WC, SiC, and is not limited to these types.
  • the sintering aid is any one or a combination of metal oxides and rare earth oxides.
  • the metal oxide is any one or a combination of two of MgO and Al 2 O 3 ;
  • the chemical formula of the rare earth oxide is Re 2 O 3 , where Re is Sc, Y, La, Ce, Any of Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the diamond particles or the diamond film material for coating the diamond particles or the diamond film is any one of Ni, Ti, Cu, TiC, TiN, and SiC, and the thickness of the coating is 100 nm ⁇ 1 ⁇ m.
  • the sintering method is high temperature and high pressure sintering or spark plasma sintering, and is not limited to these two sintering methods.
  • the obtained ceramic matrix diamond composite material has a density of >99%, a hardness of 20-40 GPa, and a thermal conductivity of 100-500 W/(m ⁇ K).
  • the main innovations of the present invention are:
  • control the shape and distribution of diamond material in the ceramic matrix put the diamond material in the ceramic matrix in a layered form, and at the same time, accurately control the heat dissipation performance and direction through the diamond shape, number of layers and shape.
  • the invention uses ceramics as the material matrix, plated diamond particles or diamond film as the reinforcing phase, adds the diamond material to the ceramic matrix in the form of particles or films in a layered manner, and precisely controls heat dissipation through diamond particle size, concentration, number of layers and shapes Performance and direction.
  • the plating method can greatly reduce or even realize the nearly non-graphitization of diamond, while effectively increasing the density of the composite material, increasing the degree of bonding between the diamond and the ceramic matrix, and obtaining an excellent heat dissipation performance and controllable heat conduction direction Ceramic-based diamond composite sheet.
  • Figure 1 is a schematic structural view of the distribution form of a ceramic-based diamond film composite sheet according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of the distribution form of a ceramic-based diamond film composite sheet according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of the distribution form of a ceramic-based diamond film composite sheet according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of the distribution form of a ceramic-based diamond particle composite sheet according to an embodiment of the present invention.
  • Fig. 5 is a structural schematic diagram of the distribution form of a ceramic-based diamond particle composite sheet according to an embodiment of the present invention.
  • Figure 6 is a schematic structural view of the distribution form of a ceramic-based diamond particle composite sheet according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a composite gradient ceramic matrix and diamond distribution structure according to an embodiment of the present invention.
  • the ceramic matrix diamond composite material has a density of 99.4%, a hardness of 30 GPa, and a thermal conductivity of 255 W/(m ⁇ K).
  • the ceramic matrix diamond composite material has a density of 99.4%, a hardness of 30 GPa, and a thermal conductivity of 255 W/(m ⁇ K).
  • CeO 2 -MgO 90%: 10%
  • CeO 2 : MgO 3%: 6%.
  • the slurry is dried and granulated to obtain ceramic powder.
  • Put a part of the ceramic powder into the graphite mold put 9 pieces of SiC-plated diamond film with a thickness of 50um and a length of 2mm*2mm in a flat manner to form a diamond layer 2, and then a part of the ceramic powder is spread again, and a layer of diamond is repeated.
  • the film is finally spread with ceramic powder and sintered by spark plasma.
  • the sintering temperature is 1700°C
  • the heating rate is 70°C/min
  • the holding time is 8min
  • the sintering pressure is 35MPa
  • the sintering atmosphere is N 2 .
  • the ceramic matrix diamond composite material has a density of 99.5%, a hardness of 30 GPa, and a thermal conductivity of 384W/(m ⁇ K).
  • the ceramic matrix diamond composite material has a density of 98.6%, a hardness of 28GPa, and a thermal conductivity of 283W/(m ⁇ K).
  • a uniformly mixed Si 3 N 4 /Al 2 O 3 -Y 2 O 3 is obtained .
  • the slurry is dried and granulated to obtain ceramic powder.
  • the ceramic powder into a graphite mold, and use absolute ethanol as a solvent to spread Ti-coated diamond particles with a volume fraction of 20% and a particle size of 20 ⁇ m into a layer to form a diamond layer 2, and the upper layer is again covered with ceramic powder.
  • Spark plasma sintering is used, the sintering temperature is 1600°C, the heating rate is 100°C/min, the holding time is 10 min, the sintering pressure is 30 MPa, and the sintering atmosphere is N 2 .
  • the ceramic matrix diamond composite material has a density of 99.4%, a hardness of 22 GPa, and a thermal conductivity of 242/(m ⁇ K).
  • a uniformly mixed MgO/Sc 2 O 3 -Y 2 O 3 is obtained .
  • the slurry is dried and granulated to obtain ceramic powder.
  • the ceramic powder put a part of the ceramic powder into the graphite mold, use absolute ethanol as the solvent, and place the Ti-coated diamond particles with a volume fraction of 40% and a particle size of 30 ⁇ m in a layer, then pave a part of the ceramic powder again, and repeat the tiling. Layers of diamond particles form the diamond layer 2, which is finally spread with ceramic powder.
  • spark plasma sintering the sintering temperature is 1700°C, the heating rate is 70°C/min, the holding time is 8min, the sintering pressure is 35MPa, and the sintering atmosphere is N 2 .
  • the ceramic matrix diamond composite material has a density of 99.5%, a hardness of 30 GPa, and a thermal conductivity of 300 W/(m ⁇ K).
  • a uniformly mixed BeO/Al 2 O 3 -Y 2 O 3 is obtained .
  • the slurry is dried and granulated to obtain ceramic powder.
  • the ceramic matrix diamond composite material has a density of 99.4%, a hardness of 22GPa, and a thermal conductivity of 156W/(m ⁇ K).
  • a uniformly mixed Si 3 N 4 /Al 2 O 3 -Y 2 O 3 is obtained .
  • the slurry is dried and granulated to obtain ceramic powder.
  • the ceramic powder into a graphite mold with a thickness of 4mm, using anhydrous ethanol as the solvent, spread the Ti-plated diamond particles with a volume fraction of 20% and a particle size of 20 ⁇ m in a layer, and pave the ceramic powder with a thickness of 3mm, and then A layer of diamond particles is then spread with ceramic powder with a thickness of 2 mm, diamond particles are spread again, and finally with a ceramic powder with a thickness of 1 mm, so that the diamond layer 2 presents a gradient distribution in the ceramic.
  • the ceramic matrix diamond composite material has a density of 99.4%, a hardness of 24 GPa, and a thermal conductivity of 230/(m ⁇ K).
  • a new type of ceramic-based diamond composite sheet which is characterized by comprising a ceramic substrate 1 provided with a diamond layer 2; the diamond layer is composed of diamond, the diamond is in powder form, and the diamond layer is The distribution mode in the ceramic matrix is multi-layer distribution, and the distribution position of the diamond layer in the ceramic matrix is located in the middle area.
  • the diamond is diamond powder, the particle size of the diamond powder is 100 ⁇ m; the ceramic matrix includes multiple diamond layers, and the arrangement of the diamond powder in each diamond layer is equidistant.
  • the ceramic substrate is any one or a combination of oxide ceramics, nitride ceramics, and carbide ceramics.
  • the oxide ceramic is Al 2 O 3 ; the nitride ceramic is Si 3 N 4 ; and the carbide ceramic is TiC.
  • the sintering aid is a metal oxide.
  • the metal oxide is MgO; the chemical formula of the rare earth oxide is Re 2 O 3 , where Re is Sc.
  • step S2 the material of the diamond particles for plating the diamond particles is Ni, and the thickness of the plating is 500 nm.
  • the sintering method is high temperature and high pressure sintering.
  • the obtained ceramic matrix diamond composite material has a density of >99%, a hardness of 20-40 GPa, and a thermal conductivity of 100-500 W/(m ⁇ K).
  • a new type of ceramic-based diamond composite sheet which is characterized in that it comprises a ceramic substrate 1 provided with a diamond layer 2; the diamond layer is composed of diamond, the diamond is in the form of a thin film, and the diamond layer is The distribution mode in the ceramic matrix is single-layer distribution, and the distribution position of the diamond layer in the ceramic matrix is located in the surface area.
  • the diamond is a diamond film
  • the thickness of the diamond film is 100 ⁇ m
  • the shape of the diamond film is a disc
  • the ceramic matrix includes multiple diamond layers
  • the number of diamond films placed on each diamond layer is Multiple pieces.
  • the ceramic substrate is a nitride ceramic.
  • the oxide ceramic is MgO; the nitride ceramic is BN; and the carbide ceramic is WC.
  • the sintering aid is a rare earth oxide.
  • the metal oxide is Al 2 O 3 ;
  • the chemical formula of the rare earth oxide is Re 2 O 3 , where Re is Y.
  • step S2 the diamond film material for coating the diamond film is Ti, and the thickness of the coating is 400 nm.
  • the sintering method is spark plasma sintering.
  • the obtained ceramic matrix diamond composite material has a density of >99%, a hardness of 20-40 GPa, and a thermal conductivity of 100-500 W/(m ⁇ K).
  • a new type of ceramic-based diamond composite sheet which is characterized by comprising a ceramic substrate 1 provided with a diamond layer 2; the diamond layer is composed of diamond, the diamond is in powder form, and the diamond layer is The distribution mode in the ceramic matrix is single-layer distribution, and the distribution position of the diamond layer in the ceramic matrix is located in the middle area.
  • the diamond is diamond powder, the particle size of the diamond powder is 150 ⁇ m; the ceramic matrix includes a single layer of diamond layer, and the arrangement of the diamond powder in each layer of diamond layer is a gradient arrangement.
  • the ceramic substrate is carbide ceramic.
  • the oxide ceramic is ZrO 2 ; the nitride ceramic is AIN; and the carbide ceramic is SiC.
  • the sintering aid is a combination of metal oxides and rare earth oxides.
  • the metal oxide is a combination of MgO and Al 2 O 3 ; the chemical formula of the rare earth oxide is Re 2 O 3 , where Re is La.
  • the diamond particle material for coating the diamond particles is TiC, and the thickness of the coating is 200 nm.
  • the sintering method is spark plasma sintering.
  • the obtained ceramic matrix diamond composite material has a density of >99%, a hardness of 20-40 GPa, and a thermal conductivity of 100-500 W/(m ⁇ K).
  • a new type of ceramic-based diamond composite sheet which is characterized in that it comprises a ceramic substrate 1 provided with a diamond layer 2; the diamond layer is composed of diamond, the diamond is in the form of a thin film, and the diamond layer is The distribution mode in the ceramic matrix is single-layer distribution, and the distribution position of the diamond layer in the ceramic matrix is located in the surface area.
  • the diamond is a diamond film
  • the thickness of the diamond film is 150 ⁇ m
  • the shape of the diamond film is polygonal
  • the ceramic matrix includes a single diamond layer
  • the number of diamond films placed on each diamond layer is a single diamond layer. sheet.
  • the ceramic substrate is a combination of oxide ceramics and nitride ceramics.
  • the oxide ceramic is Al 2 O 3 ; the nitride ceramic is Si 3 N 4 ; and the carbide ceramic is TiC.
  • the sintering aid is a combination of metal oxides and rare earth oxides.
  • the metal oxide is a combination of MgO and Al 2 O 3 ; the chemical formula of the rare earth oxide is Re 2 O 3 , where Re is Nd.
  • the diamond film material for coating the diamond film is TiN, and the thickness of the coating is 300 nm.
  • the sintering method is high temperature and high pressure sintering.
  • the obtained ceramic matrix diamond composite material has a density of >99%, a hardness of 20-40 GPa, and a thermal conductivity of 100-500 W/(m ⁇ K).
  • a new type of ceramic-based diamond composite sheet which is characterized by comprising a ceramic substrate 1 provided with a diamond layer 2; the diamond layer is composed of diamond, the diamond is in powder form, and the diamond layer is The distribution mode in the ceramic matrix is multi-layer distribution, and the distribution position of the diamond layer in the ceramic matrix is located in the surface area.
  • the diamond is diamond powder, the particle size of the diamond powder is 50 ⁇ m; the ceramic matrix includes multiple diamond layers, and the arrangement of the diamond powder in each diamond layer is irregular.
  • the ceramic substrate is a combination of nitride ceramics and carbide ceramics.
  • the oxide ceramic is MgO; the nitride ceramic is BN; and the carbide ceramic is WC.
  • the sintering aid is a rare earth oxide.
  • the metal oxide is a combination of MgO and Al 2 O 3 ; the chemical formula of the rare earth oxide is Re 2 O 3 , where Re is Pm.
  • the diamond particle material for plating the diamond particles is SiC, and the thickness of the plating is 700 nm.
  • the sintering method is high temperature and high pressure sintering.
  • the obtained ceramic matrix diamond composite material has a density of >99%, a hardness of 20-40 GPa, and a thermal conductivity of 100-500 W/(m ⁇ K).
  • a new type of ceramic-based diamond composite sheet which is characterized in that it comprises a ceramic substrate 1 provided with a diamond layer 2; the diamond layer is composed of diamond, the diamond is in the form of a thin film, and the diamond layer is The distribution mode in the ceramic matrix is single-layer distribution, and the distribution position of the diamond layer in the ceramic matrix is located in the middle area.
  • the diamond is a diamond film
  • the thickness of the diamond film is 50 ⁇ m
  • the shape of the diamond film is a polygon
  • the ceramic matrix includes a single diamond layer
  • the number of diamond films placed on each diamond layer is more sheet.
  • the ceramic substrate is carbide ceramic.
  • the oxide ceramic is ZrO 2 ; the nitride ceramic is Si 3 N 4 ; and the carbide ceramic is SiC.
  • the sintering aid is a metal oxide.
  • the metal oxide is MgO; the chemical formula of the rare earth oxide is Re 2 O 3 , where Re is Yb.
  • the diamond film material for coating the diamond film is TiC, and the thickness of the coating is 800 nm.
  • the sintering method is spark plasma sintering.
  • the obtained ceramic matrix diamond composite material has a density of >99%, a hardness of 20-40 GPa, and a thermal conductivity of 100-500 W/(m ⁇ K).
  • a new type of ceramic-based diamond composite sheet which is characterized by comprising a ceramic substrate 1 provided with a diamond layer 2; the diamond layer is composed of diamond, the diamond is in powder form, and the diamond layer is The distribution mode in the ceramic matrix is single-layer distribution, and the distribution position of the diamond layer in the ceramic matrix is located in the surface area.
  • the diamond is diamond powder, the particle size of the diamond powder is 80 ⁇ m; the ceramic matrix includes a single diamond layer, and the arrangement of the diamond powder in each diamond layer is equidistant.
  • the ceramic substrate is a nitride ceramic.
  • the oxide ceramic is MgO; the nitride ceramic is AIN; and the carbide ceramic is WC.
  • the sintering aid is a combination of metal oxides and rare earth oxides.
  • the metal oxide is a combination of MgO and Al 2 O 3 ; the chemical formula of the rare earth oxide is Re 2 O 3 , where Re is Lu.
  • step S2 the diamond particle material for plating the diamond particles is Cu, and the thickness of the plating is 300 nm.
  • the sintering method is spark plasma sintering.
  • the obtained ceramic matrix diamond composite material has a density of >99%, a hardness of 20-40 GPa, and a thermal conductivity of 100-500 W/(m ⁇ K).
  • a new type of ceramic-based diamond composite sheet which is characterized in that it comprises a ceramic substrate 1 provided with a diamond layer 2; the diamond layer is composed of diamond, the diamond is in the form of a thin film, and the diamond layer is The distribution mode in the ceramic matrix is multi-layer distribution, and the distribution position of the diamond layer in the ceramic matrix is located in the middle area.
  • the diamond is a diamond film
  • the thickness of the diamond film is 1200 ⁇ m
  • the shape of the diamond film is a disc
  • the ceramic matrix includes multiple diamond layers
  • the number of diamond films placed on each diamond layer is Monolithic.
  • the ceramic substrate is a combination of oxide ceramics and carbide ceramics.
  • the oxide ceramic is Al 2 O 3 ; the nitride ceramic is Si 3 N 4 ; and the carbide ceramic is TiC.
  • the sintering aid is a rare earth oxide.
  • the metal oxide is a combination of MgO and Al 2 O 3 ; the chemical formula of the rare earth oxide is Re 2 O 3 , where Re is Gd.
  • the diamond film material for coating the diamond film is TiN, and the thickness of the coating is 400 nm.
  • the sintering method is high temperature and high pressure sintering.
  • the obtained ceramic matrix diamond composite material has a density of >99%, a hardness of 20-40 GPa, and a thermal conductivity of 100-500 W/(m ⁇ K).
  • the invention effectively protects the diamond through the coating layer, effectively reduces the graphitization of the diamond during the sintering process, improves the degree of bonding between the reinforcing phase and the material matrix, improves the heat dissipation of the ceramic material, and has excellent heat dissipation performance and a ceramic-based diamond with controllable heat conduction direction Composite film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

属于复合材料技术领域,提供一种新型陶瓷基金刚石复合片及其制备方法,所述陶瓷基金刚石复合片包括陶瓷基体,所述陶瓷基体设有金刚石层;所述金刚石层由金刚石组成,所述金刚石的形态为粉末状或者薄膜状,所述金刚石层在陶瓷基体内的分布方式为单层或者多层分布,所述金刚石层在陶瓷基体内的分布位置位于中间区域或者表层区域。大大提高了陶瓷材料的散热性及导热可控性,同时提高了金刚石与陶瓷基体的结合强度,获得具有优异散热性能且导热方向可控的陶瓷基金刚石复合片。

Description

一种新型陶瓷基金刚石复合片及其制备方法
 
技术领域
本发明属于复合材料技术领域,具体涉及一种新型陶瓷基金刚石复合片及其制备方法。
背景技术
陶瓷因具有优异的性能,如高强度、高硬度、高韧性及良好的化学稳定性等,是制造零部件的主流材料,但陶瓷材料的导热性比金刚石小很多。金刚石是目前最硬的材料,同时拥有极优异的导热性(导热系数1000-1200),是极好的散热材料,但金刚石制作成散热片价格昂贵,且金刚石硬度高研磨抛光困难,比较难加工成合适厚度的散热片。
在以陶瓷为基体的材料中以分层形式添加金刚石材料,再通过烧结可得到陶瓷基金刚石复合材料。作为一种新型复合材料,兼具陶瓷与金刚石的优点,通过陶瓷与金刚石材料的分层组合形式不同,有效提高材料的散热性能并实现散热性能和方向的精准控制,可灵活运用于各种所需厚度、大小散热片的场合。
    因此,为提高陶瓷基体的散热性,增强金刚石与陶瓷基体的结合力,快速获得具有优异散热性能且导热方向可控的陶瓷基金刚石复合片,发明一种新型陶瓷基金刚石复合材料的制备方法十分必要。
技术问题
现有陶瓷基金刚石复合材料的制备技术中,都是将金刚石粉体直接与陶瓷粉体混合进行烧结,烧结出的整片材料中都分布有金刚石颗粒,因为金刚石颗粒的高硬度,很难进行后续研磨抛光,制作成特定厚度的散热片;且散热方向固定,同时金刚石与材料基体的结合弱,严重影响了材料性能,Huang等报道了采用放电等离子烧结技术制备Si 3N 4基金刚石复合材料(Journal of the European Ceramic Society 33 (2013) 1237-1247)。在较高温度下获得较为致密的复合材料,但金刚石发生了十分显著的石墨化,影响材料性能,且复合材料的硬度与纯Si 3N 4陶瓷的硬度相当,没有发挥金刚石的性能优势。
技术解决方案
一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体,所述陶瓷基体设有金刚石层;所述金刚石层由金刚石组成,所述金刚石的形态为粉末状或者薄膜状,所述金刚石层在陶瓷基体内的分布方式为单层或者多层分布,所述金刚石层在陶瓷基体内的分布位置位于中间区域或者表层区域。
进一步的,所述金刚石为金刚石薄膜,所述金刚石薄膜的厚度为5~200μm,所述金刚石薄膜的形状为圆片或多边形,所述陶瓷基体内包括单层或多层金刚石层,每层金刚石层放置金刚石薄膜的数量为单片或多片。
进一步的,所述金刚石为金刚石粉末,所述金刚石粉末颗粒度为5~200μm;所述陶瓷基体内包括单层或多层金刚石层,每层金刚石层的金刚石粉末的排布方式为等距排布、梯度排布、无规律排布中的任一种。
一种新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
S2.对金刚石颗粒或金刚石薄膜进行镀覆,形成金刚石浆料;
S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石颗粒或金刚石薄膜的浆料以分层形式放入石墨模具;
S4.将放置好的复合材料进行烧结;
S5.烧结完成后,得到陶瓷基金刚石复合片。
进一步的,步骤S1中,所述陶瓷基体为氧化物陶瓷、氮化物陶瓷、碳化物陶瓷中的任一种或者几种的组合。
进一步的,所述氧化物陶瓷为Al 2O 3,MgO,ZrO 2中的任一种,且不限于这几种;所述氮化物陶瓷为Si 3N 4,BN,AIN中的任一种,且不限于这几种;所述碳化物陶瓷为TiC,WC,SiC中的任一种,且不限于这几种。
进一步的,步骤S1中,所述烧结助剂为金属氧化物与稀土氧化物中的任一种或两种的组合。
进一步的,所述金属氧化物为MgO、Al 2O 3中的任一种或两种的组合;所述稀土氧化物的化学式为Re 2O 3,其中Re为 Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的任一种。
进一步的,步骤S2中,所述对金刚石颗粒或金刚石薄膜进行镀覆的金刚石颗粒或金刚石薄膜材料为Ni、Ti、Cu、TiC、TiN、SiC中的任一种,镀覆的厚度为100nm~1μm。
进一步的,所述步骤S4中,所述烧结方式为高温高压烧结或放电等离子烧结,且不限于这两种烧结方式。
进一步的,经过步骤S5烧结后,得到的陶瓷基金刚石复合材料的致密度>99%,硬度为20~40GPa,导热率为100-500W/(m·K)。
本发明的主要创新点在于:
根据导热散热性能的需求,控制金刚石材料在陶瓷基体中的形态和分布方式;将金刚石材料以分层形式放入陶瓷基体中,同时可通过金刚石形态、层数及形状精准控制散热性能和方向。
有益效果
本发明以陶瓷为材料基体,镀覆金刚石颗粒或金刚石薄膜为增强相,将金刚石材料以颗粒或者薄膜形态,分层方式添加到陶瓷基体中,通过金刚石粒度、浓度、层数及形状精准控制散热性能和方向,同时通过镀覆方式在大幅降低甚至实现金刚石近无石墨化的同时,有效提高复合材料的致密度,提高金刚石与陶瓷基体的结合程度,获得具有优异散热性能且导热方向可控的陶瓷基金刚石复合片。
 
附图说明
图1为本发明一实施例陶瓷基金刚石薄膜复合片分布形式的结构示意图;
图2为本发明一实施例陶瓷基金刚石薄膜复合片分布形式的结构示意图;
图3为本发明一实施例陶瓷基金刚石薄膜复合片分布形式的结构示意图;
图4为本发明一实施例陶瓷基金刚石颗粒复合片分布形式的结构示意图;
图5为本发明一实施例陶瓷基金刚石颗粒复合片分布形式的结构示意图;
图6为本发明一实施例陶瓷基金刚石颗粒复合片分布形式的结构示意图;
图7为本发明一实施例复合梯度陶瓷基体与金刚石分布的结构示意图。
 
本发明的最佳实施方式
以Al 2O 3粉体为陶瓷基体1,添加Sc 2O 3-Y 2O 3为烧结助剂,质量分数为Al 2O 3:Sc 2O 3-Y 2O 3=90%:10%,Sc 2O 3:Y 2O 3=5%:3%。通过机械方式以转速100r/min搅拌8h,得到混合均匀的Al 2O 3/Sc 2O 3-Y 2O 3。将浆料干燥、造粒,得到陶瓷粉末。将一部分陶瓷粉末放入石墨模具,将6片厚度50um、直径3mm的镀TiC金刚石膜圆片以平铺方式放入中间形成金刚石层2,最后铺入陶瓷粉末。采用放电等离子烧结,烧结温度为1650℃,升温速率为150℃/min,保温时间为15min,烧结压强为30MPa,烧结气氛为N 2。烧结完成后,得到陶瓷基金刚石复合材料的致密度为99.4%,硬度30GPa,热导率255W/(m·K)。
本发明的实施方式
实施例1
以Al 2O 3粉体为陶瓷基体1,添加Sc 2O 3-Y 2O 3为烧结助剂,质量分数为Al 2O 3:Sc 2O 3-Y 2O 3=90%:10%,Sc 2O 3:Y 2O 3=5%:3%。通过机械方式以转速100r/min搅拌8h,得到混合均匀的Al 2O 3/Sc 2O 3-Y 2O 3。将浆料干燥、造粒,得到陶瓷粉末。将一部分陶瓷粉末放入石墨模具,将6片厚度50um、直径3mm的镀TiC金刚石膜圆片以平铺方式放入中间形成金刚石层2,最后铺入陶瓷粉末。采用放电等离子烧结,烧结温度为1650℃,升温速率为150℃/min,保温时间为15min,烧结压强为30MPa,烧结气氛为N 2。烧结完成后,得到陶瓷基金刚石复合材料的致密度为99.4%,硬度30GPa,热导率255W/(m·K)。
 
实施例2
以AlN粉体为陶瓷基体1,添加CeO 2-MgO为烧结助剂,质量分数为AlN:CeO 2-MgO=90%:10%,CeO 2:MgO=3%:6%。通过机械方式以转速100r/min搅拌11h,得到混合均匀的AlN/CeO 2-MgO。将浆料干燥、造粒,得到陶瓷粉末。将一部分陶瓷粉末放入石墨模具,将9片厚度50um,长宽2mm*2mm的镀SiC金刚石薄膜以平铺方式放入中间形成金刚石层2,再次铺入部分陶瓷粉末,重复平铺一层金刚石膜,最后铺入陶瓷粉末,用放电等离子烧结,烧结温度为1700℃,升温速率为70℃/min,保温时间为8min,烧结压强为35MPa,烧结气氛为N 2。烧结完成后,得到陶瓷基金刚石复合材料的致密度为99.5%,硬度30GPa,热导率384W/(m·K)。
 
实施例3
以Al2O3粉体为陶瓷基体1,添加CeO2-MgO为烧结助剂,质量分数为Al2O3:CeO2-MgO=90%:10%,CeO2:MgO=5%:3%。通过机械方式以转速100r/min搅拌12h,得到混合均匀的Al2O3/CeO2-MgO。将浆料干燥、造粒,得到陶瓷粉末。将3片厚度50um、直径3mm的镀TiC金刚石膜圆片以平铺方式放入底层,同时放入陶瓷粉末,在顶层同样放入将3片厚度50um、直径3mm的镀TiC金刚石膜圆片形成金刚石层2。采用放电等离子烧结,烧结温度为1650℃,升温速率为80℃/min,保温时间为10min,烧结压强为25MPa,烧结气氛为N2。烧结完成后,得到陶瓷基金刚石复合材料的致密度为98.6%,硬度28GPa,热导率283W/(m·K)。
 
实施例4
以Si 3N 4粉体为陶瓷基体,添加Al 2O 3-Y 2O 3为烧结助剂,质量分数为Si 3N 4:Al 2O 3-Y 2O 3=90%:10%,Al 2O 3:Y 2O 3=3%:5%。通过机械方式以转速100r/min搅拌8h,得到混合均匀的Si 3N 4/Al 2O 3-Y 2O 3。将浆料干燥、造粒,得到陶瓷粉末。将一部分陶瓷粉末放入石墨模具,以无水乙醇为溶剂,将体积分数为20%、粒径为20μm的镀Ti金刚石颗粒平铺放入一层形成金刚石层2,上层再次铺入陶瓷粉末。采用放电等离子烧结,烧结温度为1600℃,升温速率为100℃/min,保温时间为10min,烧结压强为30MPa,烧结气氛为N 2。烧结完成后,得到陶瓷基金刚石复合材料的致密度为99.4%,硬度22GPa,热导率242/(m·K)。
 
实施例5
以MgO粉体为陶瓷基体,添加Sc 2O 3-Y 2O 3为烧结助剂,质量分数为MgO: Sc 2O 3-Y 2O 3=95%:5%,Sc 2O 3:Y 2O 3=4%:6%。通过机械方式以转速100r/min搅拌8h,得到混合均匀的MgO/Sc 2O 3-Y 2O 3。将浆料干燥、造粒,得到陶瓷粉末。将一部分陶瓷粉末放入石墨模具,以无水乙醇为溶剂,将体积分数为40%、粒径为30μm的镀Ti金刚石颗粒平铺放入一层,再次铺入部分陶瓷粉末,重复平铺一层金刚石颗粒形成金刚石层2,最后铺入陶瓷粉末。采用放电等离子烧结,烧结温度为1700℃,升温速率为70℃/min,保温时间为8min,烧结压强为35MPa,烧结气氛为N 2。烧结完成后,得到陶瓷基金刚石复合材料的致密度为99.5%,硬度30GPa,热导率300W/(m·K)。
 
实施例6
以BeO粉体为陶瓷基体,添加La 2O 3:Y 2O 3为烧结助剂,质量分数为MgO: La 2O 3-Y 2O 3=95%:5%,La 2O 3:Y 2O 3=4%:6%。通过机械方式以转速100r/min搅拌12h,得到混合均匀的BeO/Al 2O 3-Y 2O 3。将浆料干燥、造粒,得到陶瓷粉末。以无水乙醇为溶剂,在石墨模具中先铺入体积分数为30%、粒径为20μm的镀Ni金刚石颗粒形成金刚石层2,再放入陶瓷粉末,最上层再次铺入体积分数为30%、粒径为20μm的镀Ni金刚石颗粒。采用放电等离子烧结,烧结温度为1600℃,升温速率为100℃/min,保温时间为10min,烧结压强为30MPa,烧结气氛为N 2。烧结完成后,得到陶瓷基金刚石复合材料的致密度为99.4%,硬度22GPa,热导率156W/(m·K)。
 
实施例7
以Si 3N 4粉体为陶瓷基体,添加Al 2O 3-Y 2O 3为烧结助剂,质量分数为Si 3N 4:Al 2O 3-Y 2O 3=90%:10%,Al 2O 3:Y 2O 3=3%:5%。通过机械方式以转速100r/min搅拌10h,得到混合均匀的Si 3N 4/Al 2O 3-Y 2O 3。将浆料干燥、造粒,得到陶瓷粉末。将一部分陶瓷粉末放入石墨模具厚度4mm,以无水乙醇为溶剂,将体积分数为20%、粒径为20μm的镀Ti金刚石颗粒平铺放入一层,铺入厚度3mm陶瓷粉末,铺入一层金刚石颗粒,再铺入厚度2mm的陶瓷粉末,再次铺入金刚石颗粒,最后铺入1mm厚的陶瓷粉,使金刚石形成金刚石层2在陶瓷中呈现梯度分布。采用放电等离子烧结,烧结温度为1600℃,升温速率为150℃/min,保温时间为10min,烧结压强为30MPa,烧结气氛为N 2。烧结完成后,得到陶瓷基金刚石复合材料的致密度为99.4%,硬度24GPa,热导率230/(m·K)。
 
实施例 8
一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体1,所述陶瓷基体设有金刚石层2;所述金刚石层由金刚石组成,所述金刚石的形态为粉末状,所述金刚石层在陶瓷基体内的分布方式为多层分布,所述金刚石层在陶瓷基体内的分布位置位于中间区域。
进一步的,所述金刚石为金刚石粉末,所述金刚石粉末颗粒度为100μm;所述陶瓷基体内包括多层金刚石层,每层金刚石层的金刚石粉末的排布方式为等距排布。
一种新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
S2.对金刚石颗粒膜进行镀覆,形成金刚石浆料;
S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石颗粒的浆料以分层形式放入石墨模具;
S4.将放置好的复合材料进行烧结;
S5.烧结完成后,得到陶瓷基金刚石复合片。
进一步的,步骤S1中,所述陶瓷基体为氧化物陶瓷、氮化物陶瓷、碳化物陶瓷中的任一种或者几种的组合。
进一步的,所述氧化物陶瓷为Al 2O 3;所述氮化物陶瓷为Si 3N 4;所述碳化物陶瓷为TiC。
进一步的,步骤S1中,所述烧结助剂为金属氧化物。
进一步的,所述金属氧化物为MgO;所述稀土氧化物的化学式为Re 2O 3,其中Re为 Sc。
进一步的,步骤S2中,所述对金刚石颗粒进行镀覆的金刚石颗粒材料为Ni,镀覆的厚度为500nm。
进一步的,所述步骤S4中,所述烧结方式为高温高压烧结。
进一步的,经过步骤S5烧结后,得到的陶瓷基金刚石复合材料的致密度>99%,硬度为20~40GPa,导热率为100-500W/(m·K)。
 
实施例 9
一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体1,所述陶瓷基体设有金刚石层2;所述金刚石层由金刚石组成,所述金刚石的形态为薄膜状,所述金刚石层在陶瓷基体内的分布方式为单层分布,所述金刚石层在陶瓷基体内的分布位置位于表层区域。
进一步的,所述金刚石为金刚石薄膜,所述金刚石薄膜的厚度为100μm,所述金刚石薄膜的形状为圆片,所述陶瓷基体内包括多层金刚石层,每层金刚石层放置金刚石薄膜的数量为多片。
一种新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
S2.对金刚石薄膜进行镀覆,形成金刚石浆料;
S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石薄膜的浆料以分层形式放入石墨模具;
S4.将放置好的复合材料进行烧结;
S5.烧结完成后,得到陶瓷基金刚石复合片。
进一步的,步骤S1中,所述陶瓷基体为氮化物陶瓷。
进一步的,所述氧化物陶瓷为MgO;所述氮化物陶瓷为BN;所述碳化物陶瓷为WC。
进一步的,步骤S1中,所述烧结助剂为稀土氧化物。
进一步的,所述金属氧化物为Al 2O 3;所述稀土氧化物的化学式为Re 2O 3,其中Re为 Y。
进一步的,步骤S2中,所述对金刚石薄膜进行镀覆的金刚石薄膜材料为Ti,镀覆的厚度为400nm。
进一步的,所述步骤S4中,所述烧结方式为放电等离子烧结。
进一步的,经过步骤S5烧结后,得到的陶瓷基金刚石复合材料的致密度>99%,硬度为20~40GPa,导热率为100-500W/(m·K)。
 
实施例 10
一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体1,所述陶瓷基体设有金刚石层2;所述金刚石层由金刚石组成,所述金刚石的形态为粉末状,所述金刚石层在陶瓷基体内的分布方式为单层分布,所述金刚石层在陶瓷基体内的分布位置位于中间区域。
进一步的,所述金刚石为金刚石粉末,所述金刚石粉末颗粒度为150μm;所述陶瓷基体内包括单层金刚石层,每层金刚石层的金刚石粉末的排布方式为梯度排布。
一种新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
S2.对金刚石颗粒膜进行镀覆,形成金刚石浆料;
S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石颗粒的浆料以分层形式放入石墨模具;
S4.将放置好的复合材料进行烧结;
S5.烧结完成后,得到陶瓷基金刚石复合片。
进一步的,步骤S1中,所述陶瓷基体为碳化物陶瓷。
进一步的,所述氧化物陶瓷为ZrO 2;所述氮化物陶瓷为AIN;所述碳化物陶瓷为SiC。
进一步的,步骤S1中,所述烧结助剂为金属氧化物与稀土氧化物两种的组合。
进一步的,所述金属氧化物为MgO、Al 2O 3两种的组合;所述稀土氧化物的化学式为Re 2O 3,其中Re为 La。
进一步的,步骤S2中,所述对金刚石颗粒进行镀覆的金刚石颗粒材料为TiC,镀覆的厚度为200nm。
进一步的,所述步骤S4中,所述烧结方式为放电等离子烧结。
进一步的,经过步骤S5烧结后,得到的陶瓷基金刚石复合材料的致密度>99%,硬度为20~40GPa,导热率为100-500W/(m·K)。
 
实施例 11
一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体1,所述陶瓷基体设有金刚石层2;所述金刚石层由金刚石组成,所述金刚石的形态为薄膜状,所述金刚石层在陶瓷基体内的分布方式为单层分布,所述金刚石层在陶瓷基体内的分布位置位于表层区域。
进一步的,所述金刚石为金刚石薄膜,所述金刚石薄膜的厚度为150μm,所述金刚石薄膜的形状为多边形,所述陶瓷基体内包括单层金刚石层,每层金刚石层放置金刚石薄膜的数量为单片。
一种新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
S2.对金刚石薄膜进行镀覆,形成金刚石浆料;
S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石薄膜的浆料以分层形式放入石墨模具;
S4.将放置好的复合材料进行烧结;
S5.烧结完成后,得到陶瓷基金刚石复合片。
进一步的,步骤S1中,所述陶瓷基体为氧化物陶瓷、氮化物陶瓷的组合。
进一步的,所述氧化物陶瓷为Al 2O 3;所述氮化物陶瓷为Si 3N 4;所述碳化物陶瓷为TiC。
进一步的,步骤S1中,所述烧结助剂为金属氧化物与稀土氧化物两种的组合。
进一步的,所述金属氧化物为MgO、Al 2O 3两种的组合;所述稀土氧化物的化学式为Re 2O 3,其中Re为Nd。
进一步的,步骤S2中,所述对金刚石薄膜进行镀覆的金刚石薄膜材料为TiN,镀覆的厚度为300nm。
进一步的,所述步骤S4中,所述烧结方式为高温高压烧结。
进一步的,经过步骤S5烧结后,得到的陶瓷基金刚石复合材料的致密度>99%,硬度为20~40GPa,导热率为100-500W/(m·K)。
 
实施例 12
一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体1,所述陶瓷基体设有金刚石层2;所述金刚石层由金刚石组成,所述金刚石的形态为粉末状,所述金刚石层在陶瓷基体内的分布方式为多层分布,所述金刚石层在陶瓷基体内的分布位置位于表层区域。
进一步的,所述金刚石为金刚石粉末,所述金刚石粉末颗粒度为50μm;所述陶瓷基体内包括多层金刚石层,每层金刚石层的金刚石粉末的排布方式为无规律排布。
一种新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
S2.对金刚石颗粒膜进行镀覆,形成金刚石浆料;
S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石颗粒的浆料以分层形式放入石墨模具;
S4.将放置好的复合材料进行烧结;
S5.烧结完成后,得到陶瓷基金刚石复合片。
进一步的,步骤S1中,所述陶瓷基体为氮化物陶瓷、碳化物陶瓷的组合。
进一步的,所述氧化物陶瓷为MgO;所述氮化物陶瓷为BN;所述碳化物陶瓷为WC。
进一步的,步骤S1中,所述烧结助剂为稀土氧化物。
进一步的,所述金属氧化物为MgO、Al 2O 3两种的组合;所述稀土氧化物的化学式为Re 2O 3,其中Re为 Pm。
进一步的,步骤S2中,所述对金刚石颗粒进行镀覆的金刚石颗粒材料为SiC中,镀覆的厚度为700nm。
进一步的,所述步骤S4中,所述烧结方式为高温高压烧结。
进一步的,经过步骤S5烧结后,得到的陶瓷基金刚石复合材料的致密度>99%,硬度为20~40GPa,导热率为100-500W/(m·K)。
 
实施例 13
一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体1,所述陶瓷基体设有金刚石层2;所述金刚石层由金刚石组成,所述金刚石的形态为薄膜状,所述金刚石层在陶瓷基体内的分布方式为单层分布,所述金刚石层在陶瓷基体内的分布位置位于中间区域。
进一步的,所述金刚石为金刚石薄膜,所述金刚石薄膜的厚度为50μm,所述金刚石薄膜的形状为多边形,所述陶瓷基体内包括单层金刚石层,每层金刚石层放置金刚石薄膜的数量为多片。
一种新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
S2.对金刚石薄膜进行镀覆,形成金刚石浆料;
S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石薄膜的浆料以分层形式放入石墨模具;
S4.将放置好的复合材料进行烧结;
S5.烧结完成后,得到陶瓷基金刚石复合片。
进一步的,步骤S1中,所述陶瓷基体为碳化物陶瓷。
进一步的,所述氧化物陶瓷为ZrO 2;所述氮化物陶瓷为Si 3N 4;所述碳化物陶瓷为SiC。
进一步的,步骤S1中,所述烧结助剂为金属氧化物。
进一步的,所述金属氧化物为MgO;所述稀土氧化物的化学式为Re 2O 3,其中Re为 Yb。
进一步的,步骤S2中,所述对金刚石薄膜进行镀覆的金刚石薄膜材料为TiC,镀覆的厚度为800nm。
进一步的,所述步骤S4中,所述烧结方式为放电等离子烧结。
进一步的,经过步骤S5烧结后,得到的陶瓷基金刚石复合材料的致密度>99%,硬度为20~40GPa,导热率为100-500W/(m·K)。
 
实施例 14
一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体1,所述陶瓷基体设有金刚石层2;所述金刚石层由金刚石组成,所述金刚石的形态为粉末状,所述金刚石层在陶瓷基体内的分布方式为单层分布,所述金刚石层在陶瓷基体内的分布位置位于表层区域。
进一步的,所述金刚石为金刚石粉末,所述金刚石粉末颗粒度为80μm;所述陶瓷基体内包括单层金刚石层,每层金刚石层的金刚石粉末的排布方式为等距排布。
一种新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
S2.对金刚石颗粒膜进行镀覆,形成金刚石浆料;
S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石颗粒的浆料以分层形式放入石墨模具;
S4.将放置好的复合材料进行烧结;
S5.烧结完成后,得到陶瓷基金刚石复合片。
进一步的,步骤S1中,所述陶瓷基体为氮化物陶瓷。
进一步的,所述氧化物陶瓷为MgO;所述氮化物陶瓷为AIN;所述碳化物陶瓷为WC。
进一步的,步骤S1中,所述烧结助剂为金属氧化物与稀土氧化物两种的组合。
进一步的,所述金属氧化物为MgO、Al 2O 3两种的组合;所述稀土氧化物的化学式为Re 2O 3,其中Re为Lu。
进一步的,步骤S2中,所述对金刚石颗粒进行镀覆的金刚石颗粒材料为Cu,镀覆的厚度为300nm。
进一步的,所述步骤S4中,所述烧结方式为放电等离子烧结。
进一步的,经过步骤S5烧结后,得到的陶瓷基金刚石复合材料的致密度>99%,硬度为20~40GPa,导热率为100-500W/(m·K)。
 
实施例 15
一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体1,所述陶瓷基体设有金刚石层2;所述金刚石层由金刚石组成,所述金刚石的形态为薄膜状,所述金刚石层在陶瓷基体内的分布方式为多层分布,所述金刚石层在陶瓷基体内的分布位置位于中间区域。
进一步的,所述金刚石为金刚石薄膜,所述金刚石薄膜的厚度为1200μm,所述金刚石薄膜的形状为圆片,所述陶瓷基体内包括多层金刚石层,每层金刚石层放置金刚石薄膜的数量为单片。
一种新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
S2.对金刚石薄膜进行镀覆,形成金刚石浆料;
S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石薄膜的浆料以分层形式放入石墨模具;
S4.将放置好的复合材料进行烧结;
S5.烧结完成后,得到陶瓷基金刚石复合片。
进一步的,步骤S1中,所述陶瓷基体为氧化物陶瓷、碳化物陶瓷的组合。
进一步的,所述氧化物陶瓷为Al 2O 3;所述氮化物陶瓷为Si 3N 4;所述碳化物陶瓷为TiC。
进一步的,步骤S1中,所述烧结助剂为稀土氧化物。
进一步的,所述金属氧化物为MgO、Al 2O 3两种的组合;所述稀土氧化物的化学式为Re 2O 3,其中Re为 Gd。
进一步的,步骤S2中,所述对金刚石薄膜进行镀覆的金刚石薄膜材料为TiN,镀覆的厚度为400nm。
进一步的,所述步骤S4中,所述烧结方式为高温高压烧结。
进一步的,经过步骤S5烧结后,得到的陶瓷基金刚石复合材料的致密度>99%,硬度为20~40GPa,导热率为100-500W/(m·K)。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。需注意的是,本发明中所未详细描述的技术特征,均可以通过任一现有技术实现。
工业实用性
     本发明通过镀覆层有效保护金刚石,有效降低烧结过程中金刚石的石墨化,提高增强相与材料基体的结合程度,提高陶瓷材料的散热性,具有优异散热性能且导热方向可控的陶瓷基金刚石复合片。

Claims (10)

  1. 一种新型陶瓷基金刚石复合片,其特征在于,包括陶瓷基体,所述陶瓷基体设有金刚石层;所述金刚石层由金刚石组成,所述金刚石的形态为粉末状或者薄膜状,所述金刚石层在陶瓷基体内的分布方式为单层或者多层分布,所述金刚石层在陶瓷基体内的分布位置位于中间区域或者表层区域。
  2. 根据权利要求1所述的一种新型陶瓷基金刚石复合片,其特征在于,所述金刚石为金刚石薄膜,所述金刚石薄膜的厚度为5~200μm,所述金刚石薄膜的形状为圆片或多边形,所述陶瓷基体内包括单层或多层金刚石层,每层金刚石层放置金刚石薄膜的数量为单片或多片。
  3. 根据权利要求1所述的一种新型陶瓷基金刚石复合片,其特征在于,所述金刚石为金刚石粉末,所述金刚石粉末颗粒度为5~200μm;所述陶瓷基体内包括单层或多层金刚石层,每层金刚石层的金刚石粉末的排布方式为等距排布、梯度排布、无规律排布中的任一种。
  4. 一种权利要求1-3任一项所述的新型陶瓷基金刚石复合片的制备方法,其特征在于,包括以下步骤:
    S1.选择一种或多种陶瓷粉末材料作为基体,添加烧结助剂;
    S2.对金刚石颗粒或金刚石薄膜进行镀覆,形成金刚石浆料;
    S3.将添加烧结助剂搅拌混合均匀的陶瓷基体粉体与镀覆金刚石颗粒或金刚石薄膜的浆料以分层形式放入石墨模具;
    S4.将放置好的复合材料进行烧结;
    S5.烧结完成后,得到陶瓷基金刚石复合片。
  5. 根据权利要求4所述的一种新型陶瓷基金刚石复合材料的制备方法,其特征在于,步骤S1中,所述陶瓷基体为氧化物陶瓷、氮化物陶瓷、碳化物陶瓷中的任一种或者几种的组合。
  6. 根据权利要求5所述的一种新型陶瓷基金刚石复合材料的制备方法,其特征在于,所述氧化物陶瓷为Al 2O 3,MgO,ZrO 2中的任一种;所述氮化物陶瓷为Si 3N 4,BN,AIN中的任一种;所述碳化物陶瓷为TiC,WC,SiC中的任一种。
  7. 根据权利要求4所述的一种新型陶瓷基金刚石复合材料的制备方法,其特征在于,步骤S1中,所述烧结助剂为金属氧化物与稀土氧化物中的任一种或两种的组合。
  8. 根据权利要求7所述的一种新型陶瓷基金刚石复合材料的制备方法,其特征在于,所述金属氧化物为MgO、Al 2O 3中的任一种或两种的组合;所述稀土氧化物的化学式为Re 2O 3,其中Re为 Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的任一种。
  9. 根据权利要求4所述的一种新型陶瓷基金刚石复合材料的制备方法,其特征在于,步骤S2中,所述对金刚石颗粒或金刚石薄膜进行镀覆的金刚石颗粒或金刚石薄膜材料为Ni、Ti、Cu、TiC、TiN、SiC中的任一种,镀覆的厚度为100nm~1μm。
  10. 根据权利要求4所述的一种新型陶瓷基金刚石复合材料的制备方法,其特征在于,所述步骤S4中,所述烧结方式为高温高压烧结或放电等离子烧结。
PCT/CN2019/107227 2019-09-23 2019-09-23 一种新型陶瓷基金刚石复合片及其制备方法 WO2021056133A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107227 WO2021056133A1 (zh) 2019-09-23 2019-09-23 一种新型陶瓷基金刚石复合片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107227 WO2021056133A1 (zh) 2019-09-23 2019-09-23 一种新型陶瓷基金刚石复合片及其制备方法

Publications (1)

Publication Number Publication Date
WO2021056133A1 true WO2021056133A1 (zh) 2021-04-01

Family

ID=75165334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107227 WO2021056133A1 (zh) 2019-09-23 2019-09-23 一种新型陶瓷基金刚石复合片及其制备方法

Country Status (1)

Country Link
WO (1) WO2021056133A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104959A (zh) * 1984-06-27 1987-01-07 桑特拉德有限公司 带有超硬沉积层的器件
WO1996010102A1 (de) * 1994-09-27 1996-04-04 Widia Gmbh Verbundkörper, verwendung dieses verbundkörpers und verfahren zu seiner herstellung
CN1768420A (zh) * 2002-11-07 2006-05-03 基奥塞拉美国股份有限公司 具有铜/金刚石复合材料的半导体衬底及其制造方法
WO2007101282A2 (de) * 2006-03-09 2007-09-13 Austrian Research Centers Gmbh - Arc Verbundwerkstoff und verfahren zu seiner herstellung
CN105220049A (zh) * 2015-10-12 2016-01-06 中南大学 一种片状金刚石增强金属基复合材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104959A (zh) * 1984-06-27 1987-01-07 桑特拉德有限公司 带有超硬沉积层的器件
WO1996010102A1 (de) * 1994-09-27 1996-04-04 Widia Gmbh Verbundkörper, verwendung dieses verbundkörpers und verfahren zu seiner herstellung
CN1768420A (zh) * 2002-11-07 2006-05-03 基奥塞拉美国股份有限公司 具有铜/金刚石复合材料的半导体衬底及其制造方法
WO2007101282A2 (de) * 2006-03-09 2007-09-13 Austrian Research Centers Gmbh - Arc Verbundwerkstoff und verfahren zu seiner herstellung
CN105220049A (zh) * 2015-10-12 2016-01-06 中南大学 一种片状金刚石增强金属基复合材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG FENGLIN, WEI XIN, WANG CHENGYONG: "Research on Performance of Metal -plated Diamonds", TOOL ENGINEERING, vol. 36, no. 1, 1 January 2002 (2002-01-01), pages 26 - 29, XP055794763, ISSN: 1000-7008, DOI: 10.16567/j.cnki.1000-7008.2002.01.009 *

Similar Documents

Publication Publication Date Title
CN110627488A (zh) 一种新型陶瓷基金刚石复合片及其制备方法
KR101483921B1 (ko) 냉각판, 그 제조방법 및 반도체 제조 장치용 부재
KR101499409B1 (ko) 냉각판, 그 제조방법 및 반도체 제조 장치용 부재
JP5680663B2 (ja) 加熱装置
JP2007516921A5 (zh)
TW201133702A (en) Electrostatic chuck device
TWI830990B (zh) 積層構造體及半導體製造裝置構件
CN110590404B (zh) 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法
JP2022552054A (ja) 蛍光セラミックス及びその製造方法、光源装置
JP4804046B2 (ja) 窒化アルミニウム質セラミックス、半導体製造部材及び窒化アルミニウム質セラミックスの製造方法
WO2015127742A1 (zh) 一种基于Ce:YAG晶片的复合结构及制作方法
WO2021056133A1 (zh) 一种新型陶瓷基金刚石复合片及其制备方法
KR102124766B1 (ko) 플라즈마 처리 장치 및 그 제조방법
CN110453126A (zh) 一种金刚石-金属基复合导热材料及其制备方法
TWI764320B (zh) 複合燒結體及複合燒結體的製造方法
WO2018188326A1 (zh) 发光装置及其制备方法
JPH03150357A (ja) ターゲットとその製造方法
JP2002011653A (ja) セラミック部材及びその製造方法、ウェハ研磨装置用テーブル
WO2001040138A1 (fr) Comprime en carbure de silicium poreux fritte et composite de carbure de silicium et de metal adapte a une utilisation dans une table de machine de polissage de plaquettes
CN107954722B (zh) 一种通过自扩散制备Si3N4梯度材料的方法
JP2001096454A (ja) ウェハ研磨装置用テーブル、セラミックス構造体
JP2001354479A (ja) 窒化アルミニウム焼結体およびその製造方法
KR102234171B1 (ko) 저저항 실리콘카바이드계 복합체의 제조방법
CN107805071A (zh) 一种低玻璃润湿性钛三铝碳二/莫来石复合陶瓷的制备方法
CN117049861A (zh) 激光照明用双层复合结构荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947031

Country of ref document: EP

Kind code of ref document: A1