JP2016027388A - 表示装置及び電子機器 - Google Patents

表示装置及び電子機器 Download PDF

Info

Publication number
JP2016027388A
JP2016027388A JP2015124664A JP2015124664A JP2016027388A JP 2016027388 A JP2016027388 A JP 2016027388A JP 2015124664 A JP2015124664 A JP 2015124664A JP 2015124664 A JP2015124664 A JP 2015124664A JP 2016027388 A JP2016027388 A JP 2016027388A
Authority
JP
Japan
Prior art keywords
layer
electrode
substrate
transistor
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015124664A
Other languages
English (en)
Inventor
山崎 舜平
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2015124664A priority Critical patent/JP2016027388A/ja
Publication of JP2016027388A publication Critical patent/JP2016027388A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】非矩形状の表示領域を有する表示装置においても、表示装置の形状が表示領域の形状から大きく逸脱することなく、且つ狭額縁化を実現することのできる表示装置を提供する。【解決手段】表示領域と、端子電極と、を有する表示装置であって、端子電極は表示領域と互いに重なり、端子電極は表示領域の非表示面側から外部電極と電気的に接続する。【選択図】図1

Description

本発明は、表示装置に関する。または、表示装置の作製方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
なお、表示装置とは、表示素子を有する装置のことをいう。なお、表示装置は、複数の画素を駆動させる駆動回路、制御回路、電源回路、信号生成回路等を含む場合がある。例えば、コネクター、例えばFPC(Flexible printed circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールを表示装置という場合がある。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうるもの全般を指す。よって、トランジスタやダイオードなどの半導体素子や半導体回路は半導体装置である。また、表示装置、発光装置、照明装置、電気光学装置、および電子機器などは、半導体素子や半導体回路を含む場合がある。よって、表示装置、発光装置、照明装置、電気光学装置、および電子機器なども半導体装置を有する場合がある。
テレビ、携帯端末等に向けて既に広く応用されているフラットパネルディスプレイは、新たなニーズとして、腕時計、車載機器、特にインストルメントパネル等への応用が期待されている。
従来のフラットパネルディスプレイは、表示領域が矩形状であるため、表示領域を行、列単位で制御するマトリクス駆動と相性が良く、殆どのフラットパネルディスプレイでマトリクス駆動が採用されている。一方で腕時計や車載機器への応用を考えたとき、その意匠面から、表示領域を非矩形状とする要求が高まっている。
表示領域を非矩形状として表示装置としては、特許文献1乃至特許文献3、及び非特許文献1のようなものが開示されている。
特開2006−276359号公報 特開2009−69768号公報 特開2007−272203号公報 SID 08 DIGEST page 951−954
特許文献1、及び特許文献2に開示された態様においては、表示領域の上下左右の少なくとも一に設けられた駆動回路から、非矩形状の表示領域に向かって信号線を引き回している。従って、表示領域が非矩形状であっても、従来と同じマトリクス駆動が可能である半面、表示領域の外側に、相応の額縁領域を必要とする。例えば、表示領域が円形もしくは楕円形の場合、駆動回路の配置領域と信号線の引き回し領域により、パネル外形は四角形や八角形等になってしまう。この方法によると、たとえ表示領域を非矩形状にできても、筐体デザイン上の制約が大きくなる。
一方、特許文献3、及び非特許文献1に開示された態様においては、駆動回路の配置を工夫することにより、従来と同じマトリクス駆動を可能としつつも、非矩形状の表示領域に沿って、狭額縁化を実現している。しかしながら、この方式では、データドライバ(ソースドライバ)とゲートドライバとの切り替えとなる頂点が少なくとも一つ必要であり、表示領域もその条件に限定される。例えば、円形や楕円形といった、事実上頂点を持たない形状や、頂点が直角から大きく逸脱した鈍角となる多角形といった形状の表示領域には対応できない。
また、非矩形状に限らず矩形状の表示領域を有する表示装置においても、表示装置の視認性を高めるために狭額縁化などによる表示領域の最大化が求められている。表示装置は、表示装置に画像信号などの外部信号を入力するための入力端子領域を設ける必要がある。一般に、入力端子領域は表示領域の外側の額縁領域に設けられる。このため、表示領域の外側に、相応の額縁領域を設ける必要があり、表示領域の最大化が阻害されていた。
上記の課題を鑑み、本発明の一態様では、矩形状だけでなく非矩形状の表示領域を有する表示装置においても、表示装置の形状が表示領域の形状から大きく逸脱することなく、且つ狭額縁化を実現することのできる表示装置の提供を課題の一つとする。または、表示領域の最大化が可能な表示装置を提供することを課題の一つとする。または、小型化が容易な表示装置を提供することを課題の一つとする。または、本発明の一態様では、新規な構成の表示装置を提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、上記以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、上記以外の課題を抽出することが可能である。
本発明の一態様は、表示領域と、端子電極と、を有する表示装置であって、端子電極は表示領域と互いに重なり、表示領域は一方の面に画像を表示できる機能を有し、端子電極は、表示領域の他方の面側から外部電極と電気的に接続する表示装置である。
または、本発明の一態様は、第1の基板と、第2の基板と、発光素子と、第1の電極と、を有する表示装置であって、第1の電極は第1の基板の上方に設けられ、発光素子は第1の電極の上方に設けられ、第2の基板は発光素子の上方に設けられ、発光素子は、第2の基板側から光を射出し、第1の電極は第1の基板に設けられた開口において、第2の電極と電気的に接続する表示装置である。
第1の基板及び第2の基板は、可撓性を有することが好ましい。
本発明の一態様により、表示領域の形状に高い自由度を持たせつつ、かつ狭額縁化による表示装置外形の最小化を実現することができるため、デザイン上の制約に対して柔軟に対応できる表示装置の提供が可能となる。
本発明の一態様によれば、矩形状だけでなく非矩形状の表示領域を有する表示装置においても、表示装置の形状が表示領域の形状から大きく逸脱することなく、且つ狭額縁化を実現することのできる表示装置を提供できる。本発明の一態様によれば、表示領域の最大化が可能な表示装置を提供することができる。または、小型化が容易な表示装置を提供することができる。または、本発明の一態様によれば、新規な表示装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
表示装置の一形態を説明する斜視図および断面図。 表示装置の一形態を説明する斜視図および断面図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態を説明する斜視図および断面図。 表示装置の一形態の画素構成の一例を説明する図。 表示装置の一形態の画素構成の一例を説明する図。 表示装置の一形態を説明するブロック図及び回路図。 トランジスタの一形態を説明する断面図。 トランジスタの一形態を説明する上面図及び断面図。 トランジスタの一形態を説明する断面図。 トランジスタの一形態を説明する上面図及び断面図。 発光素子の構成例を説明する図。 表示装置の一形態を説明する図。 電子機器の一例を説明する図。 CAAC−OSの断面におけるCs補正高分解能TEM像、およびCAAC−OSの断面模式図。 CAAC−OSの平面におけるCs補正高分解能TEM像。 CAAC−OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図。 CAAC−OSの電子回折パターンを示す図。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。 CAAC−OSおよびnc−OSの成膜モデルを説明する模式図。 InGaZnOの結晶、およびペレットを説明する図。 CAAC−OSの成膜モデルを説明する模式図。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態を説明するための全図において、同一部分または同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略することがある。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とが、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合と同様な内容が、本明細書等に開示されているものとする。
なお、例えば、トランジスタのソース(又は第1の端子など)が、Z1を介して(又は介さず)、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2を介して(又は介さず)、Yと電気的に接続されている場合や、トランジスタのソース(又は第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2の一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現することが出来る。
例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。
または、別の表現方法として、例えば、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の接続経路を介して、Xと電気的に接続され、第1の接続経路は、第2の接続経路を有しておらず、第2の接続経路は、トランジスタを介した、トランジスタのソース(又は第1の端子など)とトランジスタのドレイン(又は第2の端子など)との間の経路であり、第1の接続経路は、Z1を介した経路であり、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の接続経路を介して、Yと電気的に接続され、第3の接続経路は、第2の接続経路を有しておらず、第3の接続経路は、Z2を介した経路である。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の接続経路によって、Z1を介して、Xと電気的に接続され、第1の接続経路は、第2の接続経路を有しておらず、第2の接続経路は、トランジスタを介した接続経路を有し、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の接続経路によって、Z2を介して、Yと電気的に接続され、第3の接続経路は、第2の接続経路を有していない。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の電気的パスによって、Z1を介して、Xと電気的に接続され、第1の電気的パスは、第2の電気的パスを有しておらず、第2の電気的パスは、トランジスタのソース(又は第1の端子など)からトランジスタのドレイン(又は第2の端子など)への電気的パスであり、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の電気的パスによって、Z2を介して、Yと電気的に接続され、第3の電気的パスは、第4の電気的パスを有しておらず、第4の電気的パスは、トランジスタのドレイン(又は第2の端子など)からトランジスタのソース(又は第1の端子など)への電気的パスである。」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続経路について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。
なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
なお、本明細書等において、様々な基板を用いて、トランジスタを形成することが出来る。基板の種類は、特定のものに限定されることはない。その基板の一例としては、半導体基板(例えば単結晶基板またはシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フィルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、またはソーダライムガラスなどがある。可撓性基板の一例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチック、またはアクリル等の可撓性を有する合成樹脂などがある。貼り合わせフィルムの一例としては、ポリフッ化ビニルまたは塩化ビニルなどのビニル、ポリプロピレン、ポリエステルなどがある。基材フィルムの一例としては、ポリエステル、ポリアミド、ポリイミド、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、または回路の高集積化を図ることができる。
なお、ある基板を用いてトランジスタを形成し、その後、別の基板にトランジスタを転置し、別の基板上にトランジスタを配置してもよい。トランジスタが転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板を用いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる。
また、図面等において示す各構成の、位置、大きさ、範囲などは、発明の理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。例えば、実際の製造工程において、エッチングなどの処理によりレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために省略して示すことがある。
また、特に上面図(「平面図」ともいう。)において、図面をわかりやすくするために、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線等の記載を省略する場合がある。
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
また、ソースおよびドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合など、動作条件などによって互いに入れ替わるため、いずれがソースまたはドレインであるかを限定することが困難である。このため、本明細書においては、ソースおよびドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」および「直交」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
また、電圧は、ある電位と、基準の電位(例えば接地電位(GND電位)またはソース電位)との電位差のことを示す場合が多い。よって、電圧を電位と言い換えることが可能である。
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of State)が高くなることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、工程順または積層順など、なんらかの順番や順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲において異なる序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。
なお、「チャネル長」とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
また、「チャネル幅」とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、実効的なチャネル幅と呼ぶ。)と、トランジスタの上面図において示されるチャネル幅(以下、見かけ上のチャネル幅と呼ぶ。)と、が異なる場合がある。例えば、立体的な構造を有するトランジスタでは、実効的なチャネル幅が、トランジスタの上面図において示される見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつ立体的な構造を有するトランジスタでは、半導体の上面に形成されるチャネル領域の割合に対して、半導体の側面に形成されるチャネル領域の割合が大きくなる場合がある。その場合は、上面図において示される見かけ上のチャネル幅よりも、実際にチャネルの形成される実効的なチャネル幅の方が大きくなる。
ところで、立体的な構造を有するトランジスタにおいては、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
そこで、本明細書では、トランジスタの上面図において、半導体とゲート電極とが重なる領域における、ソースとドレインとが向かい合っている部分の長さである見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを取得して、その画像を解析することなどによって、値を決定することができる。
なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求める場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャネル幅を用いて計算する場合とは異なる値をとる場合がある。
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す。
(実施の形態1)
本発明の一態様の表示装置100の構成例及び作製方法例について、図面を用いて説明する。
<表示装置の構成例1>
図1(A)は外部電極124が接続された表示装置100の斜視図である。図1(A)に示す表示装置100は、外形形状が非矩形の表示装置である。また、表示装置100は、非矩形状の表示領域131を有する。また、図1(B)は、図1(A)にA1−A2の一点鎖線で示す部位の断面図である。なお、本明細書に開示する表示装置100は、表示素子として発光素子を用いた表示装置を例示している。また、本発明の一態様の表示装置100として、トップエミッション構造(上面射出構造)の表示装置を例示している。
本実施の形態に示す表示装置100は、表示領域131を有する。また、表示装置100は、電極115、EL層117、電極118を含む発光素子125と、端子電極216を有する。発光素子125は、表示領域131中に複数形成されている。また、各発光素子125には、発光素子125の発光量を制御するトランジスタ232が接続されている。
トランジスタ232は、接着層112、絶縁層221、絶縁層223、及び絶縁層205を介して基板111上に、形成されている。また、図1(B)では、端子電極216が絶縁層221と絶縁層223の間に形成されている。
端子電極216は、基板111、接着層112、及び絶縁層221を貫通する開口132と重なる。端子電極216は、開口132において異方性導電接続層138を介して外部電極124と電気的に接続されている。また、端子電極216は、トランジスタ232と電気的に、または機能的に接続される。例えば、端子電極216を駆動回路に接続し、端子電極216に供給された信号を、駆動回路を介してトランジスタ232に供給してもよい。駆動回路は表示領域131中のどの発光素子125に供給するかを決定する機能を有する電気回路であり、表示装置100にトランジスタ232の形成時に、表示装置100内に同時に設けてもよい。
トランジスタ232は、電極206、絶縁層207、半導体層208、電極214、電極215を有する。電極206はゲート電極として機能できる。絶縁層207はゲート絶縁層として機能できる。電極214、電極215は、ソース電極またはドレイン電極として機能できる。また、電極214、および電極215と同じ層に、配線219が形成されている。また、トランジスタ232上に絶縁層210が形成され、絶縁層210上に絶縁層211が形成され、絶縁層211上に絶縁層212が形成されている。また、電極115が絶縁層211上に形成されている。電極115は、絶縁層210、絶縁層211および絶縁層212に形成された開口を介して電極215に電気的に接続されている。また、電極115上に隔壁114が形成され、電極115および隔壁114上に、EL層117および電極118が形成されている。
基板121は、一方の面に接着層122を介して絶縁層129、遮光層264、着色層266、オーバーコート層268を有する。基板111と基板121は、基板121の一方の面と、基板111の発光素子125が形成されている面が向かい合い、接着層120により貼り合わされている。
なお、絶縁層205は下地層として機能し、基板111や接着層112などから、トランジスタや発光素子への水分や不純物元素の拡散を防止、または低減することができる。また、絶縁層129は下地層として機能し、基板121や接着層122などから、トランジスタや発光素子への水分や不純物元素の拡散を防止、または低減することができる。絶縁層129は、絶縁層205と同様の材料および方法により形成することができる。
基板111および基板121としては、有機樹脂材料などの可撓性を有する材料などを用いることができる。表示装置100を所謂ボトムエミッション構造(下面射出構造)の表示装置、または両面射出型の表示装置とする場合には、基板111にEL層117からの発光に対して透光性を有する材料を用いる。また、表示装置100を上面射出型の表示装置、または両面射出型の表示装置とする場合には、基板121にEL層117からの発光に対して透光性を有する材料を用いる。
同様に、表示装置100を所謂ボトムエミッション構造(下面射出構造)の表示装置、または両面射出型の表示装置とする場合には、基板111にEL層117からの発光に対して透光性を有する材料を用いる。また、表示装置100を上面射出型の表示装置、または両面射出型の表示装置とする場合には、基板121にEL層117からの発光に対して透光性を有する材料を用いる。
基板111および基板121は、互いに同じ材料で同じ厚さとすることが好ましい。ただし、目的に応じて、互いに異なる材料や、異なる厚さとしてもよい。
基板111および基板121に用いることができる、可撓性及び可視光に対する透光性を有する材料の一例としては、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアミド樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリ塩化ビニル樹脂、などがある。また、光を透過させる必要がない場合には、非透光性の基板を用いてもよい。例えば、基板121または基板111として、アルミニウムなどを用いてもよい。
また、基板121および基板111の熱膨張係数は、好ましくは30ppm/K以下、さらに好ましくは10ppm/K以下とする。また、基板121および基板111の表面に、予め窒化シリコンや酸化窒化シリコン等の窒素と珪素を含む膜や窒化アルミニウム等の窒素とアルミニウムを含む膜のような透水性の低い保護膜を成膜しておいても良い。なお、基板121および基板111として、繊維体に有機樹脂が含浸された構造物(所謂、プリプレグとも言う)を用いてもよい。
このような基板を用いることにより、割れにくい表示装置を提供することができる。または、軽量な表示装置を提供することができる。または、屈曲しやすい表示装置を提供することができる。
<表示装置の構成例2>
図2(A)に外形形状が矩形の表示装置100aを示す。図2(A)は外部電極124が接続された矩形形状の表示装置100aの斜視図である。図2(B)は、図2(A)にA3−A4の一点鎖線で示す部位の断面図である。なお、説明の繰り返しを防ぐため、図1(A)に示す表示装置100と同一部分の説明は省略する。
図2(A)に示す表示装置100aは、矩形形状の表示領域131を有する。また、表示領域131の外側に、駆動回路133、駆動回路142a、および駆動回路142bを有する。なお、本明細書などにおいて、駆動回路133、駆動回路142a、および駆動回路142bの一または複数を、単に「駆動回路」または「周辺駆動回路」という場合がある。
駆動回路133、駆動回路142a、および駆動回路142bは、それぞれが複数のトランジスタ252により構成されている。駆動回路133、駆動回路142a、および駆動回路142bは、外部電極124を介して供給された信号を、表示領域131中のどの発光素子125に供給するかを決定する機能を有する。
トランジスタ252は、トランジスタ232と同一の工程を経て作製することができる。なお、トランジスタ232とトランジスタ252は、互いに同じ構造を有していてもよいし、異なる構造を有していてもよい。
また、基板121の駆動回路133、駆動回路142a、および/または駆動回路142bと重なる領域に、遮光層264、着色層266、またはオーバーコート層268を設けてもよい。図2(B)では、駆動回路133と重なる領域に遮光層264とオーバーコート層268を設ける例を示している。遮光層264をトランジスタ252と重なるように設けることで、外光の照射によるトランジスタ252の特性変動を抑制することができる。
図2(A)に示す表示装置100aのように、表示領域131の外側に駆動回路を有する場合は、駆動回路と重なる位置に端子電極216および開口132を設け、異方性導電接続層138を介して外部電極124と端子電極216を電気的に接続してもよい。図2(B)では、駆動回路133と重なる位置に端子電極216および開口132を設け、異方性導電接続層138を介して外部電極124と電気的に接続する例を示している。
また、端子電極216は、絶縁層205および絶縁層223の一部を除去して形成された開口において、電極224を介してトランジスタ252のソース電極またはドレイン電極の一方と電気的に接続される。
なお、外形や表示領域の形状が矩形でない表示装置であっても、駆動回路を設けることができる。
<表示装置の作製方法例>
表示装置100の作製方法の一例について、図面を用いて説明する。なお、図3乃至図9は、図1(A)中のA1−A2の一点鎖線で示す部位の断面に相当する。
〔剥離層を形成する〕
まず、基板101上に剥離層113を形成する(図3(A)参照。)。なお、基板101としては、ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板などを用いることができる。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。
また、ガラス基板には、例えば、アルミノシリケートガラス、アルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられている。なお、酸化バリウム(BaO)を多く含ませることで、より実用的な耐熱ガラスが得られる。他にも、結晶化ガラスなどを用いることができる。
剥離層113は、タングステン、モリブデン、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、シリコンから選択された元素、または該元素を含む合金材料、または該元素を含む化合物材料を用いて形成することができる。また、これらの材料を単層又は積層して形成することができる。なお、剥離層113の結晶構造は、非晶質、微結晶、多結晶のいずれの場合でもよい。また、剥離層113を、酸化アルミニウム、酸化ガリウム、酸化亜鉛、二酸化チタン、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、またはInGaZnO(IGZO)等の金属酸化物を用いて形成することもできる。
剥離層113は、スパッタリング法やCVD法、塗布法、印刷法等により形成できる。なお、塗布法はスピンコーティング法、液滴吐出法、ディスペンス法を含む。
剥離層113を単層で形成する場合、タングステンを含む材料、モリブデンを含む材料、またはタングステンとモリブデンを含む材料を用いることが好ましい。または、剥離層113を単層で形成する場合、タングステンの酸化物若しくは酸化窒化物、モリブデンの酸化物若しくは酸化窒化物、またはタングステンとモリブデンを含む材料の酸化物若しくは酸化窒化物を用いることが好ましい。
また、剥離層113として、例えば、タングステンを含む層とタングステンの酸化物を含む層の積層構造を形成する場合、タングステンを含む層に接して酸化物絶縁層を形成することで、タングステンを含む層と酸化物絶縁層との界面に、タングステンの酸化物を含む層が形成されることを活用してもよい。また、タングステンを含む層の表面を、熱酸化処理、酸素プラズマ処理、オゾン水等の酸化力の強い溶液での処理等を行ってタングステンの酸化物を含む層を形成してもよい。
本実施の形態では、基板101としてガラス基板を用いる。また、剥離層113として基板101上にスパッタリング法によりタングステン層を形成する。
〔絶縁層を形成する〕
次に、剥離層113上に絶縁層221を形成する(図3(A)参照。)。絶縁層221は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化窒化アルミニウム、または窒化酸化アルミニウム等の酸素を含む絶縁材料で形成することが好ましい。また、剥離層113表面を酸化させる処理を行うことにより、絶縁層221として窒化シリコンや窒化アルミニウムなどの酸素を含まない材料を用いて形成することもできる。絶縁層221は、単層または多層で形成するのが好ましい。例えば、絶縁層221を、酸化シリコンと窒化シリコンを積層した2層構造としてもよいし、上記材料を組み合わせた5層構造としてもよい。絶縁層221は、スパッタリング法やCVD法、熱酸化法、塗布法、印刷法等を用いて形成することが可能である。
絶縁層221の厚さは、30nm以上500nm以下、好ましくは50nm以上400nm以下とすればよい。本実施の形態では、絶縁層221としてプラズマCVD法により厚さ200nmの酸化窒化シリコンと厚さ50nmの窒化酸化シリコンの積層膜を用いる。
〔端子電極を形成する〕
次に、絶縁層221上に端子電極216を形成する(図3(A)参照。)。端子電極216は、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属元素を用いてもよい。また、端子電極216は、単層構造でも、二層以上の積層構造としてもよい。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、端子電極216は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
まず、絶縁層221上にスパッタリング法、CVD法、蒸着法等により、後に端子電極216となる導電膜を積層し、該導電膜上にフォトリソグラフィ工程によりレジストマスクを形成する。次に、レジストマスクを用いて該導電膜の一部をエッチングして、端子電極216を形成する。この時、他の配線および電極も同時に形成することができる。
導電膜のエッチングは、ドライエッチング法でもウエットエッチング法でもよく、両方を用いてもよい。なお、ドライエッチング法によりエッチングを行った場合、レジストマスクを除去する前にアッシング処理を行うと、剥離液を用いたレジストマスクの除去を容易とすることができる。
なお、端子電極216は、上記形成方法の代わりに、電解メッキ法、印刷法、インクジェット法等で形成してもよい。
端子電極216の厚さは、5nm以上500nm以下、より好ましくは10nm以上300nm以下、より好ましくは10nm以上200nm以下である。
〔絶縁層を形成する〕
次に、端子電極216上に絶縁層223を形成する(図3(A)参照。)。絶縁層223は、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化窒化アルミニウム、または窒化酸化アルミニウム等を、単層または多層で形成するのが好ましい。例えば、絶縁層223を、酸化シリコンと窒化シリコンの積層としてもよい。絶縁層223は、スパッタリング法やCVD法、熱酸化法、塗布法、印刷法等を用いて形成することが可能である。
また、表面の凹凸を低減するために、絶縁層223に平坦化処理を行ってもよい。平坦化処理に特に限定はないが、研磨処理(例えば、化学的機械研磨法(Chemical Mechanical Polishing:CMP))、やドライエッチング処理により行うことができる。
〔絶縁層を形成する〕
次に、絶縁層223上に下地層として絶縁層205を形成する(図3(B)参照。)。絶縁層205は、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化窒化アルミニウム、または窒化酸化アルミニウム等を、単層または多層で形成するのが好ましい。例えば、絶縁層205を、酸化シリコンと窒化シリコンを積層した2層構造としてもよいし、上記材料を組み合わせた5層構造としてもよい。絶縁層205は、スパッタリング法やCVD法、熱酸化法、塗布法、印刷法等を用いて形成することが可能である。
絶縁層205の厚さは、30nm以上500nm以下、好ましくは50nm以上400nm以下とすればよい。
絶縁層205は、基板101や剥離層113などからの不純物元素の拡散を防止、または低減する機能を有する。また、基板101を基板111に換えた後も、基板111や接着層112などから、トランジスタ232や発光素子125への不純物元素の拡散を防止、または低減することができる。本実施の形態では、絶縁層205としてプラズマCVD法により厚さ200nmの酸化窒化シリコンと厚さ50nmの窒化酸化シリコンの積層膜を用いる。
〔ゲート電極を形成する〕
次に、絶縁層205上に電極206を形成する(図3(B)参照。)。電極206は、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属元素を用いてもよい。また、電極206は、単層構造でも、二層以上の積層構造としてもよい。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、電極206は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
まず、絶縁層205上にスパッタリング法、CVD法、蒸着法等により、後に電極206となる導電膜を積層し、該導電膜上にフォトリソグラフィ工程によりレジストマスクを形成する。次に、レジストマスクを用いて電極206となる導電膜の一部をエッチングして、電極206を形成する。この時、他の配線および電極も同時に形成することができる。
導電膜のエッチングは、ドライエッチング法でもウエットエッチング法でもよく、両方を用いてもよい。なお、ドライエッチング法によりエッチングを行った場合、レジストマスクを除去する前にアッシング処理を行うと、剥離液を用いたレジストマスクの除去を容易とすることができる。
なお、電極206は、上記形成方法の代わりに、電解メッキ法、印刷法、インクジェット法等で形成してもよい。
電極206の厚さは、5nm以上500nm以下、より好ましくは10nm以上300nm以下、より好ましくは10nm以上200nm以下である。
また、電極206を、遮光性を有する導電性材料を用いて形成することで、外部からの光が、電極206側から半導体層208に到達しにくくすることができる。その結果、光照射によるトランジスタの電気特性の変動を抑制することができる。
〔ゲート絶縁層を形成する〕
次に、絶縁層207を形成する(図3(B)参照。)。絶縁層207は、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化アルミニウムと酸化シリコンの混合物、酸化ハフニウム、酸化ガリウムまたはGa−Zn系金属酸化物、などを用いればよく、積層または単層で設ける。
また、絶縁層207として、ハフニウムシリケート(HfSiO)、窒素が添加されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアルミネート(HfAl)、酸化ハフニウム、酸化イットリウムなどのhigh−k材料を用いることでトランジスタのゲートリークを低減できる。例えば、酸化窒化シリコンと酸化ハフニウムの積層としてもよい。
絶縁層207の厚さは、5nm以上400nm以下、より好ましくは10nm以上300nm以下、より好ましくは50nm以上250nm以下とするとよい。絶縁層207は、スパッタリング法、CVD法、蒸着法等で形成することができる。
絶縁層207として酸化シリコン膜、酸化窒化シリコン膜、または窒化酸化シリコン膜を形成する場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
また、絶縁層207は、窒化物絶縁層と酸化物絶縁層を電極206側から順に積層する積層構造としてもよい。電極206側に窒化物絶縁層を設けることで、電極206側から水素、窒素、アルカリ金属、またはアルカリ土類金属等が半導体層208に移動することを防ぐことができる。なお、一般に、窒素、アルカリ金属、またはアルカリ土類金属等は、半導体の不純物元素として機能する。また、水素は、酸化物半導体の不純物元素として機能する。よって、本明細書等における「不純物」には、水素、窒素、アルカリ金属、またはアルカリ土類金属等が含まれるものとする。
また、半導体層208として酸化物半導体を用いる場合は、半導体層208側に酸化物絶縁層を設けることで、絶縁層207と半導体層208の界面における欠陥準位を低減することが可能である。この結果、電気特性の劣化の少ないトランジスタを得ることができる。なお、半導体層208として酸化物半導体を用いる場合は、酸化物絶縁層として、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁層を用いて形成すると、絶縁層207と半導体層208の界面における欠陥準位をさらに低減することが可能であるため好ましい。
また、絶縁層207を、上記のように窒化物絶縁層と酸化物絶縁層の積層とする場合、酸化物絶縁層よりも窒化物絶縁層を厚くすることが好ましい。
窒化物絶縁層は酸化物絶縁層よりも比誘電率が大きいため、絶縁層207の膜厚を厚くしても、電極206に生じる電界を効率よく半導体層208に伝えることができる。また、絶縁層207全体を厚くすることで、絶縁層207の絶縁耐圧を高めることができる。よって、表示装置の信頼性を高めることができる。
また、絶縁層207は、欠陥の少ない第1の窒化物絶縁層と、水素ブロッキング性の高い第2の窒化物絶縁層と、酸化物絶縁層とが、電極206側から順に積層される積層構造とすることができる。絶縁層207に、欠陥の少ない第1の窒化物絶縁層を用いることで、絶縁層207の絶縁耐圧を向上させることができる。特に、半導体層208として酸化物半導体を用いる場合は、絶縁層207に、水素ブロッキング性の高い第2の窒化物絶縁層を設けることで、電極206及び第1の窒化物絶縁層に含まれる水素が半導体層208に移動することを防ぐことができる。
第1の窒化物絶縁層、第2の窒化物絶縁層の作製方法の一例を以下に示す。はじめに、シラン、窒素、及びアンモニアの混合ガスを原料ガスとして用いたプラズマCVD法により、欠陥の少ない窒化シリコン膜を第1の窒化物絶縁層として形成する。次に、原料ガスを、シラン及び窒素の混合ガスに切り替えて、水素濃度が少なく、且つ水素をブロッキングすることが可能な窒化シリコン膜を第2の窒化物絶縁層として成膜する。このような形成方法により、欠陥が少なく、且つ水素のブロッキング性を有する窒化物絶縁層が積層された絶縁層207を形成することができる。
また、絶縁層207は、不純物のブロッキング性が高い第3の窒化物絶縁層と、欠陥の少ない第1の窒化物絶縁層と、水素ブロッキング性の高い第2の窒化物絶縁層と、酸化物絶縁層とが、電極206側から順に積層される構造とすることができる。絶縁層207に、不純物のブロッキング性が高い第3の窒化物絶縁層を設けることで、電極206から水素、窒素、アルカリ金属、またはアルカリ土類金属等が半導体層208に移動することを防ぐことができる。
第1の窒化物絶縁層乃至第3の窒化物絶縁層の作製方法の一例を以下に示す。はじめに、シラン、窒素、及びアンモニアの混合ガスを原料ガスとして用いたプラズマCVD法により、不純物のブロッキング性が高い窒化シリコン膜を第3の窒化物絶縁層として形成する。次に、アンモニアの流量を増加させることで、欠陥の少ない窒化シリコン膜を第1の窒化物絶縁層として形成する。次に、原料ガスを、シラン及び窒素の混合ガスに切り替えて、水素濃度が少なく、且つ水素をブロッキングすることが可能な窒化シリコン膜を第2の窒化物絶縁層として成膜する。このような形成方法により、欠陥が少なく、且つ不純物のブロッキング性を有する窒化物絶縁層が積層された絶縁層207を形成することができる。
また、絶縁層207として酸化ガリウム膜を形成する場合、MOCVD(Metal Organic Chemical Vapor Deposition)法を用いて形成することができる。
なお、トランジスタのチャネルが形成される半導体層208と、酸化ハフニウムを含む絶縁層を、酸化物絶縁層を介して積層し、酸化ハフニウムを含む絶縁層に電子を注入することで、トランジスタのしきい値電圧を変化させることができる。
〔半導体層を形成する〕
半導体層208は、非晶質半導体、微結晶半導体、多結晶半導体等を用いて形成することができる。例えば、非晶質シリコンや、微結晶ゲルマニウム等を用いることができる。また、炭化シリコン、ガリウム砒素、酸化物半導体、窒化物半導体などの化合物半導体や、有機半導体等を用いることができる。
まず、半導体層208を形成するための半導体膜をプラズマCVD法、LPCVD法、メタルCVD法、またはMOCVD法などのCVD法や、ALD法、スパッタリング法、蒸着法などにより形成する。該半導体膜をMOCVD法により形成すると、被形成面へのダメージを少なくすることができる。
半導体膜の厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、さらに好ましくは3nm以上50nm以下とする。本実施の形態では、半導体層208を形成するための半導体膜として、スパッタリング法により厚さ30nmの酸化物半導体膜を形成する。
続いて、半導体膜上にレジストマスクを形成し、該レジストマスクを用いて半導体膜の一部を選択的にエッチングすることで、半導体層208を形成する。レジストマスクの形成は、フォトリソグラフィ法、印刷法、インクジェット法等を適宜用いて行うことができる。レジストマスクをインクジェット法で形成すると、フォトマスクを使用しないため、製造コストを低減できる。
半導体膜のエッチングは、ドライエッチング法でもウエットエッチング法でもよく、両方を用いてもよい。半導体膜のエッチング終了後、レジストマスクを除去する(図3(C)参照。)。
<酸化物半導体の構造>
以下では、酸化物半導体の構造について説明する。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体とに分けられる。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline Oxide Semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous like Oxide Semiconductor)、非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−OS、多結晶酸化物半導体、nc−OSなどがある。
非晶質構造の定義としては、一般に、準安定状態で固定化していないこと、等方的であって不均質構造を持たないことなどが知られている。また、結合角度が柔軟であり、短距離秩序性は有するが、長距離秩序性を有さない構造と言い換えることもできる。
逆の見方をすると、本質的に安定な酸化物半導体の場合、完全な非晶質(completely amorphous)酸化物半導体と呼ぶことはできない。また、等方的でない(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体と呼ぶことはできない。ただし、a−like OSは、微小な領域において周期構造を有するものの、鬆(ボイドともいう。)を有し、不安定な構造である。そのため、物性的には非晶質酸化物半導体に近いといえる。
〔CAAC−OS〕
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
以下では、TEMによって観察したCAAC−OSについて説明する。図22(A)に、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行うことができる。
図22(A)の領域(1)を拡大したCs補正高分解能TEM像を図22(B)に示す。図22(B)より、ペレットにおいて、金属原子が層状に配列していることを確認できる。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
図22(B)に示すように、CAAC−OSは特徴的な原子配列を有する。図22(C)は、特徴的な原子配列を、補助線で示したものである。図22(B)および図22(C)より、ペレット一つの大きさは1nm以上のものや、3nm以上のものがあり、ペレットとペレットとの傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。また、CAAC−OSを、CANC(C−Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
ここで、Cs補正高分解能TEM像をもとに、基板5120上のCAAC−OSのペレット5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造となる(図22(D)参照。)。図22(C)で観察されたペレットとペレットとの間で傾きが生じている箇所は、図22(D)に示す領域5161に相当する。
また、図23(A)に、試料面と略垂直な方向から観察したCAAC−OSの平面のCs補正高分解能TEM像を示す。図23(A)の領域(1)、領域(2)および領域(3)を拡大したCs補正高分解能TEM像を、それぞれ図23(B)、図23(C)および図23(D)に示す。図23(B)、図23(C)および図23(D)より、ペレットは、金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しかしながら、異なるペレット間で、金属原子の配列に規則性は見られない。
次に、X線回折(XRD:X−Ray Diffraction)によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、図24(A)に示すように回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
なお、CAAC−OSのout−of−plane法による構造解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれることを示している。より好ましいCAAC−OSは、out−of−plane法による構造解析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
一方、CAAC−OSに対し、c軸に略垂直な方向からX線を入射させるin−plane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、InGaZnOの結晶の(110)面に帰属される。CAAC−OSの場合は、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行っても、図24(B)に示すように明瞭なピークは現れない。これに対し、InGaZnOの単結晶酸化物半導体であれば、2θを56°近傍に固定してφスキャンした場合、図24(C)に示すように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは、a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、図25(A)に示すような回折パターン(制限視野透過電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図25(B)に示す。図25(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。なお、図25(B)における第1リングは、InGaZnOの結晶の(010)面および(100)面などに起因すると考えられる。また、図25(B)における第2リングは(110)面などに起因すると考えられる。
上述したように、CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、逆の見方をするとCAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合がある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャリア発生源となる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップとなる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
不純物および酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体である。具体的には、8×1011個/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010個/cm未満であり、1×10−9個/cm以上のキャリア密度の酸化物半導体とすることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、安定な特性を有する酸化物半導体であるといえる。
〔nc−OS〕
nc−OSは、高分解能TEM像において、結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は、1nm以上10nm以下、または1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合がある。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OSに対し、ペレットよりも大きい径のX線を用いた場合、out−of−plane法による解析では、結晶面を示すピークは検出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子回折を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OSに対し、ペレットの大きさと近いかペレットより小さいプローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、nc−OSに対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リング状の領域内に複数のスポットが観測される場合がある。
このように、ペレット(ナノ結晶)間では結晶方位が規則性を有さないことから、nc−OSを、RANC(Random Aligned nanocrystals)を有する酸化物半導体、またはNANC(Non−Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
〔a−like OS〕
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。
a−like OSは、高分解能TEM像において鬆が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる領域と、結晶部を確認することのできない領域と、を有する。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−like OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すため、電子照射による構造の変化を示す。
電子照射を行う試料として、a−like OS(試料Aと表記する。)、nc−OS(試料Bと表記する。)およびCAAC−OS(試料Cと表記する。)を準備する。いずれの試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料は、いずれも結晶部を有することがわかる。
なお、どの部分を一つの結晶部と見なすかの判定は、以下のように行えばよい。例えば、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見なすことができる。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
図26は、各試料の結晶部(22箇所から45箇所)の平均の大きさを調査した例である。ただし、上述した格子縞の長さを結晶部の大きさとしている。図26より、a−like OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体的には、図26中に(1)で示すように、TEMによる観察初期においては1.2nm程度の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×10/nmにおいては2.6nm程度の大きさまで成長していることがわかる。一方、nc−OSおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、図26中の(2)および(3)で示すように、電子の累積照射量によらず、nc−OSおよびCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度であることがわかる。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合がある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとんど見られないことがわかる。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAAC−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a−like OSの密度は5.0g/cm以上5.9g/cm未満となる。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm未満となる。
なお、同じ組成の単結晶が存在しない場合がある。その場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
<成膜モデル>
以下では、CAAC−OSおよびnc−OSの成膜モデルの一例について説明する。
図27(A)は、スパッタリング法によりCAAC−OSが成膜される様子を示した成膜室内の模式図である。
ターゲット5130は、バッキングプレートに接着されている。バッキングプレートを介してターゲット5130と向かい合う位置には、複数のマグネットが配置される。該複数のマグネットによって磁場が生じている。マグネットの配置や構成などについては、上述した成膜室の記載を参照する。マグネットの磁場を利用して成膜速度を高めるスパッタリング法は、マグネトロンスパッタリング法と呼ばれる。
ターゲット5130は、多結晶構造を有し、いずれかの結晶粒には劈開面が含まれる。
一例として、In−Ga−Zn酸化物を有するターゲット5130の劈開面について説明する。図28(A)に、ターゲット5130に含まれるInGaZnOの結晶の構造を示す。なお、図28(A)は、c軸を上向きとし、b軸に平行な方向からInGaZnOの結晶を観察した場合の構造である。
図28(A)より、近接する二つのGa−Zn−O層において、それぞれの層における酸素原子同士が近距離に配置されていることがわかる。そして、酸素原子が負の電荷を有することにより、近接する二つのGa−Zn−O層は互いに反発する。その結果、InGaZnOの結晶は、近接する二つのGa−Zn−O層の間に劈開面を有する。
基板5120は、ターゲット5130と向かい合うように配置しており、その距離d(ターゲット−基板間距離(T−S間距離)ともいう。)は0.01m以上1m以下、好ましくは0.02m以上0.5m以下とする。成膜室内は、ほとんどが成膜ガス(例えば、酸素、アルゴン、または酸素を5体積%以上の割合で含む混合ガス)で満たされ、0.01Pa以上100Pa以下、好ましくは0.1Pa以上10Pa以下に制御される。ここで、ターゲット5130に一定以上の電圧を印加することで、放電が始まり、プラズマが確認される。なお、ターゲット5130の近傍には磁場によって、高密度プラズマ領域が形成される。高密度プラズマ領域では、成膜ガスがイオン化することで、イオン5101が生じる。イオン5101は、例えば、酸素の陽イオン(O)やアルゴンの陽イオン(Ar)などである。
イオン5101は、電界によってターゲット5130側に加速され、やがてターゲット5130と衝突する。このとき、劈開面から平板状またはペレット状のスパッタ粒子であるペレット5100aおよびペレット5100bが剥離し、叩き出される。なお、ペレット5100aおよびペレット5100bは、イオン5101の衝突の衝撃によって、構造に歪みが生じる場合がある。
ペレット5100aは、三角形、例えば正三角形の平面を有する平板状またはペレット状のスパッタ粒子である。また、ペレット5100bは、六角形、例えば正六角形の平面を有する平板状またはペレット状のスパッタ粒子である。なお、ペレット5100aおよびペレット5100bなどの平板状またはペレット状のスパッタ粒子を総称してペレット5100と呼ぶ。ペレット5100の平面の形状は、三角形、六角形に限定されない、例えば、三角形が複数個合わさった形状となる場合がある。例えば、三角形(例えば、正三角形)が2個合わさった四角形(例えば、ひし形)となる場合もある。
ペレット5100は、成膜ガスの種類などに応じて厚さが決定する。理由は後述するが、ペレット5100の厚さは、均一にすることが好ましい。また、スパッタ粒子は厚みのないペレット状である方が、厚みのあるサイコロ状であるよりも好ましい。例えば、ペレット5100は、厚さを0.4nm以上1nm以下、好ましくは0.6nm以上0.8nm以下とする。また、例えば、ペレット5100は、幅を1nm以上3nm以下、好ましくは1.2nm以上2.5nm以下とする。ペレット5100は、上述の図26中の(1)で説明した初期核に相当する。例えば、In−Ga−Zn酸化物を有するターゲット5130にイオン5101を衝突させる場合、図28(B)に示すように、Ga−Zn−O層、In−O層およびGa−Zn−O層の3層を有するペレット5100が飛び出してくる。なお、図28(C)は、ペレット5100をc軸に平行な方向から観察した場合の構造である。したがって、ペレット5100は、二つのGa−Zn−O層(パン)と、In−O層(具)と、を有するナノサイズのサンドイッチ構造と呼ぶこともできる。
ペレット5100は、プラズマを通過する際に電荷を受け取ることで、側面が負または正に帯電する場合がある。ペレット5100は、側面に酸素原子を有し、当該酸素原子が負に帯電する可能性がある。このように、側面が同じ極性の電荷を帯びることにより、電荷同士の反発が起こり、平板状の形状を維持することが可能となる。なお、CAAC−OSが、In−Ga−Zn酸化物である場合、インジウム原子と結合した酸素原子が負に帯電する可能性がある。または、インジウム原子、ガリウム原子または亜鉛原子と結合した酸素原子が負に帯電する可能性がある。また、ペレット5100は、プラズマを通過する際にインジウム原子、ガリウム原子、亜鉛原子および酸素原子などと結合することで成長する場合がある。これは、上述の図26中の(2)と(1)の大きさの違いに相当する。ここで、基板5120が室温程度である場合、ペレット5100がこれ以上成長しないためnc−OSとなる(図27(B)参照。)。成膜可能な温度が室温程度であることから、基板5120が大面積である場合でもnc−OSの成膜は可能である。なお、ペレット5100をプラズマ中で成長させるためには、スパッタリング法における成膜電力を高くすることが有効である。成膜電力を高くすることで、ペレット5100の構造を安定にすることができる。
図27(A)および図27(B)に示すように、例えば、ペレット5100は、プラズマ中を凧のように飛翔し、ひらひらと基板5120上まで舞い上がっていく。ペレット5100は電荷を帯びているため、ほかのペレット5100が既に堆積している領域が近づくと、斥力が生じる。ここで、基板5120の上面では、基板5120の上面に平行な向きの磁場(水平磁場ともいう。)が生じている。また、基板5120およびターゲット5130間には、電位差が与えられているため、基板5120からターゲット5130に向けて電流が流れている。したがって、ペレット5100は、基板5120の上面において、磁場および電流の作用によって、力(ローレンツ力)を受ける。このことは、フレミングの左手の法則によって理解できる。
ペレット5100は、原子一つと比べると質量が大きい。そのため、基板5120の上面を移動するためには何らかの力を外部から印加することが重要となる。その力の一つが磁場および電流の作用で生じる力である可能性がある。なお、ペレット5100に与える力を大きくするためには、基板5120の上面において、基板5120の上面に平行な向きの磁場が10G以上、好ましくは20G以上、さらに好ましくは30G以上、より好ましくは50G以上となる領域を設けるとよい。または、基板5120の上面において、基板5120の上面に平行な向きの磁場が、基板5120の上面に垂直な向きの磁場の1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上、より好ましくは5倍以上となる領域を設けるとよい。
このとき、マグネットユニットまたは/および基板5120が相対的に移動すること、または回転することによって、基板5120の上面における水平磁場の向きは変化し続ける。したがって、基板5120の上面において、ペレット5100は、様々な方向への力を受け、様々な方向へ移動することができる。
また、図27(A)に示すように基板5120が加熱されている場合、ペレット5100と基板5120との間で摩擦などによる抵抗が小さい状態となっている。その結果、ペレット5100は、基板5120の上面を滑空するように移動する。ペレット5100の移動は、平板面を基板5120に向けた状態で起こる。その後、既に堆積しているほかのペレット5100の側面まで到達すると、側面同士が結合する。このとき、ペレット5100の側面にある酸素原子が脱離する。脱離した酸素原子によって、CAAC−OS中の酸素欠損が埋まる場合があるため、欠陥準位密度の低いCAAC−OSとなる。なお、基板5120の上面の温度は、例えば、100℃以上500℃未満、150℃以上450℃未満、または170℃以上400℃未満とすればよい。即ち、基板5120が大面積である場合でもCAAC−OSの成膜は可能である。
また、ペレット5100が基板5120上で加熱されることにより、原子が再配列し、イオン5101の衝突で生じた構造の歪みが緩和される。歪みの緩和されたペレット5100は、ほぼ単結晶となる。ペレット5100がほぼ単結晶となることにより、ペレット5100同士が結合した後に加熱されたとしても、ペレット5100自体の伸縮はほとんど起こり得ない。したがって、ペレット5100間の隙間が広がることで結晶粒界などの欠陥を形成し、クレバス化することがない。
また、CAAC−OSは、単結晶酸化物半導体が一枚板のようになっているのではなく、ペレット5100(ナノ結晶)の集合体がレンガまたはブロックが積み重なったような配列をしている。また、その間には結晶粒界を有さない。そのため、成膜時の加熱、成膜後の加熱または曲げなどで、CAAC−OSに縮みなどの変形が生じた場合でも、局部応力を緩和する、または歪みを逃がすことが可能である。したがって、可とう性を有する半導体装置に適した構造である。
ターゲットをイオンでスパッタした際に、ペレットだけでなく、酸化亜鉛などが飛び出す場合がある。酸化亜鉛はペレットよりも軽量であるため、先に基板5120の上面に到達する。そして、0.1nm以上10nm以下、0.2nm以上5nm以下、または0.5nm以上2nm以下の酸化亜鉛層5102を形成する。図29に断面模式図を示す。
図29(A)に示すように、酸化亜鉛層5102上にはペレット5105aと、ペレット5105bと、が堆積する。ここで、ペレット5105aとペレット5105bとは、互いに側面が接するように配置している。また、ペレット5105cは、ペレット5105b上に堆積した後、ペレット5105b上を滑るように移動する。また、ペレット5105aの別の側面において、酸化亜鉛とともにターゲットから飛び出した複数の粒子5103が基板5120の加熱により結晶化し、領域5105a1を形成する。なお、複数の粒子5103は、酸素、亜鉛、インジウムおよびガリウムなどを含む可能性がある。
そして、図29(B)に示すように、領域5105a1は、ペレット5105aと同化し、ペレット5105a2となる。また、ペレット5105cは、その側面がペレット5105bの別の側面と接するように配置する。
次に、図29(C)に示すように、さらにペレット5105dがペレット5105a2上およびペレット5105b上に堆積した後、ペレット5105a2上およびペレット5105b上を滑るように移動する。また、ペレット5105cの別の側面に向けて、さらにペレット5105eが酸化亜鉛層5102上を滑るように移動する。
そして、図29(D)に示すように、ペレット5105dは、その側面がペレット5105a2の側面と接するように配置する。また、ペレット5105eは、その側面がペレット5105cの別の側面と接するように配置する。また、ペレット5105dの別の側面において、酸化亜鉛とともにターゲットから飛び出した複数の粒子5103が基板5120の加熱により結晶化し、領域5105d1を形成する。
以上のように、堆積したペレット同士が接するように配置し、ペレットの側面において結晶成長が起こることで、基板5120上にCAAC−OSが形成される。したがって、CAAC−OSは、nc−OSよりも一つ一つのペレットが大きくなる。これは、上述の図26中の(3)と(2)の大きさの違いに相当する。
また、ペレット5100の隙間が極めて小さくなることで、あたかも一つの大きなペレットが形成される場合がある。大きなペレットは、単結晶構造を有する。例えば、大きなペレットの大きさが、上面から見て10nm以上200nm以下、15nm以上100nm以下、または20nm以上50nm以下となる場合がある。したがって、トランジスタのチャネル形成領域が、大きなペレットよりも小さい場合、チャネル形成領域として単結晶構造を有する領域を用いることができる。また、ペレットが大きくなることで、トランジスタのチャネル形成領域、ソース領域およびドレイン領域として単結晶構造を有する領域を用いることができる場合がある。
このように、トランジスタのチャネル形成領域などが、単結晶構造を有する領域に形成されることによって、トランジスタの周波数特性を高くすることができる場合がある。
以上のようなモデルにより、ペレット5100が基板5120上に堆積していくと考えられる。したがって、エピタキシャル成長とは異なり、被形成面が結晶構造を有さない場合においても、CAAC−OSの成膜が可能であることがわかる。例えば、基板5120の上面(被形成面)の構造が非晶質構造(例えば非晶質酸化シリコン)であっても、CAAC−OSを成膜することは可能である。
また、CAAC−OSは、被形成面である基板5120の上面に凹凸がある場合でも、その形状に沿ってペレット5100が配列することがわかる。例えば、基板5120の上面が原子レベルで平坦な場合、ペレット5100はab面と平行な平面である平板面を下に向けて並置するため、厚さが均一で平坦、かつ高い結晶性を有する層が形成される。そして、当該層がn段(nは自然数。)積み重なることで、CAAC−OSを得ることができる。
一方、基板5120の上面が凹凸を有する場合でも、CAAC−OSは、ペレット5100が凸面に沿って並置した層がn段(nは自然数。)積み重なった構造となる。基板5120が凹凸を有するため、CAAC−OSは、ペレット5100間に隙間が生じやすい場合がある。ただし、ペレット5100間で分子間力が働き、凹凸があってもペレット間の隙間はなるべく小さくなるように配列する。したがって、凹凸があっても高い結晶性を有するCAAC−OSとすることができる。
したがって、CAAC−OSは、レーザー結晶化が不要であり、大面積のガラス基板などであっても均一な成膜が可能である。
このようなモデルによってCAAC−OSが成膜されるため、スパッタ粒子が厚みのないペレット状である方が好ましい。なお、スパッタ粒子が厚みのあるサイコロ状である場合、基板5120上に向ける面が一定とならず、厚さや結晶の配向を均一にできない場合がある。
以上に示した成膜モデルにより、非晶質構造を有する被形成面上であっても、高い結晶性を有するCAAC−OSを得ることができる。
〔ソース電極、ドレイン電極等を形成する〕
次に、電極214、電極215、及び配線219を形成する(図3(D)参照。)。まず、絶縁層207及び半導体層208上に、電極214、電極215、及び配線219を形成するための導電膜を形成する。
導電膜としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金を単層構造または積層構造で用いることができる。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造、タングステン膜上に銅膜を積層し、さらにその上にタングステン膜を形成する三層構造等がある。
なお、インジウム錫酸化物、亜鉛酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの酸素を含む導電性材料、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料を組み合わせた積層構造とすることもできる。また、前述した金属元素を含む材料と、窒素を含む導電性材料を組み合わせた積層構造とすることもできる。また、前述した金属元素を含む材料、酸素を含む導電性材料、および窒素を含む導電性材料を組み合わせた積層構造とすることもできる。
また、導電膜の厚さは、5nm以上500nm以下、より好ましくは10nm以上300nm以下、より好ましくは10nm以上200nm以下である。本実施の形態では、導電膜として厚さ300nmのタングステン膜を形成する。
次に、レジストマスクを用いて、導電膜の一部を選択的にエッチングし、電極214、電極215、及び配線219(これと同じ層で形成される他の電極または配線を含む)を形成する。レジストマスクの形成は、フォトリソグラフィ法、印刷法、インクジェット法等を適宜用いて行うことができる。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
導電膜のエッチングは、ドライエッチング法でもウエットエッチング法でもよく、両方を用いてもよい。なお、エッチング工程により、露出した半導体層208の一部が除去される場合がある。導電膜のエッチング終了後、レジストマスクを除去する。
電極214及び電極215を設けることにより、トランジスタ232が形成される(図3(D)参照。)。
〔絶縁層を形成する〕
次に、電極214、電極215、及び配線219上に、絶縁層210及び絶縁層211を形成する(図4(A)参照。)。絶縁層210及び絶縁層211は、絶縁層205と同様の材料および方法で形成することができる。
また、半導体層208に酸化物半導体を用いる場合は、少なくとも絶縁層210の半導体層208と接する領域に、酸素を含む絶縁層を用いることが好ましい。例えば、絶縁層210を複数層の積層とする場合、少なくとも半導体層208と接する層を酸化シリコンで形成すればよい。
〔開口の形成〕
次に、レジストマスクを用いて、絶縁層210及び絶縁層211の一部を選択的にエッチングし、開口128を形成する(図4(A)参照。)。この時、図示しない他の開口も同時に形成することができる。レジストマスクの形成は、フォトリソグラフィ法、印刷法、インクジェット法等を適宜用いて行うことができる。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
絶縁層210及び絶縁層211のエッチングは、ドライエッチング法でもウエットエッチング法でもよく、両方を用いてもよい。
開口128の形成により、ドレイン電極215、端子電極216の一部が露出する。開口128の形成後、レジストマスクを除去する。
〔絶縁層を形成する〕
次に、絶縁層211上に絶縁層212を形成する(図4(B)参照。)。絶縁層212は、絶縁層205と同様の材料および方法で形成することができる。
また、発光素子125の被形成面の表面凹凸を低減するために、絶縁層212に平坦化処理を行ってもよい。平坦化処理として特に限定はないが、研磨処理(例えば、CMP)、やドライエッチング処理により行うことができる。
また、平坦化機能を有する絶縁材料を用いて絶縁層212を形成することで、研磨処理を省略することもできる。平坦化機能を有する絶縁材料として、例えば、ポリイミド樹脂、アクリル樹脂等の有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層させることで、絶縁層212を形成してもよい。
また、開口128と重畳する領域の絶縁層212の一部を除去して、開口127を形成する。この時、図示しない他の開口も同時に形成する。また、後に外部電極124が接続する領域の絶縁層211は除去する。なお、開口127等は、絶縁層212上にフォトリソグラフィ工程によるレジストマスクの形成を行い、絶縁層212のレジストマスクに覆われていない領域をエッチングすることで形成できる。開口127を形成することにより、電極215の表面を露出させる(図4(B)参照。)。
また、絶縁層212に感光性を有する材料を用いることで、レジストマスクを用いることなく開口127を形成することができる。本実施の形態では、感光性のポリイミド樹脂を用いて絶縁層212および開口127を形成する。
〔陽極を形成する〕
次に、絶縁層212上に電極115を形成する(図4(C)参照。)。電極115は、後に形成されるEL層117が発する光を効率よく反射する導電性材料を用いて形成することが好ましい。なお、電極115は単層に限らず、複数層の積層構造としてもよい。例えば、電極115を陽極として用いる場合、EL層117と接する層を、インジウム錫酸化物などのEL層117よりも仕事関数が大きく透光性を有する層とし、その層に接して反射率の高い層(アルミニウム、アルミニウムを含む合金、または銀など)を設けてもよい。
なお、本実施の形態では、トップエミッション構造の表示装置について例示するが、ボトムエミッション構造(下面射出構造)、またはデュアルエミッション構造(両面射出構造)の表示装置とすることもできる。
表示装置100を、ボトムエミッション構造(下面射出構造)、またはデュアルエミッション構造(両面射出構造)の表示装置とする場合は、電極115に透光性を有する導電性材料を用いればよい。
電極115は、絶縁層212上に電極115となる導電膜を形成し、該導電膜上にレジストマスクを形成し、該導電膜のレジストマスクに覆われていない領域をエッチングすることで形成できる。該導電膜のエッチングは、ドライエッチング法、ウエットエッチング法、または双方を組み合わせたエッチング法を用いることができる。レジストマスクの形成は、フォトリソグラフィ法、印刷法、インクジェット法等を適宜用いて行うことができる。レジストマスクをインクジェット法で形成すると、フォトマスクを使用しないため、製造コストを低減できる。電極115の形成後、レジストマスクを除去する。
〔隔壁を形成する〕
次に、隔壁114を形成する(図5(A)参照。)。隔壁114は、隣接する画素の発光素子125が意図せず電気的に短絡し、誤発光することを防ぐために設ける。また、後述するEL層117の形成にメタルマスクを用いる場合、メタルマスクが電極115に接触しないようにする機能も有する。隔壁114は、エポキシ樹脂、アクリル樹脂、イミド樹脂などの有機樹脂材料や、酸化シリコンなどの無機材料で形成することができる。隔壁114は、その側壁がテーパーまたは連続した曲率を持って形成される傾斜面となるように形成することが好ましい。隔壁114の側壁をこのような形状とすることで、後に形成されるEL層117や電極118の被覆性を良好なものとすることができる。
〔EL層を形成する〕
EL層117の構成については、実施の形態4で説明する。
〔陰極を形成する〕
本実施の形態では電極118を陰極として用いるため、電極118を後述するEL層117に電子を注入できる仕事関数の小さい材料を用いて形成することが好ましい。また、仕事関数の小さい金属単体ではなく、仕事関数の小さいアルカリ金属、またはアルカリ土類金属を数nm形成した層を緩衝層として形成し、その上にアルミニウムなどの金属材料、インジウム錫酸化物等の導電性を有する酸化物材料、または半導体材料を用いて形成してもよい。また、緩衝層として、アルカリ土類金属の酸化物、ハロゲン化物、または、マグネシウム−銀等の合金を用いることもできる。
また、電極118を介して、EL層117が発する光を取り出す場合には、電極118は、可視光に対し透光性を有することが好ましい。電極115、EL層117、電極118により、発光素子125が形成される(図5(B)参照。)。
本実施の形態では、基板101上にトランジスタ232及び発光素子125を形成した基板を、素子基板171と呼ぶ。また、本実施の形態では、基板102上に着色層266などを形成した基板を、対向基板181と呼ぶ。
〔対向基板を形成する〕
まず、基板102上に剥離層123を形成する(図6(A)参照。)。基板102は、基板101と同様の材料を用いて形成することができる。なお、基板101と基板102は、それぞれ同じ材料を用いてもよいし、互いに異なる材料を用いてもよい。また、剥離層123は、剥離層113と同様に形成することができる。基板102と剥離層123の間に絶縁層を設けてもよい。本実施の形態では、基板102にアルミノホウケイ酸ガラスを用いる。また、基板102上に形成する剥離層123として、スパッタリング法によりタングステン層を形成する。
なお、剥離層123の形成後に、剥離層123の表面を、酸素を有する雰囲気または酸素を有するプラズマ雰囲気に曝すことが好ましい。剥離層123の表面を酸化することで、後の工程で行われる基板102の剥離を容易とすることができる。
〔絶縁層129の形成〕
次に、剥離層123上に絶縁層129を形成する(図6(A)参照。)。絶縁層129は、絶縁層205と同様の材料および方法で形成することができる。本実施の形態では、絶縁層129として、基板102側から、厚さ200nmの酸化窒化シリコン、厚さ140nmの窒化酸化シリコン、厚さ100nmの酸化窒化シリコンの積層膜をプラズマCVD法により形成する。
〔遮光層264の形成〕
次に、絶縁層129上に、遮光層264を形成するための層274を形成する(図6(B)参照)。遮光層264は隣接する表示素子からの光を遮光し、隣接する表示素子間における混色を抑制する。また、着色層266の端部と遮光層264の端部が重なるように設けることにより、光漏れを抑制することができる。層274は、単層構造であっても2層以上の積層構造であってもよい。層274に用いることができる材料として、例えば、クロム、チタン、またはニッケルなどを含む金属材料、クロム、チタン、またはニッケルなどを含む酸化物材料、金属材料や顔料や染料を含む樹脂材料などが挙げられる。
層274を金属材料、酸化物材料、または樹脂材料で形成する場合は、層274上にレジストマスクを形成し、該レジストマスクを用いて、層274を所望の形状にエッチングして、遮光層264を形成することができる(図6(C)参照)。また、カーボンブラックを分散した高分子材料を用いると、インクジェット法により絶縁層129上に遮光層264を直接描画することができる。
〔着色層266の形成〕
次に、絶縁層129上に、着色層266を形成する(図6(D)参照)。着色層は特定の波長域の光を透過する有色層である。例えば、赤色の波長域の光を透過する赤色(R)のカラーフィルタ、緑色の波長域の光を透過する緑色(G)のカラーフィルタ、青色の波長域の光を透過する青色(B)のカラーフィルタなどを用いることができる。着色層266は、様々な材料を用いて、印刷法、インクジェット法、フォトリソグラフィ法を用いて、それぞれ所望の位置に形成する。この時、着色層266の一部が遮光層264と重なるように設けることが好ましい。画素毎に着色層266の色を変えることで、カラー表示を行うことができる。
〔オーバーコート層268の形成〕
次に、遮光層264および着色層266上にオーバーコート層268を形成する(図6(E)参照)。
オーバーコート層268としては、例えばアクリル樹脂、エポキシ樹脂、ポリイミド等の有機絶縁層を用いることができる。オーバーコート層268を形成することによって、例えば、着色層266中に含まれる不純物等を発光素子125側に拡散することを抑制することができる。ただし、オーバーコート層268は、必ずしも設ける必要はなく、オーバーコート層268を形成しない構造としてもよい。
また、オーバーコート層268として透光性を有する導電膜を用いてもよい。オーバーコート層268として透光性を有する導電膜を設けることで、発光素子125から発せられた光を透過し、かつ、イオン化した不純物の透過を防ぐことができる。
透光性を有する導電膜は、例えば、前述の透光性を有する導電性材料用いて形成することができる。また、透光性を有する程度に薄く形成された金属膜を用いてもよい。
以上の工程により対向基板181を形成することができる。ただし、着色層266が不要な場合は、対向基板181に着色層266などを設けない場合がある。
〔素子基板171と対向基板181を貼り合せる〕
次に、素子基板171と対向基板181を、接着層120を介して貼り合せる。この時、素子基板171上の発光素子125と、対向基板181上の着色層266が向かい合うように配置する(図7(A)参照)。
〔基板101の剥離〕
次に、素子基板171が有する基板101を、剥離層113とともに絶縁層221から剥離する(図7(B)参照)。剥離方法としては、機械的な力を加えること(人間の手や治具で引き剥がす処理や、ローラーを回転させながら分離する処理、超音波等)を用いて行えばよい。たとえば、剥離層113に鋭利な刃物またはレーザー光照射等で切り込みをいれ、その切り込みに水を注入する。毛細管現象により水が剥離層113と絶縁層221の間にしみこむことにより、基板101を剥離層113とともに容易に剥離することができる。
次に、端子電極216と重なる絶縁層221の一部を除去し、開口132aを形成する。開口132aにおいて、端子電極216の表面の一部が露出する。
〔基板111の貼り合わせ〕
次に、接着層112を介して開口132bを有する基板111を絶縁層221に貼り合わせる(図8(B)参照)。この時、開口132aと開口132bが重なるように貼り合せる。開口132aと開口132bが重なることにより、開口132が形成される(図9(A)参照)。また、開口132の内側において、端子電極216の表面が露出する。
なお、本発明の一態様の表示装置100は、1つの開口132内に端子電極216を複数設けてもよいし、端子電極216毎に開口132を設けてもよい。図11(A)は、端子電極216毎に開口132を設けた表示装置100の斜視図であり、図11(B)は、図11(A)にB1−B2の一点鎖線で示した部位の断面図である。
〔基板102の剥離〕
次に、対向基板181が有する基板102を、剥離層123とともに絶縁層129から剥離する(図9(A)参照)。剥離方法としては、機械的な力を加えること(人間の手や治具で引き剥がす処理や、ローラーを回転させながら分離する処理、超音波等)を用いて行えばよい。たとえば、剥離層123に鋭利な刃物またはレーザー光照射等で切り込みをいれ、その切り込みに水を注入する。毛細管現象により水が剥離層123と絶縁層129の間にしみこむことにより、基板102を容易に剥離することができる。
〔基板121の貼り合わせ〕
次に、接着層122を介して基板121を絶縁層129に貼り合わせる(図9(B)参照。)。このようにして表示装置100を作製することができる(図10(A)参照。)。
また、基板111または基板121のうち、光151が射出される側の基板の外側に、反射防止層、光拡散層、マイクロレンズアレイ、プリズムシート、位相差板、偏光板などの特定の機能を有する材料で形成された層(以下、「機能層」ともいう。)を一種以上設けてもよい。反射防止層としては、例えば円偏光板などを用いることができる。機能層を設けることで、より表示品位の良好な表示装置を実現することができる。または、表示装置の消費電力を低減することができる。図10(B)は、機能層161を有するトップエミッション構造の表示装置100の断面図である。また、機能層161としてタッチセンサを設けてもよい。
また、基板111または基板121として、特定の機能を有する材料を用いてもよい。例えば、基板111または基板121として、円偏光板を用いてもよい。また、例えば、基板111または基板121を、位相差板を用いて形成し、当該基板と重ねて偏光板を設けてもよい。また、例えば、基板111または基板121を、プリズムシートを用いて形成し、当該基板と重ねて円偏光板を設けてもよい。基板111または基板121として、特定の機能を有する材料を用いることで、表示品位の向上と、製造コストの低減を実現することができる。
〔外部電極の形成〕
次に、異方性導電接続層138を介して外部電極124と端子電極216を開口132で電気的に接続する(図1(B)参照。)。このようにして、表示装置100に電力や信号を入力することが可能となる。なお、外部電極124として、FPCを用いることができる。また、外部電極124として金属線を用いることもできる。該金属線と端子電極216の接続は、異方性導電接続層138を用いてもよいが、異方性導電接続層138を用いずに、ワイヤーボンディング法により行うことができる。また、該金属線と端子電極216の接続をハンダ付けで行ってもよい。
表示領域131の背面に端子電極216を設けることにより、非矩形状の表示領域においても、その表示領域の形状を大きく逸脱することなく、且つ狭額縁化を実現することができる。
例えば、図20(A)に示すように外形形状が矩形である表示装置100とすることができる。また、図20(B)に示すように複数の曲線を組み合わせた外形形状を有する表示装置100とすることができる。また、図20(C)に示すように、組み込む構造物の形状に合わせた外形形状を有する表示装置100とすることもできる。なお、図20(C)に示す表示装置100は、自動車の速度などの情報を表示する部位に合わせた外形形状を有しており、表示領域131に速度計、エンジン回転数計、燃料計を表示している。なお、外部電極124は、表示領域131の背面の複数個所に設けてもよい。
〔カラー表示を実現するための画素構成例〕
ここで、カラー表示を実現するための画素構成の一例を、図12を用いて説明しておく。図12(A)、図12(B)、図13(A)、および図13(B)は、図1(A)の表示領域131中に示した領域170を拡大した平面図である。例えば、図12(A)に示すように、3つの画素130を副画素として機能させて、まとめて1つの画素140として用いる。3つの画素130それぞれに対応する着色層266を、赤、緑、青、とすることで、フルカラー表示を実現することができる。なお、図12(A)では、赤色の光を発する画素130を画素130Rと示し、緑色の光を発する画素130を画素130Gと示し、青色の光を発する画素130を画素130Bと示している。また、着色層266の色は、赤、緑、青、以外であってもよく、例えば、着色層266に黄、シアン、マゼンダなどを用いてもよい。
また、図12(B)に示すように、4つの画素130を副画素として機能させて、まとめて1つの画素140として用いてもよい。例えば、4つの画素130それぞれに対応する着色層266を、赤、緑、青、黄としてもよい。なお、図12(B)では、赤色の光を発する画素130を画素130Rと示し、緑色の光を発する画素130を画素130Gと示し、青色の光を発する画素130を画素130Bと示し、黄色の光を発する画素130を画素130Yと示している。1つの画素140として用いる画素130の数を増やすことで、特に色の再現性を高めることができる。よって、表示装置の表示品位を高めることができる。
また、4つの画素130それぞれに対応する着色層266を、赤、緑、青、白としてもよい(図12(B)参照)。白の光を発する画素130(画素130W)を設けることで、表示領域の発光輝度を高めることができる。なお、白の光を発する画素130Wを設ける場合は、画素130Wに対応する着色層266は設けなくてもよい。画素130Wに対応する着色層266を設けないことで、着色層266透過時の輝度低下がなくなるため、表示領域の発光輝度をより高めることができる。また、表示装置の消費電力を低減することができる。一方で、画素130Wに対応する白の着色層266を設けることにより、白色光の色温度を制御することができる。よって、表示装置の表示品位を高めることができる。また、表示装置の用途によっては、2つの画素130を副画素として機能させて、まとめて1つの画素140として用いてもよい。
また、4つの画素130をまとめて一つの画素140を構成する場合は、図13(B)に示すように、4つの画素130をマトリクス状に配置してもよい。また、4つの画素130をまとめて一つの画素140を構成する場合は、画素130Yや画素130Wに代えてシアン、マゼンダなどの光を発する画素を用いてもよい。また、画素140内に、同じ色を発する画素130を複数設けてもよい。
なお、画素140に含まれる画素130それぞれの占有面積や形状などは、それぞれ同じでもよいし、それぞれ異なっていてもよい。また、配列方法として、ストライプ配列やマトリクス配列以外の方法でもよい。例えば、デルタ配列、ベイヤー配列、ペンタイル配列などを適用することもできる。ペンタイル配列に適用した場合の一例を、図13(A)に示す。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、表示装置100のより具体的な構成例について、図14を用いて説明する。図14(A)は、表示装置100の構成例を説明するためのブロック図である。
図14(A)では、表示領域131、駆動回路133、駆動回路142a、および駆動回路142bを示している。駆動回路133、駆動回路142a、および駆動回路142bは、表示装置100内部に設けてもよいし、外部に設けてもよい。
駆動回路142a、および駆動回路142bは、例えば走査線駆動回路として機能できる。また、駆動回路133は、例えば信号線駆動回路として機能できる。なお、駆動回路142a、および駆動回路142bは、どちらか一方のみを設けてもよい。また、表示領域131を挟んで駆動回路133と向き合う位置に、何らかの回路を設けてもよい。
また、図14(A)に例示する表示装置100は、各々が略平行に配設され、且つ、駆動回路142a、および/または駆動回路142bによって電位が制御されるm本の配線135と、各々が略平行に配設され、且つ、駆動回路133によって電位が制御されるn本の配線136と、を有する。さらに、表示領域131はマトリクス状に配設された複数の画素回路134を有する。なお、一つの画素回路134により、一つの副画素(画素130)が駆動される。
各配線135は、表示領域131においてm行n列に配設された画素回路134のうち、いずれかの行に配設されたn個の画素回路134と電気的に接続される。また、各配線136は、m行n列に配設された画素回路134のうち、いずれかの列に配設されたm個の画素回路134に電気的に接続される。m、nは、ともに1以上の整数である。
図14(B)および図14(C)は、図14(A)に示す表示装置の画素回路134に用いることができる回路構成例を示している。
〔発光表示装置用画素回路の一例〕
また、図14(B)に示す画素回路134は、トランジスタ431と、容量素子233と、トランジスタ232と、トランジスタ434と、を有する。また、画素回路134は、発光素子125と電気的に接続されている。
トランジスタ431のソース電極およびドレイン電極の一方は、データ信号が与えられる配線(以下、信号線DL_nという)に電気的に接続される。さらに、トランジスタ431のゲート電極は、ゲート信号が与えられる配線(以下、走査線GL_mという)に電気的に接続される。
トランジスタ431は、データ信号のノード435への書き込みを制御する機能を有する。
容量素子233の一対の電極の一方は、ノード435に電気的に接続され、他方は、ノード437に電気的に接続される。また、トランジスタ431のソース電極およびドレイン電極の他方は、ノード435に電気的に接続される。
容量素子233は、ノード435に書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ232のソース電極およびドレイン電極の一方は、電位供給線VL_aに電気的に接続され、他方はノード437に電気的に接続される。さらに、トランジスタ232のゲート電極は、ノード435に電気的に接続される。
トランジスタ434のソース電極およびドレイン電極の一方は、電位供給線V0に電気的に接続され、他方はノード437に電気的に接続される。さらに、トランジスタ434のゲート電極は、走査線GL_mに電気的に接続される。
発光素子125のアノードおよびカソードの一方は、電位供給線VL_bに電気的に接続され、他方は、ノード437に電気的に接続される。
発光素子125としては、例えば有機エレクトロルミネセンス素子(有機EL素子ともいう)などを用いることができる。ただし、発光素子125としては、これに限定されず、例えば無機材料からなる無機EL素子を用いても良い。
なお、電源電位としては、例えば相対的に高電位側の電位または低電位側の電位を用いることができる。高電位側の電源電位を高電源電位(「VDD」ともいう)といい、低電位側の電源電位を低電源電位(「VSS」ともいう)という。また、接地電位を高電源電位または低電源電位として用いることもできる。例えば高電源電位が接地電位の場合には、低電源電位は接地電位より低い電位であり、低電源電位が接地電位の場合には、高電源電位は接地電位より高い電位である。
例えば、電位供給線VL_aまたは電位供給線VL_bの一方には、高電源電位VDDが与えられ、他方には、低電源電位VSSが与えられる。
図14(B)の画素回路134を有する表示装置では、駆動回路142a、および/または駆動回路142bにより各行の画素回路134を順次選択し、トランジスタ431、およびトランジスタ434をオン状態にしてデータ信号をノード435に書き込む。
ノード435にデータが書き込まれた画素回路134は、トランジスタ431、およびトランジスタ434がオフ状態になることで保持状態になる。さらに、ノード435に書き込まれたデータの電位に応じてトランジスタ232のソース電極とドレイン電極の間に流れる電流量が制御され、発光素子125は、流れる電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
〔液晶表示装置用画素回路の一例〕
図14(C)に示す画素回路134は、トランジスタ431と、容量素子233と、を有する。また、画素回路134は、液晶素子432と電気的に接続されている。
液晶素子432の一対の電極の一方の電位は、画素回路134の仕様に応じて適宜設定される。液晶素子432は、ノード436に書き込まれるデータにより配向状態が設定される。なお、複数の画素回路134のそれぞれが有する液晶素子432の一対の電極の一方に、共通の電位(コモン電位)を与えてもよい。また、各行の画素回路134毎の液晶素子432の一対の電極の一方に異なる電位を与えてもよい。
液晶素子432を備える表示装置の駆動方法としては、例えば、TNモード、STNモード、VAモード、ASM(Axially Symmetric Aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、MVAモード、PVA(Patterned Vertical Alignment)モード、IPSモード、FFSモード、またはTBA(Transverse Bend Alignment)モードなどを用いてもよい。また、表示装置の駆動方法としては、上述した駆動方法の他、ECB(Electrically Controlled Birefringence)モード、PDLC(Polymer Dispersed Liquid Crystal)モード、PNLC(Polymer Network Liquid Crystal)モード、ゲストホストモードなどがある。ただし、これに限定されず、液晶素子およびその駆動方式として様々なものを用いることができる。
また、ブルー相(Blue Phase)を示す液晶とカイラル剤とを含む液晶組成物により液晶素子432を構成してもよい。ブルー相を示す液晶は、応答速度が1msec以下と短く、光学的等方性であるため、配向処理が不要であり、かつ視野角依存性が小さい。
m行n列目の画素回路134において、トランジスタ431のソース電極およびドレイン電極の一方は、信号線DL_nに電気的に接続され、他方はノード436に電気的に接続される。トランジスタ431のゲート電極は、走査線GL_mに電気的に接続される。トランジスタ431は、ノード436へのデータ信号の書き込みを制御する機能を有する。
容量素子233の一対の電極の一方は、特定の電位が供給される配線(以下、容量線CL)に電気的に接続され、他方は、ノード436に電気的に接続される。また、液晶素子432の一対の電極の他方はノード436に電気的に接続される。なお、容量線CLの電位の値は、画素回路134の仕様に応じて適宜設定される。容量素子233は、ノード436に書き込まれたデータを保持する保持容量としての機能を有する。
例えば、図14(C)の画素回路134を有する表示装置では、駆動回路142a、および/または駆動回路142bにより各行の画素回路134を順次選択し、トランジスタ431をオン状態にしてノード436にデータ信号を書き込む。
ノード436にデータ信号が書き込まれた画素回路134は、トランジスタ431がオフ状態になることで保持状態になる。これを行毎に順次行うことにより、表示領域131に画像を表示できる。
〔表示素子〕
本発明の一態様の表示装置は、様々な形態を用いること、または様々な表示素子を有することが出来る。表示素子の一例としては、EL(エレクトロルミネッセンス)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)、LED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイ(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、MIRASOL(登録商標)、IMOD(インターフェアレンス・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブを用いた表示素子、など、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有するものがある。また、表示素子として量子ドットを用いてもよい。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。量子ドットを用いた表示装置の一例としては、量子ドットディスプレイなどがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク、電子粉流体(登録商標)、又は電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、上記実施の形態に示したトランジスタ232および/またはトランジスタ252に置き換えて用いることができるトランジスタの一例について、図15を用いて説明する。なお、本明細書等に開示するトランジスタは、トランジスタ431やトランジスタ434などにも用いることができる。
〔ボトムゲート型トランジスタ〕
図15(A1)に例示するトランジスタ410は、ボトムゲート型のトランジスタの1つであるチャネル保護型のトランジスタである。トランジスタ410は、半導体層208のチャネル形成領域上に、チャネル保護層として機能できる絶縁層209を有する。絶縁層209は、絶縁層205と同様の材料および方法により形成することができる。電極214の一部、および電極215の一部は、絶縁層209上に形成される。
チャネル形成領域上に絶縁層209を設けることで、電極214および電極215の形成時に生じる半導体層208の露出を防ぐことができる。よって、電極214および電極215の形成時に半導体層208の薄膜化を防ぐことができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。
図15(A2)に示すトランジスタ411は、絶縁層211上にバックゲート電極として機能できる電極213を有する点が、トランジスタ410と異なる。電極213は、電極206と同様の材料および方法で形成することができる。また、電極213は、絶縁層210と絶縁層211の間に形成してもよい。
一般に、バックゲート電極は導電層で形成され、ゲート電極とバックゲート電極で半導体層のチャネル形成領域を挟むように配置される。よって、バックゲート電極は、ゲート電極と同様に機能させることができる。バックゲート電極の電位は、ゲート電極と同電位としてもよいし、GND電位や、任意の電位としてもよい。また、バックゲート電極の電位をゲート電極と連動させず独立して変化させることで、トランジスタのしきい値電圧を変化させることができる。
電極206および電極213は、どちらもゲート電極として機能することができる。よって、絶縁層207、絶縁層209、絶縁層210、および絶縁層211は、ゲート絶縁層として機能することができる。
なお、電極206または電極213の一方を、「ゲート電極」という場合、他方を「バックゲート電極」という場合がある。例えば、トランジスタ411において、電極213を「ゲート電極」と言う場合、電極206を「バックゲート電極」と言う場合がある。また、電極213を「ゲート電極」として用いる場合は、トランジスタ411をトップゲート型のトランジスタの一種と考えることができる。また、電極206および電極213のどちらか一方を、「第1のゲート電極」といい、他方を「第2のゲート電極」という場合がある。
半導体層208を挟んで電極206および電極213を設けることで、更には、電極206および電極213を同電位とすることで、半導体層208においてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジスタ411のオン電流が大きくなる共に、電界効果移動度が高くなる。
したがって、トランジスタ411は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ411の占有面積を小さくすることができる。本発明の一態様によれば、トランジスタの占有面積を小さくすることができる。よって、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。
また、ゲート電極とバックゲート電極は導電層で形成されるため、トランジスタの外部で生じる電界が、チャネルが形成される半導体層に作用しないようにする機能(特に静電気に対する静電遮蔽機能)を有する。
また、電極206および電極213は、それぞれが外部からの電界を遮蔽する機能を有するため、基板111側もしくは電極213上方に生じる荷電粒子等の電荷が半導体層208のチャネル形成領域に影響しない。この結果、ストレス試験(例えば、ゲートに負の電荷を印加する−GBT(Gate Bias−Temperature)ストレス試験)の劣化が抑制されると共に、異なるドレイン電圧におけるオン電流の立ち上がり電圧の変動を抑制することができる。なお、この効果は、電極206および電極213が、同電位、または異なる電位の場合において生じる。
なお、BTストレス試験は加速試験の一種であり、長期間の使用によって起こるトランジスタの特性変化(すなわち、経年変化)を、短時間で評価することができる。特に、BTストレス試験前後におけるトランジスタのしきい値電圧の変動量は、信頼性を調べるための重要な指標となる。BTストレス試験前後において、しきい値電圧の変動量が少ないほど、信頼性が高いトランジスタであるといえる。
また、電極206および電極213を有し、且つ電極206および電極213を同電位とすることで、しきい値電圧の変動量が低減される。このため、複数のトランジスタにおける電気特性のばらつきも同時に低減される。
また、バックゲート電極を有するトランジスタは、ゲートに正の電荷を印加する+GBTストレス試験前後におけるしきい値電圧の変動も、バックゲート電極を有さないトランジスタより小さい。
また、バックゲート電極側から光が入射する場合に、バックゲート電極を、遮光性を有する導電膜で形成することで、バックゲート電極側から半導体層に光が入射することを防ぐことができる。よって、半導体層の光劣化を防ぎ、トランジスタのしきい値電圧がシフトするなどの電気特性の劣化を防ぐことができる。
本発明の一態様によれば、信頼性の良好なトランジスタを実現することができる。また、信頼性の良好な半導体装置を実現することができる。
図15(B1)に例示するトランジスタ420は、ボトムゲート型のトランジスタの1つであるチャネル保護型のトランジスタである。トランジスタ420は、トランジスタ410とほぼ同様の構造を有しているが、絶縁層209が半導体層208を覆っている点が異なる。また、絶縁層209の一部を選択的に除去して形成した開口部において、半導体層208と電極214が電気的に接続している。また、絶縁層209の一部を選択的に除去して形成した開口部において、半導体層208と電極215が電気的に接続している。絶縁層209の、チャネル形成領域と重なる領域は、チャネル保護層として機能できる。
また、絶縁層209を設けることで、電極214および電極215の形成時に生じる半導体層208の露出を防ぐことができる。よって、電極214および電極215の形成時に半導体層208の薄膜化を防ぐことができる。
図15(B2)に示すトランジスタ421は、絶縁層211上にバックゲート電極として機能できる電極213を有する点が、トランジスタ420と異なる。トランジスタ421は、絶縁層211の上に形成された電極213を有する。前述した通り、電極213は、バックゲート電極として機能することができる。
トランジスタ411と同様に、トランジスタ421は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ421の占有面積を小さくすることができる。本発明の一態様によれば、トランジスタの占有面積を小さくすることができる。よって、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。
また、絶縁層209を設けることで、電極214および電極215の形成時に生じる半導体層208の露出を防ぐことができる。よって、電極214および電極215の形成時に半導体層208の薄膜化を防ぐことができる。
また、トランジスタ420およびトランジスタ421は、トランジスタ410およびトランジスタ411よりも、電極214と電極206の間の距離と、電極215と電極206の間の距離が長くなる。よって、電極214と電極206の間に生じる寄生容量を小さくすることができる。また、電極215と電極206の間に生じる寄生容量を小さくすることができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現できる。
図15(C1)に示すトランジスタ425は、ボトムゲート型のトランジスタの1つであるチャネルエッチング型のトランジスタである。トランジスタ425は、絶縁層209を用いずに電極214および電極215を形成する。このため、電極214および電極215の形成時に、半導体層208の一部が露出しかつエッチングされる場合がある。一方、絶縁層209を設けないため、トランジスタの生産性を高めることができる。
図15(C2)に示すトランジスタ426は、絶縁層211上にバックゲート電極として機能できる電極213を有する点が、トランジスタ425と異なる。
図16(A)はトランジスタ426の上面図である。図16(B)は、図16(A)中のX1−X2の一点鎖線で示した部位の断面図(チャネル長方向の断面図)である。図16(C)は、図16(A)中のY1−Y2の一点鎖線で示した部位の断面図(チャネル幅方向の断面図)である。
絶縁層119上に設けられた電極206は、絶縁層211、絶縁層210、および絶縁層207に設けられた開口247aおよび開口247bにおいて、電極213と電気的に接続されている。よって、電極206と電極213には、同じ電位が供給される。また、開口247aおよび開口247bは、どちらか一方を設けなくてもよい。また、開口247aおよび開口247bの両方を設けなくてもよい。開口247aおよび開口247bの両方を設けない場合は、電極206と電極213に異なる電位を供給することができる。
〔トップゲート型トランジスタ〕
図17(A1)に例示するトランジスタ430は、トップゲート型のトランジスタの1つである。トランジスタ430は、絶縁層119の上に半導体層208を有し、半導体層208および絶縁層119上に、半導体層208の一部に接する電極214および半導体層208の一部に接する電極215を有し、半導体層208、電極214、および電極215上に絶縁層207を有し、絶縁層207上に電極206を有する。また、電極206上に絶縁層210と、絶縁層211を有する。
トランジスタ430は、電極206および電極214、並びに、電極206および電極215が重ならないため、電極206および電極214間に生じる寄生容量、並びに、電極206および電極215間に生じる寄生容量を小さくすることができる。また、電極206を形成した後に、電極206をマスクとして用いて不純物元素222を半導体層208に導入することで、半導体層208中に自己整合(セルフアライメント)的に不純物領域を形成することができる(図17(A3)参照)。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。
なお、不純物元素222の導入は、イオン注入装置、イオンドーピング装置またはプラズマ処理装置を用いて行うことができる。
半導体層208にシリコンなどの半導体を用いる場合は、不純物元素222として、例えば、第13族元素または第15族元素のうち、少なくとも一種類の元素を用いることができる。また、半導体層208に酸化物半導体を用いる場合は、不純物元素222として、希ガス、水素、および窒素のうち、少なくとも一種類の元素を用いることも可能である。
図17(B1)に例示するトランジスタ440は、トップゲート型のトランジスタの1つである。トランジスタ440は、電極214および電極215を形成した後に半導体層208を形成する点が、トランジスタ430と異なる。また、図17(B2)に例示するトランジスタ441は、電極214および電極215を形成した後に半導体層208を形成する点が、トランジスタ431と異なる。よって、トランジスタ440およびトランジスタ441において、半導体層208の一部は電極214上に形成され、半導体層208の他の一部は電極215上に形成される。
トランジスタ440およびトランジスタ441も、電極206を形成した後に、電極206をマスクとして用いて不純物元素222を半導体層208に導入することで、半導体層208中に自己整合的に不純物領域を形成することができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。また、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。
なお、本明細書等で開示された、金属膜、半導体膜、無機絶縁膜など様々な膜はスパッタ法やプラズマCVD法により形成することができるが、他の方法、例えば、熱CVD(Chemical Vapor Deposition)法により形成してもよい。熱CVD法の例としてMOCVD(Metal Organic Chemical Vapor Deposition)法やALD(Atomic Layer Deposition)法を使っても良い。
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生成されることが無いという利点を有する。
熱CVD法は、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を大気圧または減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで成膜を行ってもよい。
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが順次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行ってもよい。例えば、それぞれのスイッチングバルブ(高速バルブとも呼ぶ)を切り替えて2種類以上の原料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原料ガスと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第2の原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキャリアガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよい。また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の層を成膜し、後から導入される第2の原料ガスと反応して、第2の層が第1の層上に積層されて薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順序を繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微細なFETを作製する場合に適している。
MOCVD法やALD法などの熱CVD法は、これまでに記載した実施形態に開示された金属膜、半導体膜、無機絶縁膜など様々な膜を形成することができ、例えば、In−Ga−Zn−O膜を成膜する場合には、トリメチルインジウム、トリメチルガリウム、及びジメチル亜鉛を用いる。なお、トリメチルインジウムの化学式は、In(CHである。また、トリメチルガリウムの化学式は、Ga(CHである。また、ジメチル亜鉛の化学式は、Zn(CHである。また、これらの組み合わせに限定されず、トリメチルガリウムに代えてトリエチルガリウム(化学式Ga(C)を用いることもでき、ジメチル亜鉛に代えてジエチル亜鉛(化学式Zn(C)を用いることもできる。
例えば、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒とハフニウム前駆体化合物を含む液体(ハフニウムアルコキシドや、テトラキスジメチルアミドハフニウム(TDMAH)などのハフニウムアミド)を気化させた原料ガスと、酸化剤としてオゾン(O)の2種類のガスを用いる。なお、テトラキスジメチルアミドハフニウムの化学式はHf[N(CHである。また、他の材料液としては、テトラキス(エチルメチルアミド)ハフニウムなどがある。
例えば、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶媒とアルミニウム前駆体化合物を含む液体(トリメチルアルミニウム(TMA)など)を気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。なお、トリメチルアルミニウムの化学式はAl(CHである。また、他の材料液としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)などがある。
例えば、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサクロロジシランを被成膜面に吸着させ、吸着物に含まれる塩素を除去し、酸化性ガス(O、一酸化二窒素)のラジカルを供給して吸着物と反応させる。
例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WFガスとBガスを順次繰り返し導入して初期タングステン膜を形成し、その後、WFガスとHガスを順次繰り返し導入してタングステン膜を形成する。なお、Bガスに代えてSiHガスを用いてもよい。
例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばIn−Ga−Zn−O膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入してIn−O層を形成し、その後、Ga(CHガスとOガスを順次繰り返し導入してGaO層を形成し、更にその後Zn(CHガスとOガスを順次繰り返し導入してZnO層を形成する。なお、これらの層の順番はこの例に限らない。また、これらのガスを用いてIn−Ga−O層やIn−Zn−O層、Ga−Zn−O層などの混合化合物層を形成しても良い。なお、Oガスに変えてAr等の不活性ガスで水をバブリングして得られたHOガスを用いても良いが、Hを含まないOガスを用いる方が好ましい。また、In(CHガスにかえて、In(Cガスを用いても良い。また、Ga(CHガスにかえて、Ga(Cガスを用いても良い。
図18(A)にトランジスタ451の上面図を示す。また、図18(B)は、図18(A)中のX1−X2の一点鎖線で示した部位の断面図(チャネル長方向の断面図)である。図18(C)は、図18(A)中のY1−Y2の一点鎖線で示した部位の断面図(チャネル幅方向の断面図)である。トランジスタ451は、絶縁層217に設けた凸部上に半導体層208が形成されている。トランジスタ451はバックゲート電極を有するトップゲート型のトランジスタの一種である。
図18では、トランジスタ451を構成する半導体層208にシリコンなどの無機半導体層を用いる場合を例示する。図18において、半導体層208は、電極213と重なる領域に半導体層208iと、2つの半導体層208tと、2つの半導体層208uとを有する。半導体層208iは、2つの半導体層208tの間に配置されている。また、半導体層208iと2つの半導体層208tは、2つの半導体層208uの間に配置されている。また、電極206と半導体層208iは、絶縁層207を介して互いに重なっている。
トランジスタ451がオン状態の時に半導体層208iにチャネルが形成される。よって、半導体層208iはチャネル形成領域として機能する。半導体層208tおよび半導体層208uは、導電型を付与する不純物を有する。半導体層208tに含まれる不純物の濃度は、半導体層208iよりも高く、半導体層208uよりも低い。また、半導体層208uに含まれる不純物の濃度は、半導体層208tよりも高い。
よって、半導体層208tは低濃度不純物領域(LDD)として機能する。また、半導体層208uは高濃度不純物領域として機能する。なお、2つの半導体層208tのうち、一方または両方の半導体層208tは設けなくてもよい。また、2つの半導体層208uのうち、一方の半導体層208uはソース領域として機能し、他方の半導体層208uはドレイン領域として機能する。
絶縁層211上に設けられた電極214は、絶縁層211、絶縁層210、および絶縁層207に設けられた開口247cにおいて、半導体層208uの一方と電気的に接続されている。また、絶縁層211上に設けられた電極215は、絶縁層211、絶縁層210、および絶縁層207に設けられた開口247dにおいて、半導体層208uの他方と電気的に接続されている。
絶縁層211上に設けられた電極206は、絶縁層207、および絶縁層217に設けられた開口247aおよび開口247bにおいて、電極213と電気的に接続されている。よって、電極206と電極213には、同じ電位が供給される。また、開口247aおよび開口247bは、どちらか一方を設けなくてもよい。また、開口247aおよび開口247bの両方を設けなくてもよい。開口247aおよび開口247bの両方を設けない場合は、電極206と電極213に異なる電位を供給することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
本実施の形態では、発光素子125に用いることができる発光素子の構成例について説明する。なお、本実施の形態に示すEL層320が、他の実施の形態に示したEL層117に相当する。
<発光素子の構成>
図19(A)に示す発光素子330は、一対の電極(電極318、電極322)間にEL層320が挟まれた構造を有する。なお、以下の本実施の形態の説明においては、例として、電極318を陽極として用い、電極322を陰極として用いるものとする。
また、EL層320は、少なくとも発光層を含んで形成されていればよく、発光層以外の機能層を含む積層構造であっても良い。発光層以外の機能層としては、正孔注入性の高い物質、正孔輸送性の高い物質、電子輸送性の高い物質、電子注入性の高い物質、バイポーラ性(電子及び正孔の輸送性の高い物質)の物質等を含む層を用いることができる。具体的には、正孔注入層、正孔輸送層、電子輸送層、電子注入層等の機能層を適宜組み合わせて用いることができる。
図19(A)に示す発光素子330は、電極318と電極322との間に与えられた電位差により電流が流れ、EL層320において正孔と電子とが再結合し、発光するものである。つまりEL層320に発光領域が形成されるような構成となっている。
本発明において、発光素子330からの発光は、電極318、または電極322側から外部に取り出される。従って、電極318、または電極322のいずれか一方は透光性を有する物質で成る。
なお、EL層320は図19(B)に示す発光素子331のように、電極318と電極322との間に複数積層されていても良い。n層(nは2以上の自然数)の積層構造を有する場合には、m番目(mは、1≦m<nを満たす自然数)のEL層320と、(m+1)番目のEL層320との間には、それぞれ電荷発生層320aを設けることが好ましい。
電荷発生層320aは、有機化合物と金属酸化物の複合材料、金属酸化物、有機化合物とアルカリ金属、アルカリ土類金属、またはこれらの化合物との複合材料の他、これらを適宜組み合わせて形成することができる。有機化合物と金属酸化物の複合材料としては、例えば、有機化合物と酸化バナジウムや酸化モリブデンや酸化タングステン等の金属酸化物を含む。有機化合物としては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素等の低分子化合物、または、それらの低分子化合物のオリゴマー、デンドリマー、ポリマー等、種々の化合物を用いることができる。なお、有機化合物としては、正孔輸送性有機化合物として正孔移動度が10−6cm/Vs以上であるものを適用することが好ましい。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、電荷発生層320aに用いるこれらの材料は、キャリア注入性、キャリア輸送性に優れているため、発光素子330の低電流駆動、および低電圧駆動を実現することができる。
なお、電荷発生層320aは、有機化合物と金属酸化物の複合材料と他の材料とを組み合わせて形成してもよい。例えば、有機化合物と金属酸化物の複合材料を含む層と、電子供与性物質の中から選ばれた一の化合物と電子輸送性の高い化合物とを含む層とを組み合わせて形成してもよい。また、有機化合物と金属酸化物の複合材料を含む層と、透明導電膜とを組み合わせて形成してもよい。
このような構成を有する発光素子331は、エネルギーの移動や消光などの問題が起こり難く、材料の選択の幅が広がることで高い発光効率と長い寿命とを併せ持つ発光素子とすることが容易である。また、一方の発光層で燐光発光、他方で蛍光発光を得ることも容易である。
なお、電荷発生層320aとは、電極318と電極322に電圧を印加したときに、電荷発生層320aに接して形成される一方のEL層320に対して正孔を注入する機能を有し、他方のEL層320に電子を注入する機能を有する。
図19(B)に示す発光素子331は、EL層320に用いる発光物質の種類を変えることにより様々な発光色を得ることができる。また、発光物質として発光色の異なる複数の発光物質を用いることにより、ブロードなスペクトルの発光や白色発光を得ることもできる。
図19(B)に示す発光素子331を用いて、白色発光を得る場合、複数のEL層の組み合わせとしては、赤、青及び緑色の光を含んで白色に発光する構成であればよく、例えば、青色の蛍光材料を発光物質として含む発光層と、緑色と赤色の燐光材料を発光物質として含む発光層を有する構成が挙げられる。また、赤色の発光を示す発光層と、緑色の発光を示す発光層と、青色の発光を示す発光層とを有する構成とすることもできる。または、補色の関係にある光を発する発光層を有する構成であっても白色発光が得られる。発光層が2層積層された積層型素子において、一方の発光層から得られる発光の発光色ともう一方の発光層から得られる発光の発光色を補色の関係にする場合、補色の関係としては、青色と黄色、あるいは青緑色と赤色などが挙げられる。
なお、上述した積層型素子の構成において、積層される発光層の間に電荷発生層を配置することにより、電流密度を低く保ったまま、高輝度領域での長寿命素子を実現することができる。また、電極材料の抵抗による電圧降下を小さくできるので、大面積での均一な発光が可能となる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態では、本発明の一態様の表示装置が適用された電子機器の一例について、図面を参照して説明する。
本発明の一態様に係る表示装置を用いた電子機器として、テレビ、モニタ等の表示装置、照明装置、デスクトップ型或いはノート型のパーソナルコンピュータ、ワードプロセッサ、DVD(Digital Versatile Disc)などの記録媒体に記憶された静止画又は動画を再生する画像再生装置、ポータブルCDプレーヤ、ラジオ、テープレコーダ、ヘッドホンステレオ、ステレオ、置き時計、壁掛け時計、コードレス電話子機、トランシーバ、携帯電話、自動車電話、携帯型ゲーム機、タブレット型端末、パチンコ機などの大型ゲーム機、電卓、携帯情報端末、電子手帳、電子書籍、電子翻訳機、音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、温水器、扇風機、毛髪乾燥機、エアコンディショナー、加湿器、除湿器などの空調設備、食器洗い器、食器乾燥器、衣類乾燥器、布団乾燥器、電気冷蔵庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、懐中電灯、チェーンソー等の工具、煙感知器、透析装置等の医療機器などが挙げられる。さらに、誘導灯、信号機、ベルトコンベア、エレベータ、エスカレータ、産業用ロボット、電力貯蔵システム、電力の平準化やスマートグリッドのための蓄電装置等の産業機器が挙げられる。また、蓄電体等からの電力を用いて電動機により推進する移動体なども、電子機器の範疇に含まれるものとする。上記移動体として、例えば、電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、小型又は大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機や惑星探査機、宇宙船などが挙げられる。
特に、フレキシブルな形状を備える表示装置を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
また、表示装置を、家屋やビルの内壁または外壁や、自動車の内装または外装の曲面に沿って組み込むことも可能である。
図21(A)は、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、表示装置を表示部7402に用いることにより作製される。
図21(A)に示す携帯電話機7400は、表示部7402にタッチセンサを有し、表示部7402を指などで触れることで、情報を入力することができる。また、電話を掛ける、或いは文字を入力するなどのあらゆる操作は、表示部7402を指などで触れることにより行うことができる。
また操作ボタン7403の操作により、電源のON、OFFや、表示部7402に表示される画像の種類を切り替えることができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。
ここで、表示部7402には、本発明の一態様の表示装置が組み込まれている。したがって、表示部を湾曲することが可能で、外形形状などの設計自由度が高い携帯電話機とすることができる。
図21(B)は、リストバンド型の表示装置の一例を示している。携帯表示装置7100は、筐体7101、表示部7102、操作ボタン7103、及び送受信装置7104を備える。
携帯表示装置7100は、送受信装置7104によって映像信号を受信可能で、受信した映像を表示部7102に表示することができる。また、音声信号を他の受信機器に送信することもできる。
また、操作ボタン7103によって、電源のON、OFF動作や表示する映像の切り替え、または音声のボリュームの調整などを行うことができる。
ここで、表示部7102には、本発明の一態様の表示装置が組み込まれている。したがって、表示部を湾曲することが可能で、外形形状などの設計自由度が高い携帯表示装置とすることができる。
図21(C)は自動車の一例であり、車体951、車輪952、ダッシュボード953、ライト954等を有する。図21(D)は当該自動車の運転席を示している。運転席に設置された表示部955に、速度、エンジン回転数、燃料などの情報が表示される。表示部955には、本発明の一態様の表示装置が組み込まれている。本発明の一態様の表示装置は、表示部を湾曲することが可能で、外形形状などの設計自由度が高い。したがって、表示部955の視認性を高めることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
100 表示装置
101 基板
102 基板
111 基板
112 接着層
113 剥離層
114 隔壁
115 電極
117 EL層
118 電極
119 絶縁層
120 接着層
121 基板
122 接着層
123 剥離層
124 外部電極
125 発光素子
127 開口
128 開口
129 絶縁層
130 画素
131 表示領域
132 開口
133 駆動回路
134 画素回路
135 配線
136 配線
138 異方性導電接続層
140 画素
151 光
161 機能層
170 領域
171 素子基板
181 対向基板
205 絶縁層
206 電極
207 絶縁層
208 半導体層
209 絶縁層
210 絶縁層
211 絶縁層
212 絶縁層
213 電極
214 電極
215 電極
216 端子電極
217 絶縁層
219 配線
221 絶縁層
222 不純物元素
223 絶縁層
232 トランジスタ
233 容量素子
252 トランジスタ
264 遮光層
266 着色層
268 オーバーコート層
274 層
318 電極
320 EL層
322 電極
330 発光素子
331 発光素子
410 トランジスタ
411 トランジスタ
420 トランジスタ
421 トランジスタ
430 トランジスタ
431 トランジスタ
432 液晶素子
434 トランジスタ
435 ノード
436 ノード
437 ノード
440 トランジスタ
441 トランジスタ
951 車体
952 車輪
953 ダッシュボード
954 ライト
955 表示部
5100 ペレット
5101 イオン
5102 酸化亜鉛層
5103 粒子
5120 基板
5130 ターゲット
5161 領域
7100 携帯表示装置
7101 筐体
7102 表示部
7103 操作ボタン
7104 送受信装置
7400 携帯電話機
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
130B 画素
130G 画素
130R 画素
130Y 画素
132a 開口
132b 開口
142a 駆動回路
142b 駆動回路
320a 電荷発生層
5100a ペレット
5100b ペレット
5105a ペレット
5105a1 領域
5105a2 ペレット
5105b ペレット
5105c ペレット
5105d ペレット
5105d1 領域
5105e ペレット

Claims (5)

  1. 表示領域と、端子電極と、を有する表示装置であって、
    前記端子電極は前記表示領域と互いに重なり、
    前記表示領域は一方の面に画像を表示できる機能を有し、
    前記端子電極は、前記表示領域の他方の面側から
    外部電極と電気的に接続する表示装置。
  2. 請求項1において、
    前記表示領域が発光素子を有する表示装置。
  3. 第1の基板と、第2の基板と、発光素子と、第1の電極と、を有する表示装置であって、
    前記第1の電極は前記第1の基板の上方に設けられ、
    前記発光素子は前記第1の電極の上方に設けられ、
    前記第2の基板は前記発光素子の上方に設けられ、
    前記発光素子は、前記第2の基板側から光を射出し、
    前記第1の電極は前記第1の基板に設けられた開口において、
    第2の電極と電気的に接続する表示装置。
  4. 請求項3において、
    前記第1の基板及び前記第2の基板は、
    可撓性を有する表示装置。
  5. 請求項1乃至請求項4のいずれか一項に記載の表示装置と、タッチセンサと、を有する電子機器。
JP2015124664A 2014-06-23 2015-06-22 表示装置及び電子機器 Withdrawn JP2016027388A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124664A JP2016027388A (ja) 2014-06-23 2015-06-22 表示装置及び電子機器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014128672 2014-06-23
JP2014128672 2014-06-23
JP2015124664A JP2016027388A (ja) 2014-06-23 2015-06-22 表示装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2016027388A true JP2016027388A (ja) 2016-02-18

Family

ID=54870390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124664A Withdrawn JP2016027388A (ja) 2014-06-23 2015-06-22 表示装置及び電子機器

Country Status (6)

Country Link
US (1) US10403703B2 (ja)
JP (1) JP2016027388A (ja)
KR (1) KR102377341B1 (ja)
CN (1) CN106463082B (ja)
TW (1) TWI708383B (ja)
WO (1) WO2015198183A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018758A (ja) * 2014-07-11 2016-02-01 株式会社ジャパンディスプレイ 有機el表示装置及び有機el表示装置の製造方法
WO2018211376A1 (ja) * 2017-05-18 2018-11-22 株式会社半導体エネルギー研究所 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
JPWO2017158757A1 (ja) * 2016-03-16 2019-01-24 パイオニア株式会社 発光装置、電子機器及び発光装置の製造方法
JP2019061115A (ja) * 2017-09-27 2019-04-18 凸版印刷株式会社 カラーフィルタ及びそれを用いた表示装置
US10818743B2 (en) 2018-06-18 2020-10-27 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10204535B2 (en) 2015-04-06 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN104851892A (zh) * 2015-05-12 2015-08-19 深圳市华星光电技术有限公司 窄边框柔性显示装置及其制作方法
JP6412036B2 (ja) * 2015-12-21 2018-10-24 株式会社ジャパンディスプレイ 表示装置
KR102562898B1 (ko) * 2016-03-31 2023-08-04 삼성디스플레이 주식회사 표시 장치
JP6776058B2 (ja) * 2016-08-26 2020-10-28 シャープ株式会社 自律走行車両制御装置、自律走行車両制御システム及び自律走行車両制御方法
CN206472221U (zh) * 2017-02-15 2017-09-05 合肥鑫晟光电科技有限公司 一种显示屏的玻璃面板以及显示屏
US10366919B2 (en) 2017-09-20 2019-07-30 Globalfoundries Inc. Fully aligned via in ground rule region
CN108254984B (zh) * 2018-01-31 2021-06-04 上海天马微电子有限公司 一种显示面板及显示装置
US11119616B2 (en) 2018-11-01 2021-09-14 Apple Inc. Trace transfer techniques for touch sensor panels with flex circuits
US11853515B2 (en) 2018-12-19 2023-12-26 Apple Inc. Ultra-thin touch sensors
CN110197844B (zh) * 2019-06-20 2021-01-12 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板和显示装置
CN111697037B (zh) * 2020-06-04 2024-04-09 武汉天马微电子有限公司 一种有机发光显示面板及显示装置
KR20220007754A (ko) * 2020-07-09 2022-01-19 삼성디스플레이 주식회사 표시 장치 및 이를 포함하는 타일형 표시 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105326A (ja) * 1989-09-19 1991-05-02 Tokyo Electric Co Ltd エレクトロクロミックディスプレイ
JP2002299047A (ja) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置およびその製造方法
JP2003059648A (ja) * 2001-08-10 2003-02-28 Sony Corp 表示装置及びその製造方法
JP2003255850A (ja) * 2002-03-05 2003-09-10 Pioneer Electronic Corp 表示パネル基板及び表示装置
JP2008096818A (ja) * 2006-10-13 2008-04-24 Nec Lcd Technologies Ltd 表示装置
US20100134743A1 (en) * 2008-12-02 2010-06-03 Samsung Electonics Co, Ltd. Display substrate, display panel having the display substrate, and display device having the display panel
JP2012103335A (ja) * 2010-11-08 2012-05-31 Hitachi Displays Ltd 表示装置
JP2013015836A (ja) * 2011-06-30 2013-01-24 Samsung Display Co Ltd 可撓性表示パネル及び該可撓性表示パネルを備える表示装置
WO2013062707A1 (en) * 2011-10-28 2013-05-02 Apple Inc. Display with vias for concealed printed circuit and component attachment

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI252592B (en) * 2000-01-17 2006-04-01 Semiconductor Energy Lab EL display device
TW548860B (en) * 2001-06-20 2003-08-21 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
US8415208B2 (en) 2001-07-16 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
GB0212566D0 (en) 2002-05-31 2002-07-10 Koninkl Philips Electronics Nv Display device
JP4574158B2 (ja) 2003-10-28 2010-11-04 株式会社半導体エネルギー研究所 半導体表示装置及びその作製方法
US7453426B2 (en) 2004-01-14 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus
JP2006276359A (ja) 2005-03-29 2006-10-12 Sanyo Epson Imaging Devices Corp 液晶表示装置
JP2007272203A (ja) 2006-03-06 2007-10-18 Nec Corp 表示装置
JP4320682B2 (ja) 2006-07-20 2009-08-26 セイコーエプソン株式会社 表示装置、表示装置の駆動方法及び電子機器
US7897971B2 (en) 2007-07-26 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2009069768A (ja) 2007-09-18 2009-04-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
TWI492201B (zh) 2007-10-23 2015-07-11 Japan Display Inc 光電裝置
JP5191286B2 (ja) * 2007-11-09 2013-05-08 株式会社ジャパンディスプレイウェスト 電気光学装置
JP4518199B2 (ja) 2007-10-23 2010-08-04 エプソンイメージングデバイス株式会社 電気光学装置
US9626900B2 (en) 2007-10-23 2017-04-18 Japan Display Inc. Electro-optical device
JP2009109770A (ja) 2007-10-30 2009-05-21 Fujitsu Ltd 表示装置製造方法および表示装置
EP2151811A3 (en) 2008-08-08 2010-07-21 Semiconductor Energy Laboratory Co, Ltd. Display device and electronic device
KR101824425B1 (ko) * 2008-12-17 2018-02-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
JP5471035B2 (ja) 2009-05-26 2014-04-16 ソニー株式会社 表示装置、表示装置の製造方法、および電子機器
WO2011052437A1 (en) 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
JP2013251255A (ja) 2012-05-04 2013-12-12 Semiconductor Energy Lab Co Ltd 発光装置の作製方法
KR102173801B1 (ko) * 2012-07-12 2020-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치, 및 표시 장치의 제작 방법
JP6142151B2 (ja) 2012-07-31 2017-06-07 株式会社Joled 表示装置および電子機器
US11074025B2 (en) 2012-09-03 2021-07-27 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
KR102160829B1 (ko) * 2012-11-02 2020-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 밀봉체 및 밀봉체의 제작 방법
US8994827B2 (en) * 2012-11-20 2015-03-31 Samsung Electronics Co., Ltd Wearable electronic device
US9853092B2 (en) * 2012-11-30 2017-12-26 Lg Display Co., Ltd. OLED display device having touch sensor and method of manufacturing the same
KR20140109261A (ko) 2013-03-05 2014-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
JP6490901B2 (ja) 2013-03-14 2019-03-27 株式会社半導体エネルギー研究所 発光装置の作製方法
TWI748456B (zh) 2014-02-28 2021-12-01 日商半導體能源研究所股份有限公司 顯示裝置的製造方法及電子裝置的製造方法
KR102292148B1 (ko) 2014-03-13 2021-08-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치의 제작 방법, 및 전자 기기의 제작 방법
TWI832717B (zh) * 2014-04-25 2024-02-11 日商半導體能源研究所股份有限公司 顯示裝置及電子裝置
US10204535B2 (en) * 2015-04-06 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP6761276B2 (ja) * 2015-05-28 2020-09-23 株式会社半導体エネルギー研究所 表示装置の作製方法、および電子機器の作製方法
US9941475B2 (en) * 2015-07-29 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device and method for manufacturing electronic device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105326A (ja) * 1989-09-19 1991-05-02 Tokyo Electric Co Ltd エレクトロクロミックディスプレイ
JP2002299047A (ja) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置およびその製造方法
JP2003059648A (ja) * 2001-08-10 2003-02-28 Sony Corp 表示装置及びその製造方法
JP2003255850A (ja) * 2002-03-05 2003-09-10 Pioneer Electronic Corp 表示パネル基板及び表示装置
JP2008096818A (ja) * 2006-10-13 2008-04-24 Nec Lcd Technologies Ltd 表示装置
US20100134743A1 (en) * 2008-12-02 2010-06-03 Samsung Electonics Co, Ltd. Display substrate, display panel having the display substrate, and display device having the display panel
JP2012103335A (ja) * 2010-11-08 2012-05-31 Hitachi Displays Ltd 表示装置
JP2013015836A (ja) * 2011-06-30 2013-01-24 Samsung Display Co Ltd 可撓性表示パネル及び該可撓性表示パネルを備える表示装置
WO2013062707A1 (en) * 2011-10-28 2013-05-02 Apple Inc. Display with vias for concealed printed circuit and component attachment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018758A (ja) * 2014-07-11 2016-02-01 株式会社ジャパンディスプレイ 有機el表示装置及び有機el表示装置の製造方法
JPWO2017158757A1 (ja) * 2016-03-16 2019-01-24 パイオニア株式会社 発光装置、電子機器及び発光装置の製造方法
WO2018211376A1 (ja) * 2017-05-18 2018-11-22 株式会社半導体エネルギー研究所 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
JPWO2018211376A1 (ja) * 2017-05-18 2020-05-14 株式会社半導体エネルギー研究所 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
US11444255B2 (en) 2017-05-18 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing display device, display device, display module, and electronic device
JP2019061115A (ja) * 2017-09-27 2019-04-18 凸版印刷株式会社 カラーフィルタ及びそれを用いた表示装置
JP6992369B2 (ja) 2017-09-27 2022-01-13 凸版印刷株式会社 カラーフィルタ及びそれを用いた表示装置
US10818743B2 (en) 2018-06-18 2020-10-27 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same
US11335763B2 (en) 2018-06-18 2022-05-17 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same

Also Published As

Publication number Publication date
US10403703B2 (en) 2019-09-03
CN106463082A (zh) 2017-02-22
TW201607021A (zh) 2016-02-16
US20150372065A1 (en) 2015-12-24
KR20170020854A (ko) 2017-02-24
WO2015198183A9 (en) 2017-01-05
CN106463082B (zh) 2019-07-16
KR102377341B1 (ko) 2022-03-21
WO2015198183A1 (en) 2015-12-30
TWI708383B (zh) 2020-10-21

Similar Documents

Publication Publication Date Title
JP7118111B2 (ja) 表示装置
US10403703B2 (en) Display device and electronic device
JP7113127B2 (ja) 線状ビーム照射装置の使用方法
TWI759089B (zh) 半導體裝置
JP6570829B2 (ja) 半導体装置
JP2020080410A (ja) 半導体装置
TW201535690A (zh) 半導體裝置、使用該半導體裝置的顯示裝置、使用該顯示裝置的顯示模組以及使用該半導體裝置、該顯示裝置及該顯示模組的電子裝置
JP2019165251A (ja) 半導体装置
JP2019216247A (ja) トランジスタの作製方法
US10777685B2 (en) Transistor
JP2015228368A (ja) 表示装置および発光装置、並びに電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200623

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200923