JP2016024900A - 放射線分析装置 - Google Patents

放射線分析装置 Download PDF

Info

Publication number
JP2016024900A
JP2016024900A JP2014146829A JP2014146829A JP2016024900A JP 2016024900 A JP2016024900 A JP 2016024900A JP 2014146829 A JP2014146829 A JP 2014146829A JP 2014146829 A JP2014146829 A JP 2014146829A JP 2016024900 A JP2016024900 A JP 2016024900A
Authority
JP
Japan
Prior art keywords
radiation
radiation detector
central axis
axis
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014146829A
Other languages
English (en)
Other versions
JP6346016B2 (ja
Inventor
頼信 岩澤
Yorinobu Iwasawa
頼信 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2014146829A priority Critical patent/JP6346016B2/ja
Priority to US14/799,856 priority patent/US9536701B2/en
Publication of JP2016024900A publication Critical patent/JP2016024900A/ja
Application granted granted Critical
Publication of JP6346016B2 publication Critical patent/JP6346016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2445Photon detectors for X-rays, light, e.g. photomultipliers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

【課題】効率よく放射線を検出することができる放射線分析装置を提供する。
【解決手段】本発明に係る放射線分析装置100は、一次線を発生させる一次線源と、前記一次線源で放出された前記一次線を試料に照射する光学系と、前記一次線が照射されることによって前記試料から発生する放射線を検出するエネルギー分散型の放射線検出器50と、前記光学系の光軸Zに対する放射線検出器50の中心軸Cの傾きが可変となるように放射線検出器50を支持する支持部60と、を含む。
【選択図】図2

Description

本発明は、放射線分析装置に関する。
走査電子顕微鏡(SEM)や、X線マイクロアナライザー(XMA)等に装着されるエネルギー分散型X線検出器は、一般的に、仕様で取り決められた1つの作動距離および1つのX線取出し角に対応するように、インターフェースとなるフランジを介して装着されている。
また、特許文献1および特許文献2には、2つ以上の異なるX線取出し角を得るために、複数のエネルギー分散型X線検出器を備えた電子顕微鏡が開示されている。
特開平8−222172号公報 特開平9−147781号公報
近年、走査電子顕微鏡の高分解能化により、仕様で定められる作動距離は短くなってきている。作動距離が短い場合、X線検出器でX線の検出を行う際に、ポールピースによってX線が遮られる(けられる)ため、X線の取り込みが困難になる。そのため、例えば、X線取り出し角を小さく設計しておき、短い作動距離での使用を可能にすることが考えられるが、この場合、長い作動距離で測定する際には、X線取り込み効率が悪化してしまう。
また、走査電子顕微鏡に複数台のX線検出器を装着し、短い作動距離においては小さいX線取出し角で検出を行うX線検出器を用い、長い作動距離においては大きいX線取出し角で検出を行うX線検出器を用いることも考えられる。すなわち、複数台のX線検出器を用いて、作動距離に応じて最適なX線取出し角で測定を行うことも考えられる。しかしながら、この場合、複数台のX線検出器が必要となるため、コストがかかってしまう、装置が大型化してしまうといった問題がある。
本発明は、以上のような問題点に鑑みてなされたものであり、本発明のいくつかの態様に係る目的の1つは、効率よく放射線を検出することができる放射線分析装置を提供することにある。
(1)本発明に係る放射線分析装置は、
一次線を発生させる一次線源と、
前記一次線源で放出された前記一次線を試料に照射する光学系と、
前記一次線が照射されることによって前記試料から発生する放射線を検出するエネルギー分散型の放射線検出器と、
前記光学系の光軸に対する前記放射線検出器の中心軸の傾きが可変となるように前記放射線検出器を支持する支持部と、
を含む。
このような放射線分析装置では、例えば、作動距離に応じて取り出し角を可変とすることができる。したがって、作動距離が短い場合には、取り出し角を小さくして、ポールピース等によって放射線が遮られる(けられる)ことを抑制することができる。また、作動距離が長い場合には、取り出し角を大きくして、試料から放出される放射線の試料内での拡散距離を短くして試料内での吸収を低減させることができる。したがって、このような放射線分析装置では、作動距離が変化しても効率よく放射線を検出することができる。
また、このような放射線分析装置では、1台の放射線検出器によって複数の取り出し角で放射線を検出することができる。
(2)本発明に係る放射線分析装置において、
作動距離が可変となるように前記試料を支持する試料ステージを含んでいてもよい。
このような放射線分析装置では、例えば、観察倍率に応じた最適な作動距離で観察や分析を行うことができる。
(3)本発明に係る放射線分析装置において、
前記支持部は、前記放射線検出器を前記光軸と交差する回転軸まわりに回転可能に支持する回転部を有し、
前記中心軸は、前記回転軸に対して傾いていてもよい。
このような放射線分析装置では、回転部によって放射線検出器を回転させることで、光学系の光軸に対する放射線検出器の中心軸の傾きを可変にすることができる。
(4)本発明に係る放射線分析装置において、
前記回転部を駆動する駆動部を含んでいてもよい。
このような放射線分析装置では、容易に、光学系の光軸に対する放射線検出器の中心軸の傾きを変えることができる。
(5)本発明に係る放射線分析装置において、
前記光学系は、対物レンズを有し、
前記放射線検出器は、前記支持部によって、第1状態から第2状態となり、
前記放射線検出器の前記第1状態は、前記光軸と前記中心軸との交点と、前記対物レンズと、の間の距離が第1距離であり、かつ、前記光軸と前記中心軸とがなす角度が第1角度となる状態であり、
前記放射線検出器の前記第2状態は、前記光軸と前記中心軸との交点と、前記対物レンズと、の間の距離が前記第1距離よりも短い第2距離であり、かつ、前記光軸と前記中心軸とがなす角度が前記第1角度よりも大きい第2角度となる状態であってもよい。
このような放射線分析装置では、作動距離が第1距離の場合には、作動距離が第1距離よりも短い第2距離の場合よりも取り出し角を大きくして、例えば、試料から放出される放射線の試料内での拡散距離を短くして試料内での吸収を低減することができる。また、作動距離が第2距離の場合には、作動距離が第2距離よりも長い第1距離の場合よりも取り出し角を小さくして、例えば、ポールピース等によって放射線が遮られる(けられる)ことを抑制することができる。したがって、このような放射線分析装置では、効率よく放射線を検出することができる。
(6)本発明に係る放射線分析装置において、
前記支持部は、前記放射線検出器を搖動可能に支持する搖動部を有していてもよい。
このような放射線分析装置では、搖動部によって放射線検出器を搖動させることで、光学系の光軸に対する放射線検出器の中心軸の傾きを可変にすることができる。
(7)本発明に係る放射線分析装置において、
前記搖動部の搖動軸は、前記中心軸と直交していてもよい。
このような放射線分析装置では、搖動部によって放射線検出器を搖動させることで、光学系の光軸に対する放射線検出器の中心軸の傾きを可変にすることができる。
(8)本発明に係る放射線分析装置において、
前記搖動部を駆動する駆動部を含んでいてもよい。
このような放射線分析装置では、容易に、光学系の光軸に対する放射線検出器の中心軸の傾きを変えることができる。
(9)本発明に係る放射線分析装置において、
前記支持部は、前記放射線検出器の検出結果に基づいて前記駆動部を駆動させる制御部を有していてもよい。
このような放射線分析装置では、例えば、任意の作動距離において効率良く放射線を検出できる取り出し角となるように放射線検出器を位置させることができる。
(10)本発明に係る放射線分析装置において、
前記支持部は、前記作動距離に基づいて前記駆動部を駆動させる制御部を有していてもよい。
このような放射線分析装置では、例えば、任意の作動距離において効率良く放射線を検出できる取り出し角となるように放射線検出器を位置させることができる。
(11)本発明に係る放射線分析装置において、
前記支持部は、前記作動距離と、前記光軸に対する前記中心軸の傾きと、の対応関係を特定可能なテーブルを記憶する記憶部を有し、
前記制御部は、前記作動距離に応じて前記テーブルから前記光軸に対する前記中心軸の傾きの情報を取得し、前記光軸に対する前記中心軸の傾きの情報に基づいて前記駆動部を駆動させてもよい。
このような放射線分析装置では、例えば、任意の作動距離において効率良く放射線を検出できる取り出し角となるように放射線検出器を位置させることができる。
(12)本発明に係る放射線分析装置において、
前記制御部は、前記試料ステージの位置情報から、前記作動距離の情報を取得してもよい。
第1実施形態に係る放射線分析装置を模式的に示す図。 第1実施形態に係る放射線分析装置の支持部の動作を説明するための図。 第1実施形態に係る放射線分析装置の支持部の動作を説明するための図。 第2実施形態に係る放射線分析装置の支持部を模式的に示す図。 第2実施形態に係る放射線分析装置の支持部を模式的に示す図。 第3実施形態に係る放射線分析装置の支持部を模式的に示す図。 第4実施形態に係る放射線分析装置の支持部を模式的に示す図。 第5実施形態に係る放射線分析装置の支持部を模式的に示す図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1. 第1実施形態
まず、第1実施形態に係る放射線分析装置について、図面を参照しながら説明する。図1は、第1実施形態に係る放射線分析装置を模式的に示す図である。ここでは、放射線分析装置100が、走査電子顕微鏡(SEM)である例について説明する。
放射線分析装置100は、図1に示すように、電子線源(一次線源)10と、光学系20と、走査偏向器30と、試料ステージ40と、放射線検出器50と、支持部60と、二次電子検出器70と、を含む。なお、図1では、試料Sが配置される試料室2を区画する壁部4(後述する図2および図3参照)の図示を省略している。
放射線分析装置100は、電子線源10で発生した電子線E1を光学系20で絞って電子プローブとし、当該電子プローブで試料S表面を走査したときに電子プローブの照射点から放出される二次電子を二次電子検出器70で検出して画像化する装置である。また、放射線分析装置100では、電子線E1を試料Sに照射した際に発生する特性X線をエネルギー分散型の放射線検出器50にて検出して、そのX線をエネルギーで弁別し、スペクトルを得ることができる。
電子線源10は、一次線として、電子線E1を発生させる。電子線源10は、例えば、公知の電子銃であり、陰極から放出された電子を陽極で加速して電子線E1を放出する。電子線源10として用いられる電子銃は特に限定されず、例えば熱電子放出型や、熱電界放出型、冷陰極電界放出型などの電子銃を用いることができる。電子線源10から放出された電子線E1は、光学系20の光軸Zに沿って進行する。ここで、光学系20の光軸Zとは、光学系20を構成するレンズ(図示の例では集束レンズ22および対物レンズ24)の中心となる軸をいう。
光学系20は、電子線源10で発生した電子線E1を試料Sに照射する。光学系20は、集束レンズ22と、対物レンズ24と、を含んで構成されている。
集束レンズ22は、電子線源10の後段(電子線E1の下流側)に配置されている。集束レンズ22は、電子線E1を集束させるためのレンズである。例えば、集束レンズ22によって、電子プローブ径とプローブ電流を制御することができる。
対物レンズ24は、集束レンズ22の後段に配置されている。対物レンズ24は、試料Sの直前に置かれた最終段の電子プローブ形成レンズである。対物レンズ24は、コイル24aと、ヨーク24bと、ポールピース24cと、を含んで構成されている。対物レンズ24では、コイル24aで作られた磁力線を、鉄などの透磁率の高い材料で作られたヨーク24bに閉じ込め、ヨーク24bの一部に切欠き(レンズギャップ)を作ることで、高密度に分布した磁力線を光軸Z上に漏洩させる。この切欠き部分はポールピース24cによって構成されている。ポールピース24cは、上部磁極片24c−1と、下部磁極片24c−2と、を有している。図示の例では、試料Sは、ポールピース24cの外側に配置されている。すなわち、対物レンズ24は、いわゆるアウトレンズ型対物レンズである
走査偏向器(走査コイル)30は、集束レンズ22と対物レンズ24との間に配置されている。走査偏向器30は、例えば、集束レンズ22および対物レンズ24で集束された電子線E1を試料S上で走査するための電磁コイルである。走査偏向器30は、図示の例では、2段(2段偏向系)であるが、2段以上であってもよい。走査偏向器30は、電子線E1を偏向させることで、電子線E1を試料S上で走査することができる。走査偏向器30は、走査信号生成部(図示せず)からの走査信号に基づいて、電子線E1の走査を行う。
試料ステージ40には、試料Sが載置される。試料ステージ40は、試料Sを支持し、試料Sを移動させることができる。試料ステージ40は、作動距離WDが可変となるように試料Sを支持する。試料ステージ40は、試料Sを光学系20の光軸Zに沿って(上下方向に)移動させることによって作動距離WDを可変にする。ここで、作動距離WDとは、対物レンズ24の下面と試料S(試料Sの上面)との間の距離をいう。図示の例では、作動距離WDは、ポールピース24cの下部磁極片24c−2と試料Sとの間の距離である。
放射線分析装置100において、作動距離WDが短くなるとそれに伴ってレンズの収差が小さくなって解像度が高くなるが焦点深度は浅くなる。そのため、高倍率での観察では作動距離WDを短くし、低倍率での観察では作動距離WDを長くする。試料ステージ40は、例えば、さらに、試料Sの水平移動、回転、傾斜などの動作を行うことができる。
放射線検出器50は、対物レンズ24と試料S(試料ステージ40)との間に配置されている。放射線検出器50は、電子線E1が照射されることによって試料Sから発生する特性X線(放射線)を検出する。放射線検出器50は、エネルギー分散型のX線検出器である。ここで、エネルギー分散型のX線検出器とは、電子線やX線などの一次線を試料に照射した際に発生する特性X線もしくは蛍光X線を検出し、そのエネルギーと強度から試料を構成する元素や濃度等を調べる装置をいう。
放射線検出器50は、例えば、シリコンドリフト検出器(silicon−drift
detector、SDD)を含んで構成されている。シリコンドリフト検出器は、例えば、入射したX線によって発生した電子を、同心円状の電位勾配をかけることにより、アノードに導く素子である。アノードに収集された電荷量は、入射したX線に比例しているため、X線のエネルギーを計測することができる。シリコンドリフト検出器は、例えば、高純度n型Si単結晶と、Si単結晶のX線の入射面側に設けられたp電極と、入射面とは反対側に設けられたn電極(アノード)と、n電極を同心円状に囲む多段のドリフト電極と、を有する。ドリフト電極は、平面視において(入射面の垂線方向からみて)、シリコンドリフト検出器(Si単結晶)の中心の位置を中心として同心円状に設けられている。シリコンドリフト検出器は、液体窒素冷却が不要であり、ペルチィエ素子による冷却での動作が可能である。そのため、放射線検出器50の小型化、軽量化を図ることができる。
支持部60は、放射線検出器50を支持するための部材である。図2および図3は、支持部60の動作を説明するための図である。なお、図2および図3では、対物レンズ24を簡略化して図示している。
支持部60は、図2および図3に示すように、インターフェースフランジ(回転部)62と、Oリング64と、を含んで構成されている。インターフェースフランジ62は、試料Sが配置される試料室2の壁部4に回転可能に取り付けられている。インターフェース
フランジ62は、インターフェースフランジ62の中心を通る回転軸Rを軸として回転可能である。回転軸Rは、例えば、光学系20の光軸Zと交差する。インターフェースフランジ62と壁部4との間の隙間は、Oリング64によって気密に封止されている。
インターフェースフランジ62には、放射線検出器50が挿入される挿入孔63が設けられている。挿入孔63の軸(中心軸)は、回転軸Rに対して角度α傾いている。そのため、挿入孔63に挿入されている放射線検出器50の中心軸Cは、回転軸Rに対して角度α傾いている。インターフェースフランジ62と挿入孔63に挿入された放射線検出器50との間の隙間は、Oリング66によって気密に封止されている。
ここで、放射線検出器50の中心軸Cとは、例えば、放射線検出器50の検出面の中心を通り、検出面に直交する軸である。放射線検出器50の検出面は、例えば、シリコンドリフト検出器のX線の入射面であり、検出面の中心は、平面視においてシリコンドリフト検出器の中心である。したがって、光学系20の光軸Zと放射線検出器50の中心軸Cとの交点Pの位置を、試料Sの表面に合わせることで、特性X線が発生する試料Sの電子線E1の照射領域に、放射線検出器50の検出面(シリコンドリフト検出器の入射面)を向けることができる。放射線検出器50の中心軸Cと光学系20の光軸Zとは、図示の例では、交差している。なお、放射線検出器50の中心軸Cと光学系20の光軸Zとは、ねじれの位置にあってもよい。
インターフェースフランジ62は、放射線検出器50を回転軸Rまわりに回転可能に支持している。例えば、ユーザーは手動でインターフェースフランジ62を回転させることができる。放射線検出器50の中心軸Cは、上記のように回転軸Rに対して傾いているため、インターフェースフランジ62を回転させることにより、図2および図3に示すように、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを変えることができる。光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを変えることにより、X線の取り出し角を変えることができる。
なお、取り出し角とは、放射線検出器において、試料から放出される特性X線を、試料より上方に位置する検出器で取り出す角度をいう。より具体的には、取り出し角とは、試料表面と検出器(検出器の中心軸)とがなす角度をいう。
放射線検出器50は、インターフェースフランジ62を回転(図示の例では180°回転)させることによって、図2に示す第1状態から図3に示す第2状態となる。同様に、放射線検出器50は、インターフェースフランジ62を回転(図示の例では180°回転)させることによって、図3に示す第2状態から図2に示す第1状態となる。
放射線検出器50の第1状態は、図2に示すように、光学系20の光軸Zと放射線検出器50の中心軸Cとの交点Pと、対物レンズ24と、の間の距離が第1距離L1であり、かつ、光学系20の光軸Zと放射線検出器50の中心軸Cとがなす角度θが第1角度θ1となる状態である。
また、放射線検出器50の第2状態は、図3に示すように、光学系20の光軸Zと放射線検出器50の中心軸Cとの交点Pと、対物レンズ24と、の間の距離が第1距離L1よりも短い第2距離L2であり、かつ、光学系20の光軸Zと放射線検出器50の中心軸Cとがなす角度θが第1角度θ1よりも大きい第2角度θ2となる状態である。
ここで、放射線検出器50の中心軸Cと光学系20の光軸Zとがなす角度θとは、中心軸Cと光軸Zとが交わってできる角のうち、鋭角のほうの角度をいう。また、試料Sが光学系20の光軸Zと放射線検出器50の中心軸Cとの交点Pに位置している場合には、放
射線検出器50の中心軸Cと光学系20の光軸Zとがなす角度θは、θ=90°−(取り出し角)で表される。放射線検出器50の中心軸Cと光学系20の光軸Zとがなす角度θを変えることで、X線の取り出し角を変えることができる。
二次電子検出器70は、電子線E1が照射されることにより試料Sから放出された二次電子を検出する。二次電子検出器70は、例えば、シンチレーターおよび光電子増倍管を含んで構成されている。二次電子検出器70で検出された二次電子の検出信号(強度信号)は、電子線E1の走査信号と同期された画像データとして、記憶部(図示せず)に記憶される。この画像データにより、試料Sの走査電子像が生成される。二次電子検出器70は、図示の例では、対物レンズ24と試料S(試料ステージ40)との間に配置されている。
次に、放射線分析装置100の動作について説明する。
放射線分析装置100では、低倍率で観察を行う際には、図2に示すように、作動距離WDを長くする。図示の例では、低倍率で観察を行う際には、作動距離WDを第1距離L1としている。放射線分析装置100では、試料ステージ40によって試料Sを対物レンズ24から遠ざけることで作動距離WDを長くする。
このとき、支持部60によって、放射線検出器50を第1状態とする。例えば、ユーザーがインターフェースフランジ62を回転させることにより、放射線検出器50を第1状態とする。これにより、光学系20の光軸Zと放射線検出器50の中心軸Cとの交点Pの位置を試料Sの表面に合わせることができる。したがって、放射線分析装置100では、作動距離WDを長くした低倍率での観察時にX線分析を行う場合において、試料Sから発生する特性X線を効率よく検出することができる。
次に、放射線分析装置100では、高倍率で観察を行う際には、図3に示すように、作動距離WDを短くする。図示の例では、低倍率で観察を行う際には、作動距離WDを第1距離L1よりも短い第2距離L2としている。放射線分析装置100では、試料ステージ40によって試料Sを対物レンズ24に近づけることで作動距離WDを短くする。
このとき、支持部60によって、放射線検出器50を第2状態とする。例えば、ユーザーが支持部60のインターフェースフランジ62を図2に示す状態から180°回転させることにより、放射線検出器50を第2状態とする。これにより、光学系20の光軸Zと放射線検出器50の中心軸Cとの交点Pの位置を試料Sの表面に合わせることができる。さらに、放射線検出器50は、第2状態では第1状態よりも光学系20の光軸Zと放射線検出器50の中心軸Cとがなす角度θが大きい。すなわち、第2状態では、第1状態よりも、X線の取り出し角が小さい。そのため、ポールピース24cによって特性X線が遮られる(けられる)ことを抑制することができる。したがって、放射線分析装置100では、作動距離WDを短くした高倍率での観察時にX線分析を行う場合において、試料Sから発生する特性X線を効率よく検出することができる。
このように、放射線分析装置100では、放射線検出器50は、作動距離WDが長い場合には大きい取り出し角で検出を行い、作動距離WDが短い場合には小さいX線取出し角で検出を行うことができる。したがって、放射線分析装置100では、作動距離WDが変化しても、試料Sから発生する特性X線を効率よく検出することができる。
放射線分析装置100は、例えば、以下の特徴を有する。
放射線分析装置100では、支持部60は、光学系20の光軸Zに対する放射線検出器
50の中心軸Cの傾きが可変となるように放射線検出器50を支持する。そのため、放射線分析装置100では、作動距離WDに応じて取り出し角を可変とすることができる。したがって、例えば、作動距離WDが短い場合には、取り出し角を小さくして、ポールピース24cによって特性X線が遮られる(けられる)ことを抑制することができる。また、例えば、作動距離WDが長い場合には、取り出し角を大きくして、試料Sから放出されるX線の試料S内での拡散距離を短くして試料内での吸収を低減させることができる。すなわち、放射線分析装置100では、作動距離WDを短くした高倍率での観察時のX線分析、および作動距離WDを長くした低倍率での観察時のX線分析を、それぞれ最適なX線取り出し角で行うことができる。
このように、放射線分析装置100では、支持部60が、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きが可変となるように放射線検出器50を支持することにより、作動距離WDが変化しても、上述のように、効率よくX線を検出することができる。
また、放射線分析装置100では、支持部60は光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きが可変となるように放射線検出器50を支持するため、1台の放射線検出器50によって複数の取り出し角でX線を検出することができる。したがって、放射線分析装置100では、例えば複数台の放射線検出器を用いて作動距離WDに応じて最適なX線取出し角で測定を行う場合と比べて、装置の小型化、低コスト化を図ることができる。
放射線分析装置100では、試料ステージ40によって作動距離WDを可変にすることができるため、観察倍率に応じた最適な作動距離WDで観察や分析を行うことができる。
放射線分析装置100では、支持部60は、放射線検出器50を光学系20の光軸Zと交差する回転軸Rまわりに回転可能に支持するインターフェースフランジ(回転部)62を有し、放射線検出器50の中心軸Cは、回転軸Rに対して傾いている。そのため、放射線分析装置100では、インターフェースフランジ62によって放射線検出器50を回転させることで、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを可変にすることができる。
放射線分析装置100では、放射線検出器50は、支持部60によって、第1状態から第2状態となり、放射線検出器50の第1状態は、光学系20の光軸Zと放射線検出器50の中心軸Cとの交点Pと、対物レンズ24と、の間の距離が第1距離L1であり、かつ、光学系20の光軸Zと放射線検出器50の中心軸Cとがなす角度θが第1角度θ1となる状態であり、放射線検出器50の第2状態は、光学系20の光軸Zと放射線検出器50の中心軸Cとの交点Pと、対物レンズ24と、の間の距離が第1距離L1よりも短い第2距離L2であり、かつ、光学系20の光軸Zと放射線検出器50の中心軸Cとがなす角度θが第1角度θ1よりも大きい第2角度θ2となる状態である。そのため、作動距離WDが第1距離L1の場合には、作動距離WDが第1距離L1よりも短い第2距離L2の場合よりも取り出し角を大きくして、例えば、試料Sから放出されるX線の試料S内での拡散距離を短くして試料S内での吸収を低減することができる。また、作動距離WDが第2距離L2の場合には、作動距離WDが第2距離L2よりも長い第1距離L1の場合よりも取り出し角を小さくして、例えば、ポールピース24c等によってX線が遮られる(けられる)ことを抑制することができる。したがって、放射線分析装置100では、効率よく放射線を検出することができる。
2. 第2実施形態
次に、第2実施形態に係る放射線分析装置について、図面を参照しながら説明する。図
4および図5は、第2実施形態に係る放射線分析装置200の支持部60を模式的に示す図である。なお、図4は、放射線検出器50が第1状態にある場合を図示し、図5は、放射線検出器50が第2状態にある場合を図示している。
以下、第2実施形態に係る放射線分析装置200において、上述した第1実施形態に係る放射線分析装置100と異なる点について説明し、同様の点については詳細な説明を省略する。
放射線分析装置200では、図4および図5に示すように、支持部60は、放射線検出器50を回転軸Rまわりに回転可能に支持する回転部210と、回転部210を駆動させる駆動部220と、を有している。
支持部60は、さらに、第1ギア222と、第2ギア224と、第1固定部230と、第2固定部232と、を有している。
支持部60は、インターフェースとなる第1固定部230によって壁部4に取り付けられている。第1固定部230と壁部4との間の隙間は、Oリング250によって気密に封止されている。第1固定部230は、回転部210が回転可能となるように、ベアリング240を介して、回転部210を保持している。また、第1固定部230と回転部210との間の隙間は、Oリング252によって気密に封止されている。第2固定部232は、回転部210の外れを防止するために、ベアリング242を介して、回転部210を保持している。
回転部210には、放射線検出器50が挿入される挿入孔212が設けられている。挿入孔63の軸(中心軸)は、回転軸Rに対して傾いている。そのため、挿入孔63に挿入されている放射線検出器50の中心軸Cは、回転軸Rに対して傾いている。回転部210と挿入孔212に挿入された放射線検出器50との間の隙間は、Oリング214によって気密に封止されている。
駆動部220は、例えば、モーターを含んで構成されている。第1ギア222は、駆動部220の軸(モーター軸)221に固定されており、駆動部220の回転を、第2ギア224に伝達する。第2ギア224は、回転部210に周設されている。駆動部220が軸221を回転させることにより、ギア222,224を介して、回転部210に駆動部220の回転が伝達される。
放射線分析装置200では、駆動部220によって回転部210を回転させることにより、放射線検出器50を、図4に示す第1状態から図5に示す第2状態にしたり、図5に示す第2状態から図4に示す第1状態にしたりすることができる。
放射線分析装置200は、例えば、以下の特徴を有する。
放射線分析装置200では、回転部210を駆動させる駆動部220を含む。そのため、放射線分析装置200では、容易に、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを変えることができる。
また、放射線分析装置200では、回転部210を駆動させる駆動部220を含むため、例えば、試料室2を大気にすることなく減圧状態のままで、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを変えることができる。例えば、ユーザーが手動で回転部210を回転させる場合、回転部210に予期せぬ力が加わり、回転部210と第1固定部230との間の隙間などから気体が漏れて試料室2の真空度が悪化する可能性が
ある。これに対して、放射線分析装置200では、駆動部220によって回転部210を回転させるため、例えば手動で回転部210を回転させる場合と比べて、回転部210と第1固定部230との間の隙間などから気体が漏れて試料室2の真空度が悪化する可能性を低減させることができる。
3. 第3実施形態
次に、第3実施形態に係る放射線分析装置について、図面を参照しながら説明する。図6は、第3実施形態に係る放射線分析装置300の支持部60を模式的に示す図である。以下、第3実施形態に係る放射線分析装置300において、上述した第1実施形態に係る放射線分析装置100と異なる点について説明し、同様の点については詳細な説明を省略する。
放射線分析装置300では、図6に示すように、支持部60は、放射線検出器50を搖動可能に支持する搖動部310と、搖動部310を駆動させる駆動部320と、を有している。
支持部60は、さらに、アーム322と、バネ324と、第1固定部330と、第2固定部332と、を有している。
支持部60は、インターフェースとなる第1固定部330によって壁部4に取り付けられている。第1固定部330と壁部4との間の隙間は、Oリング340によって気密に封止されている。
搖動部310には、放射線検出器50が挿入される挿入孔312が設けられている。搖動部310は、例えば、挿入孔312に挿入された放射線検出器50の中心軸Cと直交する搖動軸Bを有している。図6の例では、搖動部310の搖動軸Bは、図示のように、放射線検出器50の中心軸Cに直交し、かつ紙面に垂直である。搖動部310が搖動することによって、放射線検出器50を図6に示す矢印Aの方向に搖動させることができる。放射線検出器50を搖動させることによって、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを可変にすることができ、かつ、光学系20の光軸Zと放射線検出器50の中心軸Cとの交点P(図1〜図3等参照)の位置を変化させることができる。搖動部310と挿入孔312に挿入された放射線検出器50との間の隙間は、Oリング316によって気密に封止されている。
搖動部310と第1固定部330との間の隙間は、Oリング342によって気密に封止されている。搖動部310の真空シール面(Oリング342と接触する面)314は、曲面(例えば球面)である。そのため、搖動部310が搖動運動をしても、搖動部310と第1固定部330との間の隙間から気体が漏れることを防ぐことができる。搖動部310が搖動することによる搖動部310の姿勢変形は、バネ324によって吸収される。バネ324は、第2固定部332によって保持されている。
駆動部320は、例えば、モーターを含んで構成されている。駆動部320によってアーム322を回転させることにより、搖動部310を梃子により動かして搖動させることができる。また、駆動部320は、搖動部310を、所望の位置で停止させることができる。
放射線分析装置300は、例えば、以下の特徴を有する。
放射線分析装置300では、支持部60は、放射線検出器50を搖動可能に支持する搖動部310を有している。そのため、放射線分析装置300では、搖動部310によって
放射線検出器50を搖動させることで、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを可変にすることができる。したがって、放射線分析装置300では、上述した第1実施形態に係る放射線分析装置100と同様に、作動距離WDが変化しても効率よくX線を検出することができる。
また、放射線分析装置300では、搖動部310によって放射線検出器50を搖動させても、放射線検出器50の中心軸Cは、光学系20の光軸Zと常に交わる。例えば、図2および図3に示す放射線分析装置100では、放射線検出器50の中心軸Cは、第1状態および第2状態の2つの状態でのみ、光学系20の光軸Zと交わっていた。したがって、放射線分析装置300では、例えば、放射線分析装置100と比べて、より多くの作動距離WDに対応することができる。
放射線分析装置300では、搖動部310を駆動させる駆動部320を含む。そのため、放射線分析装置300では、容易に、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを変えることができる。
また、放射線分析装置300では、搖動部310を駆動させる駆動部320を含むため例えば、試料室2を大気にすることなく減圧状態のままで、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを変えることができる。例えば、ユーザーが手動で搖動部310を搖動させる場合、搖動部310に予期せぬ力が加わり、搖動部310と第1固定部330との間の隙間などから気体が漏れて試料室2の真空度が悪化する可能性がある。これに対して、放射線分析装置300では、駆動部320によって搖動部310を搖動させるため、例えば手動で搖動部310を搖動させる場合と比べて、搖動部310と第1固定部330との間の隙間などから気体が漏れて試料室2の真空度が悪化する可能性を低減させることができる。
4. 第4実施形態
次に、第4実施形態に係る放射線分析装置について、図面を参照しながら説明する。図7は、第4実施形態に係る放射線分析装置400の支持部60を模式的に示す図である。以下、第4実施形態に係る放射線分析装置400において、上述した第3実施形態に係る放射線分析装置300と異なる点について説明し、同様の点については詳細な説明を省略する。
第4実施形態に係る放射線分析装置400では、図7に示すように、支持部60は、放射線検出器50の検出結果に基づいて駆動部320を駆動させる制御部410を含む。
例えば、試料Sに電子線E1が照射されている状態において、制御部410は、駆動部320を駆動させて光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを所定の範囲で変化させつつ、放射線検出器50から出力されるX線の強度の情報を受け付けてX線の強度が最も高くなる中心軸Cの傾きを探す。そして、制御部410は、このX線の強度が最も高くなる中心軸Cの傾きを記憶し、駆動部320を駆動させてX線の強度が最も高くなる中心軸Cの傾きとなるように放射線検出器50を移動させる。
なお、ここでは、制御部410がX線の強度が最も高くなる放射線検出器50の中心軸Cの傾きに放射線検出器50を位置させる例について説明したが、例えば、制御部410は、X線の強度が所定値を超える中心軸Cの傾きに放射線検出器50を位置させてもよい。この場合についても、上記の例と同様の動作で実現することができる。
放射線分析装置400では、放射線検出器50の検出結果に基づいて駆動部320を駆動させる制御部410を含むため、任意の作動距離WDにおいて効率良くX線を検出でき
る取り出し角となるように放射線検出器50を位置させることができる。例えば、放射線分析装置400では、上述のように、作動距離WDが変化しても、制御部410が自動でその作動距離WDに最適なX線取り出し角となるように放射線検出器50を位置させることができる。
5. 第5実施形態
次に、第5実施形態に係る放射線分析装置について、図面を参照しながら説明する。図8は、第5実施形態に係る放射線分析装置500の支持部60を模式的に示す図である。以下、第5実施形態に係る放射線分析装置500において、上述した第3実施形態に係る放射線分析装置300と異なる点について説明し、同様の点については詳細な説明を省略する。
第5実施形態に係る放射線分析装置500では、図8に示すように、支持部60は、制御部510と、記憶部520と、を有する。
制御部510は、作動距離WDに基づいて駆動部320を駆動させる。以下、制御部510の処理について詳細に説明する。
制御部510は、まず、作動距離WDの情報を試料ステージ駆動部42から取得する。作動距離WDの情報は、例えば、試料ステージ40の光軸Z方向の位置の情報に対応する。すなわち、試料ステージ駆動部42は、試料ステージ40の位置情報を出力し、制御部510は、当該試料ステージ40の位置情報から、作動距離WDの情報を取得してもよい。
次に、制御部510は、取得した作動距離WDの情報に基づいて、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きの情報(例えば最適な傾きの情報)を取得する。図示の例では、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きは、光学系20の光軸Zと放射線検出器50の中心軸Cとがなす角度θに対応するため、以下では角度θを用いて説明する。制御部510は、例えば、試料ステージ駆動部42から取得した作動距離WDに応じて、記憶部520に記憶されている作動距離WDと角度θ(最適な角度θ)との対応関係を特定可能なテーブル522から、角度θの情報を取得する。
次に、制御部510は、テーブル522から取得した角度θの情報に基づいて駆動部320を駆動させる。制御部510は、光学系20の光軸Zと放射線検出器50の中心軸Cとがなす角度θが、テーブル522から取得した角度θとなるように駆動部320を駆動させる。
記憶部520は、作動距離WDと角度θとの対応関係を特定可能なテーブル522を記憶している。記憶部520の機能は、RAM、光ディスク(CD、DVD)、光磁気ディスク(MO)、磁気ディスク、ハードディスク、磁気テープ、或いはメモリ(ROM)などにより実現できる。
テーブル522は、例えば、作動距離WDと、各作動距離WDにおける最適な角度θと、の対応関係を特定する。ここで、最適な角度θとは、例えば、各作動距離WDにおいて最も効率良くX線を検出できる角度θである。したがって、制御部510は、テーブル522によって、取得した作動距離WDの情報から、当該作動距離WDにおいて最適な角度θの情報を得ることができる。
テーブル522は、例えば、作動距離WDの値と、各作動距離WDの値に対応づけられた角度θの値と、で構成されている。ここで、作動距離WDは、試料ステージ40の光軸
Z方向の位置から求めることができる。そのため、テーブル522は、試料ステージ40の光軸Z方向の位置の値と、各試料ステージ40の光軸Z方向の位置の値に対応づけられた角度θの値と、で構成されていてもよい。また、角度θは、X線の取り出し角度から求めることができる。そのため、テーブル522は、作動距離WDの値と、各作動距離WDの値に対応づけられたX線の取り出し角度の値であってもよいし、試料ステージ40の光軸Z方向の位置の値と、各試料ステージ40の光軸Z方向の位置の値に対応づけられたX線の取り出し角度の値であってもよい。
テーブル522は、例えば、装置の設計値(試料S上のX線発生点と放射線検出器50との位置関係)に基づいて、あらかじめ作成されている。また、例えば、各作動距離WDにおいて、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きを所定の範囲で変化させつつ、放射線検出器50から出力されるX線の強度の情報を受け付けてX線の強度が最も高くなる中心軸Cの傾きを探すことで、テーブル522を作成してもよい。
放射線分析装置500は、例えば、以下の特徴を有する。
放射線分析装置500では、支持部60は、作動距離WDに基づいて駆動部320を駆動させる制御部510を有する。そのため、放射線分析装置500では、任意の作動距離WDにおいて効率良くX線を検出できる取り出し角となるように放射線検出器50を位置させることができる。したがって、例えば、放射線分析装置500では、作動距離WD(試料ステージ40の光軸Z方向の位置)の変化に追従して、制御部510が自動でその作動距離WDに最適なX線取り出し角となるように放射線検出器50を位置させることができる。また、放射線分析装置500では、例えば放射線検出器50の検出結果に基づいて駆動部320を駆動させる場合(放射線分析装置400)と比べて、X線の強度が最も高くなる中心軸Cの傾きを探す必要がないため、短時間で、効率良くX線を検出できる取り出し角となるように放射線検出器50を位置させることができる。
放射線分析装置500では、支持部60は、作動距離WDと、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きと、の対応関係を特定可能なテーブル522を記憶する記憶部520を有し、制御部510は、作動距離WDに応じてテーブル522から光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きの情報を取得し、光学系20の光軸Zに対する放射線検出器50の中心軸Cの傾きの情報に基づいて駆動部320を駆動させる。そのため、放射線分析装置500では、任意の作動距離WDにおいて効率良くX線を検出できる取り出し角となるように放射線検出器50を位置させることができる。
なお、本発明は上述した実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
例えば、上述した第1〜第4実施形態では、放射線分析装置100,200,300,400が走査電子顕微鏡である例について説明したが、本発明に係る放射線分析装置は走査電子顕微鏡に限定されず、エネルギー分散型の放射線検出器が搭載された各種装置に適用することができる。このような装置としては、例えば、エネルギー分散型の放射線検出器が搭載された透過電子顕微鏡(TEM)、エネルギー分散型の放射線検出器が搭載された走査透過電子顕微鏡(STEM)、エネルギー分散型の放射線検出器が搭載されたX線マイクロアナライザー(XMA)等が挙げられる。
また、上述した実施形態では、一次線として、電子線を用いた例について説明したが、本発明に係る放射線分析装置では、例えば、X線や、荷電粒子(イオン等)を一次線として用いてもよい。すなわち、例えば、本発明に係る放射線分析装置は、一次線としてX線
を用いた、エネルギー分散型の放射線検出器が搭載された蛍光X線分析装置であってもよい。
本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
2…試料室、4…壁部、10…電子線源、20…光学系、22…集束レンズ、24…対物レンズ、24a…コイル、24b…ヨーク、24c…ポールピース、24c−1…上部磁極片、24c−2…下部磁極片、30…走査偏向器、40…試料ステージ、42…試料ステージ駆動部、50…放射線検出器、60…支持部、62…インターフェースフランジ、63…挿入孔、64…Oリング、66…Oリング、70…二次電子検出器、100,200…放射線分析装置、210…回転部、212…挿入孔、214…Oリング、220…駆動部、221…軸、222…第1ギア、224…第2ギア、230…第1固定部、232…第2固定部、240,242…ベアリング、250,252…Oリング、300…放射線分析装置、310…搖動部、312…挿入孔、314…真空シール面、316…Oリング、320…駆動部、322…アーム、324…バネ、330…第1固定部、332…第2固定部、340,342…Oリング、400…放射線分析装置、410…制御部、500…放射線分析装置、5100…制御部、520…記憶部、522…テーブル

Claims (12)

  1. 一次線を発生させる一次線源と、
    前記一次線源で放出された前記一次線を試料に照射する光学系と、
    前記一次線が照射されることによって前記試料から発生する放射線を検出するエネルギー分散型の放射線検出器と、
    前記光学系の光軸に対する前記放射線検出器の中心軸の傾きが可変となるように前記放射線検出器を支持する支持部と、
    を含む、放射線分析装置。
  2. 請求項1において、
    作動距離が可変となるように前記試料を支持する試料ステージを含む、放射線分析装置。
  3. 請求項1または2において、
    前記支持部は、前記放射線検出器を前記光軸と交差する回転軸まわりに回転可能に支持する回転部を有し、
    前記中心軸は、前記回転軸に対して傾いている、放射線分析装置。
  4. 請求項3において、
    前記回転部を駆動する駆動部を含む、放射線分析装置。
  5. 請求項1ないし4のいずれか1項において、
    前記光学系は、対物レンズを有し、
    前記放射線検出器は、前記支持部によって、第1状態から第2状態となり、
    前記放射線検出器の前記第1状態は、前記光軸と前記中心軸との交点と、前記対物レンズと、の間の距離が第1距離であり、かつ、前記光軸と前記中心軸とがなす角度が第1角度となる状態であり、
    前記放射線検出器の前記第2状態は、前記光軸と前記中心軸との交点と、前記対物レンズと、の間の距離が前記第1距離よりも短い第2距離であり、かつ、前記光軸と前記中心軸とがなす角度が前記第1角度よりも大きい第2角度となる状態である、放射線分析装置。
  6. 請求項2において、
    前記支持部は、前記放射線検出器を搖動可能に支持する搖動部を有している、放射線分析装置。
  7. 請求項6において、
    前記搖動部の搖動軸は、前記中心軸と直交している、放射線分析装置。
  8. 請求項6または7において、
    前記搖動部を駆動する駆動部を含む、放射線分析装置。
  9. 請求項8において、
    前記支持部は、前記放射線検出器の検出結果に基づいて前記駆動部を駆動させる制御部を有する、放射線分析装置。
  10. 請求項8において、
    前記支持部は、前記作動距離に基づいて前記駆動部を駆動させる制御部を有する、放射線分析装置。
  11. 請求項10において、
    前記支持部は、前記作動距離と、前記光軸に対する前記中心軸の傾きと、の対応関係を特定可能なテーブルを記憶する記憶部を有し、
    前記制御部は、前記作動距離に応じて前記テーブルから前記光軸に対する前記中心軸の傾きの情報を取得し、前記光軸に対する前記中心軸の傾きの情報に基づいて前記駆動部を駆動させる、放射線分析装置。
  12. 請求項10または11において、
    前記制御部は、前記試料ステージの位置情報から、前記作動距離の情報を取得する、放射線分析装置。
JP2014146829A 2014-07-17 2014-07-17 放射線分析装置 Active JP6346016B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014146829A JP6346016B2 (ja) 2014-07-17 2014-07-17 放射線分析装置
US14/799,856 US9536701B2 (en) 2014-07-17 2015-07-15 Radiation analyzer including a support for tilting an energy-dispersive radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146829A JP6346016B2 (ja) 2014-07-17 2014-07-17 放射線分析装置

Publications (2)

Publication Number Publication Date
JP2016024900A true JP2016024900A (ja) 2016-02-08
JP6346016B2 JP6346016B2 (ja) 2018-06-20

Family

ID=55075146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146829A Active JP6346016B2 (ja) 2014-07-17 2014-07-17 放射線分析装置

Country Status (2)

Country Link
US (1) US9536701B2 (ja)
JP (1) JP6346016B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091561A (ja) * 2017-11-13 2019-06-13 日本電子株式会社 荷電粒子線装置
JP2020057514A (ja) * 2018-10-02 2020-04-09 日本電子株式会社 電子顕微鏡

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6622061B2 (ja) * 2015-11-04 2019-12-18 日本電子株式会社 荷電粒子線装置
US9972474B2 (en) * 2016-07-31 2018-05-15 Fei Company Electron microscope with multiple types of integrated x-ray detectors arranged in an array
SE541253C2 (en) * 2017-10-18 2019-05-14 Gasporox Ab System and method for determining the integrity of containers by optical measurement
US11094501B2 (en) 2019-11-19 2021-08-17 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Secondary charged particle imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568059A (en) * 1978-11-17 1980-05-22 Jeol Ltd Automatic position setter for reflective electron beam detector in scanning electronic microscope
JPS6157464U (ja) * 1984-09-20 1986-04-17
JPS63281341A (ja) * 1987-05-13 1988-11-17 Jeol Ltd エネルギ−分散型x線分光器を備えたx線分析装置
JP2012530252A (ja) * 2009-06-15 2012-11-29 ブルーカー ナノ ゲゼルシャフト ミット ベシュレンクテル ハフツング 放射線検出器用低干渉センサヘッド及び低干渉センサヘッドを有する放射線検出器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876666B2 (ja) 1989-04-13 1999-03-31 日本電気株式会社 インクリボンカセット
JPH07262959A (ja) * 1994-03-24 1995-10-13 Nikon Corp 走査型電子顕微鏡
JPH08222172A (ja) 1995-02-16 1996-08-30 Hitachi Ltd 電子顕微鏡
JP3766793B2 (ja) * 2001-10-25 2006-04-19 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
DE10331137B4 (de) * 2003-07-09 2008-04-30 Carl Zeiss Nts Gmbh Detektorsystem für ein Rasterelektronenmikroskop und Rasterelektronenmikroskop mit einem entsprechenden Detektorsystem
JP4785402B2 (ja) * 2005-04-12 2011-10-05 エスアイアイ・ナノテクノロジー株式会社 X線用レンズ光軸調整機構、x線用レンズ光軸調整方法、およびx線分析装置
US7928400B1 (en) * 2008-08-04 2011-04-19 Bruker Axs, Inc. X-ray detection system for wavelength dispersive and energy dispersive spectroscopy and electron beam applications
DE102010001346B4 (de) * 2010-01-28 2014-05-08 Carl Zeiss Microscopy Gmbh Teilchenstrahlgerät und Verfahren zum Betreiben eines Teilchenstrahlgeräts
JP5386453B2 (ja) * 2010-08-24 2014-01-15 株式会社日立ハイテクノロジーズ 荷電粒子線装置および試料観察方法
DE112013002826B4 (de) * 2012-06-08 2021-10-07 Hitachi High-Tech Corporation Mit einem Strahl geladener Teilchen arbeitende Vorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568059A (en) * 1978-11-17 1980-05-22 Jeol Ltd Automatic position setter for reflective electron beam detector in scanning electronic microscope
JPS6157464U (ja) * 1984-09-20 1986-04-17
JPS63281341A (ja) * 1987-05-13 1988-11-17 Jeol Ltd エネルギ−分散型x線分光器を備えたx線分析装置
JP2012530252A (ja) * 2009-06-15 2012-11-29 ブルーカー ナノ ゲゼルシャフト ミット ベシュレンクテル ハフツング 放射線検出器用低干渉センサヘッド及び低干渉センサヘッドを有する放射線検出器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091561A (ja) * 2017-11-13 2019-06-13 日本電子株式会社 荷電粒子線装置
JP2020057514A (ja) * 2018-10-02 2020-04-09 日本電子株式会社 電子顕微鏡
JP7144266B2 (ja) 2018-10-02 2022-09-29 日本電子株式会社 電子顕微鏡

Also Published As

Publication number Publication date
JP6346016B2 (ja) 2018-06-20
US20160020067A1 (en) 2016-01-21
US9536701B2 (en) 2017-01-03

Similar Documents

Publication Publication Date Title
JP6346016B2 (ja) 放射線分析装置
JP6294280B2 (ja) 特殊な絞り板を備える荷電粒子顕微鏡
JP6253618B2 (ja) Ebspパターンの取得方法
US8969801B2 (en) Scanning electron microscope
JP2004138461A (ja) X線顕微検査装置
US20150214004A1 (en) Method for preparing and analyzing an object as well as particle beam device for performing the method
JP6346034B2 (ja) 3次元像構築方法、画像処理装置、および電子顕微鏡
JP5727564B2 (ja) 荷電粒子レンズ系における収差を調査及び補正する方法
JP6169506B2 (ja) 試料ホルダ、観察システム、および画像生成方法
US10991543B2 (en) Charged particle beam device
US8772714B2 (en) Transmission electron microscope and method of observing TEM images
JP2018190723A (ja) 荷電粒子顕微鏡のガンレンズ設計
CN109411320A (zh) 透射带电粒子显微镜中的衍射图案检测
CN108538693A (zh) 带电粒子显微镜的像差测量
JP2002042713A (ja) 対物レンズ内検出器を備えた走査電子顕微鏡
JP2006236601A (ja) 軌道位置検出装置,組成分析装置,荷電粒子ビームの軌道調整方法及び位置座標検出装置
JP5489412B2 (ja) 蛍光x線分析機能付き高分解能x線顕微装置
JP7042971B2 (ja) ホルダおよび荷電粒子線装置
JP5458472B2 (ja) X線管
JP2020140961A (ja) マルチビーム走査透過荷電粒子顕微鏡
JP2015170593A (ja) 分析装置
WO2018020624A1 (ja) 荷電粒子線装置
JP2016072005A (ja) 試料ホルダー、および電子顕微鏡
JP2006156134A (ja) 反射結像型電子顕微鏡
JP2006252994A (ja) 走査電子顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180524

R150 Certificate of patent or registration of utility model

Ref document number: 6346016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150