JP2016009554A - 半導体素子用基板、有機発光ダイオード素子、または有機薄膜太陽電池素子 - Google Patents
半導体素子用基板、有機発光ダイオード素子、または有機薄膜太陽電池素子 Download PDFInfo
- Publication number
- JP2016009554A JP2016009554A JP2014128557A JP2014128557A JP2016009554A JP 2016009554 A JP2016009554 A JP 2016009554A JP 2014128557 A JP2014128557 A JP 2014128557A JP 2014128557 A JP2014128557 A JP 2014128557A JP 2016009554 A JP2016009554 A JP 2016009554A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrode
- substrate
- semiconductor element
- organic light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 118
- 239000000758 substrate Substances 0.000 title claims abstract description 114
- 239000010409 thin film Substances 0.000 title claims description 26
- 230000004888 barrier function Effects 0.000 claims abstract description 61
- 239000000463 material Substances 0.000 claims abstract description 53
- 229910052751 metal Inorganic materials 0.000 claims abstract description 53
- 239000002184 metal Substances 0.000 claims abstract description 53
- 239000011521 glass Substances 0.000 claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 229920002799 BoPET Polymers 0.000 claims abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 229910044991 metal oxide Inorganic materials 0.000 claims description 21
- 150000004706 metal oxides Chemical class 0.000 claims description 21
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 21
- 230000035699 permeability Effects 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000010410 layer Substances 0.000 abstract description 297
- 230000006866 deterioration Effects 0.000 abstract description 8
- 238000010030 laminating Methods 0.000 abstract description 4
- 239000012044 organic layer Substances 0.000 abstract description 2
- 239000002585 base Substances 0.000 description 50
- 239000011295 pitch Substances 0.000 description 24
- 239000010408 film Substances 0.000 description 22
- 238000002347 injection Methods 0.000 description 19
- 239000007924 injection Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 19
- 239000011575 calcium Substances 0.000 description 17
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 15
- 229910052791 calcium Inorganic materials 0.000 description 15
- 238000000605 extraction Methods 0.000 description 15
- 230000005525 hole transport Effects 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- 238000000089 atomic force micrograph Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 150000004767 nitrides Chemical class 0.000 description 9
- 238000010248 power generation Methods 0.000 description 9
- 230000000737 periodic effect Effects 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 5
- 239000000920 calcium hydroxide Substances 0.000 description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- NDBCGHNTWCYIIU-UHFFFAOYSA-N iridium(3+);1-phenylisoquinoline Chemical compound [Ir+3].[C-]1=CC=CC=C1C1=NC=CC2=CC=CC=C12.[C-]1=CC=CC=C1C1=NC=CC2=CC=CC=C12.[C-]1=CC=CC=C1C1=NC=CC2=CC=CC=C12 NDBCGHNTWCYIIU-UHFFFAOYSA-N 0.000 description 2
- KYKLWYKWCAYAJY-UHFFFAOYSA-N oxotin;zinc Chemical compound [Zn].[Sn]=O KYKLWYKWCAYAJY-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- MXVLMYZRJAHEIS-UHFFFAOYSA-N 1-(2-phenylphenyl)naphthalene Chemical group C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC2=CC=CC=C12 MXVLMYZRJAHEIS-UHFFFAOYSA-N 0.000 description 1
- MUNFOTHAFHGRIM-UHFFFAOYSA-N 2,5-dinaphthalen-1-yl-1,3,4-oxadiazole Chemical compound C1=CC=C2C(C3=NN=C(O3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 MUNFOTHAFHGRIM-UHFFFAOYSA-N 0.000 description 1
- UOCMXZLNHQBBOS-UHFFFAOYSA-N 2-(1,3-benzoxazol-2-yl)phenol zinc Chemical compound [Zn].Oc1ccccc1-c1nc2ccccc2o1.Oc1ccccc1-c1nc2ccccc2o1 UOCMXZLNHQBBOS-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 206010027146 Melanoderma Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- XZCJVWCMJYNSQO-UHFFFAOYSA-N butyl pbd Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)O1 XZCJVWCMJYNSQO-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- CVKIMZDUDFGOLC-UHFFFAOYSA-N n,n-diphenyl-2-(2-phenylethenyl)aniline Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 CVKIMZDUDFGOLC-UHFFFAOYSA-N 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
Abstract
【解決手段】本発明の半導体素子用基板は、 基板上に、スピンオングラス材料を含む下地層と、無機バリア層が順に積層され、前記無機バリア層は、組成式MxOyNz(ただし、Mは金属またはSi、xは任意の正の実数、y、zはゼロ又は任意の正の実数)で表され、かつ、下記条件で測定した水蒸気透過度が10−2g/m2/day以下である。ここで、水蒸気透過度は、100μmのPETフィルム上に300nmの厚みの前記無機バリア層と同じ組成の層を積層し、40℃90%RHで測定する。
【選択図】図1
Description
有機発光ダイオード素子の光取り出し効率を低減させる理由は、大きく分けて二つある。一つは、複数の層の界面での全反射により発光した光が素子内部を導波し、素子外部に取り出せなくなるというものである。またもう一つは、反射層として用いられる金属電極表面で、発光層で生じた電磁波が表面プラズモンとして捕捉され、素子外部に取り出せなくなるというものである。
導波する光を抑制する方法としては、各層の界面に微細な凹凸を形成することが行われている。このような微細な凹凸を形成することで、各層界面での全反射を抑制し、素子外部に光を取り出すことができる。また、金属電極表面に表面プラズモンとして捕捉された電磁波を再輻射させる方法としては、金属電極表面に凹凸構造を形成することが行われている。凹凸を有することで、表面プラズモンの分散曲線と発光光の分散直線とが交差することができ、表面プラズモンのエネルギーを再輻射することができる(例えば、特許文献1)。
ここまで、電子を光子に変換する有機発光ダイオード素子を例に説明したが、類似の素子構造を有し、光子を電子に変換する有機薄膜太陽電池においても同様の検討が進められている。
しかしながら、例えば、特許文献1に記載された有機発光ダイオード素子の基板の凹凸構造を、スピンオングラスを用いて形成すると、長時間使用した際に発光面に黒点(以下、ダークスポットという。)が生じる場合があり、十分な品質を維持することができなかった。
一般にダークスポットは、有機発光層が水分等によって劣化することで発生するが、基板とスピンオングラス材料を用いた層の間に水分を遮断するバリア層を設けて、外部からの水分を十分遮断しても当該問題を解決することができなかった。
その結果、硬化後のスピンオングラス材料を含む下地層は、硬化時の脱水縮合反応によって生じる水分を含有しており、この水分はベーク等の加熱でも十分に除去できないことを見出した。また、除去できたとしても環境雰囲気中の水分を再吸収してしまうため、その保管が非常に難しいことを見出した。そこで、スピンオングラス材料を含む下地層と有機半導体層との間に、所定の値以下の水蒸気透過度を有する層を形成することで当該問題を解決できることを見出した。
[1]基板上に、スピンオングラス材料を含む下地層と、無機バリア層が順に積層され、 前記無機バリア層は、組成式MxOyNz(ただし、Mは金属またはSi、xは任意の正の実数、y、zはゼロ又は任意の正の実数)で表され、かつ、下記条件で測定した水蒸気透過度が10−2g/m2/day以下であることを特徴とする半導体素子用基板;(水蒸気透過度)100μmのPETフィルム上に300nmの厚みの前記無機バリア層と同じ組成の層を積層した際の40℃90%RHにおける水蒸気透過度。
[2]前記下地層の基板と反対側の面に、複数の凹部又は凸部が二次元に配置された二次元構造を有していることを特徴とする[1]に記載された半導体素子用基板。
[3]前記無機バリア層の基板と反対側の面上に、金属酸化物層又はケイ素酸化物層がさらに積層されていることを特徴とする[1]または[2]に記載された半導体素子用基板。
[4][1]〜[3]のいずれか一つに記載された半導体素子用基板上に、少なくとも第1電極と、有機発光層と、第2電極とが順に積層された有機発光ダイオード素子。
[6][1]〜[3]のいずれか一項に記載された半導体素子用基板上に、少なくとも第1電極と、有機光電変換層と、第2電極とが順に積層された有機薄膜太陽電池素子。
[7][2]または[3]に記載された半導体素子用基板上に、少なくとも第1電極と、有機光電変換層と、第2電極とが順に積層された有機薄膜太陽電池素子であって、前記第1電極、有機光電変換層および第2電極が、前記半導体素子用基板の二次元構造に追従していることを特徴とする有機薄膜太陽電池素子。
図1は、本発明の半導体素子用基板10を模式的に示す断面図である。
本発明の半導体素子用基板は、基板1上に、スピンオングラス材料を含む下地層2と、無機バリア層3が順に積層されている。
従来、半導体素子における有機半導体層(例えば、有機発光ダイオードにおける有機発光層)等が水分によって劣化し、その寿命に影響を及ぼすことは知られていた。しかし、スピンオングラスを硬化する際の、脱水縮合反応によって生じる水分を下地層2が含有し、この水分が劣化の起因となることまでは知られておらず、この問題を解決する検討は行われていなかった。これらの水分は、ベーク等によっても完全に除去することは難しく、また除去できたとしても保管時に環境雰囲気中の水分を再吸収してしまう。そのため、有機半導体素子の寿命を維持することや、通常環境で保管することが難しかった。半導体素子用基板10は、無機バリア層3を有するため、このような問題を解決することができる。
当該条件下での水蒸気透過度が10−2g/m2/day以下であれば、同組成である無機バリア層3を下地層2上に形成することで、下地層2からの水分を十分遮断することができる。また水蒸気透過度は低い程好ましく、その下限は特に限定されない。
なお、本測定では100μmのPETフィルム上に、無機バリア層と同じ組成の層を300nmの厚みで形成して水蒸気透過度を測定している。これは、300nmの厚さの無機バリア層を単体で保持することが困難で、無機バリア層のみの水蒸気透過度を直接測定することができないからである。
カルシウム腐食法の原理は以下のとおりである。
測定対象フィルム(100μmのPETフィルム上に300nmの無機バリア層と同じ組成の層が形成されたもの)上にカルシウム層を任意の膜厚で形成するとともに、該カルシウム層の露出面を、水蒸気を10−6g/m2/day以上透過しない膜(Al膜等)で被覆する。カルシウム層のカルシウムは測定対象フィルムを透過してきた水と反応し、反応部分のカルシウムは水酸化カルシウムとなり白色となる。白色になった部分の面積が測定対象フィルムを透過した水分量に対応し、白色になった部分の面積の単位時間当たりの増加分が水蒸気透過度となる。
まず、10cm角の測定対象フィルムの無機バリア層と同じ組成の層側の表面に、蒸着マスクにより1cm×1cmの大きさのカルシウムを50nmの厚さで蒸着してカルシウム層を成膜する。続いて、真空状態のままマスクを取り去り、測定対象フィルムのカルシウムを蒸着した側の面全体にアルミニウムを1μmの厚さで蒸着してアルミニウム層を成膜する。
この測定対象フィルムを真空チャンバーから取り出し、該測定対象のアルミニウム蒸着面側と、10cm角のガラス板とを、蜜蝋とパラフィンを1:1の割合で溶融混合した混合物を用いて貼合し、評価セルを作製する。
該腐食面積から、以下の式(1)により水蒸気透過度を算出する。
水蒸気透過度(g/m2/day)=Y×MH2O×n×(A1/A2)×(24/T) …(1)
δは、腐食面積(cm2)である。
tは、カルシウム層の厚み(cm)である。
dCa(OH)2は、水酸化カルシウムの密度(g/cm3)である。
MCa(OH)2は、水酸化カルシウムの分子量である。
MH2Oは、水の分子量である。
nは、カルシウムの価数である。
A1は、成膜したカルシウム層の面積(cm2)である。
A2は、測定エリアの面積(cm2)である。
Tは、恒温恒湿処理時間(hour)である。
また、無機バリア層3の屈折率は、下地層2の屈折率と同等であることがより好ましい。無機バリア層3の屈折率が、下地層2の屈折率と同等であれば、不要な屈折率界面が無くなり、光の反射をより抑制することができる。
なお、無機バリア層3の厚みは、当該半導体素子基板を任意の10カ所の断面における膜厚の平均値を意味する。任意の断面における厚みは、走査型電子顕微鏡を用いて測定した。
スピンオングラス材料は、塗布段階では粘性を有する液体状であり、塗布後に硬化させることにより、固体形態になるものをいう。したがって、液体を基板1上に塗布することが可能であり、基板1上に均一な層を形成することができる。
またスピンオングラス材料は、一般に用いられているものを使用することができ、例えば、シリケート系のスピンオングラス材料、シロキサン系のスピンオングラス材料等を用いることができる。
そのため、下地層2を形成した後、ベークすることが好ましい。半導体素子用基板10は、無機バリア層3を有しているため、下地層2が水分を含有していても、その水分が透湿することはないが、下地層2が含有する水分量が少なければ、無機バリア層3をより薄くすることができる。
下地層2の基板1と反対側の面に、複数の凹部又は凸部が二次元に配置された二次元構造を有していると、この半導体素子用基板を半導体素子に用いた際に、各層界面での全反射を抑制し、光を効率的に利用することができる。具体的には、例えば有機発光ダイオード素子を半導体素子用基板10’上に形成した場合は、全反射が抑制されることで光取り出し効率が向上する。また、有機薄膜太陽電池を半導体素子用基板10’上に形成した場合は、発電部に入射する光が反射することを抑制し、発電効率を向上させることができる。
さらに、この半導体素子用基板10’上に半導体素子を形成する場合、形成される各層が二次元構造を追従していることが好ましく、特に金属反射電極が二次元構造を追従していることが好ましい。半導体素子用基板上に形成される各層が二次元構造を追従していれば、それだけ各層界面での反射を抑制することができる。また後述の有機発光ダイオード素子についての記載で詳細を説明するが、金属反射電極が二次元構造を追従していれば、表面プラズモンのエネルギーを再輻射することができる。
前記二次元的な配置の周期を特定の周波数の光の回折に適した周期とすることで、光の取り出し効率、或いは、光の取り込み効率を向上させることができる。または、前記二次元的な配置の周期を半導体素子内に発生する表面プラズモンの取り出しに適した周期とすることで、光取り出し効率の高い発光素子、或いは、発電効率の高い太陽電池を得ることができる。
また、上記の「交差角度が60°の位置関係」とは、具体的には、以下の条件を満たす関係をいう。まず、1つの中心点t1から、隣接する中心点t2の方向に長さが最頻ピッチPと等しい長さの線分L1を引く。次いで中心点t1から、線分L1に対して、60゜の方向に、最頻ピッチPと等しい長さの線分L2を引く。中心点t1に隣接する中心点が、中心点t1と反対側における各線分L1の終点から、各々最頻ピッチPの15%以内の範囲にあれば、交差角度が60°の位置関係にある。交差角度が90度の位置関係とは、上述の「60°」との記載を「90°」と読み替えることで定義される。
また、中心点は以下のように定義する。AFM(原子間力顕微鏡)の測定結果に基づき、基準面と平行に各凸部について20nm毎に複数の等高線を引き、各等高線の重心点(x座標とy座標で決定される点)を求める。これらの各重心点の平均位置(各x座標の平均とy座標の平均で決定される位点)が、該凸部の中心点である。
なお、「凹部が周期的に二次元に配置」している場合の状態と中心点は、上記の定義における凸部を凹部と読み替えることで同様に定義可能である。
まず、基板上における無作為に選択された領域で、一辺が最頻ピッチPの30〜40倍の正方形の領域について、AFMイメージを得る。例えば、最頻ピッチPが300nm程度の場合、9μm×9μm〜12μm×12μmの領域のイメージを得る。そして、このイメージをフーリエ変換により波形分離し、FFT像(高速フーリエ変換像)を得る。ついで、FFT像のプロファイルにおける0次ピークから1次ピークまでの距離を求める。こうして求められた距離の逆数がこの領域における最頻ピッチPである。このような処理を無作為に選択された合計25カ所以上の同面積の領域について同様に行い、各領域における最頻ピッチを求める。こうして得られた25カ所以上の領域における最頻ピッチP1〜P25の平均値が最頻ピッチPである。なお、この際、各領域同士は、少なくとも1mm離れて選択されることが好ましく、より好ましくは5mm〜1cm離れて選択される。
この好ましい構造の一例としては、その高さ分布のスペクトル強度において、半導体素子が利用する周波数帯域の光の下限周波数を回折するのに適した波数から上限周波数を回折するのに適した波数までに対応した波数を含むように、高さ分布のスペクトル強度が調整された構造が挙げられる。より具体的には、半導体素子が利用する周波数帯域の光の下限周波数を回折するのに適した波数から上限周波数を回折するのに適した波数までに対応した波数スペクトル強度の積分値が、全スペクトル強度の35%以上となるように調整された構造であることがより好ましい。
まず、複数の凹部又は凸部の二次元的な配置によって形成された構造物の表面の顕微鏡画像を撮影する。図3は複数の凹部又は凸部の二次元的な配置によって形成された構造物の表面の顕微鏡画像の例である。顕微鏡画像の構造物の高さ情報は、グレースケールで表される画像で変換されている。グレースケール画像では、例えば、白度が低いところ程、凹部の底部が深い(白度が高いところ程、凸部の頂部が高い)ことを表している。
次にグレースケール画像対して2次元フーリエ変換を施し、フーリエ変換画像を得る。図4は、構造物の高さ情報をグレースケールで変化した画像のフーリエ変換画像の例である。図4は、輝点の集合で表され、画像の中心から輝点までの距離は構造物が持つ凹凸ピッチを表し、輝点の密度が高い程、構造物がその長さの凹凸ピッチ成分を多く含んでいることを示している。画像の中心から輝点までの距離が長い程、凹凸ピッチは短くなる。
画像の中心からの距離と輝点の密度をプロットすると高さ分布のスペクトル強度のグラフが得られる。図5は、高さ分布のスペクトル強度のグラフの例である。図5において横軸は波数、縦軸は強度である。
半導体素子内に発生する表面プラズモンの下限周波数を取り出すのに適した波数から上限周波数を取り出すのに適した波数までに対応した波数スペクトル強度の積分値が、全スペクトル強度の35%以上となるように調整された構造であることがより好ましい。
半導体素子用基板10’上に形成される半導体素子が二次元構造を追従している場合、金属反射電極の表面形状はこの凸部2aの形状、高さ及び最頻ピッチに依存する。そのため、凸部2aの形状、高さ及び最頻ピッチにより金属反射電極表面において表面プラズモンからの光取り出し効率は変化するため、以下の形状および高さを有することが好ましい。以下の形状および高さであれば、表面プラズモンを効率よく再輻射させることができる。
以上述べた円錐台形状、正弦波形状、円錐形状、円柱形状の構造体はすべて凸型に関する説明であるが、それらの反転型である凹型についても本発明の効果を得ることが出来る。凹型の構造体の形状の定義は、凸型の表面構造体の基底面(複数の構造体突起物の最も低い部分を含む平面)を基準面(鏡面)として、面対称構造体(鏡像)を作製したものとなる。たとえば、面対称構造体が下地層表面に形成されているとき、構造体表面から基準面側の空間は空隙であり、構造体表面から基準面と反対側の空間は下地層を構成する材料で構成されていることになる。
図8は、下地層2に円錐台形状の複数の凸部2aが離間して周期的に形成されている例である。
図9は、下地層2に正弦波形状の複数の凸部2aが周期的に形成されている例である。
図10は、下地層2に円柱形状の複数の凸部2aが離間して周期的に形成されている例である。
図11は、下地層2に円錐形状の複数の凸部2aが離間して周期的に形成されている例である。
また凸部2aが反転した凹部でも上記の効果は得られるため、複数の凹部が形成する二次元構造についても具体的に以下に図示する。
図12は、下地層2に円錐台形状の複数の凹部が離間して周期的に形成されている例である。
図13は、下地層2に正弦波形状の複数の凹部が周期的に形成されている例である。
図14は、下地層2に円柱形状の複数の凹部が離間して周期的に形成されている例である。
図15は、下地層2に円錐形状の複数の凹部が離間して周期的に形成されている例である。
図16に示す各エリアC1〜Cnは、各中心点の交差角度が60°の位置関係で整列している領域である。なお、図16では、各凸部の中心点の位置を、便宜上、その中心点を中心とする円uで示している。円uは、各凸部だけでなく、その周辺の平坦面を含む領域に相当する。
最頻ピッチPが500nm未満の時、10μm×10μmのAFMイメージ測定範囲内における最頻面積Qは、0.026μm2〜6.5μm2であることが好ましい。
最頻ピッチPが500nm以上1μm未満の時、10μm×10μmのAFMイメージ測定範囲内における最頻面積Qは、0.65μm2〜26μm2であることが好ましい。
最頻ピッチPが1μm以上の時、50μm×50μmのAFMイメージ測定範囲内における最頻面積Qは、2.6μm2〜650μm2であることが好ましい。
最頻面積Qが好ましい範囲内であれば、金属表面から所定の角度に再輻射される表面プラズモンの素子外部への放出角度がランダムになり、発光光が異方性を有することを抑制することができる。
面積のランダム性の度合いは、具体的には、以下の条件を満たすことが好ましい。
まず、ひとつのエリアの境界線が外接する最大面積の楕円を描き、その楕円を下記式(2)で表す。
X2/a2+Y2/b2=1・・・(2)
最頻ピッチPが500nm以上1μm未満の時、10μm×10μmのAFMイメージ測定範囲内におけるπabの標準偏差は、1.95μm2以上であることが好ましい。
最頻ピッチPが1μm以上の時、50μm×50μmのAFMイメージ測定範囲内におけるπabの標準偏差は、8.58μm2以上であることが好ましい。
πabの標準偏差が好ましい範囲内であれば、金属表面から所定の角度に再輻射される表面プラズモンの素子外部への放出角度を平均化させる効果に優れ、発光光が異方性を有することを抑制することができる。
また各エリアC1〜Cnの格子方位のランダム性は、具体的には、以下の条件を満たすことが好ましい。
まず、任意のエリア(I)における任意の隣接する2つの凸部の中心点を結ぶ直線K0を画く。次に、該エリア(I)に隣接する1つのエリア(II)を選択し、そのエリア(II)における任意の凸部と、その凸部に隣接する6つの凸部の中心点を結ぶ6本の直線K1〜K6を画く。直線K1〜K6が、直線K0に対して、いずれも3度以上異なる角度である場合、エリア(I)とエリア(II)との格子方位が異なる、と定義する。
エリア(I)に隣接するエリアの内、格子方位がエリア(I)の格子方位と異なるエリアが2以上存在することが好ましく、3以上存在することが好ましく、5以上存在することがさらに好ましい。
FFT基本波の最大値と最小値の比が大きい場合は、凸部の格子方位が揃っており、凸部を2次元結晶とみなした場合単結晶性が高い構造と言える。反対に、FFT基本波の最大値と最小値の比が小さい場合は、凸部の格子方位が揃っておらず、凸部を2次元結晶とみなした場合は多結晶構造であると言える。
一般に半導体素子用基板上に半導体素子を積層する場合、最初に積層される層は電極層である。この電極層は金属または透明導電材料により形成される。有機発光ダイオード素子のボトムエミッション構造の場合および有機薄膜太陽電池素子では、透明導電材料からなる透明電極が形成される。透明導電材料としては、公知のものが使用できる。たとえばインジウム−スズ酸化物(Indium Tin Oxide(ITO))、インジウム−亜鉛酸化物(Indium Zinc Oxide(IZO))、酸化亜鉛(Zinc Oxide(ZnO))、亜鉛−スズ酸化物(Zinc Tin Oxide(ZTO))等が挙げられる。
このような透明導電材料は、無機バリア層3に含まれる金属窒化物と接触すると、時間の経過と共に、材料中の酸素原子が金属窒化物側へマイグレーションする。このようなマイグレーションが生じると、透明電極の透過率が劣化する。そのため、酸素原子のマイグレーションによる透過率の劣化を抑制するために金属酸化物層又はケイ素酸化物層4をさらに積層することが好ましい。
また、金属酸化物層又はケイ素酸化物層4と無機バリア層3が同一の材料からなることは妨げられない。例えば、無機バリア層3および金属酸化物層又はケイ素酸化物層4が同一のTiO2からなる場合でも、無機バリア層3が不純物として窒化物を含んでいる場合、当該金属酸化物層又はケイ素酸化物層4をさらに積層することでマイグレーションを抑制することができる。
用途にもよるが、一般に、基板1は可視光透過率の高いものを使用する。透過率は可
視光の範囲(波長380nm〜800nm)でスペクトルに偏りを与えず、透過率70%
以上、好ましくは80%以上、より好ましくは90%以上のものを用いる。
本発明の半導体素子用基板の製造方法は、基板1上に下地層2、無機バリア層3、金属酸化物層又はケイ素酸化物層4を積層することで形成される。金属酸化物層又はケイ素酸化物層4は、半導体素子を形成する際に金属酸化物層又はケイ素酸化物層4上に形成される層によっては除くこともできる。
下地層2は、一般に使用されるスピンコート、バーコート、スリットコート、ダイコート、スプレーコート等の方法を用いて形成することができる。また凹凸構造を形成する場合は、それに対応する金型を形成し、インプリントすることで形成することができる。インプリントする金型は、電子ビームリソグラフィー、機械式切削加工、レーザー熱リソグラフィー、干渉露光、縮小露光、アルミニウムの陽極酸化法等を用いて形成することができる。また、粒子単層膜を下地層2上に形成し、かかる粒子単層膜をエッチングマスクとしてドライエッチングを行うことで下地層2上に直接凹凸形状を形成してもよい。また粒子単層膜を利用して金型を作製し、インプリントしてもよい。また粒子単層膜を利用して非周期構造を形成する場合、粒子径の異なる複数の粒子を用いることで作製することができる。
図18は本発明の有機発光ダイオード素子100の断面を模式的に示した図である。上述の半導体素子用基板20上に、少なくとも第1電極11と、有機発光層12と、第2電極13とが順に積層されている。金属酸化物層又はケイ素酸化物層4は、必須の層ではなく、積層される第1電極11の材質によっては除くこともできる。
本発明の有機発光ダイオード素子は、いわゆるボトムエミッション構造でもトップエミッション構造でも、いずれを適用してもよい。また第1電極11及び第2電極13は一方が陽極で他方が陰極であれば、いずれの構成でもよい。
ボトムエミッション構造の場合、第1電極11が透明電極、第2電極13が金属反射電極となり、トップエミッション構造の場合、第1電極11が金属反射電極、第2電極13が透明電極となる。
また、本発明の有機発光ダイオード素子100は本発明の効果を損ねない範囲で以下に記載していない層や構造を備えてもよい。具体的には、透明電極11と有機発光層12の間に、ホール注入層12a、ホール輸送層12b等を備えてもよく、有機発光層12と金属反射電極13の間に電子輸送層12c、電子注入層12d等を備えてもよい。
また透明電極11と金属反射電極13は、電圧を印加できるようになっている。透明電極11と金属反射電極13との間に電圧を印加することで、有機発光層12に電子とホールが注入され、これらが結合することで光が発生する。発生した光は、透明電極11を直接透過して素子外部に取り出されるか、金属反射電極13で一度反射して素子外部に取り出される。
半導体素子用基板20は、下地層2を有するため、その表面平滑性を高くすることができる。半導体素子用基板20の表面平滑性が高いと、その上に形成される透明電極11、有機発光層12、金属電極13の結晶性及び均質性を高くすることができる。そのため、高い発光効率とムラのない発光を実現することができる。
また下地層2の有機発光層12側の面には、無機バリア層3が形成されている。そのため、下地層2に含有された水分が、有機発光層12に透湿することを防ぐことができる。つまり、無機バリア層3により、有機発光層12が劣化することを抑制し、有機発光ダイオード素子100の寿命を長くすることができる。
さらに、無機バリア層3の透明電極11側の面には、金属酸化物層又はケイ素酸化物層4が形成されている。透明電極11が導電性酸化物からなる場合、無機バリア層3に用いられる金属窒化物と接触すると、時間の経過と共に、材料中の酸素原子が金属窒化物側へマイグレーションする。金属酸化物層又はケイ素酸化物層4を形成することで、酸素原子のマイグレーションを抑制し、透明電極11の透明度を高く維持することができる。なお、金属酸化物層又はケイ素酸化物層4については必須ではなく、透明電極11の材料によっては、除去することができる。
半導体素子用基板の二次元構造を各層が追従することで、各層界面での全反射を抑制することができる。また、各層が二次元構造を追従することで、金属反射電極13の有機発光層12側の面に凹部13aが形成される。この凹部13aは、半導体用基板10における凸部2aの構造が反転した構造となる。すなわち、第2電極13の有機発光層12側の面には、複数の凹部13aによる二次元構造が形成される。
具体的な例を挙げると、凸部2aが図8の形状の場合、凹部13aは図12の形状となる。凸部2aが図9の形状の場合、凹部13aは図13の形状となる。凸部2aが図10の形状の場合、凹部13aは図14の形状となる。凸部2aが図11の形状の場合、凹部13aは図15の形状となる。
表面プラズモンの捕捉は以下のような過程で生じる。発光層12で発光分子から発光する際に、ごく近傍に近接場光が発生する。発光層12と金属反射電極13との距離は非常に近いため、近接場光は金属反射電極13の表面で伝播型の表面プラズモンのエネルギーに変換される。
金属表面の伝播型表面プラズモンは、入射した電磁波(近接場光など)により生じる自由電子の疎密波が表面電磁場を伴うものである。平坦な金属表面に存在する表面プラズモンの場合、該表面プラズモンの分散曲線と光(空間伝播光)の分散直線とは交差しないため、表面プラズモンのエネルギーを光として取り出すことはできない。これに対し、金属表面に二次元構造があると、該二次元構造によって回折された空間伝播光の分散曲線が表面プラズモンの分散曲線と交差するようになり、表面プラズモンのエネルギーを輻射光として取り出すことができる。
このように、二次元構造が設けられていることで、表面プラズモンとして失われていた光のエネルギーが取り出される。取り出されたエネルギーは、輻射光として金属反射電極13表面から放射される。このとき金属反射電極13から輻射される光は指向性が高く、その大部分が取出し面に向かう。そのため、取出し面から高強度の光が出射し、取出し効率が向上する。
凹部13aの深さの上記範囲は以下の理由による。すなわち、凹部13aの深さが12nm未満であると、二次元構造として十分な表面プラズモンの回折波を生成できなくなり、表面プラズモンを輻射光として取り出す効果が低下する。また、凹部13aの深さが180nmを超えると、表面プラズモンが局在型の性質を持ち始め、伝播型ではなくなってくるため、輻射光の取出し効率が低下する。さらに、凹部13aの深さが180nmを超えると、有機発光ダイオードの陽極層、有機薄膜層、陰極層を順次積層する際に凹凸が急峻になり、陽極と陰極が短絡する可能性も高くなってくるため好ましくない。
凹部13aの深さは、凸部2aの高さと同じであるため、凸部2aの高さをAFM(原子間力顕微鏡)により測定することで間接的に定量できる。
本実施形態において透明電極11には、可視光を透過する透明導電体が用いられる。
透明電極11を構成する透明導電体は、特に限定されず、透明導電材料として公知のものが使用できる。たとえばインジウム−スズ酸化物(Indium Tin Oxide(ITO))、インジウム−亜鉛酸化物(Indium Zinc Oxide(IZO))、酸化亜鉛(Zinc Oxide(ZnO))、亜鉛−スズ酸化物(Zinc Tin Oxide(ZTO))等が挙げられる。
透明電極11の厚さは、通常、50〜500nmである。
なお、有機発光ダイオード素子100を構成する各層の厚さは、分光エリプソメーター、接触式段差計、AFM等により測定できる。
本発明における有機発光層12は、有機発光材料から構成される。
有機発光材料としては、たとえば、Tris[1−phenylisoquinoline−C2,N]iridium(III)(Ir(piq)3)、1,4−bis[4−(N,N−diphenylaminostyrylbenzene)](DPAVB)、Bis[2−(2−benzoxazolyl)phenolato]Zinc(II)(ZnPBO)等の色素化合物が挙げられる。また、蛍光性色素化合物やりん光発光性材料を他の物質(ホスト材料)にドープしたものを用いてもよい。この場合、ホスト材料としては、ホール輸送材料、電子輸送材料等が挙げられる。
また本発明における有機発光ダイオード素子100は、ホール注入層12a、ホール輸送層12b、電子輸送層12cおよび電子注入層12dを備えてもよい。
ホール注入層12a、ホール輸送層12b、電子輸送層12cおよび電子注入層12dを構成する材質としては、それぞれ、有機材料が一般的に用いられる。
たとえばホール注入層12aを構成する材質(ホール注入材料)としては、たとえば、4,4’,4”−tris(N,N−2−naphthylphenylamino)triphenylamine(2−TNATA)等の化合物などが挙げられる。
ホール輸送層12bを構成する材質(ホール輸送材料)としては、たとえば、N,N’−ジフェニル−N,N’−ビス(1−ナフチル)−(1,1’−ビフェニル)−4,4’−ジアミン(NPD)、銅フタロシアニン(CuPc)、N,N’−Diphenyl−N,N’−di(m−tolyl)benzidine(TPD)等の芳香族アミン化合物などが挙げられる。
電子輸送層12cを構成する材質(電子輸送材料)及び電子注入層12dを構成する材質(電子注入材料)としては、たとえば、2,5−Bis(1−naphthyl)−1,3,4−oxadiazole(BND)、2−(4−tert−Butylphenyl)−5−(4−biphenylyl)−1,3,4−oxadiazole(PBD)等のオキサジオール系化合物、Tris(8−quinolinolato)aluminium(Alq)等の金属錯体系化合物などが挙げられる。
有機発光層12、ホール注入層12a、ホール輸送層12b、電子輸送層12cおよび電子注入層12dの全体の厚さは、通常、30〜500nmである。
金属反射電極13の材料としては、ほとんどの金属の単体または合金を用いることができるが、複素誘電率の実部が絶対値が大きな負の値を持つような材料が好ましい。かかる材料としては例えば、金、銀、銅、亜鉛、アルミニウム、マグネシウム等の単体や、金と銀との合金、銀と銅との合金、真鍮等の合金が挙げられる。また金属反射電極13は、2層以上の積層構造であってもよい。
金属反射電極13の厚さは特に限定はされないが、例えば20〜2000nmであり、好ましくは50〜500nmである。20nmより薄いと反射率が低くなり正面輝度が低下し、また、500nmより厚いと成膜時の熱や放射線によるダメージ、膜応力による機械的ダメージが有機発光層12等の有機物からなる層に蓄積する。
本発明の有機薄膜太陽電池は、本発明の半導体素子用基板10を備えることを特徴とする。半導体素子用基板上に形成する層構成は、公知の層構成及び材料を採用できる。
本発明の一実施形態にかかる有機薄膜太陽電池は、例えば、第1電極、ホール注入層、ホール輸送層、電子供与型有機半導体層、電子受容型有機半導体層、電子輸送層、第2電極を順に備える。ホール注入層、ホール輸送層および電子輸送層は必須の層ではないため、これらの層を備えなくてもよい。なお、電子供与型有機半導体層および電子受容型有機半導体層を併せて、以下「有機光電変換層」という。
下地層2を形成することで、半導体素子用基板10の表面平滑性を高くすることができる。そのため、半導体素子用基板10上に形成される第1電極、ホール注入層、ホール輸送層、電子供与型有機半導体層、電子受容型有機半導体層、電子輸送層、第2電極の結晶性及び均質性を高くすることができる。そのため、高い発電効率を実現することができる。
また下地層2に凹凸形状を形成した場合、第1電極、ホール注入層、ホール輸送層、電子供与型有機半導体層、電子受容型有機半導体層、電子輸送層、第2電極のすべての層の界面に、又はいずれか1つ以上の層の界面に、本発明の凹凸基板上の凹凸構造が反映された凹凸構造が形成されていることが好ましい。基板以外の層の界面にも凹凸構造を有することによって、外部から入射される光が各層で反射されることなく電子供与型有機半導体層及び電子受容型有機半導体層に効率的に供給されるため、発電効率を更に高めることができる。
金属層の光電変換層側の表面に凹凸構造があると、回折により伝播光が表面プラズモンに変換される。一般に有機薄膜太陽電池では、光電変換層は、当該金属層の近傍に存在している。そのため、表面プラズモンの周囲に発生する電磁場が光電変換層に届き、この電磁場が電力に変換される。すなわち、伝播光強度を表面プラズモンに変換し、さらに表面プラズモンを電力へエネルギー変換することができる。したがって、金属層の表面が凹凸構造を有すると、高い発電効率を維持することができる。
Claims (7)
- 基板上に、スピンオングラス材料を含む下地層と、無機バリア層が順に積層され、
前記無機バリア層は、組成式MxOyNz(ただし、Mは金属またはSi、xは任意の正の実数、y、zはゼロ又は任意の正の実数)で表され、かつ、下記条件で測定した水蒸気透過度が10−2g/m2/day以下であることを特徴とする半導体素子用基板;
(水蒸気透過度)100μmのPETフィルム上に300nmの厚みの前記無機バリア層と同じ組成の層を積層した際の40℃90%RHにおける水蒸気透過度。 - 前記下地層の基板と反対側の面に、複数の凹部又は凸部が二次元に配置された二次元構造を有することを特徴とする請求項1に記載された半導体素子用基板。
- 前記無機バリア層の基板と反対側の面上に、金属酸化物層又はケイ素酸化物層がさらに積層されていることを特徴とする請求項1または2に記載された半導体素子用基板。
- 請求項1〜3のいずれか一項に記載された半導体素子用基板上に、少なくとも第1電極と、有機発光層と、第2電極とが順に積層された有機発光ダイオード素子。
- 請求項2または3に記載された半導体素子用基板上に、少なくとも第1電極と、有機発光層と、第2電極とが順に積層された有機発光ダイオード素子であって、
前記第1電極、有機発光層および第2電極が、前記半導体素子用基板の二次元構造に追従していることを特徴とする有機発光ダイオード素子。 - 請求項1〜3のいずれか一項に記載された半導体素子用基板上に、少なくとも第1電極と、有機光電変換層と、第2電極とが順に積層された有機薄膜太陽電池素子。
- 請求項2または3に記載された半導体素子用基板上に、少なくとも第1電極と、有機光電変換層と、第2電極とが順に積層された有機薄膜太陽電池素子であって、
前記第1電極、有機光電変換層および第2電極が、前記半導体素子用基板の二次元構造に追従していることを特徴とする有機薄膜太陽電池素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014128557A JP6364998B2 (ja) | 2014-06-23 | 2014-06-23 | 有機発光ダイオード素子および有機薄膜太陽電池素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014128557A JP6364998B2 (ja) | 2014-06-23 | 2014-06-23 | 有機発光ダイオード素子および有機薄膜太陽電池素子 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017085685A Division JP2017168448A (ja) | 2017-04-24 | 2017-04-24 | 半導体素子用基板、有機発光ダイオード素子、及び有機薄膜太陽電池素子 |
JP2017085684A Division JP6583343B2 (ja) | 2017-04-24 | 2017-04-24 | 透明電極付半導体素子用基板、有機発光ダイオード素子、または有機薄膜太陽電池素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016009554A true JP2016009554A (ja) | 2016-01-18 |
JP6364998B2 JP6364998B2 (ja) | 2018-08-01 |
Family
ID=55226987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014128557A Active JP6364998B2 (ja) | 2014-06-23 | 2014-06-23 | 有機発光ダイオード素子および有機薄膜太陽電池素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6364998B2 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017213262A1 (ja) * | 2016-06-10 | 2017-12-14 | 凸版印刷株式会社 | 有機el素子、並びに有機el素子を利用した照明装置、面状光源及び表示装置 |
WO2017221681A1 (ja) * | 2016-06-24 | 2017-12-28 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法 |
JP2018032590A (ja) * | 2016-08-26 | 2018-03-01 | 凸版印刷株式会社 | 有機el素子、ならびに、当該有機el素子を含む照明装置、面状光源、および表示装置 |
WO2023100672A1 (ja) * | 2021-12-03 | 2023-06-08 | ソニーセミコンダクタソリューションズ株式会社 | 表示装置および電子機器 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07122764A (ja) * | 1993-10-22 | 1995-05-12 | Hitachi Ltd | 太陽電池基板の製造方法 |
JP2006313667A (ja) * | 2005-05-06 | 2006-11-16 | Institute Of Physical & Chemical Research | 有機el素子 |
WO2010079640A1 (ja) * | 2009-01-07 | 2010-07-15 | シャープ株式会社 | 有機エレクトロルミネセンス表示装置及びその製造方法 |
WO2011074457A1 (ja) * | 2009-12-15 | 2011-06-23 | ソニー株式会社 | 光電変換素子および光電変換素子の製造方法 |
JP2012131231A (ja) * | 2005-03-17 | 2012-07-12 | Dupont Teijin Films Us Lp | 光電子および電子デバイスにおける使用に適した複合フィルム |
JP2012222042A (ja) * | 2011-04-05 | 2012-11-12 | Jvc Kenwood Corp | 薄膜太陽電池用基板及びその製造方法 |
WO2013002026A1 (ja) * | 2011-06-27 | 2013-01-03 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法、および電子デバイス |
JP2013123895A (ja) * | 2011-12-16 | 2013-06-24 | Konica Minolta Advanced Layers Inc | ガスバリアーフィルム及びガスバリアーフィルムの製造方法 |
WO2013099915A1 (ja) * | 2011-12-28 | 2013-07-04 | 王子ホールディングス株式会社 | 有機発光ダイオード、有機発光ダイオードの製造方法、画像表示装置および照明装置 |
JP2014059574A (ja) * | 2002-05-13 | 2014-04-03 | Semiconductor Energy Lab Co Ltd | 表示装置、携帯情報端末、携帯電話 |
WO2014057647A1 (ja) * | 2012-10-11 | 2014-04-17 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
JP2014068309A (ja) * | 2012-09-27 | 2014-04-17 | Aiphone Co Ltd | 集合住宅インターホン装置 |
WO2014069565A1 (ja) * | 2012-10-31 | 2014-05-08 | 昭和電工株式会社 | 有機el素子並びにそれを備えた画像表示装置及び照明装置 |
JP2015191787A (ja) * | 2014-03-28 | 2015-11-02 | 旭化成イーマテリアルズ株式会社 | 有機エレクトロルミネッセンス素子用基板、有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
-
2014
- 2014-06-23 JP JP2014128557A patent/JP6364998B2/ja active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07122764A (ja) * | 1993-10-22 | 1995-05-12 | Hitachi Ltd | 太陽電池基板の製造方法 |
JP2014059574A (ja) * | 2002-05-13 | 2014-04-03 | Semiconductor Energy Lab Co Ltd | 表示装置、携帯情報端末、携帯電話 |
JP2012131231A (ja) * | 2005-03-17 | 2012-07-12 | Dupont Teijin Films Us Lp | 光電子および電子デバイスにおける使用に適した複合フィルム |
JP2006313667A (ja) * | 2005-05-06 | 2006-11-16 | Institute Of Physical & Chemical Research | 有機el素子 |
WO2010079640A1 (ja) * | 2009-01-07 | 2010-07-15 | シャープ株式会社 | 有機エレクトロルミネセンス表示装置及びその製造方法 |
WO2011074457A1 (ja) * | 2009-12-15 | 2011-06-23 | ソニー株式会社 | 光電変換素子および光電変換素子の製造方法 |
JP2012222042A (ja) * | 2011-04-05 | 2012-11-12 | Jvc Kenwood Corp | 薄膜太陽電池用基板及びその製造方法 |
WO2013002026A1 (ja) * | 2011-06-27 | 2013-01-03 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法、および電子デバイス |
JP2013123895A (ja) * | 2011-12-16 | 2013-06-24 | Konica Minolta Advanced Layers Inc | ガスバリアーフィルム及びガスバリアーフィルムの製造方法 |
WO2013099915A1 (ja) * | 2011-12-28 | 2013-07-04 | 王子ホールディングス株式会社 | 有機発光ダイオード、有機発光ダイオードの製造方法、画像表示装置および照明装置 |
JP2014068309A (ja) * | 2012-09-27 | 2014-04-17 | Aiphone Co Ltd | 集合住宅インターホン装置 |
WO2014057647A1 (ja) * | 2012-10-11 | 2014-04-17 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
WO2014069565A1 (ja) * | 2012-10-31 | 2014-05-08 | 昭和電工株式会社 | 有機el素子並びにそれを備えた画像表示装置及び照明装置 |
JP2015191787A (ja) * | 2014-03-28 | 2015-11-02 | 旭化成イーマテリアルズ株式会社 | 有機エレクトロルミネッセンス素子用基板、有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017213262A1 (ja) * | 2016-06-10 | 2017-12-14 | 凸版印刷株式会社 | 有機el素子、並びに有機el素子を利用した照明装置、面状光源及び表示装置 |
WO2017221681A1 (ja) * | 2016-06-24 | 2017-12-28 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法 |
JPWO2017221681A1 (ja) * | 2016-06-24 | 2019-04-11 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法 |
JP7038049B2 (ja) | 2016-06-24 | 2022-03-17 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法 |
JP2018032590A (ja) * | 2016-08-26 | 2018-03-01 | 凸版印刷株式会社 | 有機el素子、ならびに、当該有機el素子を含む照明装置、面状光源、および表示装置 |
WO2023100672A1 (ja) * | 2021-12-03 | 2023-06-08 | ソニーセミコンダクタソリューションズ株式会社 | 表示装置および電子機器 |
Also Published As
Publication number | Publication date |
---|---|
JP6364998B2 (ja) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI602292B (zh) | 有機發光二極體及其製造方法、圖像顯示裝置以及照明裝置 | |
JP6131307B2 (ja) | 有機発光ダイオード、有機発光ダイオードの製造方法、画像表示装置および照明装置 | |
AU2014294412B2 (en) | Method for manufacturing substrate having textured structure | |
JP5680800B2 (ja) | 有機el素子及びその製造方法 | |
JP6364998B2 (ja) | 有機発光ダイオード素子および有機薄膜太陽電池素子 | |
JP4250651B2 (ja) | 粒子配列方法、及び、発光素子の製造方法 | |
US8247962B2 (en) | Organic light emitting device and manufacturing method thereof | |
JP2017168448A (ja) | 半導体素子用基板、有機発光ダイオード素子、及び有機薄膜太陽電池素子 | |
JP2013191314A (ja) | 有機エレクトロルミネッセンス素子 | |
US10446773B2 (en) | Substrate, optical element, mold, organic light-emitting element, organic thin-film solar cell, and method for producing substrate | |
JP6583343B2 (ja) | 透明電極付半導体素子用基板、有機発光ダイオード素子、または有機薄膜太陽電池素子 | |
WO2017043274A1 (ja) | 金型、有機発光ダイオードの製造方法及び有機発光ダイオード | |
US9647240B2 (en) | Light emitting apparatus | |
JPWO2015115046A1 (ja) | 光学シート及び発光装置 | |
JP6561706B2 (ja) | 金型、有機発光ダイオードの製造方法及び有機発光ダイオード |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160624 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171010 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180618 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6364998 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |