JP2016008969A - テストハンドラー - Google Patents

テストハンドラー Download PDF

Info

Publication number
JP2016008969A
JP2016008969A JP2015120285A JP2015120285A JP2016008969A JP 2016008969 A JP2016008969 A JP 2016008969A JP 2015120285 A JP2015120285 A JP 2015120285A JP 2015120285 A JP2015120285 A JP 2015120285A JP 2016008969 A JP2016008969 A JP 2016008969A
Authority
JP
Japan
Prior art keywords
chamber
flow path
test
electronic component
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015120285A
Other languages
English (en)
Other versions
JP6080134B2 (ja
Inventor
ウ キム ドゥ
Doo Woo Kim
ウ キム ドゥ
ス キム ジュン
Jun Su Kim
ス キム ジュン
ウォン キム ソン
Seong Won Kim
ウォン キム ソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techwing Co Ltd
Original Assignee
Techwing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techwing Co Ltd filed Critical Techwing Co Ltd
Publication of JP2016008969A publication Critical patent/JP2016008969A/ja
Application granted granted Critical
Publication of JP6080134B2 publication Critical patent/JP6080134B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2862Chambers or ovens; Tanks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2865Holding devices, e.g. chucks; Handlers or transport devices
    • G01R31/2867Handlers or transport devices, e.g. loaders, carriers, trays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

【課題】新規なテストハンドラーを提供すること。【解決手段】一実施形態によるテストハンドラーは、電子部品をロードするロード装置、ロード済みの前記電子部品がテスト設定温度を有するように前記電子部品を予熱又は予冷するソークチャンバ、予熱又は予冷が完了した前記電子部品をテストするテストチャンバ、テスト済みの前記電子部品の温度を既設定の水準に回復させ、一側壁の内部には流路が形成され、前記流路は第1の流入口、排出口及び前記排出口に隣接した第2の流入口を含むジソークチャンバ、前記ジソークチャンバの内部の空気を前記流路内で循環させる循環装置及び温度が既設定の水準に回復された前記電子部品をアンロードするアンロード装置を含み得る。【選択図】図6

Description

本発明は、テストハンドラーに関するものである。
テストハンドラー(testhandler)は、所定の製造工程を経て製造された半導体素子などの電子部品に対するテストを支援し、テスト結果に応じて電子部品を等級別に分類して顧客トレイ(customertray)に積載する機器である。
図1は、本出願人が出願した韓国公開特許第10−2013−0105265号公報(以下、従来技術)によるテストハンドラー300の平面図であって、これを参照すれば、テストハンドラー300は、ロード装置320、ソークチャンバ(soak chamber)330、テストチャンバ(testchamber)340、ジソークチャンバ(desoak chamber)350、アンロード装置380などを含み得る。
テストトレイ310は、電子部品が安着され得る複数のインサートを有し、多数の移送装置(図示せず)によって定められた閉鎖経路Cに沿って循環し得る。
ロード装置320は、顧客トレイ(図示せず)に積載されている未テスト状態の電子部品を、ロード位置にあるテストトレイ310にロードさせる。
ソークチャンバ330は、移送されてきたテストトレイ310に積載されている電子部品をテストするに先立って、電子部品がテスト設定温度を有するように電子部品を予熱又は予冷させ得る。
テストチャンバ340は、ソークチャンバ330で予熱又は予冷された後、テスト位置に移送されてきたテストトレイ310に積載されている電子部品をテストすることができる。
ジソークチャンバ350は、テストチャンバ340から移送されてきたテストトレイ310に積載されているテスト完了状態の電子部品を冷却して、電子部品が室温又はアンロードの際に問題ない程度の温度を有するようにすることができる。或いは、ジソークチャンバ350は、テスト完了状態の電子部品を加熱して、電子部品が常温、若しくは結露が生じない程度の温度を有するようにすることができる。
アンロード装置380は、アンロード位置にあるテストトレイ310から電子部品をテスト結果に応じて等級別に分類して、空いた顧客トレイにアンロードさせ得る。
上述したように、電子部品はテストトレイ310に積載された状態でソークチャンバ330、テストチャンバ340及びジソークチャンバ350を介してアンロード位置とロード位置を順次経て、更にソークチャンバ330に続く閉鎖経路Cに沿って循環し得る。
一方、テストハンドラー330には閉鎖経路Cに沿って循環するテストトレイ310が複数枚提供され、上述の通り、ソークチャンバ330はテスト開始前に予め電子部品をテスト条件に合う温度に調整しておき、ジソークチャンバ350は、テストがなされた後、アンロードに先立って予め電子部品の温度を既設定の水準に回復させるが、これはテスタ(tester)及びアンロード装置380の稼働率を高めることによって装備の処理容量を向上させるためである。
具体的に、低温でテストがなされた電子部品をアンロード位置に直ぐ移送すると、常温の空気によって電子部品の表面に水滴が凝結するため、電子部品に損傷を招き、アンロード装置380のパッドが電子部品を把持するとき、電子部品の表面にパッドの痕跡が残ることがある。また、高温でテストがなされた電子部品をアンロード位置に直ぐ移送すると、電子部品に残っている熱でアンロード装置380のパッドが溶けるか、又は焦げ付くことがある。よって、上述の通り、ジソークチャンバ350を配置してテスト済みの電子部品を常温又は一定の温度に回復させる必要がある。
かかるジソークチャンバ350と関連して、本出願人は、既存のジソークチャンバに比べ装備の安定性及び信頼性を向上させたジソークチャンバ350を含むテストハンドラー300を開発するに至った。図2は、従来技術によるテストハンドラー300のジソークチャンバ350の一側壁351に対する正面図であり、図3は、ジソークチャンバ350の内部での空気の流れを示した図である。図1〜図3を参照して従来技術を簡略に説明すると、先ず、ジソークチャンバ350の一側壁351の内部には空いた空間が設けられ、この空いた空間は流路351aとして活用され得る。流路351aの上部及び下部には夫々流入口351a−1及び排出口351a−2が設けられ、各流入口351a−1及び排出口351a−2にはファン352が提供されることで、ジソークチャンバ350の内部の空気が流入口351a−1を通して流路351aに流入された後、排出口351a−2を通して再度ジソークチャンバ350の内部空間に排出され得る。かかる空気の強制循環により、ジソークチャンバ350の内部に位置するテストトレイ310に積載された電子部品の温度が効果的に回復され得る。
ところが、最近、単位時間当たり処理すべき電子部品の数が増加しつつあるため、ジソークチャンバでの電子部品の冷却又は加熱の効率が非常に重要である。従来技術の場合、上述の問題を相当程度解決することができたが、電子部品の冷却又は加熱の効率が高いほど好ましいため、本出願人は、従来技術を更に改善しようとした。
特に、ジソークチャンバの構造上、上部側空間が下部側空間に比べて足りない場合が多いため、上部側に提供される流入口及びファンもその数が少ないことがあり、結局、流入される空気の量が少なくて排出される空気の量も少ないことから、電子部品の温度管理の効率に限界があり得る(流入口を上部に形成するのは装備全体の小型化という側面で有利である)。よって、本出願人は、かかる場合でも電子部品を効果的に冷却又は加熱する方法を鋭意研究し続けてきた。
韓国公開特許第10−2013−0105265号公報
ここで説明する実施形態は、ジソークチャンバに排出される空気の流量及び流速を増加させることで、ジソークチャンバの内部空間での空気循環の効率を増大させ得るテストハンドラーを提供するためのものである。
また、空気をジソークチャンバの内部空間に漏れなく均等に排出して、電子部品の温度バラツキを軽減し得るテストハンドラーを提供するためのものである。
一実施形態によるテストハンドラーは、電子部品をロードするロード装置、ロード済みの前記電子部品がテスト設定温度を有するように前記電子部品を予熱又は予冷するソークチャンバ、予熱又は予冷が完了した前記電子部品をテストするテストチャンバ、テスト済みの前記電子部品の温度を既設定の水準に回復させ、一側壁の内部には流路が形成され、前記流路は第1の流入口、排出口及び前記排出口に隣接した第2の流入口を含むジソークチャンバ、前記ジソークチャンバの内部の空気が前記流路を循環するようにする循環装置及び温度が既設定の水準に回復された前記電子部品をアンロードするアンロード装置を含み得る。
また、前記循環装置は、前記流路を循環する前記空気が前記排出口を通して前記ジソークチャンバの内部空間に排出されるようにし、前記排出口から前記ジソークチャンバの内部空間の向きに所定の距離だけ離間した排出ファンを含み、前記第2の流入口は前記排出口と前記排出ファンとの間の空間を含み得る。
また、前記排出ファンは、本体と、前記本体の内部に提供される羽根と、前記羽根に対応する中央部分のみが開放され、前記羽根に対応しない周縁部分は閉鎖したファンカバーとを含み得る。
また、前記第2の流入口は前記排出口の周辺に形成され、前記ジソークチャンバの内部空間と前記流路との間を連通させる複数の貫通孔を含み得る。
また、前記循環装置は、隣り合って配置される複数の排出ファンを含み、前記テストハンドラーは前記流路の内部に提供され、前記流路を循環する前記空気を前記複数の排出ファンの各々に誘導するガイド装置を更に含み得る。
また、前記複数の排出ファンは複数の行をなし、前記ガイド装置は、前記各行をなす一群の排出ファンの下端部に対応する高さで水平方向に延設され、前記空気が水平方向に流れるようにすることで、前記一群の排出ファンの各々に前記空気を誘導し、前記ガイド装置は複数設けられ各行毎に提供され、最下端行に提供されるガイド装置の両端は前記流路の内側面に接し、最下端行を除いた残りの行に提供されるガイド装置の両端は前記流路の内側面から所定の距離だけ離間し得る。
また、前記排出口は、前記ジソークチャンバの内部に位置する複数のテストトレイ間に前記空気を排出するように形成され得る。
ここで説明する実施形態によれば、ジソークチャンバに排出される空気の流量及び流速を増加させ、ジソークチャンバの内部空間での空気の循環の効率を増大させるテストハンドラーを提供し得る。
また、空気をジソークチャンバの内部空間に漏れなく均等に排出することで、電子部品の温度バラツキを軽減するテストハンドラーを提供し得る。
図1は、従来技術によるテストハンドラーの平面図である。 図2は、図1のテストハンドラーのジソークチャンバの一側壁に対する正面図である。 図3は、図1のテストハンドラーのジソークチャンバの内部での空気の流れを示す図である。 図4は、一実施形態によるテストハンドラーのジソークチャンバの一側壁とその周辺構成を概略的に示す図である。 図5Aは、比較例によるファンカバー及び図4の実施形態によるファンカバーの形状を示す図である。 図5Bは、比較例によるファンカバー及び図4の実施形態によるファンカバーの形状を示す図である。 図6は、他の実施形態によるテストハンドラーのジソークチャンバの一側壁の正面図である。 図7は、図6のジソークチャンバの一側壁の内部形状を示す図である。 図8は、図4のジソークチャンバの平面図である。
以下、本技術思想の具体的な実施形態について添付された図面を参照して詳細に説明する。なお、関連する公知の構成又は機能に関する具体的な説明が本技術思想の要旨を曖昧にするおそれがあると判断された場合には、その詳細な説明を省略する。
一実施形態によるテストハンドラーは、ロード装置、ソークチャンバ、テストチャンバ、ジソークチャンバ、循環装置及びアンロード装置を含み得る。これらの構成については、図1で詳細に説明したため、以下、重複する説明を省略し、その相違点と、ジソークチャンバ及び循環装置を重点的に説明することにする。
本実施形態によるテストハンドラーのジソークチャンバは、図2で説明した従来技術によるテストハンドラーのジソークチャンバと同様に一側壁の内部に空いた空間が形成され、かかる空いた空間は流路として活用され得る。ジソークチャンバの内部空間の空気は別途に提供される循環装置によって流路の第1の流入口に流入された後、流路に沿って流れて排出口を通して再度ジソークチャンバの内部空間に排出され得る。このようにジソークチャンバの内部空気を強制的に循環させることで、電子部品の温度を効率良く回復させ得る。
本実施形態のジソークチャンバ、流路、第1の流入口、排出口などの構成は従来技術のそれと類似し得る。つまり、図2及び図3に図示したように、第1の流入口はジソークチャンバの一側壁の上部側に形成され、排出口はジソークチャンバの一側壁の下部側に形成され得る。上述の通り、第1の流入口が上部側に形成され、排出口が下部側に形成されると、装備全体の小型化の側面で有利であり得る。従来技術でも説明したように、ヒーターなどの加熱装置は第1の流入口に隣接して配置されるべきであるが、加熱装置をジソークチャンバの上部側でなく他の位置(例えば、側部)に提供する場合、装備全体が大型化してしまうという不都合があり得る。但し、本実施形態の第1の流入口及び排出口の位置が上述の内容に限定されるわけではない。第1の流入口及び排出口は基本的に互いに所定の距離だけ離間しており、第1の流入口はヒーターなどの加熱装置と隣接した支点に形成され、排出口はジソークチャンバ内でテストトレイの位置する支点と隣接した支点に形成され得る。
一方、ジソークチャンバの構造上で上部側の空間は下部側の空間に比べて狭いことがあり得る。かかる場合、単に第1の流入口の大きさ及び第1の流入口に提供される流入ファンの個数などを増加させることで、流路に流入される空気の量を増加させるのには限界があり得る。これは、排出される空気の量の限界につながっており、結局、電子部品の温度を効率良く回復させるのに妨げとなり得る。
本実施形態では、上述の場合にも電子部品の温度を効率良く回復させるための方法を提示する。先ず、第1の流入口側に1個の流入ファンでなく、複数個の流入ファンを直列に連結して、第1の流入口を通して流路に流入される空気の流量を増加させ得る。
その他、第1の流入口を通して流入される空気の流量及び速度が限定されている場合にも、排出口に隣接した第2の流入口を通して更に空気を流入することで、排出口から高い流量と流速とを有した空気が排出されるようにすることができる。第2の流入口に関する詳細な説明のために図4を提示する。
図4は、本実施形態によるテストハンドラーのジソークチャンバの一側壁10とその周辺構成を概略的に示した図である。ここで、第2の流入口は排出口13と排出ファン30との間の空間14を含み得る。
具体的に、図4に示したように、ジソークチャンバの内部の空気は第1の流入口側に提供される循環装置(例えば、流入ファン)により第1の流入口を通して流路11に流入され、流路11に沿って流れて循環装置により排出口13を通して排出され得る。ここで、循環装置は、従来技術と同様に、排出口13側に提供される排出ファン30を含み得る。排出ファン30は、本体31、前記本体31の内部に提供される羽根(図示せず)及び前記本体31の一側(図4では左側)に提供されるファンカバー32を含み得る。ファンカバー32は締付部材33により本体31に締め付けられ得る。本実施形態の場合、上述の排出ファン30は、排出口13を塞ぐのでなく、排出口13から所定の距離だけ離間し得る。そのため、排出ファン30の本体31の後面(図4では右側面)とジソークチャンバの一側壁11の内側面との間には連結部材34が提供され得る。連結部材34の形態、大きさ及び連結方式は多様であり得る。第1の流入口を通して流路11に流入され、排出口13を通して排出される空気は排出ファン30を通過し得る(中央点線)。若し、前記空間14なしで排出ファン30が排出口13に接しているならば、流路11に流入された空気はむしろ逆流してしまうため、排出ファン30を通過しない。つまり、排出ファン30が排出口13から離間しているため、流路11に流入された空気が排出ファン30により円滑に排出され得る。しかも、本実施形態では、第1の流入口に流入されなかった空気、即ち、排出口13の周辺の空気が排出ファン30の作動により排出口13と排出ファン30との間の空間14に流入され、流入されるや否や直ちに排出ファン30を介して(上下点線)特定の水準以上の流速を有したままジソークチャンバの内部空間に排出され得る。これにより排出ファン30を介して排出される空気の流量及び流速が増加し得る。流量及び流速が増加するにつれて、ジソークチャンバの内部での空気の流れも増大し、ジソークチャンバの内部に空気を漏れなく均等に排出し得るため、電子部品の温度を速やかに回復させ、且つ電子部品間の温度バラツキを最小化し得る。
図5A及び図5Bは各々、比較例によるファンカバー及び図4の実施形態によるファンカバー32の形状を示した図である。図5Aのファンカバーは従来技術の排出ファンに適用されたファンカバーである。
図5Aに示したファンカバーの場合、円形の中央部分だけでなく、周縁部分も開放されているため、空気が集まらず、むしろ一部の空気は前記周縁部分に排出されてしまうことがある。よって、排出される空気の直進性が弱まり、流量及び流速が減少し得る。流量及び流速の減少とは、十分な空気がジソークチャンバの内部空間に漏れなく均等に排出されないことを意味し得る。
その反面、図5Bに示された本実施形態のファンカバー32は、羽根に対応する部分である円形の中央部分32aのみが開放されており、その他の部分、即ち、羽根に対応しない周縁部分32bは閉鎖することがある。これにより周辺の空気が集まり、排出される空気の直進性が向上し、流量及び流速が増加し得る。その結果として、十分な空気がジソークチャンバの内部空間に漏れなく均等に排出され得るため、電子部品の温度を効率良く回復させ、且つ電子部品間の温度バラツキも最小化し得る。
以下の表1及び表2は、従来技術及び本実施形態の実施例において、排出される空気の流量及び流速を測定した結果を纏めたものである。従来技術の場合、排出ファンが排出口を塞ぐように配置され、ファンカバーは、図5Aに示したように、周縁部分が開放された形態である。本実施例の場合、図4に示したように、排出ファン30が排出口13から所定の距離(実験時に5mmに設定した)だけ離間しており、ファンカバー32は、図5Bに示したように周縁部分が閉鎖した形態である。従来技術及び本実施例は何れも排出ファンの個数が5個であり、それらを図6のように配置した。便宜上、上行左側の排出ファンを1番、右側の排出ファンを2番、下行左側の排出ファンを3番、中央の排出ファンを4番、右側の排出ファンを5番という。流量は排出ファンの羽根に対応する円形部分に対して測定し、流量の単位はm3/h、流速の単位はm/sである。
Figure 2016008969

Figure 2016008969
流量の場合、5個の排出ファンのうち1個を除いた残りの排出ファンで何れも流量が増加して、平均的にみたときに略2倍増加することが分かった。流速の場合、何れの排出ファンでも流速が増加して、平均的にみたときに略4倍増加することが分かった。
図6は、他の実施形態によるテストハンドラーのジソークチャンバの一側壁10の正面図である。本実施形態において、第2の流入口は排出口(排出ファン30)の周辺に形成された複数の貫通孔15を含み得る。
具体的に、ジソークチャンバの一側壁10の上部側に第1の流入口が形成され、該第1の流入口側に流入ファン20が提供され得る。また、一側壁10の下部側に排出口が形成され、かかる排出口側に排出ファン30が提供され得る。排出ファン30についての詳細な事項は図4〜図5Bで説明した通りである。排出ファン30は複数提供され、かかる複数の排出ファン30は複数の行をなし得る。本実施形態において、排出ファン30は総5個提供され、これらの5個の排出ファン30は上行に2個、下行に3個が配置された。
流入ファン20により第1の流入口に流入されたジソークチャンバの内部空間の空気は流路に沿って下降して、排出ファン30により排出口を通して再度ジソークチャンバの内部空間に排出され得る。本実施形態において、排出口の周辺には複数の貫通孔15が形成され、かかる複数の貫通孔15は第2の流入口として機能し得る。第1の流入口に流入されなかった排出口の周辺の空気は、排出ファン30の作動により複数の貫通孔15を介して一側壁10の内部の流路に流入された後、再度排出口及び排出ファン30を介してジソークチャンバの内部空間に排出され得る。これによりジソークチャンバの内部空間に排出される空気の流量及び流速が増加し得る。その上、上述のような複数個の貫通孔15を形成することで、気圧差による渦流の現象を改善し得る。
一方、図6では、複数の貫通孔15が総50個形成されることを例示した。しかし、状況に応じて貫通孔15の個数は変形され得る。即ち、図6に示された総4行の貫通孔15のうち、2行の10個の貫通孔15は形成されないこともある。或いは、一部の排出口の周辺にのみ貫通孔15を形成し、残りの排出口の周辺には貫通孔15を形成しないこともある。更に、図6のように貫通孔15を形成し、必要に応じて一部の貫通孔15を閉鎖する方法も可能である。
図7は、図6から排出ファン30を削除してジソークチャンバの一側壁10の内部の形状を示した図である。排出口13は、図7に示したように単一の多角形であってもよく、若しくは個別的に円形又は多角形で形成され、かかる個別的な排出口の各々に排出ファン30が提供され得る。また、上述の通り、排出ファン30は複数提供され、かかる複数の排出ファン30は複数の行(本実施形態では2行)をなし得る。
本実施形態において、ガイド装置40が流路の内部に提供され得る。ガイド装置40は複数設けられ、排出ファン30の各行毎に提供され得る。ガイド装置40は、排出ファン30の下端部に対応する高さで水平方向(横方向)に延設され得る。これにより流路内で上から下向きに流れる空気はガイド装置40により左右の水平方向に分けられた後、一つの行をなす一群の排出ファン30の各々に誘導され得る。
ここで、ガイド装置40は、どの行に提供されるのかによってその長さが異なり得る。例えば、最下端行の場合、空気がこれ以上下降する必要がないため、最下端行に提供されるガイド装置42の両端は流路の内側面に接し得る。しかし、最下端ではない残りの行では、当該行からその下の行に空気が下降すべきであるため、ガイド装置41の両端は流路の内側面と所定の距離だけ離間し得る。換言すれば、流入ファン20を通して第1の流入口に流入された空気は、流路を沿って下降しつつ、ガイド装置41により左右に分けられて当該行をなす一群の排出ファン30側に誘導され得る。次いで、残りの空気はガイド装置41と流路の内側面との間の空間16a,16bを通して下降した後、ガイド装置42により再度水平方向に誘導され、当該行をなす一群の排出ファン30側に誘導され得る。本実施形態において、流路に沿って下降した空気は、先ず、1行に提供されるガイド装置41に衝突した後に左右に分けられ、右側に誘導された空気は1行の排出ファン30側を向けることができ、左側に誘導された空気は16aを介して2行に下降し得る。2行に下降した空気は2行に提供されたガイド装置42により2行の排出ファン30側を向けることができる。
以下の表3は、従来技術及び本実施形態の実施例において、排出される空気の流量を測定した結果を纏めたものである。従来技術の場合、排出ファンが排出口を塞ぐように配置され、ファンカバーは、図5Aに示したように周縁部分が開放された形態である。本実施例の場合、図4に示したように排出ファン30が排出口13から所定の距離(実験時に5mmに設定した)だけ離間しており、ファンカバー32は、図5Bに示したように周縁部分が閉鎖した形態である。また、図7で説明したようなガイド装置40が流路内に提供され、図6で説明したような複数の貫通孔15が形成された。従来技術及び本実施例は何れも排出ファンの個数が5個であり、それらを図6のように配置した。便宜上、上行左側の排出ファンを1番、右側の排出ファンを2番、下行左側の排出ファンを3番、中央の排出ファンを4番、右側の排出ファンを5番という。流量は排出ファンの羽根に対応する円形部分に対して測定し、流量の単位はm3/hである。実験の結果、5個の排出ファンは何れも流量が増加し、平均的にみたときに略3倍増加することが分かった。また、表2及表3と見比べて、ガイド装置40が更に含まれる場合、流量において改善された効果を奏することが分かる。更に、上述のようなガイド装置40により各排出ファン30に誘導される空気の量間のバラツキを軽減し得るため、空気がジソークチャンバの内部空間に漏れなく均等に排出されることから、電子部品間の温度バラツキを最小化し得る。
Figure 2016008969
図8は、図4で説明したテストハンドラーのジソークチャンバ1の平面図である。テスト済みの電子部品は、複数のテストトレイ2に積載された状態でジソークチャンバ1に移送されるが、複数のテストトレイ2はジソークチャンバ1内で一列に並んだままで移動し得る。本実施形態において、排出口及び排出ファン30が複数のテストトレイ2間に空気を排出するように配置されるため、ジソークチャンバ1の内部の空気の流れを一層円滑にすることで、その結果として、電子部品の温度を効果的に回復させ、且つ電子部品間の温度バラツキを最小化し得る。
上述した本発明の実施形態は、本発明の一例を説明したものに過ぎず、本技術思想の範囲は説明された実施形態に限定されるものではなく、当該技術分野における通常の知識を有する者であれば、本技術思想の範囲内での多様な変更、変形又は置換が可能であることは勿論であり、そのような実施は何れも本技術思想の範囲に含まれるものである。
1:ジソークチャンバ
2:テストトレイ
10:ジソークチャンバの一側壁
11:流路
13:排出口
14,15:第2の流入口
20:流入ファン
30:排出ファン
31:本体
32:カバー
40:ガイド装置

Claims (7)

  1. 電子部品をロードするロード装置と、
    ロード済みの前記電子部品がテスト設定温度を有するように前記電子部品を予熱又は予冷するソークチャンバと、
    予熱又は予冷が完了した前記電子部品をテストするテストチャンバと、
    テスト済みの前記電子部品の温度を既設定の水準に回復させ、一側壁の内部には流路が形成され、前記流路は第1の流入口、排出口及び前記排出口に隣接した第2の流入口を含むジソークチャンバと、
    前記ジソークチャンバの内部の空気が前記流路を循環するようにする循環装置と、
    温度が既設定の水準に回復された前記電子部品をアンロードするアンロード装置と
    を含むことを特徴とするテストハンドラー。
  2. 前記循環装置は、前記流路を循環する前記空気が前記排出口を介して前記ジソークチャンバの内部空間に排出されるようにし、前記排出口から前記ジソークチャンバの内部空間の方向に所定の距離だけ離間した排出ファンを含み、
    前記第2の流入口は前記排出口と前記排出ファンとの間の空間を含むことを特徴とする請求項1に記載のテストハンドラー。
  3. 前記排出ファンは、本体と、前記本体の内部に提供される羽根と、前記羽根に対応する中央部分のみが開放され、前記羽根に対応しない周縁部分は閉鎖したファンカバーとを含むことを特徴とする請求項2に記載のテストハンドラー。
  4. 前記第2の流入口は、前記排出口の周辺に形成され、前記ジソークチャンバの内部空間と前記流路との間を連通させる複数の貫通孔を含むことを特徴とする請求項1に記載のテストハンドラー。
  5. 前記循環装置は、隣り合って配置される複数の排出ファンを含み、
    前記テストハンドラーは、前記流路の内部に提供され、前記流路を循環する前記空気を前記複数の排出ファンの各々に誘導するガイド装置を更に含むことを特徴とする請求項1に記載のテストハンドラー。
  6. 前記複数の排出ファンは複数の行をなし、
    前記ガイド装置は、各行をなす一群の排出ファンの下端部に対応する高さで水平方向に延設され前記空気が水平方向に流れるようにすることで、前記一群の排出ファンの各々に前記空気を誘導し、
    前記ガイド装置は複数設けられ各行ごとに提供され、最下端行に提供されるガイド装置の両端は前記流路の内側面に接し、最下端行を除いた残りの行に提供されるガイド装置の両端は前記流路の内側面から所定の距離だけ離間することを特徴とする請求項5に記載のテストハンドラー。
  7. 前記排出口は、前記ジソークチャンバの内部に位置する複数のテストトレイ間に前記空気を排出するように形成されることを特徴とする請求項1に記載のテストハンドラー。
JP2015120285A 2014-06-23 2015-06-15 テストハンドラー Active JP6080134B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140076539A KR102123052B1 (ko) 2014-06-23 2014-06-23 테스트핸들러
KR10-2014-0076539 2014-06-23

Publications (2)

Publication Number Publication Date
JP2016008969A true JP2016008969A (ja) 2016-01-18
JP6080134B2 JP6080134B2 (ja) 2017-02-15

Family

ID=54893167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015120285A Active JP6080134B2 (ja) 2014-06-23 2015-06-15 テストハンドラー

Country Status (4)

Country Link
JP (1) JP6080134B2 (ja)
KR (1) KR102123052B1 (ja)
CN (2) CN105170476B (ja)
TW (1) TWI580975B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102461321B1 (ko) * 2017-08-18 2022-11-02 (주)테크윙 전자부품 테스트용 핸들러
KR102469918B1 (ko) * 2018-03-27 2022-11-23 (주)테크윙 처리 챔버 및 이를 포함하는 핸들러

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115137A (ja) * 1990-09-04 1992-04-16 Tabai Espec Corp 恒温恒湿器
JPH0496078U (ja) * 1991-01-17 1992-08-20
JP2011010437A (ja) * 2009-06-25 2011-01-13 Hitachi Ltd 電子機器のファンモータ取り付け構造
JP2011252717A (ja) * 2010-05-31 2011-12-15 Espec Corp 環境試験装置
CN103302037A (zh) * 2012-03-16 2013-09-18 泰克元有限公司 测试分选机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913334B2 (ja) * 1996-11-20 2007-05-09 三菱電機株式会社 換気送風装置および換気送風システム
US6100486A (en) * 1998-08-13 2000-08-08 Micron Technology, Inc. Method for sorting integrated circuit devices
DE19804902C2 (de) * 1998-02-07 2003-09-04 Rittal Gmbh & Co Kg Schaltschrank
JP3188417B2 (ja) * 1998-05-14 2001-07-16 松下電器産業株式会社 送風装置
CN1464312A (zh) * 2002-06-07 2003-12-31 达司克科技股份有限公司 Ic测试处理机的机台配置及其加工流程
CN101118372A (zh) * 2006-08-01 2008-02-06 明基电通股份有限公司 具有均温模块的投影装置
KR100934034B1 (ko) * 2007-12-14 2009-12-28 (주)테크윙 테스트핸들러의 테스트지원방법
KR101180836B1 (ko) * 2010-12-20 2012-09-07 미래산업 주식회사 테스트 핸들러 및 반도체 소자 테스트방법
KR101559419B1 (ko) * 2011-12-27 2015-10-13 (주)테크윙 테스트핸들러
KR101968984B1 (ko) * 2012-03-16 2019-08-26 (주)테크윙 사이드도킹식 테스트핸들러
CN203287444U (zh) * 2012-06-13 2013-11-13 苏州慧捷自动化科技有限公司 电子元件电性能综合测试机
US8910775B2 (en) * 2012-08-10 2014-12-16 Asm Technology Singapore Pte Ltd Transfer apparatus for transferring electronic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115137A (ja) * 1990-09-04 1992-04-16 Tabai Espec Corp 恒温恒湿器
JPH0496078U (ja) * 1991-01-17 1992-08-20
JP2011010437A (ja) * 2009-06-25 2011-01-13 Hitachi Ltd 電子機器のファンモータ取り付け構造
JP2011252717A (ja) * 2010-05-31 2011-12-15 Espec Corp 環境試験装置
CN103302037A (zh) * 2012-03-16 2013-09-18 泰克元有限公司 测试分选机

Also Published As

Publication number Publication date
CN108273754A (zh) 2018-07-13
JP6080134B2 (ja) 2017-02-15
KR20150146240A (ko) 2015-12-31
CN105170476A (zh) 2015-12-23
TW201600866A (zh) 2016-01-01
TWI580975B (zh) 2017-05-01
CN108273754B (zh) 2020-08-25
KR102123052B1 (ko) 2020-06-15
CN105170476B (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
TWI470246B (zh) 測試分選機
JP6080134B2 (ja) テストハンドラー
KR101958200B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
RU2017104512A (ru) Охладитель агломерата
US10376812B2 (en) Extraction and separation method
US10168107B2 (en) Heat store container with inclined plates for improved temperature distribution
JP2013185980A (ja) 自動分析装置
US20170005063A1 (en) Reflow apparatus
RU2707773C2 (ru) Охлаждающее устройство для охлаждения сыпучего материала
KR20150083037A (ko) 열 교환 시스템 및 이 열 교환 시스템을 가지는 기판 처리 장치
US11442096B2 (en) Testing apparatus
CN103302037A (zh) 测试分选机
JP5028589B2 (ja) ワーク排出装置
KR102200442B1 (ko) 테스트핸들러
TWI542886B (zh) 測試分選機
KR101593070B1 (ko) 반도체 제조장비용 배출가속기
KR102629622B1 (ko) 반도체용 테스트 챔버 유닛
JP6414959B2 (ja) 熱処理装置
KR102120837B1 (ko) 테스트핸들러
KR102419841B1 (ko) 반도체 테스트 챔버
JP5254427B2 (ja) ワイヤボンディング装置
JP5461107B2 (ja) 基板処理装置
KR101011797B1 (ko) 전자 소자 분류 장치
KR101901583B1 (ko) 열풍 로
KR102469663B1 (ko) 다이 고정 장치

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170110

R150 Certificate of patent or registration of utility model

Ref document number: 6080134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250