JP2015529839A - セグメント化ミラーを有するリソグラフィー装置 - Google Patents

セグメント化ミラーを有するリソグラフィー装置 Download PDF

Info

Publication number
JP2015529839A
JP2015529839A JP2015520878A JP2015520878A JP2015529839A JP 2015529839 A JP2015529839 A JP 2015529839A JP 2015520878 A JP2015520878 A JP 2015520878A JP 2015520878 A JP2015520878 A JP 2015520878A JP 2015529839 A JP2015529839 A JP 2015529839A
Authority
JP
Japan
Prior art keywords
sensor
mirror
lithographic apparatus
space
mirror segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015520878A
Other languages
English (en)
Other versions
JP5957606B2 (ja
Inventor
ハルトイェーズ ヨアヒム
ハルトイェーズ ヨアヒム
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2015529839A publication Critical patent/JP2015529839A/ja
Application granted granted Critical
Publication of JP5957606B2 publication Critical patent/JP5957606B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/16Vacuum gauges by measuring variation of frictional resistance of gases
    • G01L21/22Vacuum gauges by measuring variation of frictional resistance of gases using resonance effects of a vibrating body; Vacuum gauges of the Klumb type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/12Measuring arrangements characterised by the use of fluids for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Measuring Fluid Pressure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

間に空間(214)が形成されるように連結されている少なくとも二つのミラーセグメント(210)を有するミラー(200)と、ミラーセグメント(210)の相対位置を検出するためのセンサー(220、300)と、を備え、センサー(220、300)は、ミラーセグメント(210)の間の空間(214)内に配置されていることを特徴とする、リソグラフィー装置(100)を提供する。【選択図】図2

Description

関連技術の相互参照
本出願は、ドイツ特許出願第10 2012 212 064.5号(2012年7月11日出願)及び米国特許出願第61/670,215号(2012年7月11日出願)に基づく優先権を主張する物であり、これらの文献の開示全体を参照により本出願に援用する。
本出願は一つ又は複数のセグメント化ミラーを備えるリソグラフィー装置に関するものである。
リソグラフィー装置は、例えば集積回路すなわちICの製造中にマスク中のマスクパターンを、例えばシリコンウェーハのような基板上に結像するために使用される。この場合、照明装置によって生成された光線はマスクを通過して基板上に向けられる。複数の光学素子からなる露光レンズを用いて光線を基板上にフォーカスさせる。このようなリソグラフィー装置の例としては、特に、EUV(極端紫外)リソグラフィー装置が挙げられるが、かかるEUVリソグラフィー装置は4nm〜30nmの範囲の露光光学波長で動作する。このような短波長により、ウェハー上に非常に微細な構造を結像することが可能となる。このような波長域の光は雰囲気ガスにより吸収されてしまうため、かかるEUVリソグラフィー装置のビームパスは、高度な真空状態とされる。さらに、上述のような波長域で十分な透過性を発揮する材料は存在しないため、EUV放射を形成及び誘導するための光学素子としてはミラーが使用される。
開口数の大きいEUVリソグラフィー装置は直径の大きいミラーを必要とする。従って、ウェハー付近のミラーは直径300〜500nm以上であることが必要である。しかし、このような直径の大きいミラーは製造コストが高い。さらに、そのようなサイズのミラーブランクや半完成部品には限界がある。さらに、ミラーの直径が大きいと、低変形での取り付けや作動もさらに難しくなる。このような問題に対処することができる一つの可能性としては、セグメント化されたミラー(セグメント化ミラー)を使用することが挙げられる。この場合、複数のミラーセグメントを連結して一つのミラーを形成する。従って、ミラーのサイズはミラーブランクの入手可能性によってもはや制限されることはない。さらに、直径の大きい一体型ミラーを低変形で取り付ける場合と比較して、複数の独立したミラーセグメントを低変形で取り付ける方が簡易である。
しかし、この場合に生じる一つの問題としては、仕上げ研磨されたミラーセグメントを正確に連結するということが挙げられる。共に単一の光学表面を生成するように意図した様々なミラーセグメントには、表面偏差、すなわちミラーセグメント間の高さの違いは、20nm以下であることが求められるが、これは困難であることが判明している。この場合、6自由度(並進3自由度、回転3自由度)全てに関してミラーセグメントの位置を決定することが必要であり、さらに、適切な場合にはアクチュエータを用いてこれらを再調整することが必要である。このことは、4つのミラーセグメントを設けた場合、トータルで24個のセンサーを設けることが必要となり、これによりコストがかさみさらに設置面積が大きくなってしまう。
米国特許出願第2011/0273694号公報は、複数の独立したミラーからなるファセットミラーを開示しており、かかるミラーにおいて、独立したミラーは独立して駆動可能であるとともに、それらの方向を検知するための容量センサーを有している。
米国特許出願第2011/0273694号
従って、本発明の目的は、上述した問題のうちの少なくとも一つを解消するためのミラー機構を備えるリソグラフィー装置を提供することにある。特に、本発明は、省スペースであるとともに、ミラー機構の位置を正確に制御することができる、セグメント化されたミラー機構を備えるリソグラフィー装置を提供することを目的とする。
かかる目的は、間に空間が形成されるように連結された少なくとも二つ(例えば、2〜12個)のミラーセグメントを有するミラーと、ミラーセグメントの相対位置を検出するためのセンサーとを備え、かかるセンサーは上述の空間内に配置されることを特徴とするリソグラフィー装置によって達成することができる。
センサーをミラーセグメント間の空間内に配置することで、ミラーセグメント間の相対位置を検出できるようにするとともに、特に省スペースな態様で制御することが可能となる。結果的に、ミラーの外に各ミラーセグメント用の複数のセンサーを設ける必要がなくなる。各ミラーセグメントの絶対位置を検出するためには、基準とするミラーセグメントの絶対位置が既知であれば十分である。これは、例えば、基準ミラーセグメントの絶対位置は外部センサーで検出できるか、又は、基準ミラーセグメントは基準ポイントに対して固定されているからである。従って、その他のミラーセグメントの位置は、ミラーセグメント間に配置されたセンサーを用いて検出することができる。このような基準を用いた位置検出により、いわゆるコモンモードエラー、すなわち、全てのミラーセグメントに共通する位置誤差を検出することが可能となる。
さらに、空間内にセンサーを配置することで、インサイチュ(in-situ)測定が実現し、これにより、ミラーセグメントの相対位置を非常に精密に測定するができるようになる。各ミラーセグメントの位置は測定結果に基づいて再調整することができ、それと同時に、ミラーの干渉表面測定に基づいてキャリブレーションを実施することができる。
ミラーセグメントは、それぞれ少なくとも一つの連結表面を有し、ミラーセグメントは、かかる連結表面に沿って連結される。さらに、かかる連結表面の少なくとも一つに切り欠きが設けられ、かかる切り欠き内にセンサーが配置される。これにより、切り欠き内に奥まった(recessed)態様でセンサーを配置できるのでミラーセグメント間の距離をより短く設計することが可能となる。ミラーセグメント間の距離が短いため、(ミラーの結像性能を向上させることができる)ごく小さな空間を有するに過ぎない実質的に完全なミラーを得ることができる。本明細書において、「連結」とは、必ずしもミラーセグメント同士が相互に接触していることを意味する用語ではない。むしろ、ミラーセグメントが相互に接触しない態様で配置されていれば有利である。この場合、上述した連結表面は、相互に短距離で対向配置されたミラーセグメントの表面である。
上述のセンサーは、ミラーセグメント間の距離に応じたセンサー信号を生成する容量センサーであり得る。このような容量センサーは、例えばミラーセグメントの連結表面上に対向して配置された金属電極によって実現することができる。この場合、金属電極は薄い金属層として実装することができ、従って、センサーを連結表面内に奥まった態様で配置しなくても、ミラーセグメント間の距離を短くすることができる。
さらに、センサーを光学センサーとして実装することも可能である。光学センサーは、ドリフト挙動が良好である。
光学センサーは、光学エンコーダーとして実装することも可能であり、特に、干渉ベースのインクリメンタルエンコーダーとして実装することができる。そのようなエンコーダーを用いることで、ピクトメートル範囲の測定精度を達成することができる。
リソグラフィー装置は、センサーを駆動し、及び/又はセンサー信号を評価するためのセンサーコントローラーをさらに備える。ここで、信号は、少なくともセンサーコントローラーとセンサーの間の区間において無線送信される。したがって、第一に省スペース化を実現し、第二に真空状態を損なう信号送信用ケーブルからの蒸気を防ぐことができる。
センサーは、上述の空間における圧力に応じたセンサー信号を生成する圧力センサーであっても良い。ここで、上述の空間は、ミラーセグメントの相対的な動きが上述の空間内における圧力変化をもたらすように構成されている。そのような圧力センサーを用いることにより、ミラーセグメントの位置変化とセンサー信号との線形性を良好にすることができる。
リソグラフィー装置は、上述の空間にガスを供給するガス供給装置及び上述の空間からガスを抽気するガス抽気装置をさらに備えることができる。そのような装置によれば、主に又はもっぱら上述の空間からガスを抜ききることができ、これにより、特にEUVリソグラフィー装置に必須な真空状態を実現することができる。
圧力センサーは、例えば音叉及び音叉のレゾナント周波数及び/又はレゾナント周波数における振幅を検出するための機構を備えることができる。この場合、音叉は励振によって振動させられる二つの振動要素を有しうるが、音叉のレゾナント周波数及び/又はレゾナンと周波数における振幅は上述の空間の圧力に依存する。このことは、特に、振動要素の間の隙間の幅が振動要素の厚さよりも一桁又はそれ以上小さい場合にあてはまり、いわゆるスクイーズ効果が発生する。このような圧力センサーは微細構造エンジニアリングによって製造することができ、相応に平坦となるように設計される。この場合、振動要素は構造を有する半導体材料又は石英から製造することができる。さらに、圧力センサーは、振動要素を振動させるために用いることができ、音叉のレゾナント周波数及び/又はレゾナント周波数における振幅を検出するために用いることができる電極を備えることができる。
最も簡潔な実施形態では、ミラーセグメント間の空間は、センサーが配置された隙間である。この場合、連結表面は必ずしもセンサーを収容するためのあらゆる特別な構造を施されたものでなくてもよい。その代わりに、上述の空間はセンサーを配置するための溝を備えることができる。そのような溝は、具体的には矩形の、ミラーセグメントのうちの一つの少なくとも一つの連結表面に設けられた溝により形成される。この場合、溝は連結表面の長さ方向全体にわたって延在することができる。そのような溝は、ダイヤモンド切削ユニット又は同様のものを用いて、切削することにより比較的簡易に作ることができる。
上述の空間において、複数の自由度についてミラーセグメントの相対位置を検出する複数のセンサーを設けることも可能である。この場合、上述の空間に設けられたセンサーは、例えば、並進3自由度及び回転3自由度についてミラーセグメントの位置を検出することができる。
さらに、リソグラフィー装置は、独立したミラーセグメントを別個に作動させるための少なくとも二つのアクチュエータを備えることができる。これにより、ミラーセグメントの位置は互いに独立して制御することができるようになる。
さらなる例示的実施形態については、添付の図面を参照して説明する。
本発明の一実施形態に従うEUVリソグラフィー装置の概略図である。 本発明の一実施形態に従うミラー機構の概略図である。 ミラーセグメントのうちの2つを概略的に示す分解斜視図である。 容量センサーの動作原理を示す概略図である。 一つのミラーセグメントを通るzy平面で切った断面図である。 一つのミラーセグメントを通るzy平面で切った断面図である。 二つの隣接するミラーセグメントを通るzy平面で切った断面図である。 第二の例示的実施形態に従う二つのミラーセグメントの斜視図である。 ミラーセグメントの断面及びセンサー溝内の圧力センサーの配置を示す図である。 センサー溝内にガスを注入するための機構の概略図である。 圧力センサーの断面図である。 図示のために圧力センサーの上蓋を除去して示した圧力センサーの平面図である。
特記しない場合、図中において同一の参照符号で示す要素は同一又は機能的に同一な要素である。さらに、図示した縮尺は、必ずしも実際のものと同一ではないことを留意されたい。
図1は、本発明の一実施形態に従うEUVリソグラフィー装置100の概略図である。EUVリソグラフィー装置100は、ビーム形成系102、照明系104、及び投影系106を備える。ビーム形成系102、照明系104、及び投影系106は、それぞれの場合において、排気装置(詳細には図示しない)によって排気することができる真空ハウジング内に設けられている。真空ハウジングは、例えば光学素子を機械的に動かし、及び/又は調節する駆動装置を内部に備える機械室(詳細には図示しない)によって囲まれている。さらに、かかる機械室内には、電気的なコントローラ又はそれと同等のものも備えることができる。
ビーム形成系102は、EUV光源108、コリメーター110、及びモノクロメーター112を備える。EUV光源108として、例えば、EUV域(極端紫外域)、すなわち、例えば5nm〜20nmの波長域の放射を発生させるプラズマ源又はシンクロトロンを設けることができる。EUV光源108から発せられる放射は、まずコリメーター110によって集束され、その後モノクロメーター112によって所望の動作波長がフィルタリングされる。このようにして、ビーム形成系102は、EUV光源108によって放射される光の波長と空間分布を調節する。EUV放射源108によって生成されるEUV放射114は空気中の透過率が低いため、ビーム形成系102、照明系104、及び投影システム106内のビーム形成空間を排気する。
図示した例示的実施形態では、照明系104は第一ミラー116及び第二ミラー118を備える。これらのミラー116及び118は、例えば、瞳形成用ファセットミラーとして実装することができ、EUV放射114をフォトマスク120上へと方向付ける。
フォトマスク120も同様に反射性光学素子として実装されて、系102、104、106の外部に配置されうる。フォトマスク120は、ウェハー122又はそれと同様なものの上で、投影系106によって縮小されて結像される構造を有している。この目的のために、ビームガイド空間106内の投影系は、例えば、第三ミラー124及び第四ミラー126を備える。EUVリソグラフィー装置100のミラーの数は、図示した数に限定されるものではなく、図示した数よりも多い、或は少ない数のミラーを備えることも可能である。さらに、一般的に、ビームを形成するために、ミラーの前面は湾曲している。
図2は、一実施形態にかかるミラー機構200の概略図であり、かかるミラー機構200は、例えば、図1のミラー126に対応する。ミラー機構200は、例えば、4つのミラーセグメント210を備え、具体的には、ミラーセグメント210-1、210-2、210-3、及び210-4を備える。平面図では、ミラーセグメント210は、それぞれ1/4円の形状をしている。ミラーセグメント210は、それらの連結表面212に沿って相互に連結されており、幾何学的形状が画定されたセグメント化ミラー表面を共に生成している。ミラーセグメント210の反射表面は湾曲しており、図示にかかる例では、ミラーセグメント210は、図1に示したように、入射したEUV光線をウェハー122上にて集束させるように凹ミラーを共に形成している。概して、図示にかかる機構は全てのサイズのミラーに関して適用することができる。しかし、ミラーをセグメント化することは、特にミラー直径が大きい場合に有利であり、すなわち、例えば、ミラーの最大直径が30cm超又は40cm超、そして最大100cm又はそれ以上である場合に有利である。ミラーのサイズに応じて、ミラー機構全体の高さは、例えば3〜20cmとすることができる。図示にかかる例では、ミラー機構200は円形であるが、しかし、かかるミラー機構は円形に限定されるものではなく、楕円形、長円形、キドニー状、或はこれらと同様の形状であっても良い。
ミラーセグメント210-1、210-2、210-3、及び210-4は、それぞれ独立に取り付けられており、相互に非接触である。従って、以下に詳述するように、これらは相互に独立してアクチュエータ(詳細には図示しない)によって作動される。隣接するミラーセグメント210-1、210-2、210-3、及び210-4の間には空間214が設けられている。想定される一変形例では、かかる空間214は隙間によって形成され、かかる隙間の幅はdである。
センサー220は、空間214内に配置されている。かかるセンサー220は、ミラーセグメント210-1、210-2、210-3、及び210-4の相互の相対位置を測定する。この場合、センサー220は、ミラーセグメント210-1、210-2、210-3、及び210-4の相互の相対位置を6自由度全てに関して、すなわち、これらの3つの空間軸x、y、及びz上における相対位置と、空間軸x、y、及びzに関する回転とを検出することができる。より正確には、センサー220はそれぞれミラーセグメント210のうちの2つの相互の少なくとも一自由度に関する相対位置についての情報を含むセンサー信号を生成する。6自由度全てを検出した場合、少なくとも18個のセンサー220を空間214内に設ける必要がある。これらのセンサー220は、例えば、ミラーセグメント210-1のミラーセグメント210-2に対する相対位置を検出するための6個のセンサー220と、ミラーセグメント210-2のミラーセグメント210-3に対する相対位置を検出するための6個のセンサー220と、ミラーセグメント210-3のミラーセグメント210-4に対する相対位置を検出するための6個のセンサー220である。しかし、空間214内に設けられたセンサー220によって全自由度を検出しなくても良い。例えば、センサー220によって空間214に対して横断方向のミラーセグメント210の相対位置のみを検出して、残りのパラメータはミラー機構200の外部に配置されたセンサーによって検出することも可能である。従って、この場合、例えばセンサー220は、x方向のミラーセグメント210-1及び210-4の相対位置と、x方向のミラーセグメント210-2及び210-3の相対位置と、y方向のミラーセグメント210-1及び210-2の相対位置と、y方向のミラーセグメント210-3及び210-4の相対位置とを検出する。
さらに、ミラー機構200の外部に、リソグラフィー装置100内に設けられた測定フレーム(詳細には図示しない)に対する、ミラーセグメント210のうちの少なくとも一つの全6自由度の位置を検出するセンサーを設けることができる。そのような測定フレームは、リソグラフィー装置内の光学素子の位置を検出するための基準として機能するとともに、特に、温度変化、振動などが変化しても位置が固定されている。そのような基準ミラーセグメント210の測定フレームに対する位置を測定するために、レーザー干渉計や容量センサーなどを使用することができる。例えば、ミラーセグメント210の一つとしてミラーセグメント210-1の位置を測定することにより、測定フレームに対するミラーセグメント210の位置を決定する場合、残りのミラーセグメント210、すなわち、ミラーセグメント210-2、210-3、及び210-4の位置もセンサー220の測定値から推定することができる。
センサー220によって生成されるセンサー信号は、センサー信号を評価する(詳細には図示しない)評価装置(センサーコントローラー等)に提供される。この場合の信号は、少なくとも一部の区間ではセンサー及び評価装置又はセンサーコントローラーの間で無線送信可能である。例えば、信号は無線信号(電磁波)又は光信号として送信することができる。これにより、装置内の真空領域を通るケーブルの数を少なくするという利点が得られる。従って、第一に省スペース化を達成し、第二に真空状態を損なうケーブルからの蒸気を防止することができる。
評価結果に応じて、上述のアクチュエータを駆動してミラーセグメント210の相対位置を所望の特定の値に制御することができる。例えば、ミラーセグメント210は、ミラーセグメント210間の空間214の最大幅dが0.8mm以下、好ましくは0.4mm以下、或は0.2mm以下とし、及び/又はミラーセグメント210間の高低差が20nm以下、好ましくは10nm以下となるように作動されうる。
リソグラフィー装置100のミラー機構200は、4つのミラーセグメント210にセグメント化されるので、ミラー機構200はモノリシックミラー機構よりも大きな光学表面を備えることができる。さらに、空間214内にセンサー220を配置することにより、ミラーセグメント210の相互間の位置を省スペースで検出及び制御することができる。
図3は、ミラーセグメント210-1及び210-2の概略分解斜視図である。ミラーセグメント210の表面は湾曲しており、4個のミラーセグメント210は共に凹面ミラーを形成することに留意されたい。これに対応して、連結表面212の上端も湾曲しているが、簡略化のために、この点は図示していない。連結表面212の下端は直線か、或は上端の曲線と同様の曲線、すなわち、上端と並行する曲線であってもよい。図3に示すように、ミラーセグメント210のそれぞれの真っすぐな側面が連結表面212となっており、ミラーセグメント210の連結表面212は相互に対向して配置されている。センサー220は連結表面212内又は連結表面212上に配置されている。図示の例では、4つのセンサー220がミラーセグメント210-1及び210-2の相互に対向する連結表面212上に配置されており、これらのセンサーを用いて、一つ以上の自由度に関するミラーセグメント210-1及び210-2の相対位置を検出することができる。この場合、これらのセンサーは、一自由度に関するミラーセグメントの位置変化に実質的に応答する表面センサーか、複数の自由度に関するミラーセグメントの位置変化に応答する複合センサーとして実装することができる。
センサー220として、基本的にミラーセグメント210の相対的な変位を検出するために用いることができる全てのタイプのセンサーを使用することができるが、特に容量センサーを使用することができる。概して、光学センサーも可能であるが、例えば、ラインパターンを連結表面212上に設けて、対向する連結表面212上にかかるラインパターンを検出するためのフォトセンサーを設けることができる。しかし、そのような光学エンコーダーセンサーの場合には、一般的に熱が発生するため、ミラージオメトリに影響が生じ、冷却手段が必要となりうる。光学センサーは干渉ベースのインクリメンタルエンコーダーとして実装することもできる。そのようなエンコーダーは、リニア格子に関して移動される干渉計を備える。この場合、例えば、ラインパターン又はリニア格子における光学反射から正弦波信号が生成される。補間によって、ピクトメーター範囲の測定精度を実現する非常に高解像度を実現することができる。上述したように、エンコーダーと評価装置又はセンサーコントローラーとの間では、無線通信で信号送信がなされる。さらに、ミラーに設けられた溝内に、外部に向けて引き回すセンサーを駆動するためのケーブルを配置することができる。この目的のために、以下により詳細に説明する溝を用いることもできる。
以下、センサー220を容量センサーとして実装した第一の例示的実施形態を説明する。図4は、容量センサー220の動作原理の概略図である。このような容量センサー220は測定電極222及び224を備え、これらの電極は相互に距離wで配置されている。測定電極222及び224は容量測定装置226に接続されており、かかる容量測定装置226は、測定電極222及び224の容量に応じた測定信号Xmを生成する。測定電極222及び224の容量は、相互に対向配置された連結表面212上に位置する測定電極222及び224の間の距離に大きく依存する。従って、空間の幅dが変化して、測定電極222及び224の間の距離も変化した場合、測定信号Xmによって電気的に測定可能な容量変化として検出することができる。特定の基準電位に接続されたシールド電極228を任意で測定電極222の周囲に配置することができるが、かかるシールド電極は電場の不均一な周辺領域を遮断する。結果的に、測定電極222及び224の間に略平行な電場が生じる。従って、容量の小さな変化でさえ検出することが可能となる。
既に述べたように、測定電極222及び224は相互に対向する連結表面212上にそれぞれ配置することができる。測定電極222及び224は、例えば、矩形であり、そのサイズは約2mm〜約15mmでありうる。一組の測定電極222及び224を用いて、二つのミラーセグメント210の一並進自由度に関する相対位置を検出することができる。二組の測定電極222及び224を備えることで、二つのミラーセグメント210の一回転自由度に関する相対位置を検出することができる。
測定電極222及び224は、例えば銅などからなる金属片により製造されうる。測定電極222及び224を容量測定装置226に接続する線は連結表面212に沿って配線されうる。あるいは、これらの線は連結表面212又はミラーセグメント210を通じて設けられた溝内に配線されても良い。これに対応して、測定電極222及び224を連結表面212内に設けられた切り欠き内に配置することも可能である。これは、図5A及び図5Bに模式的に示す。図5A及び図5Bは、それぞれ、ミラーセグメント210の断面図である。図5Aに示す変形例では、連結表面212内にアンダーカットが施され、かかるアンダーカット内に測定電極222及び224が配置されている。図5Bに示す変形例では、連結表面212内に切り欠きが施され、かかる切り欠き内に測定電極222及び224が配置されている。これにより、測定電極222及び224はそれぞれ連結表面212の間の隙間に突き出ることがなくなり、ミラーセグメント相互をより近接して配置することができるようになる。これらのアンダーカット又は切り欠きを連結表面212全体にわたって設けた場合、測定電極222及び224を駆動するための線も、かかる連結表面212内に設けることができる。
図4に示す測定原理によれば、y方向に関する位置変化、又はz軸もしくはy軸に関する回転を、図3、図5A及び図5Bに図示したセンサー機構によって検出することができる。しかし、空間214及びかかる空間内における測定電極222、224の配置により、他の自由度に関する位置変化を検出することも可能である。このことは図6に概略的に示す。図6は、二つの隣接するミラーセグメント210のzy平面での断面図を示す図である。図6に示すミラーセグメント210の場合、連結表面212は、測定電極222、224の領域で実質的にZ形状の断面を有しており、すなわち、ミラーセグメント210の上部又は下部は空間214に突き出している。この場合、連結表面212の一部のセクションはy方向、すなわち、空間215の横断方向に延在しており、測定電極222、224はかかるセクション内に配置されている。これにより、ミラーセグメント210がz方向で相対変位した場合、測定電極222、224により提供される容量が変化し、z方向に関するミラーセグメント210の相対位置を検出することができる。図6に示すミラーセグメント210は、図3に示すミラーセグメント210-1及び210-2又はミラーセグメント210-3及び210-4に対応する。
上述したように容量センサー220を使用することで、センサー220を非常に平坦に製造して、空間214内でほとんどスペースを必要としないようにすることができるという利点が生じる。従って、ミラーセグメント210を近接させることができる。さらに、容量センサーは高度な真空状態での使用によく適合している(すなわち、真空に適している)。さらに、容量センサーをリソグラフィー装置100の真空領域の外部から駆動させることができるので、真空領域では熱が発生しないか、或は、ほんのわずかな熱を発生するに過ぎない。しかし、測定電極222、224の容量変化が1/w(測定電極間の距離wの逆数)に比例するので、特に、ギャップ幅が小さい場合に特にその関係が非線形となる。この点において、容量センサーには問題がある。この点、図5A及び図5Bに示すように測定電極222及び224を連結表面内に奥まった態様で(引っ込めて)配置して、これらの間に特定の最小距離を設けることは、程度の差はあるが線形動作域を得るために有利である。
第二の例示的実施形態に従うリソグラフィー装置では、上述した容量センサーに代えて圧力センサーを用いる。かかる第二の例示的実施形態に従うリソグラフィー装置の概略構成は、図1に示す構成に対応するので、ここでは改めて説明はしない。第二実施形態によるリソグラフィー装置に用いられる圧力センサーについては、図7〜図11を参照して説明する。この場合、上述した図面に示す要素と同一又は機能的に同一の要素は同一の参照符号によって示し、詳細には説明しない。以下の実施形態及び図面についても同様である。
図7は、第二の例示的実施形態に従う二つのミラーセグメント210-1及び210-2の斜視図である。図8は、ミラーセグメント210-1の断面図であり、センサー溝240内における圧力センサー300の配置を示す図である。図9は、センサー溝240にガスを注入するための機構の概略図である。
図7〜図9に示すように、本実施形態において隣接するミラーセグメント210-1及び210-2では、溝242が各連結表面212内にそれぞれ設けられており、かかる連結表面212全体にわたって略中心に延在している。例えば、溝242はダイヤモンド切削ユニットなどを用いて切削することにより生成することができる。二つの対向する溝242は、共にセンサー溝240を形成することができる。従って、断面図に示すように、本例示的実施形態における空間214は、プラス(+)記号の形状をしており、かかる形状は、比較的狭い空間がミラー機構200の上側及び下側に配置され、その間に拡張されたセンサー溝240が配置されることにより形成される。
圧力センサー300は、センサー溝240内に配置されている。正確には、圧力センサー300は二つの対向する溝242のうちの一つの内部に配置されうる。さらに、ガス供給装置250及びガス抽気装置260はそれぞれセンサー溝240の二つの末端に配置されている。ガス供給装置250は、真空チャンバの外部に配置されたガスリザーバーに接続されたガス供給管252と、ガスノズル254とを備える。ガス抽気装置260は、ガスリザーバーに接続されたガス排気管262と、ガス吸引コネクター264とを備える。ポンプ(詳細図示しない)を用いて、ガスリザーバーからガス供給管252を通じてガスノズル254へとガスをポンプ送出して、ガスノズル254からセンサー溝240へと所定の圧力でガスを噴出させる。センサー溝240の他端に配置されたガス吸引コネクター264を介して、センサー溝240からガスを排気して、ガス排気管262を介してガスリザーバーに再度導く。
使用されるガスは、例えば、窒素又はヘリウムなどの不活性ガスでありうる。しかし、空気を使用することも可能である。言うまでもなく、ガス供給管252に接続されたガス源や、ガス排気管262に接続されたガスシンクを、ただ一つのガスリザーバーに代えて用いることも可能である。
センサー溝240内の圧力は、第一に供給されるガス流量に依存し、第二にセンサー溝240の断面積に依存する。センサー溝240の断面積はミラーセグメント210の間の距離に比例して変化する。圧力センサー300はセンサー溝240内でのガス圧力に関する情報を含むセンサー信号を生成する。ガスの流量は既知であるので、かかるセンサー信号からミラーセグメント210間の距離を推定することができる。換言すれば、ここでは、圧力センサー300はミラーセグメント210のy方向に関する相対位置を検出する位置センサーとして機能する。対照的に、圧力センサー300は、x方向及びz方向に関するミラーセグメント210の相対位置を全く検知しないか、ほんのわずかしか検知しない。これば、これらの方向における変化は、センサー溝240の断面積の変化を生じないからである。
第二の例示的実施形態に従う上述の機構により、圧力センサー300を用いてミラーセグメント210の間の距離を検出することができる。このような機構の場合、測定変数、特にセンサー溝240内の圧力は、検出対象であるy方向におけるミラーセグメント210の相対位置に略比例して変化する。従って、例えば、容量センサーを用いた場合よりも、大きな測定範囲にわたって測定信号の線形性を良好に保つことができる。
ミラーセグメント210のy方向における相対位置は、上述した機構によって検出することができる。しかし、センサー溝の対応する構成によれば、他の自由度についてミラーセグメント110の相対位置を検出することも可能である。従って、例えば、ミラーセグメント210の間の空間214を図6に示した様に構成することができ、そして、測定電極222、224に代えて、圧力センサー300をこの場合にセンサー溝として機能するミラーセグメント210の間の中心領域に配置することができる。従って、ミラーセグメント210のz方向における相対位置の変化は、センサー溝の断面積に変化をもたらし、センサー溝内の圧力も変化させる。従って、このような機構はz方向におけるミラーセグメント210の相対位置を検出することを可能にする。
センサー溝の構成を相応とし、また、相応の数の圧力センサーを用いれば、全6自由度に関してミラーセグメント210の相対位置を検出することが可能となる。
この場合、セグメントペアにつき複数の溝を形成することも可能であり、ここで、各溝について少なくとも一つの圧力センサーを配置して、さらに、独立センサーは、異なる空間方向におけるミラーセグメント210の位置変位に応答する。
一つの代替的実施形態では、星状に配置した様々な溝にガスを導く唯一のガス供給口をミラーの中央に配置することも可能である。この場合、ガスは外部に向かって溝内を導かれるか、ガス吸引コネクターによって外部に向かって吸い上げられる。
上述した第二実施形態によれば、ちょうど一つの圧力センサー300がセンサー溝240内に配置される。しかし、センサー溝240に沿って複数の(例えば、2つ又は4つ、或はそれ以上)圧力センサー300を配置することも可能である。生成されたセンサー信号を平均することにより正確な測定値が得られる。さらに、そのような機構を用いれば、相応の評価により、z軸などに関する回転を検出することも可能である。
さらに、両方の連結表面212に溝242を設けることは必須ではなく、それを通じてガスが流れ、その内部に圧力センサー300が配置されている一つのセンサー溝240を設ければ十分である。
いわゆる「漏れシール(leaky seal)」を空間の密閉に使用することができる。この場合、溝に流入するガスの自由パス長は、連結部の最も狭いギャップと関連して選択することができる。すなわち、かかる狭いギャップを通じてガスが漏出できないか、非常に少量しか漏出しないように選択することができる。
圧力センサー300は、空間214又はセンサー溝240内に配置できるように十分に小さくなくてはならない。そのような圧力センサー300の想定される一つの実施形態を、図10及び図11を参照して説明する。図10は、圧力センサー300の断面図である。図11は、圧力センサー300の平面図であり、図示のために圧力センサー300の上蓋プレートは除去して示す。
圧力センサー300は、4層構成であり、下から順に、下蓋プレート310、下側チップ平面320、上側チップ平面330、及び上蓋プレート340を備える。蓋プレート310及び340は、例えば、ガラス又はシリコンから製造され、それらの間に配置されるチップ平面320及び330の担体要素として機能する。
チップ平面320及び330は、それぞれの場合においてシリコン又はそれと同等の半導体材料、それ以外では石英などからモノリシック製造される。チップ平面320及び330は、それぞれの場合において周辺チップフレーム321及び331、第一バネ要素322及び332、第二バネ要素324及び334、振動要素325及び335を有することができる。チップ平面320及び330については、チップ平面330を例にとって説明する。チップ平面320の構成はチップ平面330の構成に対応する。図11は、チップ平面330の平面図であり、蓋プレート310が除去された状態の圧力センサー300を示すものである。図11に示すように、チップフレーム331は周辺矩形フレームの形状をしており、上蓋プレート340の下側に固定されている。
第一バネ要素332は、チップフレーム331の短い方の側から延在し、かかるバネ要素はチップフレーム331よりも高さが低い。ベース要素333は第一バネ要素332に隣接し、かかるベース要素は第二バネ要素334により振動要素335に対して接続されている。第二バネ要素334も、チップフレーム331、ベース要素333、及び振動要素335よりも高さが低い。熱酸化物305は、チップフレーム321及び331の間と、第一バネ322及び332の間と、ベース要素323及び333の間とに設けられており、かかる熱酸化物は、二つのチップ平面320及び330の間で断熱材として機能する。
第一バネ要素322及び332はz方向の振動のみを許容する振動バネとして機能する。従って、これらはフレーム321、331からベース要素323及333を振動分離するように機能する。これにより、圧力センサー300の外部振動などに対する感受性を低くすることができる。そして、振動要素325及び335は、第二バネ要素324、334によってベース要素323及び333に対して自由振動可能な態様で固定されている。振動要素325及び335は、第二バネ要素324、334及びベース要素323、333と共に音叉350を形成する。音叉350の振動要素325及び335の間には、振動ギャップ352が形成され、その幅は、例えば2〜3μmである。
蓋プレート310、340の内側には、第一電極311、341がそれぞれ設けられ、これらの第一電極311、341はそれぞれ振動要素325、335に対向して配置されている。電極311及び341は、それぞれ、蓋プレート310、340内に配置されたメッキ貫通孔312、342を通じて、蓋プレート310、340の外側に配置された導電要素313、343を介してセンサーコントローラー(詳細図示しない)に接続されている。第二電極326、336は、振動要素325、335の蓋プレート310、340に面する側に配置されており、かかる第二電極は所定の電位に接続されていても良い。電極311、326、336、341は、例えばアルミニウムからなる金属薄層から製造することができる。第一電極311、341はそれぞれ二つの目的、すなわち、振動要素325、335の振動の励振と、それらの振動状態の検出のために機能する。
蓋プレート310及び340は、チップフレーム321及び331と共にハウジングを形成し、かかるハウジングの内部には音叉350が配置されている。このハウジングの内部は、貫通孔314及び344を介して圧力センサー300の周囲環境と接続されているので、ハウジングの内部と外部とが実質的に同じ圧力となっている。
圧力センサー300のセンサー原理について以下に概説する。適切なAC電圧を第一電極311及び341に印加すると音叉350が励振して、その機械的な固有振動数で一定の振幅(例えば、数nm)で連続的に振動する。この場合、振動要素325及び335は、z軸に沿って反対方向に移動する。従って、振動ギャップ352は、周期的に広まったり狭まったりする。振動要素325及び335が互いに向かって移動する場合、振動ギャップ352からガスの一部が漏出し、摩擦損失を生じる。振動ギャップ352内にとどまった一部のガスは圧縮されて更なるバネとして作用する(いわゆる「スクイーズ効果」)。摩擦損失及びバネ効果は、両方ともガスを理由とするものであり、特に、真空の範囲内の低い圧力においても圧力に大きく依存するので、説明したような機構は圧力センサーとして適している。音叉350の固有振動数と、振動減衰の圧力依存性は、振動要素325、335、及びバネ要素324、334のサイズを適切に調節することによって設定することができる。
音叉350の励振に必要とされる駆動力であって、駆動電圧の大きさに相当する駆動力は、音叉350の振動の減衰に比例する。従って、減衰が主に環境気圧に依存する圧力範囲では、駆動電圧の大きさが圧力の高精度な尺度となる。従って、音叉350を励振するための第一電極311、341は、適切な評価回路とともに、圧力依存性の音叉350のレゾナント周波数及び/又はかかるレゾナント周波数における振幅を検出するための機構として利用することができる。従って、センサー300の領域における圧力、及びミラーセグメント210の間の距離は、検出されたレゾナント周波数及び/又は振動振幅から推定することができる。
上述した様な圧力センサーと同様の圧力センサーは、ドイツ特許出願第100 33 182号や、ケムニッツ工科大学のKarla Hiller工学博士によるポストドクトラル論文「Technologieentwicklung fur kapazitive Sensoren mit bewegtenKomponenten(移動部品を備える容量センサーのための技術開発)」、2004年、の特に第4章にも記載されている。さらに詳細な技術事項についてはこれらの文献を参照されたい。
ここで説明した圧力センサー300は、低圧力においてさえも非常に高感度であるので、結果的に、センサー溝240内に流入するガスの量を比較的少量とし、さらにかかるガスを排出するのに十分である。従って、ミラー機構200が配置されている真空領域内にガスが漏れ入らない様にし、或はごく少量のガスが漏れ入るのみとすることを確実にすることができる。さらにまた、圧力センサー300は全体の高さが約300nm〜約400nmと、非常に平坦に構成することができる。これにより、センサー溝240を非常に狭く設計することができるので、空間214の幅がわずかに変化した場合でも、センサー溝240における圧力変化が比較的大きくなる。よって、センサー感度が高くなる。例えば、図2に示す様に、空間214にセンサー溝240を設けることなく、圧力センサー300を連結表面212上に面積的に設けることも想定することができる。
センサー220及び300によって生成されるセンサー信号は、制御装置(詳細図示しない)に供給することができる。センサー信号に基づいて、制御装置はアクチュエータ信号を決定して、上述したようなアクチュエータに供給する。かかるアクチュエータは、各ミラーセグメント210をそれぞれの場合にそれらの所望の位置及び方向に導き、かかる位置及び方向においてミラーセグメント210は、相互に平行に同一平面状に整列して、表面のばらつきが最小(すなわち、例えば20nm以下)となる。この場合、各ミラーセグメント210は、相互に独立して全6自由度に関して精密に作動可能である。従って、4つのミラーセグメント210の場合、例えば24個のアクチュエータを設けることができる。従って、上述した例示的実施形態では、ミラーセグメント210の全6自由度における相対位置を制御するための制御機構を備える。この場合、ミラーセグメント210は、最初はリソグラフィー装置100などの起動により調整され、制御ループにより動作中に再調整される。
アクチュエータは、例えば、ローレンツアクチュエータや、ピエゾアクチュエータとして実装することができる。
上述した実施形態は例示に過ぎず、特許請求の範囲により保護される範囲において様々な変形例を想定することができる。特に、上述した実施形態における特徴は相互に組み合わせることができる。
さらに、リソグラフィー装置100のミラー機構200に基づいて、ミラー機構の様々な構成について説明してきた。しかし、説明した様な構成は、リソグラフィー装置100のいかなる他のミラーに適用することももちろん可能である。
さらに、EUVリソグラフィー装置のミラー機構の例示的実施形態について説明してきた。しかし、本発明はEUVリソグラフィー装置に限定されるものではなく、むしろ、他のリソグラフィー装置に対しても適用することが可能である。
さらに、ミラー機構は4つのミラーセグメントを有する物に限定されるものではなく、4未満(すなわち、2つ又は3つ)のミラーセグメント、或は4超のミラーセグメントを設けることも可能である。
100 EUVリソグラフィー装置
102 ビーム形成系
104 照明系
106 投影系
108 EUV光源
110 コリメーター
112 モノクロメーター
114 EUV放射
116 第一ミラー
118 第二ミラー
120 フォトマスク
122 ウェハー
124 第三ミラー
126 第四ミラー
200 ミラー機構
210-1〜210-4 ミラーセグメント
212 連結表面
214 空間
220 センサー
222,224 測定電極
226 容量測定装置
228 シールド電極
240 センサー溝
242 溝
250 ガス供給装置
252 ガス供給管
254 ガスノズル
260 ガス抽気装置
262 ガス排気管
264 ガス吸引コネクター
300 圧力センサー
305 熱酸化物
310 下蓋プレート
311、341 第一電極
312、342 メッキ貫通孔
313、343 導電要素
320 下側チップ平面
321、331 チップフレーム
322、332 第一バネ要素
323、333 ベース要素
324、334 第二バネ要素
325、335 振動要素
326、336 第二電極
330 上側チップ平面
340 上蓋プレート
350 音叉
352 振動ギャップ

Claims (19)

  1. 間に空間(214)が形成されるように連結されている少なくとも二つのミラーセグメント(210)を有するミラー(200)と、
    前記ミラーセグメント(210)の相対位置を検出するためのセンサー(220、300)と、を備え、
    前記センサー(220、300)は、前記ミラーセグメント(210)の間の前記空間(214)内に配置されていることを特徴とする、
    リソグラフィー装置(100)。
  2. 前記ミラーセグメント(210)は、少なくとも一つの連結表面(212)をそれぞれ有し、前記ミラーセグメント(210)は前記連結表面(212)に沿って連結され、さらに、前記連結表面(212)の少なくとも一つには切り欠きが設けられており、前記センサー(220、300)は前記切り欠き内に配置されていることと特徴とする、請求項1に記載のリソグラフィー装置(100)。
  3. 前記センサー(220、300)は、前記ミラーセグメント(210)間の距離に応じたセンサー信号を生成する容量センサー又は光学センサーであることを特徴とする、請求項1又は2に記載のリソグラフィー装置(100)。
  4. 前記光学センサーは光学エンコーダー、特に、干渉ベースのインクリメンタルエンコーダーであることを特徴とする、請求項3に記載のリソグラフィー装置(100)。
  5. 前記センサーを駆動し、及び/又は、センサー信号を評価するためのセンサーコントローラーをさらに備え、前記センサーコントローラーと前記センサーとの間の少なくとも一部の区間で信号を無線送信することを特徴とする、請求項1〜4のいずれか一項に記載のリソグラフィー装置(100)。
  6. 前記空間(214)は、前記ミラーセグメント(210)の相対的な移動が前記空間(214)内で圧力変化をもたらすように構成されており、前記センサー(220、300)は前記空間(214)内の圧力に応じたセンサー信号を生成する圧力センサーであることを特徴とする、請求項1〜5のいずれか一項に記載のリソグラフィー装置(100)。
  7. 前記空間(214)にガスを供給するためのガス供給装置(250)と、
    前記空間(214)からガスを抽気するためのガス抽気装置(260)と、をさらに備える、請求項6に記載のリソグラフィー装置(100)。
  8. 前記圧力センサー(300)は、
    励振により振動可能な二つの振動要素(325、335)を有する音叉(350)であって、該音叉(350)のレゾナント周波数及び/又はレゾナント周波数における振幅は前記空間(214)内の圧力に依存することを特徴とする音叉と、
    前記音叉(350)のレゾナント周波数及び/又はレゾナント周波数における振幅を検出するための機構と、
    を備えることを特徴とする、請求項6又は7に従うリソグラフィー装置(100)。
  9. 前記振動要素(325、335)は構造を有する半導体材料又は石英で作られていることを特徴とする、請求項8に記載のリソグフラフィー装置(100)。
  10. 前記圧力センサー(300)は、前記振動要素(325、335)を振動させ、さらに、前記音叉(350)のレゾナント周波数及び/又はレゾナント周波数における振幅を検出するために用いることができる電極(311、341)をさらに備えることを特徴とする、請求項8又は9に記載のリソグラフィー装置(100)。
  11. 前記空間(214)は、前記ミラーセグメント(210)間のギャップであることを特徴とする、請求項1〜10のいずれか一項に記載のリソグラフィー装置(100)。
  12. 前記空間(214)は、前記センサー(220、300)が配置される溝(240)を備えることを特徴とする、請求項1〜11のいずれか一項に記載のリソグラフィー装置(100)。
  13. 前記溝(240)は、前記ミラーセグメント(210)の一つの少なくとも一つの連結表面(212)内の、特に、矩形である溝(242)により形成されたことを特徴とする、請求項11に記載のリソグラフィー装置(100)。
  14. 前記溝(242)は、前記連結表面(212)の長さ方向の全体にわたって延在していることを特徴とする、請求項13に記載のリソグラフィー装置(100)。
  15. 前記センサー(220、300)は、真空に適していることを特徴とする、請求項1〜14のいずれか一項に記載のリソグラフィー装置(100)。
  16. 前記空間(214)内に、複数自由度に関する前記ミラーセグメント(210)の相対位置を検出するための複数のセンサー(220、300)を備えることを特徴とする請求項1〜15のいずれか一項に記載のリソグラフィー装置(100)。
  17. 前記空間(214)内に配置された前記センサー(220、300)は、並進3自由度及び回転3自由度に関する前記ミラーセグメント(210)の位置を検出することを特徴とする、請求項16に記載のリソグラフィー装置(100)。
  18. 前記各ミラーセグメント(210)を分離して作動させるための少なくとも2つのアクチュエータをさらに備えることを特徴とする、請求項1〜17のいずれか一項に記載のリソグラフィー装置(100)
  19. 前記ミラーセグメント(210)は、相互に非接触の態様で配置されていることを特徴とする請求項1〜18のいずれか一項に記載のリソグラフィー装置(100)。
JP2015520878A 2012-07-11 2013-06-19 セグメント化ミラーを有するリソグラフィー装置 Active JP5957606B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261670215P 2012-07-11 2012-07-11
US61/670,215 2012-07-11
DE201210212064 DE102012212064A1 (de) 2012-07-11 2012-07-11 Lithographianlage mit segmentiertem Spiegel
DE102012212064.5 2012-07-11
PCT/EP2013/062735 WO2014009120A1 (en) 2012-07-11 2013-06-19 Lithography apparatus with segmented mirror

Publications (2)

Publication Number Publication Date
JP2015529839A true JP2015529839A (ja) 2015-10-08
JP5957606B2 JP5957606B2 (ja) 2016-07-27

Family

ID=49781479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015520878A Active JP5957606B2 (ja) 2012-07-11 2013-06-19 セグメント化ミラーを有するリソグラフィー装置

Country Status (6)

Country Link
US (1) US9846375B2 (ja)
JP (1) JP5957606B2 (ja)
KR (1) KR101731735B1 (ja)
CN (1) CN104428647B (ja)
DE (1) DE102012212064A1 (ja)
WO (1) WO2014009120A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206589A1 (de) * 2014-04-04 2015-10-08 Carl Zeiss Smt Gmbh Verfahren zum Justieren eines Spiegels einer mikrolithographischen Projektionsbelichtungsanlage
DE102015225262A1 (de) 2015-12-15 2017-06-22 Carl Zeiss Smt Gmbh Optisches System, insbesondere für eine mikrolithographische Projektionsbelichtungsanlage
DE102016214785A1 (de) * 2016-08-09 2018-02-15 Carl Zeiss Smt Gmbh Optisches Modul mit einer Antikollisionseinrichtung für Modulkomponenten
CN109061916A (zh) * 2018-08-22 2018-12-21 深圳市华星光电技术有限公司 一种液晶面板对位检测装置及方法
US11391820B2 (en) 2019-04-26 2022-07-19 Waymo L LC Mirrors to extend sensor field of view in self-driving vehicles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816759A (en) * 1987-10-28 1989-03-28 Kaman Corporation Inductive sensor for detecting displacement of adjacent surfaces
US4825062A (en) * 1987-10-29 1989-04-25 Kaman Aerospace Corporation Extendable large aperture phased array mirror system
JPH03226708A (ja) * 1990-01-23 1991-10-07 Kaman Aerospace Corp セグメントミラーとその制御法
WO2002004911A1 (de) * 2000-07-07 2002-01-17 U-Sen Mikrosystemtechnik Gmbh Druckmessung mit zwei schwigenden platten
JP2004266264A (ja) * 2003-02-13 2004-09-24 Canon Inc 光学系、露光装置、デバイス製造方法
JP2005244238A (ja) * 2004-02-27 2005-09-08 Asml Netherlands Bv リソグラフィ機器及びデバイスの製造方法
US7050161B1 (en) * 2003-08-06 2006-05-23 The United States Of America As Represented By The Administration Of The National Aeronautics And Space Administration Global radius of curvature estimation and control system for segmented mirrors
JP2011512659A (ja) * 2008-02-15 2011-04-21 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィのための投影露光装置に使用するファセットミラー
WO2012059537A1 (en) * 2010-11-05 2012-05-10 Carl Zeiss Smt Gmbh Projection objective of a microlithographic exposure apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154654A (ja) * 1996-11-25 1998-06-09 Nikon Corp 投影露光装置
US7126671B2 (en) * 2003-04-04 2006-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008053618A (ja) * 2006-08-28 2008-03-06 Canon Inc 露光装置及び方法並びに該露光装置を用いたデバイス製造方法
JP2009033048A (ja) * 2007-07-30 2009-02-12 Canon Inc 露光装置及びデバイス製造方法
DE102009000099A1 (de) * 2009-01-09 2010-07-22 Carl Zeiss Smt Ag Mikrospiegelarray mit Doppelbiegebalken Anordnung und elektronischer Aktorik
US8235536B2 (en) * 2008-11-06 2012-08-07 Projectiondesign As High intensity image projector using sectional mirror

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816759A (en) * 1987-10-28 1989-03-28 Kaman Corporation Inductive sensor for detecting displacement of adjacent surfaces
US4825062A (en) * 1987-10-29 1989-04-25 Kaman Aerospace Corporation Extendable large aperture phased array mirror system
JPH03226708A (ja) * 1990-01-23 1991-10-07 Kaman Aerospace Corp セグメントミラーとその制御法
WO2002004911A1 (de) * 2000-07-07 2002-01-17 U-Sen Mikrosystemtechnik Gmbh Druckmessung mit zwei schwigenden platten
JP2004266264A (ja) * 2003-02-13 2004-09-24 Canon Inc 光学系、露光装置、デバイス製造方法
US7050161B1 (en) * 2003-08-06 2006-05-23 The United States Of America As Represented By The Administration Of The National Aeronautics And Space Administration Global radius of curvature estimation and control system for segmented mirrors
JP2005244238A (ja) * 2004-02-27 2005-09-08 Asml Netherlands Bv リソグラフィ機器及びデバイスの製造方法
JP2011512659A (ja) * 2008-02-15 2011-04-21 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィのための投影露光装置に使用するファセットミラー
WO2012059537A1 (en) * 2010-11-05 2012-05-10 Carl Zeiss Smt Gmbh Projection objective of a microlithographic exposure apparatus

Also Published As

Publication number Publication date
CN104428647B (zh) 2017-06-06
KR101731735B1 (ko) 2017-04-28
WO2014009120A1 (en) 2014-01-16
DE102012212064A1 (de) 2014-01-16
CN104428647A (zh) 2015-03-18
US9846375B2 (en) 2017-12-19
DE102012212064A8 (de) 2015-01-08
JP5957606B2 (ja) 2016-07-27
US20150103327A1 (en) 2015-04-16
KR20150028286A (ko) 2015-03-13

Similar Documents

Publication Publication Date Title
JP5957606B2 (ja) セグメント化ミラーを有するリソグラフィー装置
KR101914536B1 (ko) 리소그래피 장치
KR101264798B1 (ko) 위치 센서 및 리소그래피 장치
KR100816838B1 (ko) 리소그래피 장치 및 디바이스 제조방법
KR101489527B1 (ko) 이동체 시스템, 패턴 형성 장치, 노광 장치, 및 계측 장치, 그리고 디바이스 제조 방법
KR100592819B1 (ko) 리소그래피 장치, 디바이스 제조방법, 및 그것에 의해제조된 디바이스
US10627339B2 (en) Modular photoacoustic detection device
KR101380266B1 (ko) 리소그래피 장치 및 스테이지 시스템
US9291444B2 (en) Light reflection mechanism, optical interferometer and spectrometric analyzer
TW201403267A (zh) 定位系統、微影裝置及器件製造方法
JP5525571B2 (ja) リソグラフィ装置、基板テーブルを変形させる方法、及びデバイス製造方法
JP2015511398A (ja) リソグラフィ装置及びデバイス製造方法
JP2007049165A (ja) リソグラフィ装置及びメトロロジ・システムを使用するデバイス製造方法
JP6573706B2 (ja) リソグラフィ装置及び方法
JP4922363B2 (ja) 装置及びリソグラフィシステム
US7515277B2 (en) Stage apparatus, control system, exposure apparatus, and device manufacturing method
JP6533004B2 (ja) 測定システム、リソグラフィ装置、デバイス製造方法、および測定方法
JP2019507894A (ja) 高さ測定装置、リソグラフィ装置、高さ測定方法、および高さ測定装置を製造する方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5957606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250