JP2015525114A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2015525114A5 JP2015525114A5 JP2015510885A JP2015510885A JP2015525114A5 JP 2015525114 A5 JP2015525114 A5 JP 2015525114A5 JP 2015510885 A JP2015510885 A JP 2015510885A JP 2015510885 A JP2015510885 A JP 2015510885A JP 2015525114 A5 JP2015525114 A5 JP 2015525114A5
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- potential
- reservoirs
- fluid
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims 22
- 239000012528 membrane Substances 0.000 claims 18
- 239000012530 fluid Substances 0.000 claims 12
- 238000004519 manufacturing process Methods 0.000 claims 9
- 239000011148 porous material Substances 0.000 claims 8
- 230000005684 electric field Effects 0.000 claims 6
- 150000002500 ions Chemical class 0.000 claims 6
- 239000003989 dielectric material Substances 0.000 claims 3
- 239000007788 liquid Substances 0.000 claims 2
- 238000012544 monitoring process Methods 0.000 claims 2
- 239000002090 nanochannel Substances 0.000 claims 2
- 239000000463 material Substances 0.000 claims 1
- 239000003960 organic solvent Substances 0.000 claims 1
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261643651P | 2012-05-07 | 2012-05-07 | |
| US61/643,651 | 2012-05-07 | ||
| US201361781081P | 2013-03-14 | 2013-03-14 | |
| US61/781,081 | 2013-03-14 | ||
| PCT/IB2013/000891 WO2013167955A1 (en) | 2012-05-07 | 2013-05-07 | Fabrication of nanopores using high electric fields |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018108930A Division JP2018187626A (ja) | 2012-05-07 | 2018-06-06 | 高電界を用いたナノポアの作製 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2015525114A JP2015525114A (ja) | 2015-09-03 |
| JP2015525114A5 true JP2015525114A5 (enExample) | 2017-12-28 |
| JP6420236B2 JP6420236B2 (ja) | 2018-11-07 |
Family
ID=49550214
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2015510884A Active JP6298450B2 (ja) | 2012-05-07 | 2013-05-07 | 固体ナノポアの大きさを制御するための方法 |
| JP2015510885A Active JP6420236B2 (ja) | 2012-05-07 | 2013-05-07 | 高電界を用いたナノポアの作製 |
| JP2018108930A Pending JP2018187626A (ja) | 2012-05-07 | 2018-06-06 | 高電界を用いたナノポアの作製 |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2015510884A Active JP6298450B2 (ja) | 2012-05-07 | 2013-05-07 | 固体ナノポアの大きさを制御するための方法 |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018108930A Pending JP2018187626A (ja) | 2012-05-07 | 2018-06-06 | 高電界を用いたナノポアの作製 |
Country Status (12)
| Country | Link |
|---|---|
| US (2) | US9777389B2 (enExample) |
| EP (2) | EP2847367B1 (enExample) |
| JP (3) | JP6298450B2 (enExample) |
| KR (2) | KR102065754B1 (enExample) |
| CN (2) | CN104662209B (enExample) |
| AU (2) | AU2013257756B2 (enExample) |
| BR (2) | BR112014027829B1 (enExample) |
| CA (2) | CA2872600C (enExample) |
| ES (2) | ES2629952T3 (enExample) |
| MX (2) | MX353370B (enExample) |
| SG (3) | SG10201606334XA (enExample) |
| WO (2) | WO2013167955A1 (enExample) |
Families Citing this family (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2906781C (en) * | 2013-03-15 | 2021-06-08 | President And Fellows Of Havard College | Fabrication of nanopores in atomically-thin membranes by ultra-short electrical pulsing |
| US10724147B2 (en) * | 2013-12-25 | 2020-07-28 | Hitachi, Ltd. | Hole forming method, measuring apparatus and chip set |
| JP6209122B2 (ja) * | 2014-04-02 | 2017-10-04 | 株式会社日立ハイテクノロジーズ | 孔形成方法及び測定装置 |
| DE102014111984B3 (de) * | 2014-08-21 | 2016-01-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Fluidische Gigaohm-Dichtung für Transmembranproteinmessungen |
| CA3005143A1 (en) | 2014-12-01 | 2016-06-16 | Cornell University | Nanopore-containing substrates with aligned nanoscale electronic elements and methods of making and using same |
| SG11201704688WA (en) * | 2014-12-19 | 2017-07-28 | Univ Ottawa | Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown |
| JP7071825B2 (ja) * | 2015-02-24 | 2022-05-19 | ジ ユニバーシティ オブ オタワ | 制御破壊時におけるレーザー照明による膜でのナノポア作製の局所化 |
| CN104694649A (zh) * | 2015-03-10 | 2015-06-10 | 北京大学 | 一种核酸分子低穿孔速度的纳米孔测序方法及其专用的纳米孔器件 |
| WO2016142925A1 (en) | 2015-03-12 | 2016-09-15 | Ecole Polytechnique Federale De Lausanne (Epfl) | Nanopore forming method and uses thereof |
| EP3067693A1 (en) | 2015-03-12 | 2016-09-14 | Ecole Polytechnique Federale de Lausanne (EPFL) | Nanopore forming method and uses thereof |
| AU2016243036B2 (en) | 2015-04-03 | 2022-02-17 | Abbott Laboratories | Devices and methods for sample analysis |
| WO2016161400A1 (en) | 2015-04-03 | 2016-10-06 | Abbott Laboratories | Devices and methods for sample analysis |
| GB201508669D0 (en) * | 2015-05-20 | 2015-07-01 | Oxford Nanopore Tech Ltd | Methods and apparatus for forming apertures in a solid state membrane using dielectric breakdown |
| WO2017004463A1 (en) | 2015-07-01 | 2017-01-05 | Abbott Laboratories | Devices and methods for sample analysis |
| US11016053B2 (en) | 2016-10-05 | 2021-05-25 | Abbott Laboratories | Devices and methods for sample analysis |
| EP3526603B1 (en) * | 2016-10-12 | 2022-07-20 | F. Hoffmann-La Roche AG | Nanopore voltage methods |
| CN109890497B (zh) * | 2016-12-09 | 2021-03-02 | 株式会社日立高新技术 | 纳米孔隙形成方法、纳米孔隙形成装置以及生物分子测量装置 |
| GB2573433B (en) * | 2017-01-10 | 2022-05-25 | Hitachi High Tech Corp | Current measurement device and current measurement method using nanopore |
| EP3369474A1 (en) * | 2017-03-01 | 2018-09-05 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Isoporous block copolymer membranes in flat sheet geometry |
| NO342507B1 (en) * | 2017-03-29 | 2018-06-04 | Condalign As | A method for forming av body comprising at least one through-going passage |
| WO2018201038A1 (en) | 2017-04-28 | 2018-11-01 | The University Of Ottawa | Controlling translocating molecules through a nanopore |
| WO2018209441A1 (en) * | 2017-05-17 | 2018-11-22 | The Royal Institution For The Advancement Of Learning / Mcgill University | Method and apparatus for making a nanopore in a membrane using an electric field applied via a conductive tip |
| US10618805B2 (en) | 2017-09-22 | 2020-04-14 | Applied Materials, Inc. | Method to reduce pore diameter using atomic layer deposition and etching |
| US10752496B2 (en) | 2017-09-22 | 2020-08-25 | Applied Materials, Inc. | Pore formation in a substrate |
| US10830756B2 (en) | 2017-09-22 | 2020-11-10 | Applied Materials, Inc. | Method to create a free-standing membrane for biological applications |
| JP6975609B2 (ja) * | 2017-10-19 | 2021-12-01 | 株式会社日立製作所 | 親水性保持基材、計測装置、デバイスおよび親水性保持方法 |
| JP6959121B2 (ja) | 2017-12-05 | 2021-11-02 | 株式会社日立ハイテク | 孔形成方法及び孔形成装置 |
| WO2019109253A1 (zh) * | 2017-12-05 | 2019-06-13 | 清华大学 | 调控固态纳米孔系统中固态纳米孔有效尺寸的方法 |
| CN108279312B (zh) * | 2018-03-08 | 2021-06-01 | 冯建东 | 一种基于纳米孔的蛋白质组学分析装置及血清检测方法及应用 |
| US11454624B2 (en) | 2018-09-28 | 2022-09-27 | Ofer Wilner | Nanopore technologies |
| CN113260449B (zh) * | 2018-12-11 | 2023-09-29 | 豪夫迈·罗氏有限公司 | 用于膜中自限性蛋白质孔插入的系统和方法 |
| JP7174614B2 (ja) * | 2018-12-12 | 2022-11-17 | 株式会社日立製作所 | ナノポア形成方法及び分析方法 |
| US11981557B2 (en) | 2020-04-17 | 2024-05-14 | Southern Methodist University | Ohmic nanopore fabrication and real-time cleaning |
| WO2021260587A1 (en) * | 2020-06-23 | 2021-12-30 | The University Of Ottawa | Improved techniques for nanopore enlargement and formation |
| US12429449B2 (en) * | 2020-07-31 | 2025-09-30 | Hitachi High-Tech Corporation | Biomolecule analysis method, biomolecule analyzing reagent, and biomolecule analysis device |
| JP7440375B2 (ja) * | 2020-08-19 | 2024-02-28 | 株式会社日立製作所 | 孔形成方法及び孔形成装置 |
| JP7543174B2 (ja) * | 2021-03-03 | 2024-09-02 | 株式会社日立製作所 | ポア形成方法、およびポア形成装置 |
| CN116536745B (zh) * | 2022-05-20 | 2025-02-07 | 武汉铢寸科技有限公司 | 在膜中制造纳米孔的方法、装置及叠加电场的生成装置 |
| WO2024238505A1 (en) * | 2023-05-12 | 2024-11-21 | Massachusetts Institute Of Technology | Systems and methods for cascaded compression of the size distribution of zero-dimensional nanostructures |
| WO2025111147A1 (en) | 2023-11-21 | 2025-05-30 | Abbott Laboratories | Two-dimensional matrix droplet array |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02173278A (ja) * | 1988-12-26 | 1990-07-04 | Hitachi Ltd | 微細加工方法及びその装置 |
| JPH09316692A (ja) * | 1996-05-30 | 1997-12-09 | Fine Ceramics Center | 微細孔を有するアルミナ膜及びその製造法 |
| JP3902883B2 (ja) * | 1998-03-27 | 2007-04-11 | キヤノン株式会社 | ナノ構造体及びその製造方法 |
| US7258838B2 (en) * | 1999-06-22 | 2007-08-21 | President And Fellows Of Harvard College | Solid state molecular probe device |
| DE10044565B4 (de) * | 2000-09-08 | 2005-06-30 | Gesellschaft für Schwerionenforschung mbH | Elektrolytische Zelle, deren Verwendung und Verfahren zum Ätzen einer in der Zelle eingespannten Membran sowie Verfahren zum Schalten einer geätzten, in der Zelle eingespannten Membran von Durchgang auf Sperrung und umgekehrt |
| JP2003001462A (ja) | 2000-09-13 | 2003-01-08 | Hamamatsu Photonics Kk | レーザ加工装置 |
| US6592742B2 (en) * | 2001-07-13 | 2003-07-15 | Applied Materials Inc. | Electrochemically assisted chemical polish |
| US6706203B2 (en) * | 2001-10-30 | 2004-03-16 | Agilent Technologies, Inc. | Adjustable nanopore, nanotome, and nanotweezer |
| JP2006523144A (ja) * | 2003-02-03 | 2006-10-12 | プレジデント アンド フェロウズ オブ ハーバード カレッジ | 制御された導電性構造体のギャップの製造法 |
| EP2474281B1 (en) * | 2003-12-24 | 2019-03-27 | The Regents of The University of California | Tissue ablation with irreversible electroporation |
| EP1721657A1 (en) * | 2005-05-13 | 2006-11-15 | SONY DEUTSCHLAND GmbH | A method of fabricating a polymeric membrane having at least one pore |
| JP4925670B2 (ja) * | 2006-01-16 | 2012-05-09 | 埼玉県 | チタン系金属製品の製造方法 |
| US7849581B2 (en) | 2006-05-05 | 2010-12-14 | University Of Utah Research Foundation | Nanopore electrode, nanopore membrane, methods of preparation and surface modification, and use thereof |
| US7777505B2 (en) * | 2006-05-05 | 2010-08-17 | University Of Utah Research Foundation | Nanopore platforms for ion channel recordings and single molecule detection and analysis |
| DE102006035072B4 (de) | 2006-07-28 | 2009-03-12 | Westfälische Wilhelms-Universität Münster | Vorrichtung und Verfahren zum Erfassen von Partikeln mit Pipette und Nanopore |
| AU2008236694B2 (en) * | 2007-04-04 | 2014-01-23 | The Regents Of The University Of California | Compositions, devices, systems, and methods for using a nanopore |
| FR2927169B1 (fr) * | 2008-02-05 | 2013-01-11 | Commissariat Energie Atomique | Procede de fonctionnalisation de la surface d'un pore |
| US20100122907A1 (en) | 2008-05-06 | 2010-05-20 | Government of the United States of America, | Single molecule mass or size spectrometry in solution using a solitary nanopore |
| ATE535800T1 (de) * | 2009-04-03 | 2011-12-15 | Nxp Bv | Sensorvorrichtung und verfahren zu dessen herstellung |
| EP3196645B1 (en) | 2009-09-18 | 2019-06-19 | President and Fellows of Harvard College | Bare single-layer graphene membrane having a nanopore enabling high-sensitivity molecular detection and analysis |
| EP2504082A4 (en) * | 2009-11-25 | 2016-11-09 | Univ Sydney | MEMBRANE AND MEMBRANE SEPARATION SYSTEM |
| DE102010025968B4 (de) * | 2010-07-02 | 2016-06-02 | Schott Ag | Erzeugung von Mikrolöchern |
| US9422154B2 (en) * | 2010-11-02 | 2016-08-23 | International Business Machines Corporation | Feedback control of dimensions in nanopore and nanofluidic devices |
| KR20120133653A (ko) * | 2011-05-31 | 2012-12-11 | 삼성전자주식회사 | 나노 센서, 이의 제조 방법 및 이를 사용하여 표적 분자를 검출하는 방법 |
| CA2906781C (en) | 2013-03-15 | 2021-06-08 | President And Fellows Of Havard College | Fabrication of nanopores in atomically-thin membranes by ultra-short electrical pulsing |
-
2013
- 2013-05-07 AU AU2013257756A patent/AU2013257756B2/en not_active Ceased
- 2013-05-07 MX MX2014013410A patent/MX353370B/es active IP Right Grant
- 2013-05-07 JP JP2015510884A patent/JP6298450B2/ja active Active
- 2013-05-07 CN CN201380036177.0A patent/CN104662209B/zh active Active
- 2013-05-07 CA CA2872600A patent/CA2872600C/en active Active
- 2013-05-07 CA CA2872602A patent/CA2872602C/en active Active
- 2013-05-07 AU AU2013257759A patent/AU2013257759B2/en not_active Ceased
- 2013-05-07 EP EP13787530.8A patent/EP2847367B1/en active Active
- 2013-05-07 CN CN201380036310.2A patent/CN104411386B/zh active Active
- 2013-05-07 BR BR112014027829-6A patent/BR112014027829B1/pt not_active IP Right Cessation
- 2013-05-07 KR KR1020147033949A patent/KR102065754B1/ko active Active
- 2013-05-07 SG SG10201606334XA patent/SG10201606334XA/en unknown
- 2013-05-07 ES ES13787360.0T patent/ES2629952T3/es active Active
- 2013-05-07 WO PCT/IB2013/000891 patent/WO2013167955A1/en not_active Ceased
- 2013-05-07 SG SG11201407252UA patent/SG11201407252UA/en unknown
- 2013-05-07 SG SG11201407249XA patent/SG11201407249XA/en unknown
- 2013-05-07 KR KR1020147033950A patent/KR102065745B1/ko active Active
- 2013-05-07 US US14/399,071 patent/US9777389B2/en active Active
- 2013-05-07 US US14/399,091 patent/US9777390B2/en active Active
- 2013-05-07 JP JP2015510885A patent/JP6420236B2/ja active Active
- 2013-05-07 WO PCT/IB2013/000884 patent/WO2013167952A1/en not_active Ceased
- 2013-05-07 ES ES13787530.8T patent/ES2630064T3/es active Active
- 2013-05-07 MX MX2014013412A patent/MX357200B/es active IP Right Grant
- 2013-05-07 EP EP13787360.0A patent/EP2846901B1/en active Active
- 2013-05-07 BR BR112014027873A patent/BR112014027873B8/pt not_active IP Right Cessation
-
2018
- 2018-06-06 JP JP2018108930A patent/JP2018187626A/ja active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2015525114A5 (enExample) | ||
| JP6420236B2 (ja) | 高電界を用いたナノポアの作製 | |
| Kubeil et al. | The role of nanopore geometry for the rectification of ionic currents | |
| Hwang et al. | Thermal dependence of nanofluidic energy conversion by reverse electrodialysis | |
| Xiao et al. | Electrostatic-charge-and electric-field-induced smart gating for water transportation | |
| JP2016531201A5 (enExample) | ||
| Jung et al. | Electromigration current rectification in a cylindrical nanopore due to asymmetric concentration polarization | |
| Li et al. | Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels | |
| Zhang et al. | Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes | |
| Wan et al. | Self-consistent approach to global charge neutrality in electrokinetics: A surface potential trap model | |
| Lai et al. | Desalination of saline water by nanochannel arrays through manipulation of electrical double layer | |
| KR20130114435A (ko) | 다수의 전극을 갖는 생분자 검출 장치 | |
| Hsu et al. | Influence of temperature and electroosmotic flow on the rectification behavior of conical nanochannels | |
| Park et al. | Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel–Nafion-membrane system | |
| Leese et al. | Electroosmotic flow in nanoporous membranes in the region of electric double layer overlap | |
| Abu-Rjal et al. | Signature of electroconvective instability in transient galvanostatic and potentiostatic modes in a microchannel-nanoslot device | |
| Yaroshchuk | What makes a nano-channel? A limiting-current criterion | |
| Zambrano et al. | Wall embedded electrodes to modify electroosmotic flow in silica nanoslits | |
| Chen et al. | Improving the performance of salinity gradient power generation by a negative pressure difference | |
| Yaroshchuk et al. | Electrokinetics in undeveloped flows | |
| Wang et al. | A method to tune the ionic current rectification of track-etched nanopores by using surfactant | |
| KR101354480B1 (ko) | 나노채널과 결합된 나노포어를 이용한 입자 검출 장치 및 방법 | |
| Li et al. | Mechanism and performance of ionic diodes fabricated from 2D trapezoidal-shaped nanochannels | |
| Wang et al. | Low-voltage electroosmotic pumping using polyethylene terephthalate track-etched membrane | |
| Kechadi et al. | Free contact microchannel impedance through two antiparallel planar microelectrodes |