US6592742B2 - Electrochemically assisted chemical polish - Google Patents

Electrochemically assisted chemical polish Download PDF

Info

Publication number
US6592742B2
US6592742B2 US09/905,315 US90531501A US6592742B2 US 6592742 B2 US6592742 B2 US 6592742B2 US 90531501 A US90531501 A US 90531501A US 6592742 B2 US6592742 B2 US 6592742B2
Authority
US
United States
Prior art keywords
substrate
method
metal layer
wt
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/905,315
Other versions
US20030010648A1 (en
Inventor
Lizhong Sun
Shijian Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to US09/905,315 priority Critical patent/US6592742B2/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, SHIJIAN, SUN, LIZHONG
Publication of US20030010648A1 publication Critical patent/US20030010648A1/en
Application granted granted Critical
Publication of US6592742B2 publication Critical patent/US6592742B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing
    • B23H5/08Electrolytic grinding
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating

Abstract

A method of chemically polishing a metal layer on a substrate is provided. The metal layer is chemically polished using an electrochemical polishing (ECP) process. In the ECP process, the substrate is immersed in a chemical polishing solution including a surfactant. The surfactant in the polishing solution covers the surface of the substrate such that only topographic portions of the substrate surface are exposed to the chemical polishing solution. Thereafter, an electrical potential applied to the substrate removes topographic portions of the substrate that are exposed to the polishing solution.

Description

BACKGROUND OF THE DISCLOSURE

1. Field of the Invention

The present invention relates to integrated circuit fabrication and more particularly to the formation of metal layers used in integrated circuits.

2. Description of the Background Art

In the fabrication of integrated circuits (IC's), substrate surface planarity is of critical importance. This is especially so as the scale of integration increases and device features are reduced in size (e.g., sub-micron sizes). Integrated circuits typically include metal layers that are used to interconnect individual devices of the IC. The metal layers are typically isolated from each other by one or more dielectric material layers. Features (e.g., trenches, vias, etc.) formed through the dielectric layers provide electrical access between successive conductive interconnection layers.

Copper is becoming a metal of choice in integrated circuits for the metal layers that provide the electrical access between successive interconnection layers. Copper is preferred due to desirable properties such as lower resistance and better electromigration performance compared to traditional materials such as aluminum.

Copper may be deposited by various techniques such as physical vapor deposition (PVD), chemical vapor deposition (CVD) and electrochemical plating (ECP). ECP is preferred because of its lower cost as compared to other deposition techniques. ECP entails the deposition of a metal conductive layer on a substrate by contacting the substrate with an electrolyte solution and providing an electrochemical potential between two electrodes. Copper ions plate out of the electrolyte solution and deposit onto the substrate.

Copper features are typically formed using damascene or dual damascene processes. In damascene processes, a feature is defined in a dielectric material and subsequently filled with copper. The copper is deposited both in the features and on the surrounding field. The copper deposited on the field is then removed to leave the copper filled feature formed in the dielectric.

The copper deposited on the field may be removed using techniques such as chemical mechanical polishing (CMP). CMP is a common technique used to planarize substrates. In CMP, a chemical polishing slurry, or other fluid medium, may be used in conjunction with mechanical energy to remove material from the substrate surface. However, with reducing dimensions (less than about 0.1 μm) for features on integrated circuits (ICs), it is difficult to planarize a metal surface using mechanical energy based CMP techniques.

Therefore, a need exists in the art for an improved method for planarizing a metal layer, such as a copper layer, on a substrate.

SUMMARY OF THE INVENTION

A method of chemically polishing a metal layer on a substrate is provided. The metal layer is chemically polished using an electrochemical polishing (ECP) process. In the ECP process, the substrate is immersed in a chemical polishing solution including a surfactant. The surfactant in the polishing solution covers the surface of the substrate such that only topographic portions of the substrate surface are exposed to the chemical polishing solution. Thereafter, an electrical potential applied to the substrate removes topographic portions of the substrate that are exposed to the polishing solution.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:

FIG. 1 depicts a schematic illustration of a ECP apparatus that may be used for the practice of embodiments described herein;

FIG. 2 depicts a schematic cross-sectional view of an ECP system that can be used to chemically polish metal layers on a substrate;

FIG. 3 depicts a schematic cross-sectional view of a portion of an ECP head system that can be used to chemically polish metal layers on the substrate;

FIGS. 4a-4 b depict schematic cross-sectional views of metal layer polishing using an ECP process;

FIGS. 5a-5 c depict schematic cross-sectional schematic views of a substrate during various stages of integrated circuit fabrication including an ECP process sequence; and

FIG. 6 illustrates a process flow diagram for a substrate undergoing an ECP process sequence.

DETAILED DESCRIPTION

Embodiments described herein relate to a method for polishing a metal layer formed on a substrate. The metal layer is polished using an electrochemical polishing (ECP) process. FIG. 1 is a schematic perspective view of an apparatus 50 that may be used to polish the metal layer as described herein. The apparatus 50 is a multi-station type such as is employed in automated semiconductor manufacture processing. The apparatus 50 is adapted to perform both electrochemical polishing (ECP) as well as chemical mechanical polishing (CMP).

Referring to FIG. 1, the apparatus 50 includes a lower machine base 51 having an upper table surface 52 and a removable upper cover (not shown). The upper table surface 52 supports a plurality of substrate process stations 53 a, 53 b, and 53 c, as well as a transfer station 54. The transfer station 54 performs multiple functions such as, for example, receiving individual substrates (not shown) from a loading apparatus (not shown), washing substrates, and loading/unloading substrates to/from carrier heads 64 a, 64 b, 64 c, 64 d.

Substrate processing station 53 a may be an electrochemical polishing (ECP) station designed for chemically polishing metal layers. ECP station 53 a may include a rotatable platen 55 on which is mounted a pad 28.

Substrate process station 53 b may be a chemical mechanical polishing (CMP) station designed for planarizing plated metal layers. Chemical mechanical polishing (CMP) station 53 b may include a rotatable platen 55 on which is mounted a polishing pad 56. Apparatus 50 may also include a barrier layer polishing station 53 c designed for polishing barrier layer materials that may be present on a substrate.

Each of the processing stations 53 b and 53 c may optionally include a pad conditioner 57. The pad conditioner 57 is used to maintain the condition of the polishing pad 56.

Intermediate washing stations 58 may optionally be positioned between adjacent processing stations 53 a, 53 b, 53 c and transfer station 54. The intermediate washing stations 58 are used to rinse substrates as they are passed from one station to the next.

As illustrated in FIG. 1, a rotatable multi-head carousel 59 is positioned above the lower machine base 51. The multi-head carousel 59 is supported by a center post 60 located on the upper table surface 52 and rotated about carousel axis 61 by means of a motor (not shown), located within the machine base 51. The center post 60 also supports a carousel base plate 62 and associated cover 63.

The multi-head carousel 59 includes four carrier heads 64 a, 64 b, 64 c, 64 d. Each carrier head 64 a, 64 b, 64 c, 64 d functions to hold substrates during a polishing process. Each carrier head 64 a, 64 b, 64 c, 64 d may also function to move substrates to/from the transfer station 54.

Each carrier head 64 a, 64 b, 64 c, 64 d is mounted on the carousel base plate 62 at equal angular intervals about the carousel axis 61. The center post 60 permits the carousel motor (not shown) to rotate the multi-head carousel 59 and carrier heads 64 a, 64 b, 64 c, 64 d about carousel axis 61.

A carrier drive shaft 66 couples a carrier head rotation motor 65 to each carrier head 64 a, 64 b, 64 c, 64 d, so that each carrier head may be rotated about its own axis. In addition, each carrier head 64 a, 64 b, 64 c, 64 d may be oscillated laterally in a radial slot 67 formed in the bottom of the carousel base plate 62.

While FIG. 1 illustrates a polishing system including one electrochemical polishing (ECP) station 53 a, one chemical mechanical polishing (CMP) station 53 b, and one barrier layer polishing station 53 c, Systems having two or more electrochemical polishing (ECP) stations and/or chemical mechanical polishing (CMP) stations are also contemplated.

Referring to FIG. 2, a schematic cross-sectional view of an ECP station 53 a is shown in greater detail. A substrate 22 is held in place on the ECP head 64 a. A partial enclosure 34 generally defines a container or polishing cell within which a polishing electrolyte may be confined.

The polishing electrolyte typically comprises one or more metallic species selected from copper (Cu), aluminum (Al), tungsten (W), gold (Au), silver (Ag), among other materials, which can be electrochemically polished. For example, copper sulfate (CuSO4) may be used as the polishing electrolyte. Copper-containing electrolyte solutions suitable for polishing Cu on the substrate 22 include Ultrafill 2000, commercially available from Shipley Ronel, a division of Rohm and Haas, headquartered in Philadelphia, Pa. The polishing electrolyte solution may optionally comprise pH adjusters such as, for example, sulfuric acid or acetic acid.

The partial enclosure 34 includes an anode 26, a diffuser plate 44, and a pad 28. The pad 28 is disposed on the diffuser plate 44. The partial enclosure 34 is typically a bowl shaped member made of a plastic material such as, for example, fluoropolymers, TEFLON®, and polyethylene, among other materials. The plastic material comprising the partial enclosure 34 should be compatible with the polishing electrolytes used therein, such that they are non-reactive with each other.

The partial enclosure 34 is coupled to a shaft 32 that extends into the base 51. Alternatively, a mounting platform (not shown) may be interposed between the partial enclosure and the shaft 32. The shaft 32 is coupled to an actuator (not shown), such as, for example, a motor (e.g., a stepper motor) disposed in the base 51. The actuator is adapted to rotate the partial enclosure 34 about vertical axis x. Additionally, the shaft 32 has a plurality of ports 36 formed therein. The ports 36 define passageways through which fluid (e.g., polishing electrolyte) is provided to the partial enclosure 34.

The anode 26 is positioned on the lower surface of the partial enclosure 34, such that it is immersed in the polishing electrolyte. Anode 26 typically comprises a ring-shaped, plate-like member. The anode 26 may optionally comprise a plate having a plurality of holes formed therethrough, or multiple anode pieces disposed in a permeable membrane material.

The anode 26 is preferably formed of the material to be polished (e.g., copper (Cu), nickel (Ni), aluminum (Al), gold (Au), silver (Ag), and tungsten (W)), although it may optionally be formed of a material other than the material to be polished such as, for example, platinum (Pt). The anode 26 may also comprise a consumable material, requiring the periodic replacement thereof.

The pad 28 is disposed on the diffuser plate 44. The pad 28 is preferably conductive to ions in the polishing electrolyte such as copper ions, for example, used for copper polishing applications. The metal polishing electrolyte is supplied to the pad 28 through a fluid delivery line 40, having an outlet 42 positioned above the pad 28. The pad 28 may optionally be disposed adjacent to or placed in contact with the anode 26. Additionally, the pad 28 should be compatible with the polishing electrolytes used for polishing the conductive metal layer, such that they are non-reactive with each other. The pad 28 may optionally comprise a plurality of pores and/or grooves to provide electrolyte from the bulk solution in region 38 of enclosure 34 toward the gap between the substrate 22 and the pad 28.

The pad 28 may comprise a polymeric material such as polyurethane. Examples of suitable pads may include, for example, IC 1000 pads, IC 1010 pads, Suba series pads, Politex series pads, and MH S series pads, commercially available from Rodel, Inc., of Phoenix, Ariz. Other suitable pads include polyvinylidene fluoride (PVDF) pads commercially available from Asahi, Japan, and fixed abrasive pads commercially available from 3M Corporation, Minneapolis, Minn.

The diffuser plate 44 is used to support the pad 28 in the partial enclosure 34. The diffuser plate 44 may be secured in the partial enclosure 34 using fasteners such as, for example, screws. Other suitable fastening means may include snap or interference fit with the enclosure 34 (not shown), suspension attachment (not shown), and the like. The diffuser plate 44 may be made of a plastic material such as, for example, fluoropolymers, polyethylenes, and TEFLON®, among others. The diffuser plate 44 should also be compatible with the polishing electrolytes used for polishing the conductive metal layer, such that they are non-reactive with each other.

The diffuser plate 44 may optionally have a plurality of holes or channels 46 formed therein. The holes 46 are sized to enable fluid flow therethrough and to provide a uniform distribution of electrolyte through the pad 28 toward the substrate 22.

The pad 28 may optionally be fastened to the diffuser plate 44 using adhesives that are compatible with the fluid environment. The diffuser plate 44 is preferably spaced from the anode 26 to reduce the sensitivity of the conductive metal layer thickness to the anode dimensions.

A membrane (not shown) may be disposed between the anode 26 and the pad 28 to prevent particles and/or by-products produced at the anode from depositing on the substrate 22 surface. The membrane should be permeable to electrolyte flow, but not permeable to particles and/or byproducts produced at anode 26.

The ECP head 64 a is movably positioned above the pad 28. The ECP head 64 a is both vertically and laterally movable relative to the pad 28. For example, ECP head 64 a may be vertically movable about the x-axis, and rotatable about the y-axis. The x- and y-axes of the partial enclosure 34 and the ECP head 64 a, respectively, are typically offset to provide orbital motion between the pad 28 and the ECP head 64 a. Orbital motion is broadly described herein as an elliptical relative motion between the pad 28 and the ECP head 64 a. The ECP head 64 a holds a substrate 22 with the surface to be polished facing downward toward the pad 28.

FIG. 3 depicts a schematic cross-sectional view of an electrochemical polishing (ECP) head 64 a. The ECP head 64 a is in operative position facing a pad (not shown). A shaft or spindle 466 is operatively coupled to a head assembly 469. The head assembly 469 comprises a circularly-shaped, inner mounting piece 470 having a narrow, shaft-like, axially extending upper portion 471 coupled to a drive shaft 466. A lower portion 472 of the mounting piece 470 includes a diffuser plate 473 for mounting the substrate 22 thereon. The lower portion of the mounting piece also has an outer, annularly-shaped mounting piece 474 including an inwardly extending flange portion 475 at its upper end and an annularly-shaped retaining ring 476 at its lower end.

The ECP head 64 a is adapted to provide for the controlled application of a time-varying electrochemical potential (e.g., a variable anodic potential) to substrate 22. A programmable electronic potentiostat 477 having working (w), counter (c), and reference (r) electrode outputs is operatively coupled to the head assembly 469 by means of respective electrical leads 478, brush-type electrical contacts 79, and concentric contact rings 480, formed on the upper surface of the lower portion 472 of mounting piece 470. Respective electrical leads connected to contact rings 480 are also connected to an annularly-shaped electrical contact located between the diffuser plate 473 and the rear surface of substrate 22 (inwardly of the substrate circumference), for permitting functioning of the substrate as a working (w) electrode. Electrical leads are also coupled to a plurality of counter electrodes 481 (e.g., formed of an electrochemically inert, electrically conductive material such as Pt or C) and reference electrodes 482 (e.g., formed of Pt or Ag/AgCl) positioned in grooved recesses 483 formed in the lower surface of retaining ring 476. A polishing electrolyte is supplied to the pad 56 through a fluid delivery arm 490.

Alternatively, the reference electrodes 482 and the electrode potentiostat 477 may be replaced with a 2-electrode programmable DC power supply. Moreover, a coulometer may be electrically positioned in either the working electrode or counter-electrode circuit, for providing end-point indication/detection. Alternatively, a detector for measuring a physical property (e.g., eddy currents) or an optical property (e.g., reflectance as indicated by means of a conventional light source/photocell apparatus) for determining the end-point of ECP processing may also be used.

While the ECP head 64 a is presented as having the configuration of component parts described above, other configurations are also contemplated.

Electrochemical Polishing (ECP)

A metal layer such as copper may be polished using an electrochemical polishing (ECP) technique. In the ECP process, the substrate is immersed in a chemical polishing solution including a surfactant. The surfactant in the polishing solution covers the surface of the substrate such that only topographic portions of the substrate surface are exposed to the chemical polishing solution. Thereafter, an electrical potential applied to the substrate removes topographic portions of the substrate that are exposed to the polishing solution.

Referring to FIGS. 2, 3, and 5 a, a substrate 22 is attached onto the ECP head 64 a and positioned within the enclosure 34 of ECP station 53 a. The substrate 22 may include, for example, a dielectric material 602, a barrier layer 603, and a seed layer 604. The dielectric material 602 has vias (holes) 602 a defined therein.

A polishing electrolyte solution is provided to the enclosure 34 from fluid delivery line 40. The substrate 22 is positioned so as to be in contact with polishing electrolyte above the pad 28. The polishing electrolyte preferably comprises at least one surfactant. The surfactant functions to form a protective layer on portions of the surface of the substrate. The protective layer is believed to orient parallel to the metal layer during polishing. In this manner, the protective layer insulates portions of the substrate surface from reacting with the polishing electrolyte. The protective layer has a thickness that is a function of the polishing composition, including the nature and concentration of the surfactant, the nature of the metal layer, the speed at which the substrate is rotated in the polishing electrolyte, as well as the surface topography of the metal layer.

Referring to FIGS. 4a and 6, polishing of the metal layer 502 begins with step 700. The substrate 22 is immersed in a chemical polishing solution including a surfactant. The surfactant in the polishing solution covers the surface of the substrate such that only topographic portions of the substrate surface are exposed to the chemical polishing solution. The substrate 22 may rotate while immersed in the polishing electrolyte. The substrate 22 may rotate at a velocity of about greater than about 5,000 rpm.

During the polishing process, the surfactant acts to cover portions of the metal layer so that only topographic portions of substrate 22 are in contact with the polishing electrolyte. The surfactant prevents the polishing electrolyte from contacting the surface of the substrate 22 in locations where localized depressions 504 exist, such that metal polishing only occurs on the topographic portions of the substrate 22.

The surfactant preferably comprises an organic material including polar moieties, such as, for example, sulfates, sulfonates, carboxylates, alkylene oxides, esters, polyglycosides, betaines, amides, and amines among others. The surfactant may also include non-polar moieties, such as, for example, alkyl groups, aryl groups, allyl groups, and benzyl groups, among others.

Examples of suitable surfactants may include one or more compounds selected from the group of benzopyran, thiourea, and aliphatic ethers. For example, the surfactant may comprise a benzopyran-containing compound, 2-H-1-benzopyran-2-one, C9O2H6, (i.e. coumarin), or its derivatives. The benzopyran-containing derivatives may further comprise additional functional groups including alcohols, carboxylic acids, and ethers, among others. The surfactant may also comprise, for example, sulfourea, CH4N2S, or its derivatives. Derivatives of sulfourea may further comprise additional functional groups including alkyl groups, alcohols, and carboxylic acids, among others. The surfactant may also comprise, for example, an aliphatic ether having a chemical formula, RC6H5O—(R′—O)n, where R and R′ refer to aliphatic hydrocarbon groups and n refers to an integer with a value of 1-10. The concentration of the surfactant may range from about 0.1 wt. % to about 30 wt. %.

The polishing electrolyte may further comprise one or more etchants (inorganic or organic acids) and one or more oxidizers. Suitable etchants include hydrogen peroxide, ferric nitrate, iodate-containing materials, acetic acid, phosphoric acid, oxalic acid, or combinations thereof, among others. The concentration of the one or more etchants may range from about 0.1 wt. % to about 50 wt. %.

The polishing composition may further comprise a corrosion inhibitor. Suitable corrosion inhibitors may include benzotriazole (BTA) or 5methyl-1-benzotriazole (TTA), and combinations thereof, among others. The concentration of the one or more corrosion inhibitors may range from about 0.1 wt % to about 25 wt. %.

In order to provide a greater degree of control to the rate of dissolution, a power source (not shown) is used to apply a potential difference between the substrate 22 and the anode 26. The potential difference is applied between the anode 26 and the working electrode (w). The potential difference applied between the anode 26 and the working electrode (w) is typically within a range of about 0.2 volts to about 5 volts. The applied voltage depends upon the nature of the pad material and cell configuration. The potential difference provides an electrochemical driving force for metal ions from the surface of the substrate 22 to dissolve in the electrolyte solution.

Metal on the unprotected topographic areas of the substrate are oxidized and are dissolved in the liquid phase of the polishing composition. A corresponding reaction takes place at the cathode wherein the either the cathode material, hydrogen ions, or dissolved oxygen or other chemical constituents within the enclosure are reduced. The oxidation and reduction reactions occur continually as the potential is applied, forming a electrochemical cell.

The composition of the polishing electrolyte as well as the applied electrochemical potential may be varied in time throughout the polishing process in order to optimize process throughput as well as the process yield. Furthermore, the polishing electrolyte as well as the rotational velocity may be adjusted by means of a feedback loop that incorporates a microprocessor and a controller during the polishing of the conductive layer.

The ECP process described herein is particularly advantageous in that it enables one to fine tune size of the features to be polished as well as the rate of polishing. The surfactant type, concentration and rotational velocity may be altered to control the thickness of the protective layer and thereby the size of the topographic region to be polished. Furthermore, the rate of polishing may be adjusted as a function of the etchant type and concentration as well the magnitude of the applied electrochemical potential.

After the metal layer is polished 502 using the ECP process described above, the barrier layer 603 may be removed by transferring the substrate 22 to chemical mechanical polishing station 53 b and/or barrier removal station 53 c, as indicated in step 706 of FIG. 6. The process for removing the barrier layer may be a single step or multi step CMP process.

Although several preferred embodiments, which incorporate the teachings of the present invention, have been shown and described in detail, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.

Claims (20)

What is claimed is:
1. An electrolyte composition for removing at least a portion of a metal layer, consisting essentially of:
one or more surfactants selected from the group consisting of benzopyran-containing materials, thiourea-containing materials, and aliphatic ether-containing materials;
one or more chemical etchants; and
one or more corrosion inhibitors.
2. The electrolyte composition of claim 1, wherein the concentration of the one or more surfactants is in the range of about 0.1 wt. % to about 30 wt. %.
3. The electrolyte composition of claim 1, wherein the one or more chemical etchants comprise one or more oxidizers.
4. The electrolyte composition of claim 3, wherein the one or more oxidizers are selected from the group consisting of hydrogen peroxide, ferric nitrate, iodate-containing materials, acetic acid, phosphoric acid, oxalic acid, and combinations thereof.
5. The electrolyte composition of claim 3, wherein the concentration of the one or more etchants is in the range of about 0.1 wt. % to about 50 wt. %.
6. The electrolyte composition of claim 1, wherein the one or more corrosion inhibitors are selected from the group consisting of benzotriazole (BTA), 5-methyl-1-benzotriazole (TTA), and combinations thereof.
7. The electrolyte composition of claim 6, wherein the concentration of the one or more corrosion inhibitors is in the range of about 0.1 wt. % to about 25 wt. %.
8. A method of removing a portion of a metal layer on a substrate, comprising:
immersing a substrate having a metal layer thereon in an electrolyte composition comprising:
one or more surfactants selected from the group consisting of benzopyran-containing materials, thiourea-containing materials, and aliphatic ether-containing materials;
one or more chemical etchants; and
one or more corrosion inhibitors;
rotating the substrate relative to the electrolyte composition to form a protective layer on portions of the surface of the metal layer;
applying an electrochemical potential between the substrate and a anode immersed in the electrolyte composition; and
removing portions of the metal layer.
9. The method of claim 8, wherein the metal layer comprises copper.
10. The method of claim 8, wherein the concentration of the one or more surfactants is in the range of about 0.1 wt. % to about 30 wt. %.
11. The method of claim 8, wherein the one or more etchants comprise one or more oxidizers.
12. The method of claim 11, wherein the one or more oxidizers are selected from the group consisting of hydrogen peroxide, ferric nitrate, iodate-containing materials, acetic acid, phosphoric acid, oxalic acid, and combinations thereof.
13. The method of claim 11, wherein the concentration of the one or more etchants is in the range of about 0.1 wt. % to about 50 wt. %.
14. The method of claim 8, further comprising chemical mechanical polishing the metal layer after removing portions of the metal layer.
15. The method of claim 14, wherein the one or more corrosion inhibitors are selected from the group consisting of benzotriazole (BTA), 5-methyl-1-benzotriazole (TTA), and combinations thereof.
16. The method of claim 14, wherein the concentration of the one or more corrosion inhibitors is in the range of about 0.1% by weight to about 25% by weight.
17. The method of claim 8, wherein the substrate rotates relative to the electrolyte composition at a velocity greater than about 5,000 rpm.
18. The method of claim 8, wherein the metal layer is disposed on a barrier layer on the substrate.
19. The method of claim 18, further comprising removing the barrier layer from the substrate surface after removing portions of the metal layer.
20. The method of claim 8, wherein the electrochemical potential is within a range of about 0.2 volts to about 5 volts.
US09/905,315 2001-07-13 2001-07-13 Electrochemically assisted chemical polish Expired - Fee Related US6592742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/905,315 US6592742B2 (en) 2001-07-13 2001-07-13 Electrochemically assisted chemical polish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/905,315 US6592742B2 (en) 2001-07-13 2001-07-13 Electrochemically assisted chemical polish

Publications (2)

Publication Number Publication Date
US20030010648A1 US20030010648A1 (en) 2003-01-16
US6592742B2 true US6592742B2 (en) 2003-07-15

Family

ID=25420623

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/905,315 Expired - Fee Related US6592742B2 (en) 2001-07-13 2001-07-13 Electrochemically assisted chemical polish

Country Status (1)

Country Link
US (1) US6592742B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116446A1 (en) * 2001-12-21 2003-06-26 Alain Duboust Electrolyte composition and treatment for electrolytic chemical mechanical polishing
US20030178320A1 (en) * 2001-03-14 2003-09-25 Applied Materials, Inc. Method and composition for polishing a substrate
US20040072444A1 (en) * 2002-06-25 2004-04-15 Samsung Electronics Co., Ltd. Etchant for wire, method of manufacturing wire using etchant, thin film transistor array panel including wire and manufacturing method thereof
US20040206634A1 (en) * 2002-01-31 2004-10-21 Mitsuhiko Shirakashi Electrolytic processing apparatus and substrate processing apparatus and method
US20050051432A1 (en) * 2001-12-13 2005-03-10 Mitsuhiko Shirakashi Electrolytic processing apparatus and method
US20060281196A1 (en) * 2005-06-13 2006-12-14 Cabot Microelectronics Corporation Controlled electrochemical polishing method
US20080182490A1 (en) * 2007-01-31 2008-07-31 International Business Machines Corporation Method and system for pad conditioning in an ecmp process
US7531079B1 (en) * 1998-10-26 2009-05-12 Novellus Systems, Inc. Method and apparatus for uniform electropolishing of damascene IC structures by selective agitation
US20090277867A1 (en) * 2003-10-20 2009-11-12 Novellus Systems, Inc. Topography reduction and control by selective accelerator removal
US7799200B1 (en) 2002-07-29 2010-09-21 Novellus Systems, Inc. Selective electrochemical accelerator removal
US20110113006A1 (en) * 2008-05-08 2011-05-12 Motohiko Sakaguchi Business process control apparatus, businesses process control method and business process control program
US8168540B1 (en) 2009-12-29 2012-05-01 Novellus Systems, Inc. Methods and apparatus for depositing copper on tungsten
US8530359B2 (en) 2003-10-20 2013-09-10 Novellus Systems, Inc. Modulated metal removal using localized wet etching
US8586481B2 (en) 2010-06-01 2013-11-19 Applied Materials, Inc. Chemical planarization of copper wafer polishing
DE102015201080A1 (en) * 2015-01-22 2016-07-28 Siemens Aktiengesellschaft Method and apparatus for the electrochemical removal of material from a workpiece

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653242B1 (en) 2000-06-30 2003-11-25 Applied Materials, Inc. Solution to metal re-deposition during substrate planarization
US20070290166A1 (en) * 2001-03-14 2007-12-20 Liu Feng Q Method and composition for polishing a substrate
US7323416B2 (en) * 2001-03-14 2008-01-29 Applied Materials, Inc. Method and composition for polishing a substrate
US20060249395A1 (en) * 2005-05-05 2006-11-09 Applied Material, Inc. Process and composition for electrochemical mechanical polishing
US7129160B2 (en) 2002-08-29 2006-10-31 Micron Technology, Inc. Method for simultaneously removing multiple conductive materials from microelectronic substrates
US20040259479A1 (en) * 2003-06-23 2004-12-23 Cabot Microelectronics Corporation Polishing pad for electrochemical-mechanical polishing
US20050167266A1 (en) * 2004-02-02 2005-08-04 Cabot Microelectronics Corporation ECMP system
US20050218009A1 (en) * 2004-04-02 2005-10-06 Jinshan Huo Electrochemical planarization system and method of electrochemical planarization
US20050263407A1 (en) * 2004-05-28 2005-12-01 Cabot Microelectronics Corporation Electrochemical-mechanical polishing composition and method for using the same
CN103160909B (en) * 2011-12-15 2016-04-27 比亚迪股份有限公司 An electrical power etching solution and etching method of etching an amorphous alloy material for parts
CA2872600A1 (en) * 2012-05-07 2013-11-14 The University Of Ottawa Method for controlling the size of solid-state nanopores
CN103603027B (en) * 2013-11-07 2017-01-04 昆明理工大学 Palladium and alloys thereof electrochemical polishing method

Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169337A (en) 1978-03-30 1979-10-02 Nalco Chemical Company Process for polishing semi-conductor materials
US4588421A (en) 1984-10-15 1986-05-13 Nalco Chemical Company Aqueous silica compositions for polishing silicon wafers
US4752628A (en) 1987-05-15 1988-06-21 Nalco Chemical Company Concentrated lapping slurries
US4793895A (en) 1988-01-25 1988-12-27 Ibm Corporation In situ conductivity monitoring technique for chemical/mechanical planarization endpoint detection
US4839005A (en) 1987-05-22 1989-06-13 Kabushiki Kaisha Kobe Seiko Sho Electrolytic-abrasive polishing method of aluminum surface
US4867757A (en) 1988-09-09 1989-09-19 Nalco Chemical Company Lapping slurry compositions with improved lap rate
US4934102A (en) 1988-10-04 1990-06-19 International Business Machines Corporation System for mechanical planarization
US5217586A (en) 1992-01-09 1993-06-08 International Business Machines Corporation Electrochemical tool for uniform metal removal during electropolishing
US5225034A (en) 1992-06-04 1993-07-06 Micron Technology, Inc. Method of chemical mechanical polishing predominantly copper containing metal layers in semiconductor processing
US5264010A (en) 1992-04-27 1993-11-23 Rodel, Inc. Compositions and methods for polishing and planarizing surfaces
EP0659858A2 (en) 1993-12-14 1995-06-28 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing a semiconductor device
US5476411A (en) 1993-07-16 1995-12-19 Henkel Corporation Aqueous composition for wet sanding of dried paint, plastics, and the like
FR2722511A1 (en) 1994-07-15 1996-01-19 Ontrak Systems Inc Metal contaminant removal during substrate cleaning
US5534106A (en) 1994-07-26 1996-07-09 Kabushiki Kaisha Toshiba Apparatus for processing semiconductor wafers
US5543032A (en) 1994-11-30 1996-08-06 Ibm Corporation Electroetching method and apparatus
US5567300A (en) 1994-09-02 1996-10-22 Ibm Corporation Electrochemical metal removal technique for planarization of surfaces
US5575706A (en) 1996-01-11 1996-11-19 Taiwan Semiconductor Manufacturing Company Ltd. Chemical/mechanical planarization (CMP) apparatus and polish method
US5614444A (en) 1995-06-06 1997-03-25 Sematech, Inc. Method of using additives with silica-based slurries to enhance selectivity in metal CMP
WO1997034030A1 (en) * 1996-03-14 1997-09-18 Guiseppe Carrara Solution for galvanic polishing of metal jewelry
US5700383A (en) 1995-12-21 1997-12-23 Intel Corporation Slurries and methods for chemical mechanical polish of aluminum and titanium aluminide
US5738574A (en) 1995-10-27 1998-04-14 Applied Materials, Inc. Continuous processing system for chemical mechanical polishing
US5738800A (en) 1996-09-27 1998-04-14 Rodel, Inc. Composition and method for polishing a composite of silica and silicon nitride
JPH10130632A (en) * 1996-10-25 1998-05-19 Okuno Chem Ind Co Ltd Liquid composition for metal polishing
EP0846742A2 (en) 1996-12-09 1998-06-10 Cabot Corporation Chemical mechanical polishing slurry useful for copper substrates
US5769689A (en) 1996-02-28 1998-06-23 Rodel, Inc. Compositions and methods for polishing silica, silicates, and silicon nitride
US5770095A (en) 1994-07-12 1998-06-23 Kabushiki Kaisha Toshiba Polishing agent and polishing method using the same
US5807165A (en) 1997-03-26 1998-09-15 International Business Machines Corporation Method of electrochemical mechanical planarization
WO1998049723A1 (en) 1997-04-30 1998-11-05 Minnesota Mining And Manufacturing Company Method of planarizing the upper surface of a semiconductor wafer
US5840629A (en) 1995-12-14 1998-11-24 Sematech, Inc. Copper chemical mechanical polishing slurry utilizing a chromate oxidant
US5846882A (en) 1996-10-03 1998-12-08 Applied Materials, Inc. Endpoint detector for a chemical mechanical polishing system
US5866031A (en) 1996-06-19 1999-02-02 Sematech, Inc. Slurry formulation for chemical mechanical polishing of metals
EP0896042A1 (en) 1997-07-28 1999-02-10 Cabot Corporation A polishing composition including an inhibitor of tungsten etching
US5876508A (en) 1997-01-24 1999-03-02 United Microelectronics Corporation Method of cleaning slurry remnants after the completion of a chemical-mechanical polish process
EP0913442A2 (en) 1997-10-31 1999-05-06 Hitachi, Ltd. Polishing method
US5911835A (en) 1990-11-05 1999-06-15 Ekc Technology, Inc. Method of removing etching residue
US5911619A (en) 1997-03-26 1999-06-15 International Business Machines Corporation Apparatus for electrochemical mechanical planarization
US5931723A (en) 1996-05-29 1999-08-03 Ebara Corporation Polishing apparatus
US5932486A (en) 1996-08-16 1999-08-03 Rodel, Inc. Apparatus and methods for recirculating chemical-mechanical polishing of semiconductor wafers
US5958794A (en) 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
WO1999053532A1 (en) 1998-04-10 1999-10-21 Ferro Corporation Slurry for chemical-mechanical polishing metal surfaces
US5981454A (en) 1993-06-21 1999-11-09 Ekc Technology, Inc. Post clean treatment composition comprising an organic acid and hydroxylamine
US5985748A (en) 1997-12-01 1999-11-16 Motorola, Inc. Method of making a semiconductor device using chemical-mechanical polishing having a combination-step process
WO1999061540A1 (en) 1998-05-26 1999-12-02 Cabot Microelectronics Corporation Cmp slurry containing a solid catalyst
US6004880A (en) 1998-02-20 1999-12-21 Lsi Logic Corporation Method of single step damascene process for deposition and global planarization
WO2000000561A1 (en) 1998-06-26 2000-01-06 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
WO2000000567A1 (en) 1998-06-26 2000-01-06 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrate
US6033993A (en) 1997-09-23 2000-03-07 Olin Microelectronic Chemicals, Inc. Process for removing residues from a semiconductor substrate
US6039891A (en) 1996-09-24 2000-03-21 Cabot Corporation Multi-oxidizer precursor for chemical mechanical polishing
US6043155A (en) 1994-09-30 2000-03-28 Hitachi, Ltd. Polishing agent and polishing method
US6046110A (en) 1995-06-08 2000-04-04 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing a semiconductor device
US6066030A (en) 1999-03-04 2000-05-23 International Business Machines Corporation Electroetch and chemical mechanical polishing equipment
WO2000030159A1 (en) 1998-11-18 2000-05-25 Rodel Holdings, Inc. Method to decrease dishing rate during cmp in metal semiconductor structures
US6068879A (en) 1997-08-26 2000-05-30 Lsi Logic Corporation Use of corrosion inhibiting compounds to inhibit corrosion of metal plugs in chemical-mechanical polishing
US6074949A (en) 1998-11-25 2000-06-13 Advanced Micro Devices, Inc. Method of preventing copper dendrite formation and growth
US6077337A (en) 1998-12-01 2000-06-20 Intel Corporation Chemical-mechanical polishing slurry
WO2000036037A1 (en) 1998-12-17 2000-06-22 Rodel Holdings, Inc. Compositions and methods for polishing semiconductor wafers
US6083840A (en) 1998-11-25 2000-07-04 Arch Specialty Chemicals, Inc. Slurry compositions and method for the chemical-mechanical polishing of copper and copper alloys
US6096652A (en) 1997-11-03 2000-08-01 Motorola, Inc. Method of chemical mechanical planarization using copper coordinating ligands
US6099394A (en) 1998-02-10 2000-08-08 Rodel Holdings, Inc. Polishing system having a multi-phase polishing substrate and methods relating thereto
US6103096A (en) 1997-11-12 2000-08-15 International Business Machines Corporation Apparatus and method for the electrochemical etching of a wafer
WO2000049647A1 (en) 1999-02-18 2000-08-24 Rodel Holdings, Inc. Method for cmp of low dielectric constant polymer layers
US6117783A (en) 1996-07-25 2000-09-12 Ekc Technology, Inc. Chemical mechanical polishing composition and process
WO2000053691A1 (en) 1999-03-10 2000-09-14 3M Innovative Properties Company Working liquids and methods for modifying structured wafers suited for semiconductor fabrication
US6121143A (en) 1997-09-19 2000-09-19 3M Innovative Properties Company Abrasive articles comprising a fluorochemical agent for wafer surface modification
US6159076A (en) 1998-05-28 2000-12-12 Komag, Inc. Slurry comprising a ligand or chelating agent for polishing a surface
US6176992B1 (en) 1998-11-03 2001-01-23 Nutool, Inc. Method and apparatus for electro-chemical mechanical deposition
WO2001012379A1 (en) 1999-08-16 2001-02-22 Kaiser Aluminum & Chemical Corporation Method and composition for improved flux slurry wetting in heat exchanger brazing
US6194317B1 (en) 1998-04-30 2001-02-27 3M Innovative Properties Company Method of planarizing the upper surface of a semiconductor wafer
JP2001077117A (en) 1999-09-07 2001-03-23 Sony Corp Manufacture of semiconductor device, and method and device for polishing
US6234870B1 (en) 1999-08-24 2001-05-22 International Business Machines Corporation Serial intelligent electro-chemical-mechanical wafer processor
US6241586B1 (en) 1998-10-06 2001-06-05 Rodel Holdings Inc. CMP polishing slurry dewatering and reconstitution
US6248222B1 (en) 1998-09-08 2001-06-19 Acm Research, Inc. Methods and apparatus for holding and positioning semiconductor workpieces during electropolishing and/or electroplating of the workpieces
US6258721B1 (en) 1999-12-27 2001-07-10 General Electric Company Diamond slurry for chemical-mechanical planarization of semiconductor wafers
US6270393B1 (en) 1998-10-05 2001-08-07 Tdk Corporation Abrasive slurry and preparation process thereof
US6277015B1 (en) 1998-01-27 2001-08-21 Micron Technology, Inc. Polishing pad and system
US20010024878A1 (en) 2000-03-27 2001-09-27 Kabushiki Kaisha Toshiba Polishing pad, polishing apparatus and polishing method
US20010036746A1 (en) 2000-03-09 2001-11-01 Shuzo Sato Methods of producing and polishing semiconductor device and polishing apparatus
US20020022370A1 (en) 2000-04-06 2002-02-21 Lizhong Sun Abrasive-free metal CMP in passivation domain
US20020070126A1 (en) 2000-09-19 2002-06-13 Shuzo Sato Polishing method, polishing apparatus, plating method, and plating apparatus
US6416685B1 (en) 2000-04-11 2002-07-09 Honeywell International Inc. Chemical mechanical planarization of low dielectric constant materials

Patent Citations (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169337A (en) 1978-03-30 1979-10-02 Nalco Chemical Company Process for polishing semi-conductor materials
US4588421A (en) 1984-10-15 1986-05-13 Nalco Chemical Company Aqueous silica compositions for polishing silicon wafers
US4752628A (en) 1987-05-15 1988-06-21 Nalco Chemical Company Concentrated lapping slurries
US4839005A (en) 1987-05-22 1989-06-13 Kabushiki Kaisha Kobe Seiko Sho Electrolytic-abrasive polishing method of aluminum surface
US4793895A (en) 1988-01-25 1988-12-27 Ibm Corporation In situ conductivity monitoring technique for chemical/mechanical planarization endpoint detection
US4867757A (en) 1988-09-09 1989-09-19 Nalco Chemical Company Lapping slurry compositions with improved lap rate
US4934102A (en) 1988-10-04 1990-06-19 International Business Machines Corporation System for mechanical planarization
US5911835A (en) 1990-11-05 1999-06-15 Ekc Technology, Inc. Method of removing etching residue
US5217586A (en) 1992-01-09 1993-06-08 International Business Machines Corporation Electrochemical tool for uniform metal removal during electropolishing
US5264010A (en) 1992-04-27 1993-11-23 Rodel, Inc. Compositions and methods for polishing and planarizing surfaces
US5225034A (en) 1992-06-04 1993-07-06 Micron Technology, Inc. Method of chemical mechanical polishing predominantly copper containing metal layers in semiconductor processing
US5981454A (en) 1993-06-21 1999-11-09 Ekc Technology, Inc. Post clean treatment composition comprising an organic acid and hydroxylamine
US6156661A (en) 1993-06-21 2000-12-05 Ekc Technology, Inc. Post clean treatment
US5476411A (en) 1993-07-16 1995-12-19 Henkel Corporation Aqueous composition for wet sanding of dried paint, plastics, and the like
EP0659858A2 (en) 1993-12-14 1995-06-28 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing a semiconductor device
US5770095A (en) 1994-07-12 1998-06-23 Kabushiki Kaisha Toshiba Polishing agent and polishing method using the same
FR2722511A1 (en) 1994-07-15 1996-01-19 Ontrak Systems Inc Metal contaminant removal during substrate cleaning
US5534106A (en) 1994-07-26 1996-07-09 Kabushiki Kaisha Toshiba Apparatus for processing semiconductor wafers
US5567300A (en) 1994-09-02 1996-10-22 Ibm Corporation Electrochemical metal removal technique for planarization of surfaces
US6043155A (en) 1994-09-30 2000-03-28 Hitachi, Ltd. Polishing agent and polishing method
US5543032A (en) 1994-11-30 1996-08-06 Ibm Corporation Electroetching method and apparatus
US5614444A (en) 1995-06-06 1997-03-25 Sematech, Inc. Method of using additives with silica-based slurries to enhance selectivity in metal CMP
US6046110A (en) 1995-06-08 2000-04-04 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing a semiconductor device
US5958794A (en) 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
US5738574A (en) 1995-10-27 1998-04-14 Applied Materials, Inc. Continuous processing system for chemical mechanical polishing
US5840629A (en) 1995-12-14 1998-11-24 Sematech, Inc. Copper chemical mechanical polishing slurry utilizing a chromate oxidant
US5700383A (en) 1995-12-21 1997-12-23 Intel Corporation Slurries and methods for chemical mechanical polish of aluminum and titanium aluminide
US5575706A (en) 1996-01-11 1996-11-19 Taiwan Semiconductor Manufacturing Company Ltd. Chemical/mechanical planarization (CMP) apparatus and polish method
US5769689A (en) 1996-02-28 1998-06-23 Rodel, Inc. Compositions and methods for polishing silica, silicates, and silicon nitride
WO1997034030A1 (en) * 1996-03-14 1997-09-18 Guiseppe Carrara Solution for galvanic polishing of metal jewelry
US5931723A (en) 1996-05-29 1999-08-03 Ebara Corporation Polishing apparatus
US5866031A (en) 1996-06-19 1999-02-02 Sematech, Inc. Slurry formulation for chemical mechanical polishing of metals
US6117783A (en) 1996-07-25 2000-09-12 Ekc Technology, Inc. Chemical mechanical polishing composition and process
US5932486A (en) 1996-08-16 1999-08-03 Rodel, Inc. Apparatus and methods for recirculating chemical-mechanical polishing of semiconductor wafers
US6039891A (en) 1996-09-24 2000-03-21 Cabot Corporation Multi-oxidizer precursor for chemical mechanical polishing
US6042741A (en) 1996-09-27 2000-03-28 Rodel Holdings, Inc. Composition for polishing a composite of silica and silicon nitride
US5738800A (en) 1996-09-27 1998-04-14 Rodel, Inc. Composition and method for polishing a composite of silica and silicon nitride
US5846882A (en) 1996-10-03 1998-12-08 Applied Materials, Inc. Endpoint detector for a chemical mechanical polishing system
JPH10130632A (en) * 1996-10-25 1998-05-19 Okuno Chem Ind Co Ltd Liquid composition for metal polishing
EP0846742A2 (en) 1996-12-09 1998-06-10 Cabot Corporation Chemical mechanical polishing slurry useful for copper substrates
US5876508A (en) 1997-01-24 1999-03-02 United Microelectronics Corporation Method of cleaning slurry remnants after the completion of a chemical-mechanical polish process
US5911619A (en) 1997-03-26 1999-06-15 International Business Machines Corporation Apparatus for electrochemical mechanical planarization
US5807165A (en) 1997-03-26 1998-09-15 International Business Machines Corporation Method of electrochemical mechanical planarization
WO1998049723A1 (en) 1997-04-30 1998-11-05 Minnesota Mining And Manufacturing Company Method of planarizing the upper surface of a semiconductor wafer
EP0896042A1 (en) 1997-07-28 1999-02-10 Cabot Corporation A polishing composition including an inhibitor of tungsten etching
US6068879A (en) 1997-08-26 2000-05-30 Lsi Logic Corporation Use of corrosion inhibiting compounds to inhibit corrosion of metal plugs in chemical-mechanical polishing
US6121143A (en) 1997-09-19 2000-09-19 3M Innovative Properties Company Abrasive articles comprising a fluorochemical agent for wafer surface modification
US6033993A (en) 1997-09-23 2000-03-07 Olin Microelectronic Chemicals, Inc. Process for removing residues from a semiconductor substrate
US6117775A (en) 1997-10-31 2000-09-12 Hitachi, Ltd. Polishing method
EP0913442A2 (en) 1997-10-31 1999-05-06 Hitachi, Ltd. Polishing method
US6096652A (en) 1997-11-03 2000-08-01 Motorola, Inc. Method of chemical mechanical planarization using copper coordinating ligands
US6103096A (en) 1997-11-12 2000-08-15 International Business Machines Corporation Apparatus and method for the electrochemical etching of a wafer
US5985748A (en) 1997-12-01 1999-11-16 Motorola, Inc. Method of making a semiconductor device using chemical-mechanical polishing having a combination-step process
US6277015B1 (en) 1998-01-27 2001-08-21 Micron Technology, Inc. Polishing pad and system
US6099394A (en) 1998-02-10 2000-08-08 Rodel Holdings, Inc. Polishing system having a multi-phase polishing substrate and methods relating thereto
US6090239A (en) 1998-02-20 2000-07-18 Lsi Logic Corporation Method of single step damascene process for deposition and global planarization
US6004880A (en) 1998-02-20 1999-12-21 Lsi Logic Corporation Method of single step damascene process for deposition and global planarization
WO1999053532A1 (en) 1998-04-10 1999-10-21 Ferro Corporation Slurry for chemical-mechanical polishing metal surfaces
US6194317B1 (en) 1998-04-30 2001-02-27 3M Innovative Properties Company Method of planarizing the upper surface of a semiconductor wafer
WO1999061540A1 (en) 1998-05-26 1999-12-02 Cabot Microelectronics Corporation Cmp slurry containing a solid catalyst
US6159076A (en) 1998-05-28 2000-12-12 Komag, Inc. Slurry comprising a ligand or chelating agent for polishing a surface
US6217416B1 (en) 1998-06-26 2001-04-17 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
WO2000000561A1 (en) 1998-06-26 2000-01-06 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
WO2000000567A1 (en) 1998-06-26 2000-01-06 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrate
US6248222B1 (en) 1998-09-08 2001-06-19 Acm Research, Inc. Methods and apparatus for holding and positioning semiconductor workpieces during electropolishing and/or electroplating of the workpieces
US6270393B1 (en) 1998-10-05 2001-08-07 Tdk Corporation Abrasive slurry and preparation process thereof
US6241586B1 (en) 1998-10-06 2001-06-05 Rodel Holdings Inc. CMP polishing slurry dewatering and reconstitution
US20010042690A1 (en) 1998-11-03 2001-11-22 Nutool, Inc. Method and apparatus for electroplating and electropolishing
US6176992B1 (en) 1998-11-03 2001-01-23 Nutool, Inc. Method and apparatus for electro-chemical mechanical deposition
WO2000030159A1 (en) 1998-11-18 2000-05-25 Rodel Holdings, Inc. Method to decrease dishing rate during cmp in metal semiconductor structures
US6083840A (en) 1998-11-25 2000-07-04 Arch Specialty Chemicals, Inc. Slurry compositions and method for the chemical-mechanical polishing of copper and copper alloys
US6074949A (en) 1998-11-25 2000-06-13 Advanced Micro Devices, Inc. Method of preventing copper dendrite formation and growth
US6077337A (en) 1998-12-01 2000-06-20 Intel Corporation Chemical-mechanical polishing slurry
WO2000036037A1 (en) 1998-12-17 2000-06-22 Rodel Holdings, Inc. Compositions and methods for polishing semiconductor wafers
WO2000049647A1 (en) 1999-02-18 2000-08-24 Rodel Holdings, Inc. Method for cmp of low dielectric constant polymer layers
US6066030A (en) 1999-03-04 2000-05-23 International Business Machines Corporation Electroetch and chemical mechanical polishing equipment
WO2000053691A1 (en) 1999-03-10 2000-09-14 3M Innovative Properties Company Working liquids and methods for modifying structured wafers suited for semiconductor fabrication
US6238592B1 (en) * 1999-03-10 2001-05-29 3M Innovative Properties Company Working liquids and methods for modifying structured wafers suited for semiconductor fabrication
WO2001012379A1 (en) 1999-08-16 2001-02-22 Kaiser Aluminum & Chemical Corporation Method and composition for improved flux slurry wetting in heat exchanger brazing
US6234870B1 (en) 1999-08-24 2001-05-22 International Business Machines Corporation Serial intelligent electro-chemical-mechanical wafer processor
JP2001077117A (en) 1999-09-07 2001-03-23 Sony Corp Manufacture of semiconductor device, and method and device for polishing
US6258721B1 (en) 1999-12-27 2001-07-10 General Electric Company Diamond slurry for chemical-mechanical planarization of semiconductor wafers
US20010036746A1 (en) 2000-03-09 2001-11-01 Shuzo Sato Methods of producing and polishing semiconductor device and polishing apparatus
US20010024878A1 (en) 2000-03-27 2001-09-27 Kabushiki Kaisha Toshiba Polishing pad, polishing apparatus and polishing method
US20020022370A1 (en) 2000-04-06 2002-02-21 Lizhong Sun Abrasive-free metal CMP in passivation domain
US6416685B1 (en) 2000-04-11 2002-07-09 Honeywell International Inc. Chemical mechanical planarization of low dielectric constant materials
US20020070126A1 (en) 2000-09-19 2002-06-13 Shuzo Sato Polishing method, polishing apparatus, plating method, and plating apparatus

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Boisde, Paul M.; Meuly, Walter C.; and Rhone-Poulene, Inc., "Coumarin", Kirk-Othmer Encyclopedia of Chemical Technology, Copyright 1993 by John Wiley & Sons.* *
Nogami, "An Innovation to Integrate Porous Low-K Materials and Copper", Interconnect Japan 2001; Honeywell Seminar (Dec. 6, 2001) pp. 1-12.
U.S. Ser. No. 09/543,777, filed Apr. 5, 2000 to Sun, et al.
U.S. Ser. No. 09/569,968, filed May 11, 2000 to Sun.
U.S. Ser. No. 09/606,544, filed Jun. 30, 2000 to Bajaj, et al.
U.S. Ser. No. 09/608,078, filed Jun. 30, 2000 to Sun, et al.
U.S. Ser. No. 09/694,866, filed Oct. 23, 2000 to Wang, et al.
U.S. Ser. No. 09/698,863, filed Oct. 27, 2000 to Tsai, et al.
U.S. Ser. No. 09/968,864, filed Oct. 27, 2000 to Sun, et al.

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531079B1 (en) * 1998-10-26 2009-05-12 Novellus Systems, Inc. Method and apparatus for uniform electropolishing of damascene IC structures by selective agitation
US20030178320A1 (en) * 2001-03-14 2003-09-25 Applied Materials, Inc. Method and composition for polishing a substrate
US20050051432A1 (en) * 2001-12-13 2005-03-10 Mitsuhiko Shirakashi Electrolytic processing apparatus and method
US20030116446A1 (en) * 2001-12-21 2003-06-26 Alain Duboust Electrolyte composition and treatment for electrolytic chemical mechanical polishing
US20070181432A1 (en) * 2002-01-31 2007-08-09 Mitsuhiko Shirakashi Electrolytic processing apparatus and substrate processing apparatus and method
US20040206634A1 (en) * 2002-01-31 2004-10-21 Mitsuhiko Shirakashi Electrolytic processing apparatus and substrate processing apparatus and method
US7569135B2 (en) 2002-01-31 2009-08-04 Ebara Corporation Electrolytic processing apparatus and substrate processing apparatus and method
US20040072444A1 (en) * 2002-06-25 2004-04-15 Samsung Electronics Co., Ltd. Etchant for wire, method of manufacturing wire using etchant, thin film transistor array panel including wire and manufacturing method thereof
US7141180B2 (en) * 2002-06-25 2006-11-28 Samsung Electronics Co., Ltd. Etchant for wire, method of manufacturing wire using etchant, thin film transistor array panel including wire and manufacturing method thereof
US8795482B1 (en) 2002-07-29 2014-08-05 Novellus Systems, Inc. Selective electrochemical accelerator removal
US8268154B1 (en) 2002-07-29 2012-09-18 Novellus Systems, Inc. Selective electrochemical accelerator removal
US7799200B1 (en) 2002-07-29 2010-09-21 Novellus Systems, Inc. Selective electrochemical accelerator removal
US8470191B2 (en) 2003-10-20 2013-06-25 Novellus Systems, Inc. Topography reduction and control by selective accelerator removal
US8158532B2 (en) 2003-10-20 2012-04-17 Novellus Systems, Inc. Topography reduction and control by selective accelerator removal
US8530359B2 (en) 2003-10-20 2013-09-10 Novellus Systems, Inc. Modulated metal removal using localized wet etching
US20090277867A1 (en) * 2003-10-20 2009-11-12 Novellus Systems, Inc. Topography reduction and control by selective accelerator removal
US20060281196A1 (en) * 2005-06-13 2006-12-14 Cabot Microelectronics Corporation Controlled electrochemical polishing method
US7998335B2 (en) 2005-06-13 2011-08-16 Cabot Microelectronics Corporation Controlled electrochemical polishing method
US7807036B2 (en) 2007-01-31 2010-10-05 International Business Machines Corporation Method and system for pad conditioning in an ECMP process
US20080182490A1 (en) * 2007-01-31 2008-07-31 International Business Machines Corporation Method and system for pad conditioning in an ecmp process
US20110113006A1 (en) * 2008-05-08 2011-05-12 Motohiko Sakaguchi Business process control apparatus, businesses process control method and business process control program
US8377824B1 (en) 2009-12-29 2013-02-19 Novellus Systems, Inc. Methods and apparatus for depositing copper on tungsten
US8168540B1 (en) 2009-12-29 2012-05-01 Novellus Systems, Inc. Methods and apparatus for depositing copper on tungsten
US8586481B2 (en) 2010-06-01 2013-11-19 Applied Materials, Inc. Chemical planarization of copper wafer polishing
DE102015201080A1 (en) * 2015-01-22 2016-07-28 Siemens Aktiengesellschaft Method and apparatus for the electrochemical removal of material from a workpiece

Also Published As

Publication number Publication date
US20030010648A1 (en) 2003-01-16

Similar Documents

Publication Publication Date Title
KR101011095B1 (en) Process control in electro-chemical mechanical polishing
US6315883B1 (en) Electroplanarization of large and small damascene features using diffusion barriers and electropolishing
US6368190B1 (en) Electrochemical mechanical planarization apparatus and method
US7491308B2 (en) Method of making rolling electrical contact to wafer front surface
US7128825B2 (en) Method and composition for polishing a substrate
US6436267B1 (en) Method for achieving copper fill of high aspect ratio interconnect features
CN1842618B (en) Apparatus and method for depositing and planarizing thin films of semiconductor wafers
KR100939595B1 (en) Method and composition for polishing a substrate
US6368475B1 (en) Apparatus for electrochemically processing a microelectronic workpiece
KR100780257B1 (en) Polishing method, polishing apparatus, plating method, and plating apparatus
KR200331354Y1 (en) Conductive polishing article for electrochemical mechanical polishing
US7008871B2 (en) Selective capping of copper wiring
US20020098779A1 (en) Method and apparatus for enhanced CMP using metals having reductive properties
JP4067307B2 (en) Rotation holding device
JP4392168B2 (en) Copper plating bath and plating method of a substrate using the same
CN1182939C (en) Method and apparatus for deposition on and polishing of semiconductor surface
EP0557593A1 (en) Electrochemical tool for uniform metal removal during electropolishing
US20010040100A1 (en) Plating apparatus and method
US7384534B2 (en) Electrolyte with good planarization capability, high removal rate and smooth surface finish for electrochemically controlled copper CMP
US6837984B2 (en) Methods and apparatus for electropolishing metal interconnections on semiconductor devices
US7022608B2 (en) Method and composition for the removal of residual materials during substrate planarization
EP1174912A1 (en) Semiconductor wafer processing apparatus and processing method
US6613214B2 (en) Electric contact element for electrochemical deposition system and method
US7041599B1 (en) High through-put Cu CMP with significantly reduced erosion and dishing
US6848977B1 (en) Polishing pad for electrochemical mechanical polishing

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUN, LIZHONG;LI, SHIJIAN;REEL/FRAME:012034/0928

Effective date: 20010713

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20110715