JP2015516025A - 変色を低減させるための加熱および酸素源を利用するフッ素化ポリマー樹脂処理 - Google Patents

変色を低減させるための加熱および酸素源を利用するフッ素化ポリマー樹脂処理 Download PDF

Info

Publication number
JP2015516025A
JP2015516025A JP2015511544A JP2015511544A JP2015516025A JP 2015516025 A JP2015516025 A JP 2015516025A JP 2015511544 A JP2015511544 A JP 2015511544A JP 2015511544 A JP2015511544 A JP 2015511544A JP 2015516025 A JP2015516025 A JP 2015516025A
Authority
JP
Japan
Prior art keywords
fluorinated polymer
polymer resin
fluorinated
reactor
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015511544A
Other languages
English (en)
Other versions
JP6280917B2 (ja
JP2015516025A5 (ja
Inventor
ダグラス ブラザーズ ポール
ダグラス ブラザーズ ポール
アレン チャップマン グレゴリー
アレン チャップマン グレゴリー
ヴィシュヌ ガンガル スバシュ
ヴィシュヌ ガンガル スバシュ
ポール スミス アダム
ポール スミス アダム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of JP2015516025A publication Critical patent/JP2015516025A/ja
Publication of JP2015516025A5 publication Critical patent/JP2015516025A5/ja
Application granted granted Critical
Publication of JP6280917B2 publication Critical patent/JP6280917B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/006Removal of residual monomers by chemical reaction, e.g. scavenging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/26Treatment of polymers prepared in bulk also solid polymers or polymer melts
    • C08F6/28Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

水性媒体中のフルオロモノマーを重合して水性フッ素化ポリマー分散体を形成する工程、および、前記水性媒体から前記フッ素化ポリマーを単離して前記フッ素化ポリマー樹脂を得る工程により生成されたフッ素化ポリマー樹脂の熱誘起変色を低減させるプロセスを提供する。このプロセスは:フッ素化ポリマー樹脂を約160℃〜約400℃の温度に加熱する工程;および加熱されたフッ素化ポリマー樹脂を酸素源に曝露する工程を含む。

Description

本発明は、フッ素化ポリマー樹脂の熱誘起変色を低減させるプロセスに関する。
フッ素化ポリマーを生成するためのフッ素化モノマーの水性分散重合に係る典型的なプロセスは、水性媒体を含む加熱した反応器にフッ素化モノマーを供給するステップ、および、ラジカル開始剤を添加して重合を生起させるステップを含む。典型的には、フッ素系界面活性剤が、形成されるフッ素化ポリマー粒子を安定化するために利用される。数時間後、供給が停止され、反応器がベントされ、窒素でパージされ、容器中の粗分散体が冷却容器に移される。
形成されたフッ素化ポリマーは、フッ素化ポリマー樹脂を得るために分散体から単離可能である。例えば、PTFE微粉末と称されるポリテトラフルオロエチレン(PTFE)樹脂は、PTFE分散体を凝析して水性媒体からPTFE樹脂を分離させることにより分散体からPTFEを単離し、次いで、乾燥させることにより生成される。成形樹脂として有用である、テトラフルオロエチレンおよびヘキサフルオロプロピレンのコポリマー(FEP)、ならびに、テトラフルオロエチレンおよびパーフルオロ(アルキルビニルエーテル)のコポリマー(PFA)などの溶融加工可能フッ素化ポリマーの分散体も同様に凝析させることが可能であり、凝析させたポリマーが乾燥され、次いで、溶融加工作業において直接用いられるか、または、その後の溶融加工作業における使用のためにチップもしくはペレットなどの簡便な形態に溶融加工される。
フッ素系界面活性剤に関連する環境問題のために、フッ素系界面活性剤の一部またはすべての代わりとしての水性重合媒体における炭化水素系界面活性剤の使用に関心が集まっている。しかしながら、炭化水素系界面活性剤を含有するフッ素化ポリマー分散体が形成され、その後、フッ素化ポリマー樹脂を得るために単離される際、フッ素化ポリマー樹脂に熱誘起変色が生じてしまいやすい。熱誘起変色とは、加熱に際したフッ素化ポリマー樹脂における望ましくない色の発色または強まりを意味する。通常、フッ素化ポリマー樹脂は色が透明または白色であることが望ましく、熱誘起変色が生じやすい樹脂においては、加熱に際して、時にはかなり濃い灰色または茶色が生じてしまう。例えば、炭化水素系界面活性剤であるドデシル硫酸ナトリウム(SDS)を含有する分散体から生成されたPTFEの微細なパワー(fine power)がペースト−押出しによる形状またはフィルムに転換され、その後に焼結された場合、典型的には、望ましくない灰色または茶色の発色が生じてしまうこととなる。炭化水素系界面活性剤であるSDSを含有する分散体から生成されたPTFEの焼結に際する発色が、Pundersonに対する米国特許第3,391,099号明細書の実施例VIに記載されている。同様に、FEPまたはPFAなどの溶融加工可能フッ素化ポリマーがSDSなどの炭化水素系界面活性剤を含有する分散体から生成される場合、典型的には、例えば、チップまたはペレットなどのその後の使用に簡便な形態に溶融加工される際といったフッ素化ポリマーが最初に溶融加工される際に望ましくない発色が生じてしまう。
本発明は、水性媒体中のフルオロモノマーを重合して水性フッ素化ポリマー分散体を形成するステップ、および、前記水性媒体からフッ素化ポリマーを単離して前記フッ素化ポリマー樹脂を得るステップにより生成されたフッ素化ポリマー樹脂の熱誘起変色を低減させるプロセスを提供する。フッ素化ポリマー樹脂の熱誘起変色は:
フッ素化ポリマー樹脂を約160℃〜約400℃の温度に加熱するステップ;および
加熱されたフッ素化ポリマー樹脂を酸素源に曝露するステップ
により低減可能であることが発見された。
このプロセスは、CIELABカラースケールにおけるLの変化%による計測で、熱誘起変色を少なくとも約10%低減させることが好ましい。
本発明のプロセスは、中度から重度にわたる熱誘起変色を示すフッ素化ポリマー樹脂に有用である。本発明のプロセスは、パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を用いて製造された同等の商業的品質のフッ素化ポリマー樹脂よりも処理に先立って示す熱誘起変色がきわめて重度であるフッ素化ポリマー樹脂に対して利用され得る。本発明のプロセスは、フッ素化ポリマー樹脂が、CIELABカラースケールで、パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を用いて製造された同等の商業的品質のフッ素化ポリマー樹脂のL値よりも少なくとも約4Lユニット低い初期熱誘起変色値(L )を有する場合に有利に利用される。
本発明は、熱誘起変色を生じさせる炭化水素系界面活性剤を含有するフルオロモノマーを重合させることにより形成される水性フッ素化ポリマー分散体であって、好ましくは、炭化水素系界面活性剤の存在下に重合される水性フッ素化ポリマー分散体から得られるフッ素化ポリマー樹脂に特に有用である。
フルオロモノマー/フッ素化ポリマー
フッ素化ポリマー樹脂は、フルオロモノマーを水性媒体中で重合して水性フッ素化ポリマー分散体を形成することにより生成される。フッ素化ポリマーは、少なくとも1種のフッ素化モノマー(フルオロモノマー)(すなわち、モノマーの少なくとも1種がフッ素を含有し、少なくとも1個のフッ素またはフルオロアルキル基が二重結合炭素に結合しているオレフィンモノマーであることが好ましい)から形成される。フッ素化モノマーおよびこれらから得られるフッ素化ポリマーは各々、少なくとも35重量%のF、好ましくは少なくとも50重量%のFを含有していることが好ましく、フッ素化モノマーは、好ましくは、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロイソブチレン、パーフルオロアルキルエチレン、フルオロビニルエーテル、フッ化ビニル(VF)、フッ化ビニリデン(VF2)、パーフルオロ−2,2−ジメチル−1,3−ジオキソール(PDD)、パーフルオロ−2−メチレン−4−メチル−1,3−ジオキソラン(PMD)、パーフルオロ(アリルビニルエーテル)およびパーフルオロ(ブテニルビニルエーテル)、ならびに、これらの混合物からなる群から独立して選択される。好ましいパーフルオロアルキルエチレンモノマーはパーフルオロブチルエチレン(PFBE)である。好ましいフルオロビニルエーテルとしては、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(エチルビニルエーテル)(PEVE)およびパーフルオロ(メチルビニルエーテル)(PMVE)などのパーフルオロ(アルキルビニルエーテル)モノマー(PAVE)が挙げられる。エチレンおよびプロピレンなどの非フッ素化オレフィンコモノマーをフッ素化モノマーと共重合させることが可能である。
フルオロビニルエーテルはまた、フッ素化ポリマーへの官能基の導入に有用なものを含む。これらとしては、CF=CF−(O−CFCFR−O−CFCFR’SOFが挙げられ、式中、RおよびR’は、F、Clまたは1〜10個の炭素原子を有する過フッ素化アルキル基から独立して選択され、a=0、1または2である。この種のポリマーは、米国特許第3,282,875号明細書(CF=CF−O−CFCF(CF)−O−CFCFSOF、パーフルオロ(3,6−ジオキサ−4−メチル−7−オクテンフッ化スルホニル))、および、米国特許第4,358,545号明細書および同4,940,525号明細書(CF=CF−O−CFCFSOF)に開示されている。他の例は、米国特許第4,552,631号明細書に開示されている、CF=CF−O−CF−CF(CF)−O−CFCFCOCH、パーフルオロ(4,7−ジオキサ−5−メチル−8−ノネンカルボン酸)のメチルエステルである。ニトリル、シアネート、カルバメートおよびホスホン酸の官能基を有する同様のフルオロビニルエーテルが、米国特許第5,637,748号明細書;同6,300,445号明細書;および、同6,177,196号明細書に開示されている。
熱誘起変色の低減に有用な好ましいクラスのフッ素化ポリマーは、コモノマー、末端基または側基構造が可能性のある例外であるが、ポリマーの鎖または主鎖を形成する炭素原子上の一価置換基のすべてがフッ素原子である過フッ素化ポリマーである。好ましくは、コモノマー、末端基または側基構造は、過フッ素化ポリマーの総重量と比して、最大で2重量%C−H部分、より好ましくは最大で1重量%C−H部分を構成することとなる。好ましくは、存在する場合、過フッ素化ポリマーの水素含有量は、過フッ素化ポリマーの総重量に基づいて0.2重量%以下である。
本発明は、変性PTFEを含むポリテトラフルオロエチレン(PTFE)のフッ素化ポリマーの熱誘起変色の低減に有用である。ポリテトラフルオロエチレン(PTFE)は、(a)顕著なコモノマーが有意な量で伴うことなく単独で重合されたテトラフルオロエチレン、すなわちホモポリマー、および、(b)得られるポリマーの融点がPTFEの融点よりも実質的に低くなることがないほどに低濃度でコモノマーを含むTFEのコポリマーである変性PTFEを指す。変性PTFEは、結晶性を低減させて焼成(融解)中におけるフィルム形成能を向上させる少量のコモノマー変性剤を含有する。このようなモノマーの例としては、パーフルオロオレフィン、特に、ヘキサフルオロプロピレン(HFP)またはパーフルオロ(アルキルビニルエーテル)(PAVE)(ここで、アルキル基は1〜5個の炭素原子を含有する)が挙げられ、パーフルオロ(エチルビニルエーテル)(PEVE)およびパーフルオロ(プロピルビニルエーテル)(PPVE)が好ましく、クロロトリフルオロエチレン(CTFE)、パーフルオロブチルエチレン(PFBE)、または、ポリマー分子にかさ高い側基を導入する他のモノマーが好ましい。このようなコモノマーの濃度は、PTFE中に存在するTFEおよびコモノマーの総重量に基づいて、好ましくは1重量%未満、より好ましくは0.5重量%未満である。顕著な効果を実現するためには、最低で少なくとも約0.05重量%の量を用いることが好ましい。PTFE(および変性PTFE)は、典型的には、少なくとも約1×10Pa・s、好ましくは少なくとも1×10Pa・sの溶融クリープ粘度を有し、このような高い溶融粘度では、ポリマーは溶融状態でも流動性を有さず、従って、溶融加工可能ポリマーではない。溶融クリープ粘度の測定は、米国特許第7,763,680号明細書の第4欄に開示されている。PTFEの高い溶融粘度は、例えば少なくとも10といったきわめて高い分子量(Mn)に起因する。PTFEはまた、最初の加熱時における少なくとも330℃というその高い溶融温度によって特徴付けられることが可能である。そのきわめて高い溶融粘度に起因するPTFEの非溶融流動性のため、ASTM D1238に従い372℃で5kgの重りを用いてメルトフローレート(MFR)を計測した場合には不溶融流動性状態となり、すなわち、MFRは0である。PTFEの高分子量は、その標準比重(SSG)を計測することにより特徴付けられる。SSG計測法(ASTM D4894、米国特許第4,036,802号明細書にも記載されている)は、自立(格納されていない)するSSGサンプルを、SSGサンプルにおける寸法変化を伴わないその溶融温度より高い温度で焼結するステップを含む。SSGサンプルは焼結ステップ中に流動することはない。
本発明のプロセスはまた、通例PTFEミクロ粉末として公知であり、上記のPTFEとは区別される低分子量PTFEの熱誘起変色の低減に有用である。PTFEミクロ粉末の分子量はPTFEと比較して低く、すなわち、分子量(Mn)は一般に10〜10の範囲内である。PTFEミクロ粉末は分子量が低いことにより、結果として、非溶融流動性ではないPTFEとは対照的に、溶融状態において流動度を有する。PTFEミクロ粉末は溶融流動性を有し、これは、溶融ポリマーに対する、372℃で5kgの重りを用いるASTM D1238に従う計測による、少なくとも0.01g/10分、好ましくは少なくとも0.1g/10分、より好ましくは少なくとも5g/10分、および、さらにより好ましくは少なくとも10g/10分のメルトフローレート(MFR)によって特徴付けられることが可能である。
本発明は、溶融二次加工可能でもある溶融加工可能フッ素化ポリマーの熱誘起変色の低減に特に有用である。溶融加工可能とは、フッ素化ポリマーが、溶融状態で加工可能であること、すなわち、押出し機および射出成形機などの従来の加工器具を用いて、溶融物からフィルム、繊維およびチューブなどの付形物品に二次加工されることが可能であることを意味する。溶融二次加工可能とは、得られる二次加工物品が、その意図される用途について有用である十分な強度および靭性を示すことを意味する。この十分な強度は、米国特許第5,703,185号明細書に開示されている計測で少なくとも1000サイクル、好ましくは少なくとも2000サイクルのMIT Flex Lifeを単独で示すフッ素化ポリマーによって特徴付けられ得る。これにより、フッ素化ポリマーの強度は脆性ではないことが示されている。
このような溶融加工可能フッ素化ポリマーの例としては、ポリクロロトリフルオロエチレンおよびポリフッ化ビニリデン(PVDF)などのホモポリマー、または、テトラフルオロエチレン(TFE)と、通常は、コポリマーの融点を実質的にPTFEよりも下げる(例えば、315℃以下の溶融温度)のに十分な量でポリマー中に存在する少なくとも1種のフッ素化共重合性モノマー(コモノマー)とのコポリマーが挙げられる。
溶融加工可能TFEコポリマーにおいては、典型的には、溶融ポリマーに対するASTM D−1238に従う5kgの重りを用いる計測で0.1〜200g/10分のメルトフローレート(MFR)、および、特定のコポリマーについて標準的である溶融温度を有するコポリマーがもたらされるよう、一定量のコモノマーがコポリマーに組み込まれている。MFRは、好ましくは1〜100g/10分、最も好ましくは約1〜約50g/10分の範囲であろう。追加の溶融加工可能フッ素化ポリマーは、エチレン(E)またはプロピレン(P)と、TFEまたはCTFEとのコポリマー、特にETFEおよびECTFEである。
本発明の実施における使用に好ましい溶融加工可能コポリマーは、少なくとも40〜99mol%のテトラフルオロエチレンユニットおよび1〜60mol%の少なくとも1種の他のモノマーを含む。追加の溶融加工可能コポリマーは、60〜99mol%のPTFEユニットおよび1〜40mol%の少なくとも1種の他のモノマーを含むものである。過フッ素化ポリマーを形成するためにTFEを伴う好ましいコモノマーは、ヘキサフルオロプロピレン(HFP)などの好ましくは3〜8個の炭素原子を有するパーフルオロオレフィン、および/または、直鎖または分岐鎖アルキル基が1〜5個の炭素原子を含有するパーフルオロ(アルキルビニルエーテル)(PAVE)といった過フッ素化モノマーである。好ましいPAVEモノマーはアルキル基が1、2、3または4個の炭素原子を含有するものであり、コポリマーは、数種のPAVEモノマーを用いて形成可能である。好ましいTFEコポリマーとしては、FEP(TFE/HFPコポリマー)、PFA(TFE/PAVEコポリマー)、TFE/HFP/PAVEが挙げられ、ここで、PAVEは、PEVEおよび/またはPPVE、MFA(PAVEのアルキル基が少なくとも2個の炭素原子を有するTFE/PMVE/PAVE)およびTHV(TFE/HFP/VF)である。
これらの溶融加工可能フッ素化ポリマーはすべて、溶融加工可能TFEコポリマーについて上記に言及されているMFRによって特徴付けられることが可能であり、すなわち、PFAおよびFEPのMFR測定用の可塑度計中の溶融ポリマーに対する5kgの重しを含む特定のポリマーに係る標準状態を用いるASTM1238法によって特徴付けられることが可能である。
さらに有用なポリマーは、ポリフッ化ビニリデン(PVDF)のフィルム形成性ポリマー、および、フッ化ビニリデンのコポリマー、ならびに、ポリフッ化ビニル(PVF)およびフッ化ビニルのコポリマーである。
本発明はまた、フルオロカーボンエラストマー(フルオロエラストマー)の熱誘起変色を低減する場合に有用である。これらのエラストマーは、典型的には、25℃未満のガラス転移温度を有し、室温で結晶性をほとんどまたはまったく示さず、また、溶融温度をほとんどまたはまったく示さない。本発明のプロセスにより形成されるフルオロエラストマーは、典型的には、フルオロエラストマーの総重量に基づいて、フッ化ビニリデン(VF)またはテトラフルオロエチレン(TFE)であり得る第1のフッ素化モノマーの共重合された単位を25〜75重量%含有するコポリマーである。フルオロエラストマー中の残りのユニットは、フッ素化モノマー、炭化水素系オレフィンおよびこれらの混合物からなる群から選択される、第1のモノマーとは異なる1種以上の追加の共重合されたモノマーを含む。フルオロエラストマーはまた、任意選択により、1種以上の硬化部位モノマーのユニットを含み得る。存在する場合、共重合された硬化部位モノマーは、典型的には、フルオロカーボンエラストマーの総重量に基づいて、0.05〜7重量%のレベルで存在する。好適な硬化部位モノマーの例としては:i)臭素−、ヨウ素−または塩素−含有フッ素化オレフィンまたはフッ素化ビニルエーテル;ii)ニトリル基−含有フッ素化オレフィンまたはフッ素化ビニルエーテル;iii)パーフルオロ(2−フェノキシプロピルビニルエーテル);および、iv)非共役ジエンが挙げられる。
好ましいTFE系フルオロエラストマーコポリマーとしては、TFE/PMVE、TFE/PMVE/E、TFE/PおよびTFE/P/VFが挙げられる。好ましいVF系フルオロカーボンエラストマーコポリマーとしては、VF/HFP、VF/HFP/TFEおよびVF/PMVE/TFEが挙げられる。これらのエラストマーコポリマーはいずれも、硬化部位モノマーのユニットをさらに含んでいてもよい。
炭化水素系界面活性剤
本発明の一実施形態において、フッ素化ポリマー樹脂の形成に用いられる水性フッ素化ポリマー分散媒体は、フッ素化ポリマー樹脂が単離および加熱される際に樹脂において熱誘起変色を引き起こす炭化水素系界面活性剤を含有する。炭化水素系界面活性剤は、疎水性フッ素化ポリマー粒子を水性媒体中に分散および安定化させる疎水性部分および親水性部分を有する化合物である。炭化水素系界面活性剤は、アニオン性界面活性剤であることが好ましい。アニオン性界面活性剤は、カルボキシレート、スルホネートまたは硫酸塩などの負荷電親水性部分と、疎水性部分としてアルキルなどの長鎖炭化水素部分とを有する。炭化水素系界面活性剤は、度々、界面活性剤の疎水性部分が粒子に向かい、界面活性剤の親水性部分が水相中にあるよう配向されるよう粒子をコーティングすることにより、ポリマー粒子を安定化させる役割を果たす。アニオン性界面活性剤によれば、荷電されており、ポリマー粒子間に電荷の反発力がもたらすことによって、この安定化が増強される。界面活性剤は、典型的には、界面活性剤を含有する水性媒体の表面張力を顕著に低減させる。
アニオン性炭化水素系界面活性剤の一例は、Resolution Performance ProductsによってVersatic(登録商標)10として提供されている高分岐C10第3級カルボン酸である。
他の有用なアニオン性炭化水素系界面活性剤は、Avanel(登録商標)SシリーズとしてBASFにより提供されている直鎖アルキルポリエーテルスルホン酸ナトリウムである。エチレンオキシド鎖が界面活性剤にノニオン性特徴をもたらし、スルホネート基が一定のアニオン性特徴をもたらす。
炭化水素系界面活性剤の他の群は、式R−L−M(式中、Rは6〜17個の炭素原子を含有する直鎖アルキル基であることが好ましく、Lは、−ArSO 、−SO 、−SO 、−PO 、−PO および−COOからなる群から選択され、ならびに、Mは、H、Na、KおよびNH であることが好ましい一価カチオンである)により表されるアニオン性界面活性剤である。−ArSO は、アリールスルホネートである。これらの界面活性剤のうち、式CH−(CH−L−M(式中、nは6〜17の整数であり、および、Lは、−SOM、−POM、−POMまたは−COOMから選択され、LおよびMは上記のとおり同一の意味を有する)により表されるものが好ましい。R−L−M界面活性剤(式中、R基は12〜16個の炭素原子を有するアルキル基であり、および、式中、Lは硫酸塩である)およびこれらの混合物が特に好ましい。特に好ましいR−L−M界面活性剤はドデシル硫酸ナトリウム(SDS)である。商業用途のためには、SDS(時にラウリル硫酸ナトリウムまたはSLSとも称される)は、典型的には、ココナッツ油またはパーム核油供給材料から得られ、主にドデシル硫酸ナトリウムを含有するが、R基が異なる他のR−L−M界面活性剤を微量で含有していてもよい。本明細書において用いられるところ、「SDS」とは、主にドセシル硫酸ナトリウム(sodium docecyl sulphate)であって、R基が異なる他のR−L−M界面活性剤を微量で含有するドデシル硫酸ナトリウムまたは界面活性剤混合物を意味する。
本発明において有用なアニオン性炭化水素系界面活性剤の他の例は、Akzo Nobel Surface Chemistry LLCから入手可能であるスルホコハク酸塩界面活性剤Lankropol(登録商標)K8300である。この界面活性剤は以下であると報告されている:
ブタンニ酸、スルホ−、4−(1−メチル−2−((1−オキソ−9−オクタデセニル)アミノ)エチル)エステル、ジナトリウム塩;CAS No.:67815−88−7。
本発明において有用である追加のスルホコハク酸塩炭化水素系界面活性剤は、ClariantからEmulsogen(登録商標)SB10として入手可能であるジイソデシルスルホコハク酸塩、Na塩、および、Cesapinia ChemicalsからPolirol(登録商標)TR/LNAとして入手可能であるジイソトリデシルスルホコハク酸塩、Na塩である。
他の好ましいクラスの炭化水素系界面活性剤はノニオン性界面活性剤である。ノニオン性界面活性剤は荷電基を含有しないが、典型的には長鎖炭化水素である疎水性部分を有する。ノニオン性界面活性剤の親水性部分は、典型的には、エチレンオキシドとの重合により誘導されるエチレンエーテル鎖などの水溶性官能基を含有する。安定化という文脈において、界面活性剤は、界面活性剤の疎水性部分が粒子に向かい、界面活性剤の親水性部分が水相中にあるよう配向されるよう粒子をコーティングすることにより、ポリマー粒子を安定化させる。
ノニオン性炭化水素系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエステル、ソルビタンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル、グリセロールエステル、これらの誘導体等が挙げられる。より具体的には、ポリオキシエチレンアルキルエーテルの例は、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンベヘニルエーテル等であり;ポリオキシエチレンアルキルフェニルエーテルの例は、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル等であり;ポリオキシエチレンアルキルエステルの例は、ポリエチレングリコールモノラウリレート、ポリエチレングリコールモノオレエート、ポリエチレングリコールモノステアレート等であり;ソルビタンアルキルエステルの例は、ポリオキシエチレンソルビタンモノラウリレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエート等であり;ポリオキシエチレンソルビタンアルキルエステルの例は、ポリオキシエチレンソルビタンモノラウリレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート等であり;および、グリセロールエステルの例は、グリセロールモノミリステート、モノステアリン酸グリセロール、グリセロールモノオレエート等である。また、これらの誘導体の例は、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルフェニル−ホルムアルデヒド縮合物、ポリオキシエチレンアルキルエーテルリン酸等である。ポリオキシエチレンアルキルエーテルおよびポリオキシエチレンアルキルエステルが特に好ましい。このようなエーテルおよびエステルの例は、10〜18のHLB値を有するものである。より具体的には、ポリオキシエチレンラウリルエーテル(EO:5〜20。EOはエチレンオキシドユニットを指す。)、ポリエチレングリコールモノステアレート(EO:10〜55)およびポリエチレングリコールモノオレエート(EO:6〜10)が好ましい。
好適なノニオン性炭化水素系界面活性剤としては、Dow Chemical Companyにより供給されるTriton(登録商標)Xシリーズなどのオクチルフェノールエトキシレートが挙げられる。
好ましいノニオン性炭化水素系界面活性剤は、Dow Chemical Companyにより供給されるTergitol(登録商標)15−Sシリーズなどの分岐アルコールエトキシレート、および、同じくDow Chemical Companyにより供給されるTergitol(登録商標)TMNシリーズなどの分岐第2級アルコールエトキシレートである。
Dow Chemical Companyにより供給されるTergitol(登録商標)Lシリーズ界面活性剤などのエチレンオキシド/プロピレンオキシドコポリマーもまた本発明におけるノニオン性界面活性剤として有用である。
好適なノニオン性炭化水素系界面活性剤のさらに他の有用な群は、
などのBASFからPluronic(登録商標)Rシリーズとして供給される二官能性ブロックコポリマーである。
好適なノニオン性炭化水素系界面活性剤の他の群は、BASF CorporationからIconol(登録商標)TDAシリーズとして供給されるトリデシルアルコールアルコキシレートである。
好ましい実施形態において、炭化水素系界面活性剤の炭素原子上のすべての一価置換基は水素である。炭化水素系界面活性剤は、フッ素または塩素などのハロゲン置換基を基本的に含んでいないことが好ましい。従って、周期律表からの元素として、界面活性剤の炭素原子上の一価置換基は、少なくとも75%、好ましくは少なくとも85%、および、より好ましくは少なくとも95%が水素である。最も好ましくは、周期律表の元素として、炭素原子上の一価置換基の100%が水素である。しかしながら、一実施形態においては、多数の炭素原子がハロゲン原子を微量で含有していることが可能である。
炭素原子上の一価置換基のうちごく少数のみが水素ではなくフッ素である、本発明において有用な炭化水素含有界面活性剤の例は、以下に記載の、Omnova Solutions,Inc.から入手可能であるPolyFox(登録商標)界面活性剤である。
重合プロセス
本発明の実施に関して、フッ素化ポリマー樹脂は、フルオロモノマーを重合することにより生成される。重合は、水性フッ素化ポリマー分散体を生成する加圧重合反応器中において好適に実施され得る。バッチまたは連続プロセスが用いられ得るが、商業的生産にはバッチプロセスがより一般的である。反応器は、水性媒体用撹拌機と、制御された温度熱交換媒体が循環されることにより反応温度が簡便に制御され得るよう、反応器を囲うジャケットとを備えていることが好ましい。水性媒体は脱イオンおよび脱気水であることが好ましい。反応器の温度、それ故水性媒体の温度は約25〜約120℃であることが好ましいであろう。
重合を実施するために、反応器は、典型的には、フルオロモノマーで加圧されて、反応器の内部圧力が、一般に、約30〜約1000psig(0.3〜7.0MPa)の範囲内である操作圧力に高められる。次いで、ラジカル重合開始剤の水溶液が、重合反応のキックオフをもたらす、すなわち重合反応を生起させるのに十分な量で反応器中に圧送されることが可能である。利用される重合開始剤は、水溶性ラジカル重合開始剤であることが好ましい。TFEのPTFEへの重合に関しては、好ましい開始剤は、微量の過硫酸アンモニウムなどの無機過硫酸塩などの高度に活性な開始剤を伴って、例えば少なくとも約200ppmとキックオフをもたらすために多くの量が必要とされるジコハク酸パーオキシド(DSP)などの有機過酸である。FEPおよびPFAなどのTFEコポリマーについては、過硫酸アンモニウムなどの無機過硫酸塩が一般に用いられる。キックオフを生じさせるために添加される開始剤は、重合反応の進行に伴って反応器に追加の開始剤溶液を圧送することによって補助されることが可能である。
変性PTFEおよびTFEコポリマーの生成に関して、ヘキサフルオロプロピレン(HFP)などの比較的不活性のフルオロモノマーは、より活性なTFEフルオロモノマーによって加圧される前に、反応器中に既に存在していることが可能である。キックオフの後、典型的には、TFEは、反応器の内部圧力を操作圧力で維持するために反応器に供給される。所望の場合には、HFPまたはパーフルオロ(アルキルビニルエーテル)などの追加のコモノマーが、反応器に圧送されることが可能である。水性媒体は、典型的には、所望の重合反応速度が達成され、また、存在する場合には、コモノマーの均一な組込みが達成されるよう撹拌される。分子量の制御が所望される場合には、連鎖移動剤が反応器に導入可能である。
本発明の一実施形態において、水性フッ素化ポリマー分散体は、炭化水素系界面活性剤の存在下に重合される。炭化水素系界面活性剤は、水性フッ素化ポリマー分散体は炭化水素系界面活性剤の存在下で重合されるため、すなわち、炭化水素系界面活性剤は重合中に安定化界面活性剤として用いられるため、フッ素化ポリマー分散体中に存在していることが好ましい。所望の場合には、フルオロアルカンカルボン酸もしくは塩、または、フルオロエーテルカルボン酸もしくは塩などのフッ素系界面活性剤が、安定化界面活性剤として炭化水素系界面活性剤と一緒に利用され得、従って、生成される水性フッ素化ポリマー分散体中に存在していてもよい。本発明の実施に関して好ましくは、フッ素化ポリマー分散体は、フッ素系界面活性剤などのハロゲン含有界面活性剤を含有していないことが好ましく、すなわち、約300ppm未満、より好ましくは約100ppm未満、および、最も好ましくは50ppm未満のハロゲン含有界面活性剤を含有していることが好ましい。
炭化水素系界面活性剤を安定化界面活性剤として利用する重合プロセスにおいて、安定化界面活性剤の添加は、キックオフが生じた後まで遅らされることが好ましい。遅らされる程度は、用いられる界面活性剤および重合されるフルオロモノマーに応じることとなる。加えて、炭化水素系界面活性剤は、重合が進行するに伴って反応器に供給、すなわち、計量されることが好ましい。生成される水性フッ素化ポリマー分散体中に存在する炭化水素系界面活性剤の量は、フッ素化ポリマー固形分に基づいて、好ましくは10ppm〜約50,000ppm、より好ましくは約50ppm〜約10,000ppm、最も好ましくは約100ppm〜約5000ppmである。
所望の場合には、炭化水素系界面活性剤は、重合反応器への添加の前後もしくはその最中に不活化されることが可能である。不活化とは、炭化水素含有界面活性剤のテロゲン性挙動を低減させることを意味する。不活化は、前記炭化水素含有界面活性剤と過酸化水素または重合開始剤といった酸化剤とを反応させることによって実施され得る。好ましくは、炭化水素含有界面活性剤の不活化は、不活化補助剤、好ましくは金属イオンの形態の金属、最も好ましくは、第一鉄イオンまたは第一銅イオンの存在下で実施される。
所望の量の分散フッ素化ポリマーまたは固形分含有量が達成された重合の完了後(典型的には、バッチプロセスで数時間)、供給が停止され、反応器がベントされ、反応器中のフッ素化ポリマー粒子の粗分散体が冷却または保持容器に移される。
重合生成された水性フッ素化ポリマー分散体の固形分含有量は、約10重量%〜約65重量%以下であるが、典型的には、約20重量%〜45重量%の範囲であることが可能である。水性フッ素化ポリマー分散体中のフッ素化ポリマー粒子の粒径(Dv(50)は、10nm〜400nm範囲であることが可能であり、好ましくはDv(50)は約100〜約400nmである。
フッ素化ポリマーの単離は、水性フッ素化ポリマー分散体からの湿潤フッ素化ポリマー樹脂の分離を含む。水性フッ素化ポリマー分散体からの湿潤フッ素化ポリマー樹脂の分離は、特にこれらに限定されないがゲル化、凝析、凍結および解凍、ならびに、溶剤補助ペレット化(SAP)を含む多様な技術によって達成可能である。湿潤フッ素化ポリマー樹脂の分離が凝析によって実施される場合、重合されたままの分散体が、先ず、重合された濃度から希釈され得る。次いで、撹拌を利用することにより十分なせん断ひずみが好適に分散体に与えられて凝析が引き起こされ、これにより、不分散フッ素化ポリマーが生成される。所望の場合には、炭酸アンモニウムなどの塩が、凝析を補助するために分散体に添加されることが可能である。ろ過を用いて水性媒体の少なくとも一部を湿潤フッ素化ポリマー樹脂から除去することが可能である。分離は、フッ素化ポリマーの顆粒化粒子をもたらす米国特許第4,675,380号明細書に記載の溶剤補助ペレット化によって行われることが可能である。
フッ素化ポリマーの単離ステップは、典型的には、フッ素化ポリマー樹脂中に保持されている水性媒体を除去するための乾燥ステップを含む。湿潤フッ素化ポリマー樹脂が分散体から分離された後、湿潤形態のフッ素化ポリマー樹脂は、水性媒体を、例えば60重量%以下といった顕著な量で含んでいることが可能である。乾燥ステップにより、基本的にすべての水性媒体が除去されて乾燥形態のフッ素化ポリマー樹脂がもたらされる。所望の場合には、湿潤フッ素化ポリマー樹脂はすすがれ、また、プレスにかけられて、水性媒体含有量を低減させ、乾燥ステップにおいて必要とされるエネルギーおよび時間が削減されてもよい。
溶融加工可能フッ素化ポリマーに関し、湿潤フッ素化ポリマー樹脂は乾燥され、溶融加工作業において直接用いられるか、または、その後の溶融加工作業における使用のためにチップもしくはペレットなどの簡便な形態に加工される。一定のグレードのPTFE分散体が微粉末の生成のために形成される。この用途のために、分散体が凝析され、水性媒体が除去され、PTFEが乾燥されて微粉末が生成される。微粉末に関しては、最終的な使用における加工のためのPTFEの特性に悪影響を及ぼさない条件が、単離中において好適に利用される。撹拌中の分散体におけるせん断ひずみは適切に制御され、PTFEの焼結温度よりもかなり低い200℃未満の温度が、乾燥ステップに利用される。
熱誘起変色の低減
本発明に従って熱誘起変色を低減させるために、フッ素化ポリマー樹脂が、すなわち、フッ素化ポリマーの単離後に、約160℃〜約400℃の温度に加熱され、加熱されたフッ素化ポリマー樹脂が酸素源に曝露される。好ましくは、フッ素化ポリマー樹脂は、約200℃〜約400℃の温度に加熱される。好ましくは、本発明のプロセスは、CIELABカラースケールにおけるLの変化%による計測で、熱誘起変色を少なくとも約10%低減させる。以下の試験法において詳述されているとおり、フッ素化ポリマー樹脂サンプルのLの変化%は、International Commission on Illumination(CIE)によって規定されているCIELABカラースケールを用いて判定される。より好ましくは、本プロセスは、Lの変化%による計測で、少なくとも約20%、さらにより好ましくは少なくとも約30%、および、最も好ましくは少なくとも約50%熱誘起変色を低減させる。
一実施形態において、フッ素化ポリマーを加熱するステップは、オーブンなどにおいて対流加熱により実施される。好ましくは、オーブンにおいて利用される伝熱ガスは、以下に考察されるとおり、酸素源であるか、または、酸素源を含む。所望の場合には、伝熱ガスは、伝熱を向上するために循環されてもよく、また、伝熱ガスは湿度を高めるために水蒸気を含んでいてもよい。
本発明のプロセスは、溶融加工可能であるフッ素化ポリマー樹脂に有利に利用される。このプロセスは、フッ素化ポリマー樹脂の融点より低いまたは高い温度に加熱された溶融加工可能フッ素化ポリマー樹脂で実施されることが可能である。好ましくは、溶融加工可能樹脂に係るプロセスは、その融点より高い温度に加熱されたフッ素化ポリマー樹脂で実施される。
本発明のプロセスはまた、溶融加工可能ではないPTFEフッ素化ポリマー樹脂(変性PTFE樹脂を含む)に有利に利用される。PTFE樹脂は、その融点より低い温度で処理することが好ましい。最も好ましくは、PTFE樹脂は200℃未満の温度に加熱される。
フッ素化ポリマーは、本発明に係る処理のために種々の物理的形態であることが可能である。フッ素化ポリマー樹脂の融点より低い温度での処理に関して、フッ素化ポリマーの物理的形態は、所望される熱誘起変色の低減を達成するために必要な時間に大きい影響を有することとなる。融点より低い温度での処理に関して好ましくは、フッ素化ポリマー樹脂は、チップまたはペレットへの溶融加工前にフッ素化ポリマーの単離で回収されるフレークとも呼ばれる粉末を利用することなどにより、微細形態で処理されて酸素源への曝露が促進される。融点を超える温度での処理に関して、加熱に際してフッ素化ポリマー樹脂は溶融して融解することとなるため、フッ素化ポリマー樹脂の物理的形態は、通常はあまり重要ではない。融点を超える温度での処理にチップまたはペレットを用いることも可能であるが、チップまたはペレットへの溶融加工前にフッ素化ポリマーの単離で回収される粉末が好適に用いられる。フッ素化ポリマー樹脂は湿潤状態もしくは乾燥形態であることが可能である。湿潤フッ素化ポリマー樹脂が用いられる場合、加熱されるに伴って湿潤フッ素化ポリマー樹脂が結果的に乾燥される。
本発明のプロセスに関して、フッ素化ポリマー樹脂は、商品名Monel(登録商標)で販売されているものなどの、アルミニウム、ステンレス鋼または高ニッケル合金などの好適な材料製の開放容器中に入れられることが可能である。好ましくは、酸素源からの酸素のフッ素化ポリマー樹脂への曝露および移動が促進される深さが浅いパンまたはトレイが利用される。
本発明のプロセスは、フッ素化ポリマー樹脂が静的条件下または動的条件にあるよう実施されることが可能である。このプロセスは、フッ素化ポリマーが融点より高い温度で処理される場合には静的条件下のフッ素化ポリマー樹脂で実施されることが好ましく、また、融点より低い温度で処理される場合には動的条件下のフッ素化ポリマー樹脂で実施されることが好ましい。「静的条件」とは、上記のとおり対流加熱に係る伝熱ガスは循環されていてもよいが、フッ素化ポリマーは撹拌または振盪などによりかき混ぜられていないことを意味する。静的条件下では、樹脂のいくらかの沈降が生じ得、または、融点より高い温度で実施される場合には、容器内における溶融した樹脂のいくらかの流れが生じ得る。「動的条件」とは、撹拌もしくは振盪などによりフッ素化ポリマー樹脂を動かしながら、または、フッ素化ポリマー樹脂に追加的な動きが生じ得るよう、伝熱ガスを積極的にフッ素化ポリマー樹脂に通気させながら、プロセスが実施されることを意味する。伝熱および物質移動は、例えば、流動床反応器により、または、そうでなければポリマー床中にガスを流すことにより達成可能である動的条件を用いることにより促進可能である。
この出願について用いられるところ、「酸素源」とは、利用可能な酸素のいずれかの化学的供給源を意味する。「利用可能な酸素」とは、酸化剤として反応可能な酸素を意味する。酸素源は、伝熱ガスであるか、または、伝熱ガスの成分であることが好ましい。好ましくは、酸素源は、空気、富酸素ガスまたはオゾン含有ガスである。「富酸素ガス」とは、酸素富化空気であることが好ましい、体積基準で約21%超の酸素を含有するガス混合物および純粋な酸素を意味する。好ましくは、富酸素ガスは体積基準で少なくとも約22%の酸素を含有する。「オゾン含有ガス」とは、オゾン富化空気であることが好ましい、オゾンを含有するガス混合物および純粋なオゾンを意味する。好ましくは、ガス混合物中のオゾンの含有量は、体積基準で少なくとも約10ppmのオゾンである。例えば、酸素源が空気である場合、空気炉を用いてプロセスを実施することが可能である。酸素またはオゾンを、空気炉に供給することで、それぞれ、富酸素ガス、すなわち酸素富化空気、または、オゾン含有ガス、すなわちオゾン富化空気を提供することが可能である。
本発明のプロセスを実施するために必要な時間は、利用される温度、利用される酸素源、伝熱ガスの循環速度、および、フッ素化ポリマー樹脂の物理的形態を含む要因によって様々であろう。普通、フッ素化ポリマーの融点より低い温度で実施されるプロセスに係る処理時間は、融点より高い温度で実施されるプロセスに係る時間よりも顕著に長い。例えば、酸素源として空気を用いて融点より低い温度で処理されるフッ素化ポリマー樹脂は、所望される色の低減を達成するために約1〜25日間の処理を必要とし得る。酸素源として空気を用いて融点より高い温度で実施されるプロセスに係る時間は、一般に、約15分間〜約10時間で様々であり得る。
樹脂を融点より高い温度で処理した場合、典型的には、その後の加工のために溶融押出し機に供給するために好適な大きさの欠片に細断され得るフッ素化ポリマー樹脂の固体のスラブが形成される。
本発明のプロセスは、中度〜重度の範囲であり得る熱誘起変色を示すフッ素化ポリマー樹脂に有用である。このプロセスは、熱誘起変色を引き起こす炭化水素系界面活性剤を含有する水性フッ素化ポリマー分散体に特に有用であり、好ましくは、炭化水素系界面活性剤の存在下で重合される水性フッ素化ポリマー分散体に特に有用である。
本発明のプロセスは、処理前のフッ素化ポリマー樹脂が同等の市販されているフッ素化ポリマーと比して顕著な熱誘起変色を示す場合において特に有用である。本発明は、フッ素化ポリマー樹脂が、パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を用いて製造された同等の商業的品質のフッ素化ポリマー樹脂のL値よりも少なくとも約4Lユニット低い初期熱誘起変色値(L )を有する場合に有利に利用される。本発明は、L 値がこのような同等のフッ素化ポリマー樹脂のL値よりも少なくとも約5ユニット低い場合により有利に利用され、L 値がこのような同等のフッ素化ポリマー樹脂のL値よりも少なくとも8ユニット低い場合にさらにより有利に利用され、L 値がこのような同等のフッ素化ポリマー樹脂のL値よりも少なくとも12ユニット低い場合にさらにより有利に利用され、および、L 値がこのような同等のフッ素化ポリマー樹脂のL値よりも少なくとも20ユニット低い場合に最も有利に利用される。
本発明のプロセスに従ってフッ素化ポリマー樹脂を処理した後、得られるフッ素化ポリマー樹脂は、特定のタイプのフッ素化ポリマー樹脂に適切な最終使用用途に好適である。本発明の利用により生成されるフッ素化ポリマー樹脂では、最終的な使用特性に対する悪影響を伴うことなく熱誘起変色の低減が示される。
試験法
ポリマー粒子の粗分散体粒径(RDPS)は、Malvern Instruments,Malvern,Worcestershire,United Kingdomにより製造されたZetasizer Nano−Sシリーズ動的光散乱システムを用いて計測される。分析用サンプルは、サブミクロンフィルタに通すことにより粒子が実質的に除去された脱イオン水を用いて、10×10×45mmのポリスチレン製の使い捨てキュベット中において、製造業者により推奨されるレベルに希釈される。サンプルをZetasizerに置いて、Dv(50)が測定される。Dv(50)は、粒径体積分布に基づく中央粒径であり、すなわち、その値以下に集団の体積の50%が存在する粒径である。
溶融加工可能フッ素化ポリマーの融点(T)は、ASTM D4591−07の手法に従って示差走査熱量計(DSC)により計測され、溶融温度は、2回目の溶融に係る吸熱のピーク温度として報告される。PTFEホモポリマーについて、融点は同様にDSCによって測定される。未溶融のPTFEホモポリマーが先ず10℃の加熱速度で室温から380℃に加熱され、報告される溶融温度は1回目の溶融に係る吸熱のピーク温度である。
コモノマー含有量は、以下の変更を伴う米国特許第4,743,658号明細書、第5欄、第9〜23行に開示されている方法に従って、フーリエ変換赤外(FTIR)分光計を用いて計測される。フィルムは周囲条件に維持された油圧プレス中で急冷される。コモノマー含有量は、実際のコモノマー含有量を確立するためにフッ素19NMRにより分析された樹脂製の他のフィルムを最低で3種類用いて較正した2428cm−1での適切なピーク対フッ素化ポリマーの厚さバンドの比から算出される。例えば、%HFP含有量は、982cm−1でのHFPバンドの吸光度から測定され、および、PEVE含有量は、1090cm−1でのPEVEピークの吸光度により測定される。
溶融加工可能フッ素化ポリマーのメルトフローレート(MFR)は、以下のとおり改変したASTM D1238−10に従って計測される。シリンダ、オリフィスおよびピストンの先端は、耐食性合金であるHaynes Stellite Co.製のHaynes Stellite 19製である。5.0gのサンプルが、FEPに関してASTM D2116−07に、また、PFAに関してASTM D3307−10に開示されているものなど、372℃±1℃に維持される内径9.53mm(0.375インチ)のシリンダに仕込まれる。サンプルがシリンダに仕込まれた5分間の後に、直径2.10mm(0.0825インチ)、長さ8.00mm(0.315インチ)の角エッジ型オリフィスから5000グラムの荷重(ピストン+重り)下でサンプルが押出される。他のフッ素化ポリマーは、特定のポリマーについて標準とされる条件下でASTM D1238−10に従って計測される。
熱誘起変色の計測
1)色の測定
フッ素化ポリマー樹脂サンプルのL値はCIELABカラースケールを用いて測定され、その詳細は、CIE Publication 15.2(1986)において発行されている。CIE L(CIELAB)は、International Commission on Illumination(French Commission internationale de l’eclairage)によって規定される色空間である。ヒトの眼によって視認可能であるすべての色が記載されている。CIELABの3つの座標は、色の明度(L)、赤/マゼンタと緑との間の位置(a)、および、黄色と青との間の位置(b)を表す。
2)PTFEサンプル調製および計測
以下の手法を用いて、変性PTFEポリマーを含むPTFEポリマーの熱誘起変色が特徴付けされる。PTFE圧縮粉末の4.0グラムのチップが、共にWabash,IndianaのCarver,Inc.により製造されたCarverステンレス鋼ペレットモールド(部品番号2090−0)およびCarver手動油圧プレス(モデル4350)を用いて形成される。モールドアセンブリの底に、0.1mm厚のMylarフィルムの直径29mmのディスクが置かれる。4グラムの乾燥されたPTFE粉末がモールド開口に均一に広げられてモールド中に注入され、均一に広げられる。第2の29mmのディスクがPTFEの上に置かれ、トッププランジャーがアセンブリ中に配置される。モールドアセンブリはプレス中に置かれ、8.27MPa(1200psi)に達するまで徐々に圧力が加えられる。圧力は30秒間保持され、次いで、解除される。チップモールドがプレスから取り出され、チップがモールドから外される。その後の焼結の前に、Mylarフィルムはチップから剥がされる。典型的には、各ポリマーサンプルについて、2つのチップが成形される。
電気炉が385℃に加熱される。焼結されるチップは、深さが2インチ(5.1cm)である4インチ×5インチ(10.2cm×12.7cm)の矩形アルミニウムトレイに置かれる。トレイは炉に10分間置かれ、その後、周囲温度への冷却のために取り出される。
上記のとおり加工された4gmのチップの色が、Hunter Associates Laboratory,Inc.,Reston,Virginia製のHunterLab ColorQuest XEを用いて評価される。ColorQuest XEセンサは、以下の設定で標準化される、Mode:RSIN、Area View:Large、および、Port Size:2.54cm。この機器を用いて、CIELABカラースケールを用いるフッ素化ポリマー樹脂サンプルのL値が測定される。
テストのために、機器は、D65光源および10°観測者を伴うCIELABスケールを用いて構成される。この色彩計によって報告されるL値が発現された色を表すのに用いられ、100のLが完全拡散反射面(白色)を示し、0のLが黒色を表す。
パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を用いて製造された同等の商業的品質のフッ素化ポリマー樹脂が、色計測に係る標準として用いられる。PTFEフッ素化ポリマーに係る本発明を例示するこの用途における実施例に関して、パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を分散重合界面活性剤として用いて形成される同等の商業品質のPTFE生成物はTEFLON(登録商標)601Aである。上記の計測プロセスを用いると、TEFLON(登録商標)601Aに係る得られる色計測値は、L Std−PTFE=87.3
である。
3)溶融加工可能フッ素化ポリマーサンプル調製および計測
以下の手法が用いられて、加熱によるFEPおよびPFAなどの溶融加工可能フッ素化ポリマーの変色が特徴付けられる。10.16cm(4.00インチ)×10.16cm(4.00インチ)の開口が20.32cm(8.00インチ)×20.32cm(8.00インチ)×0.254mm(0.010インチ)厚の金属シートの中央に開けられてチェースが形成される。このチェースが20.32cm(8.00インチ)×20.32cm(8.00インチ)×1.59mm(1/16インチ)厚の成形プレート上に置かれ、チェースよりもわずかに大きいKapton(登録商標)フィルムで覆われる。厚さが1mm未満となるよう必要に応じて小さくされ、乾燥させることによりポリマーサンプルが調製される。6.00グラムのポリマーサンプルがモールド開口中に均一に広げられる。チェースよりもわずかに大きい2枚目のKapton(登録商標)フィルムがサンプルの上に置かれ、最初のものと同一の寸法を有する第2の成形プレートがKapton(登録商標)フィルムの上に置かれてモールドアセンブリが形成される。モールドアセンブリが、350℃に設定されたPasadena Hydraulics Incorporated,El Monte,Californiaにより製造されたP−H−I20トンホットプレスモデル番号SP−210C−X4A−21に置かれる。ホットプレスが閉じられてプレートが丁度モールドアセンブリと接触させられ、5分間保持される。次いで、ホットプレスの圧力が34.5MPa(5,000psi)に高められ、さらに1分間保持される。次いで、ホットプレスの圧力が10秒間の間に34.5MPa(5,000psi)から137.9MPa(20,000psi)に高められ、137.9MPa(20,000psi)に達した後にさらに50秒間保持される。モールドアセンブリはホットプレスから取り出され、周囲温度に維持されたPasadena Hydraulics Incorporatedにより製造されたP−H−I20トンホットプレスモデル番号P−210Hのブロックの間に置かれ、圧力が137.9MPa(20,000psi)に高められ、モールドアセンブリはそのままで5分間放置されて冷却される。次いで、モールドアセンブリは周囲温度プレスから取り出され、サンプルフィルムがモールドアセンブリから除去される。サンプルフィルムの気泡を含まない領域を選択し、New JerseyのC.S.Osborne and Companyにより製造された1−1/8インチアーチパンチを用いて2.86cm(1−1/8インチ)の円が抜き出される。各々が0.254mm(0.010インチ)の公称厚および0.37グラムの公称重量を有する6つのフィルムの円を相互に上下に組み合わせて、2.2+/−0.1グラムの総重量を有するスタックが形成される。
フィルムスタックがHunter Associates Laboratory,Inc.,Reston,Virginia製のHunterLab ColorFlex分光測光計に置かれ、Lが、2.54cm(1.00インチ)アパーチャ、および、D65光源および10°観測者を伴うCIELABスケールを用いて計測される。
パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を用いて製造された同等の商業的品質のフッ素化ポリマー樹脂が、色計測に係る標準として用いられる。FEPフッ素化ポリマー樹脂に係る本発明を例示するこの用途における実施例に関して、パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を分散重合界面活性剤として用いて形成される同等の商業的品質のFEP樹脂は、本件特許出願人のTEFLON(登録商標)6100FEPである。上記の計測プロセスを用いると、本件特許出願人のTEFLON(登録商標)6100FEPに係る得られる色計測値は、L Std−FEP=79.7
である。
4)以下の式により定義されているとおり、標準に対するLの変化%を用いて、処理後のフッ素化ポリマー樹脂の熱誘起変色の変化が特徴付けられる。
の変化%=(L −L )/(L Std−L )×100
=初期熱誘起変色値であって、このタイプのフッ素化ポリマーのための開示の試験法を用いて計測される熱誘起変色を低減する処理前のフッ素化ポリマー樹脂に係るCIELABスケールにおけるLの計測値。
=処理済熱誘起変色値であって、このタイプのフッ素化ポリマーのための開示の試験法を用いて計測される熱誘起変色を低減する処理後のフッ素化ポリマー樹脂に係るCIELABスケールにおけるLの計測値。
PTFEに対する標準:計測したL Std−PTFE=87.3
FEPに対する標準:計測したL Std−FEP=79.7
[実施例]
PTFEポリマーの動的乾燥ステップ用装置
商業的な乾燥PTFE微粉末をシミュレートするための実験用乾燥機を以下のとおり構成する:長さ4インチ(10.16cm)のステンレス鋼パイプの一端でねじ切りして、標準ステンレス鋼パイプキャップを取り付ける。パイプキャップの中心に1.75インチ(4.45cm)の孔をあけ、これを通して熱源および空気源を導入する。標準4インチ(10.16cm)のパイプカップリングを放射軸に沿って半分に切り、1片の切断部をパイプキャップと反対側のパイプの端部に突合せ溶接する。このアセンブリの全長はおよそ30インチ(76.2cm)であり、アセンブリをパイプキャップを上に向けた垂直位置で装着する。制御熱電対を追加するために、4インチのパイプアセンブリに穴をあけ、アセンブリの底から1.75インチ(4.45cm)上方の位置で1/4インチ(6.35mm)パイプフィッティング用のねじ穴とする。1/8インチ(3.175mm)Swagelokフィッティングの1/4インチ(6.35mm)パイプ雄ねじをアセンブリにねじ込み、穿孔することにより、J型熱電対の先端1/8インチ(3.175mm)をフィッティングを貫通して延在させてパイプの径方向中心に保持可能とする。他のガスを添加するために、4インチ(10.16cm)パイプアセンブリを穿孔して、熱電対ポートから180°であってアセンブリの底から3.75インチ(9.5cm)上方に高い位置に1/4インチ(6.35mm)パイプフィッティング用のねじ穴とする。1/4インチ(6.35mm)Swagelokフィッティングの1/4インチ(6.35mm)パイプ雄ねじをアセンブリにねじ込み、穿孔することにより、1/4インチ(6.35mm)ステンレス鋼チューブの開放端部をフィッティングを貫通して延在させてパイプの径方向中心に保持可能とする。パイプアセンブリ全体を、連続使用で200℃に容易に耐えることが可能である耐熱性の断熱材で包む。
ポリマーを支持するための乾燥機床アセンブリを以下のとおり構成する:4インチ(10.16cm)ステンレス鋼パイプニップルを放射軸に沿って半分に切り、1片の切断部を、1.3mmワイヤ径および2.1mm角の開口を有するステンレス鋼スクリーンにタック溶接する。ポリエーテルエーテルケトン(PEEK)またはナイロン6,6布のフィルタ媒体を4インチ(10.16cm)のディスクに切り、スクリーンベース上に置く。ステンレス鋼スクリーンの4インチ(10.16cm)ディスクをフィルタ布の上に置いて所定の位置に保持する。用いられる布としては、米国特許第5,391,709号明細書に記載の特徴を有するナイロン6,6布およびPEEK布が挙げられる。操作においては、およそ1/4インチ(6.35mm)のポリマーをフィルタ床全体に均一に置き、乾燥機床アセンブリをパイプアセンブリの底にねじ込む。
この乾燥装置のための熱源および空気源は、Master Appliance Corp.,Racine,WIにより製造されたモデルHG−751BのMasterヒートガンである。このヒートガンの端部は、パイプアセンブリの上部のキャップの孔にぴったりと導入され、これにより支持されることが可能である。空気流の制御は、ヒートガンの空気取入れ口におけるダンパーを調節することにより管理する。温度の制御は、Electronic Control Systems,Inc,Fairmont,WVにより製造されたECSモデル800−377コントローラにより維持される。ヒートガンに対するコントローラの適応は、以下のとおり行う:ヒートガンの二極電源スイッチを取り外す。ヒートガンへの電源をすべてECSコントローラを経由させる。ブロワ電源はECSコントローラオン/オフスイッチから直接供給する。ヒータ回路をECSコントローラ出力に直接接続する。ポリマー床の上方に位置されているパイプアセンブリの熱電対は、コントローラ計測デバイスとして機能する。
上記の装置を、典型的には、PTFE微粉末を170℃で1時間乾燥させるために用い、温度は、容易に±1℃の範囲で維持することが可能である。
FEPポリマーの動的乾燥ステップ用装置
乾燥機床アセンブリが直径8インチ(20.32cm)であるよう大型化し、また、ステンレス鋼スクリーンがUSA標準テストふるい番号20メッシュであること以外はPTFEポリマーの動的乾燥ステップ用装置に記載のものと設計が同様の器具を用いる。別段の定めがある場合を除き、この装置を180℃の空気で2時間かけてFEPを乾燥させるために用い、温度は、容易に±1℃の範囲で維持することが可能である。典型的なポリマーの仕込み量は、18グラムのポリマーの乾燥重量である。
第2の乾燥機床アセンブリを、ポリマー床より3.0cm上方の中心線に均等な間隔で設けられた3本のノズルを追加することにより作成する。これらのノズルを用いて追加のガスを乾燥空気に導入することが可能である。多くの可能性のある構成の1つは、Louisville,KentuckyのA2Z Ozoneにより製造されたAQUA−6可搬式オゾン発生器をノズルの各々に接続したものである。
フッ素化ポリマーの調製
FEP1:炭化水素安定化TFE/HFP/PEVE分散体の調製
約1.5の全長対直径比および10ガロン(37.9L)の水容量を有する、円筒形で、水平型の水ジャケットを備える、パドル撹拌式ステンレス鋼反応器に、60ポンド(27.2kg)の脱イオン水を仕込む。次いで、46rpmで撹拌しながら反応器の温度を103℃に高める。撹拌機の速度を20rpmに落とし、反応器を60秒間ベントする。反応器の圧力を窒素で15psig(205kPa)に高める。80℃に冷却しながら、撹拌機の速度を46rpmに上げる。撹拌機の速度を20rpmに落とし、12.7psia(88kPa)に減圧する。500mlの脱気脱イオン水、0.5グラムのPluronic(登録商標)31R1溶液および0.3gの亜硫酸ナトリウムを含有する溶液を反応器に引き入れる。20rpmでパドル撹拌される反応器において、反応器を80℃に加熱し、3回排気およびTFEでパージする。撹拌機の速度を46rpmに上げ、次いで、反応器の温度を103℃に高める。温度が103℃で安定したら、圧力が470psig(3.34MPa)になるまでHFPを反応器にゆっくりと添加する。112mlの液体PEVEを反応器に射出する。次いで、TFEを反応器に添加して630psig(4.45MPa)の最終圧力を達成する。次いで、2.20重量%の過硫酸アンモニウム(APS)を含有する80mlの新たに調製した水性開始剤溶液を反応器に仕込む。次いで、反応器圧力における10psi(69kPa)の低下によって示される重合の開始後、すなわちキックオフ後の残りの重合のために、23:1のTFE対開始剤溶液質量比でこの同一の開始剤溶液を反応器に圧送する。また、追加のTFEを、キックオフ時に開始して、0.06lb/分(0.03kg/分)の目標流量で、反応器における650psig(4.58MPa)の所望される上限の超過を防止する制限を条件として、合計で12.0lb(5.44kg)のTFEがキックオフ後に反応器に添加されるまで反応器に添加する。さらに、液体PEVEを、キックオフ時に開始し、反応の最中にかけて0.2ml/分の流量で反応器に添加する。
キックオフから4.0lb(1.8kg)のTFEを供給した後、45,182ppmのSDS炭化水素安定化界面活性剤および60,755ppmの30%水酸化アンモニウム溶液を含有する水性界面活性剤溶液をオートクレーブに0.2ml/分の流量で圧送する。水性界面活性剤溶液の圧送流量をキックオフから8.0lb(3.6kg)のTFEを供給した後に0.3ml/分に増加し、最終的に、キックオフから11.0lb(5.0kg)のTFEを供給し、結果として、反応の最中に合計で28mlの界面活性剤溶液を添加した後に0.4ml/分に増加する。反応の最中、反応器中の圧力は650psig(4.58MPa)の所望される上限に達し、圧力を制御するためにTFE供給流量を目標流量から低減する。重合開始後の合計反応時間は266分間であり、その間に、12.0lb(5.44kg)のTFEおよび52mlのPEVEを添加する。反応時間の終了時に、TFEの供給、PEVEの供給、開始剤の供給、および、界面活性剤溶液の供給を停止し;追加で100mlの界面活性剤溶液を反応器に添加し、撹拌を維持しながら反応器を冷却する。反応器内容物の温度が90℃に達したら、反応器をゆっくりとベントする。大気圧近くまでベントし後、反応器を窒素でパージして残存するモノマーを除去する。さらに冷却してから、分散体を70℃未満で反応器から排出する。分散体の固形分含有量は20.30重量%であり、Dv(50)粗分散体粒径(RDPS)は146.8nmである。オートクレーブの清掃で542グラムの湿潤凝析物が回収される。TFE/HFP/PEVEターポリマー(FEP)は、16.4gm/10分のメルトフローレート(MFR)、11.11重量%のHFP含有量、1.27重量%のPEVE含有量、および、247.5℃の融点を有する。
FEP2:炭化水素安定化TFE/HFP/PEVE分散体の調製
反応中の合計TFE供給量、PEVE圧送流量、圧送する開始剤の流量、および、水性界面活性剤溶液の添加を除いて、FEP1の調製と同一の条件を利用して重合を実施する。キックオフ時に開始して、0.3ml/分の流量で反応器に液体PEVEを添加し、64mlのPEVEを添加した後に停止する。キックオフ時に開始して、18:1のTFE対開始剤溶液質量比で、反応の最中にかけて、開始剤溶液を反応器に圧送する。水性界面活性剤溶液は、45,175ppmのSDS炭化水素安定化界面活性剤および60,917ppmの30%水酸化アンモニウム溶液を含む。キックオフから4.0lb(1.8kg)のTFEを供給した後、を含有する水性界面活性剤溶液を0.2ml/分の流量でオートクレーブに圧送するよう水性界面活性剤溶液圧送スケジュールを変更し、次いで、水性界面活性剤溶液の圧送流量を、キックオフから8.0lb(3.6kg)のTFEを供給し、結果として、反応の最中に合計で50mlの界面活性剤溶液を添加した後に0.3ml/分に増加する。反応の最中、反応器中の圧力は650psig(4.58MPa)の所望される上限に達し、圧力を制限するためにTFE供給流量を目標流量から低減する。重合開始後の合計反応時間は311分間であり、その間に、10.2lb(4.63kg)のTFEおよび64mlのPEVEを添加する。反応時間の終了時に、追加の100mlの界面活性剤溶液を反応器に添加する。
分散体の固形分含有量は17.64重量%であり、Dv(50)粗分散体粒径(RDPS)は174.1nmであり、オートクレーブの清掃で298グラムの湿潤凝析物が回収される。TFE/HFP/PEVEターポリマー(FEP)は、20.1gm/10分のメルトフローレート(MFR)、10.27重量%のHFP含有量、1.27重量%のPEVE含有量、および、251.2℃の融点を有する。
FEP3:炭化水素安定化TFE/HFP/PEVE分散体の調製
約1.5の全長対直径比および10ガロン(37.9L)の水容量を有する、円筒形で、水平型の水ジャケットを備える、パドル撹拌式ステンレス鋼反応器に、60ポンド(27.2kg)の脱イオン水を仕込む。次いで、46rpmで撹拌しながら反応器の温度を103℃に高める。撹拌機の速度を20rpmに落とし、反応器を60秒間ベントする。反応器の圧力を窒素で15psig(205kPa)に高める。80℃に冷却しながら、撹拌機の速度を46rpmに上げる。撹拌機の速度を20rpmに落とし、12.7psia(88kPa)に減圧する。500mlの脱気脱イオン水、0.5グラムのPluronic(登録商標)31R1溶液および0.3gの亜硫酸ナトリウムを含有する溶液を反応器に引き入れる。20rpmでパドル撹拌される反応器において、反応器を80℃に加熱し、3回排気およびTFEでパージする。撹拌機の速度を46rpmに上げ、次いで、反応器の温度を103℃に高める。温度が103℃で安定したら、圧力が430psig(3.07MPa)になるまでHFPを反応器にゆっくりと添加する。112mlの液体PEVEを反応器に射出する。次いで、TFEを反応器に添加して630psig(4.45MPa)の最終圧力を達成する。次いで、2.20重量%の過硫酸アンモニウム(APS)を含有する80mlの新たに調製した水性開始剤溶液を反応器に仕込む。次いで、反応器圧力における10psi(69kPa)の低下によって示される重合の開始後、すなわちキックオフ後の残りの重合のために、20:1のTFE対開始剤溶液質量比でこの同一の開始剤溶液を反応器に圧送する。また、追加のTFEを、キックオフ時に開始して、0.06lb/分(0.03kg/分)の流量で、反応器における650psig(4.58MPa)の所望される上限の超過を防止する制限を条件として、合計で12.0lb(5.44kg)のTFEがキックオフ後に反応器に添加されるまで反応器に添加する。さらに、液体PEVEを、キックオフ時に開始し、反応の最中にかけて0.3ml/分の流量で反応器に添加する。
キックオフから4.0lb(1.8kg)のTFEを供給した後、45,176ppmのSDS炭化水素安定化界面活性剤および60,834ppmの30%水酸化アンモニウム溶液を含有する水性界面活性剤溶液をオートクレーブに0.2ml/分の流量で圧送する。水性界面活性剤溶液の圧送流量をキックオフから6.0lb(2.7kg)のTFEを供給した後に0.3ml/分に増加し、次いで、キックオフから8.0lb(3.6kg)のTFEを供給した後に0.4ml/分に増加し、キックオフから10.0lb(4.5kg)のTFEを供給した後に0.6ml/分に増加し、最終的に、キックオフから11.0lb(5.0kg)のTFEを供給し、結果として、反応の最中に合計で47mlの界面活性剤溶液を添加した後に0.8ml/分に増加する。重合開始後の合計反応時間は201分間であり、その間に、12.0lb(5.44kg)のTFEおよび60mlのPEVEを添加する。反応時間の終了時に、TFEの供給、PEVEの供給、開始剤の供給、および、界面活性剤溶液の供給を停止し;追加で25mlの界面活性剤溶液を反応器に添加し、撹拌を維持しながら反応器を冷却する。反応器内容物の温度が90℃に達したら、反応器をゆっくりとベントする。大気圧近くまでベントし後、反応器を窒素でパージして残存するモノマーを除去する。さらに冷却してから、分散体を70℃未満で反応器から排出する。
分散体の固形分含有量は20.07重量%であり、Dv(50)粗分散体粒径(RDPS)は143.2nmである。オートクレーブの清掃で703グラムの湿潤凝析物が回収される。TFE/HFP/PEVEターポリマー(FEP)は、29.6gm/10分のメルトフローレート(MFR)、9.83重量%のHFP含有量、1.18重量%のPEVE含有量、および、256.1℃の融点を有する。
PTFE−炭化水素安定化PTFE分散体の調製
水平型のジャケットを備え、2つのブレード撹拌機を有する12リットルのステンレス鋼オートクレーブに、5200gmの脱イオン脱気水を添加する。このオートクレーブに、0.12gmのPluronic(登録商標)31R1を含有する脱イオン脱気水を追加で500gm添加する。オートクレーブをシールし、減圧下に置く。オートクレーブの圧力を窒素で30psig(308kPa)に高め、大気圧にベントする。オートクレーブを、さらに2回、窒素で加圧し、ベントする。オートクレーブ撹拌機は65RPMに設定する。1リットルの脱イオン脱気水当たり1.0gmの過硫酸アンモニウム(APS)を含有する20mlの開始剤溶液をオートクレーブに添加する。
オートクレーブを90℃に加熱し、TFEをオートクレーブに仕込んで、オートクレーブの圧力を400psig(2.86MPa)とする。11.67gmの70%活性ジコハク酸パーオキシド(DSP)、0.167gmのAPSおよび488.3gmの脱イオン水から組成される150mlの開始剤溶液を、80ml/分でオートクレーブに仕込む。オートクレーブ圧力が、開始剤溶液の注入の最中に観察された最大圧力から10psi(69kPa)低下した後に、オートクレーブ圧力をTFEで400psig(2.86MPa)に戻し、重合の最中にわたってこの圧力で維持する。キックオフから100gmのTFEが供給された後、5733ppmのSDS炭化水素安定化界面活性剤および216ppmの硫酸鉄七水和物を含有する水性界面活性剤溶液を、185mlの界面活性剤溶液が添加されるまで、4ml/分の流量でオートクレーブに圧送する。キックオフからおよそ70分間後、1500gmのTFEをオートクレーブに添加する。撹拌機を停止し、オートクレーブを大気圧にベントし、および、分散体を冷却し放出する。分散体の固形分含有量は18〜19重量%であり、Dv(50)粗分散体粒径(RDPS)は208nmである。
PTFE分散体の単離
深さ17cmおよび直径13cmの内寸法を有する清浄なガラス樹脂製ケトルに、600gmの5重量%分散体を仕込む。分散体を、様々な速度で、6.9cmの直径、45°の下方圧送ピッチを有する縁の丸い3枚のブレードインペラを備えるIKA Works,Inc.製RW20デジタルオーバーヘッド撹拌機でかき混ぜる。以下のシーケンスを、透明な水性相からの白色のPTFEポリマーの分離によって示されるとおり分散体が完全に凝析されるまで実施する:時間ゼロでは、撹拌速度を265回転/分(RPM)に設定し、20mlの炭酸アンモニウムの20重量%水溶液を樹脂製ケトルにゆっくりと加える。1分〜時間ゼロで、撹拌機の速度を565RPMに高め、分散体が完全に凝析されるまで維持する。一旦凝析したら、吸入により透明な水性相を除去し、600mlの冷たい(およそ6℃)脱イオン水を添加する。スラリーを、撹拌が終了するまで240RPMで5分間撹拌し、洗浄水を樹脂製ケトルから除去する。この洗浄法をさらに2回繰り返し、最後の洗浄水はポリマーから以下に示す減圧ろ過により分離する。
セラミックろ過漏斗(内径10cm)をゴムシーリング面と共に減圧フラスコに配置する。30cm×30cmのリントを含まないナイロンフィルタ織布をろ過漏斗内に置き、洗浄したポリマーおよび水を漏斗中に入れる。減圧フラスコで減圧を引き、一旦洗浄水を除去したら、1200mlの追加の脱イオン水をポリマー上に注ぎ、ポリマーを通して減圧フラスコ中に引く。このように凝析し、洗浄し、および、単離したポリマーをさらなる加工のためにフィルタ織布から取り外す。
実施例1:融点より低い温度でのFEPの加熱
上記のとおり重合した水性FEP1分散体を加熱したガラス反応器中に凝析する。1250mlの分散体を水浴中で85℃に加熱し、次いで、ジャケット中に加熱された水を循環させることにより温度が85℃に維持されるVineland,NJのLab Glass製の4枚の内部阻流板を有する2,000mlのジャケット付ガラス反応器に移す。2つの高せん断インペラを2,470rpmで3600秒間回転させて、分散体をポリマー相と水相とに分離させる。内容物を、150ミクロンメッシュフィルタバッグである、The Strainrite Companies,Auburn,Maineにより製造されたモデルNMO150P1SHSを通してろ過する。ポリマーを、150℃に設定した循環空気炉中で40時間乾燥させて乾燥粉末を得る。
溶融加工可能フッ素化ポリマーに係る熱誘起変色の計測として上記の試験法セクションにおいて記載されているとおり乾燥粉末のサンプルを成形してカラーフィルム得て、パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を用いて製造された商業的品質のFEPフッ素化ポリマー樹脂のL値よりも49Lユニットを超えて低い値である未処理の色に対するL(L =30.5)の基本値を確立し、ここで、この実施例について用いられる標準は79.7である。
各々が7.0グラムの乾燥粉末を含有する4つのサンプルを直径7.62cm(3.00インチ)の使い捨てアルミニウムパンに入れる。これらのパンを、Fisher Scientific Model 126実験用空気炉に入れる。空気ファンを始動させて、154標準リットル/時間(5.45標準ft/時間)の空気(補給空気)を導入させる。オーブン中においてパンの直上に配置した熱電対が235℃の読取値となるよう、温度設定点を調節する。パンを5、9、14および21日後に取り出す。未処理で空気中で焼成した粉末を、ASTM D2116−07、段落11に記載されているとおり、標準状態を用いてメルトインデクサに通して、溶融加工ステップの最中に経験する条件をシミュレートする。押出しストランドの色を観察し、記録する。インデクサに通すことにより生成したサンプルの各々、ならびに、インデクサに通していない粉末を、溶融加工可能フッ素化ポリマーに係る試験法、熱誘起変色の計測に記載されているとおり、成形してカラーフィルムを得る。FEP標準に対するLおよびLの変化%を、上記の試験法セクションに説明されているとおり測定する。観察および計測が表Iに示されている。21日後、未処理のフッ素化ポリマーに対する81.1%の向上が、フッ素化ポリマーの融点より低い温度で酸素源(空気)に曝露されたフッ素化ポリマーに対して見られる。フィルムテストチップを生成する成形操作におけるものよりも高い温度がインデクサ中に存在していることにも注目すべきである。インデクサ中におけるより高い温度によって、融点より低い温度での乾燥粉末の酸素源に対する曝露前の成形粉末サンプルと比して、初期のLにおいて低下を示す押出しストランドのテストチップがもたらされる。
実施例2:融点より高い温度でのFEPの加熱ステップ
上記のとおり重合した水性FEP−2分散体を、Hedwin Corporation,Baltimore,Maryland製の20リットルCubitainer(登録商標)中において分散体を凍結させることにより凝析する。Cubitainer(登録商標)を、−30℃に維持されるEnvironmental Equipment,Cincinnati,Ohioにより製造されたSo−LowモデルCH25−13冷凍庫中に置き、40時間凍結させる。次いで、Cubitainer(登録商標)を取り出し、40時間かけて解凍させる。内容物を、150ミクロンメッシュフィルタバッグである、The Strainrite Companies,Auburn,Maineにより製造されたモデルNMO150P1SHSを通してろ過する。固形分を150℃に設定した循環空気炉中で40時間乾燥させて乾燥粉末を生成する。
溶融加工可能フッ素化ポリマーに係る熱誘起変色の計測として上記の試験法セクションにおいて記載されているとおり乾燥粉末のサンプルを成形してカラーフィルム得て、パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を用いて製造された商業的品質のFEPフッ素化ポリマー樹脂のL値よりも44Lユニットを超えて低い値である未処理の色に対するL(L =35.6)の基本値を確立し、ここで、この実施例について用いられる標準は79.7である。
40.1グラムの乾燥粉末を、側部がテーパー状である17.15cm(6.75インチ)×7.62cm(3.00インチ)×深さ5.72cm(2.25インチ)の637番使い捨てアルミニウムパン中に均等に広げる。パンを、Fisher Scientific Model 126実験用オーブン中に入れる。空気ファンを始動させて、154標準リットル/時間(5.45標準ft/時間)の空気(補給空気)を導入させる。オーブン中においてパンの直上に配置した熱電対が365℃の読取値となるよう、温度設定点を設定する。パンを2時間後に取り出し、冷却させる。得られるポリマーは薄く、気泡を含む白色のスラブである。ポリマーを取り出し、溶融加工可能フッ素化ポリマーに係る試験法、熱誘起変色の計測に記載されているとおり、成形してカラーフィルムを得る。FEP標準に対するLおよびLの変化%を、上記の試験法セクションに説明されているとおり測定する。計測結果を表2に示す。未処理のフッ素化ポリマーに対する93.9%の向上が、フッ素化ポリマーの融点を超える温度で酸素源(空気)に曝露されたフッ素化ポリマーに対して見られる。
実施例3:動的乾燥ステップを用いて乾燥させたFEP
上記のとおり重合した水性FEP−3分散体を脱イオン水で5重量パーセント固形分に希釈する。分散体を−30℃で16時間凍結することにより分散体を凝析する。分散体を融解し、150ミクロンメッシュフィルタバッグであるThe Strainrite Companies,Auburn,Maineにより製造されたモデルNMO150P1SHSを通してろ過することにより、固形分から水を分離する。
固形分の一分量を、150℃に設定した循環空気炉中で40時間乾燥させて乾燥粉末を得る。溶融加工可能フッ素化ポリマーに係る試験法、熱誘起変色の計測に記載されているとおり、乾燥粉末を成形してカラーフィルムを得る。得られるL の値は25.9であり、これは未処理ポリマーの熱加工の際のポリマーの変色を示している。計測結果を表3に示す。
USA標準テストふるい番号20メッシュのステンレス鋼スクリーンによって支持される、米国特許第5,391,709号明細書に記載の特徴を有する直径8インチ(20.32cm)のPEEK布上に18グラムのポリマーの乾燥重量を均一に広げ、また、溶融加工可能フッ素化ポリマーに関して上記した乾燥装置中において、ポリマー床に2時間、180℃の空気を通過させることによって、固形分の他の分量を乾燥させる。溶融加工可能フッ素化ポリマーに係る試験法、熱誘起変色の計測に記載されているとおり、乾燥粉末を成形してカラーフィルムを得る。得られるL の値は44.8であり、Lの変化%は35.1%であり、これは、乾燥時間は顕著に短いものの、180℃の空気によるポリマーの動的乾燥ステップによる向上を示している。計測結果を表3に示す。
USA標準テストふるい番号20メッシュのステンレス鋼スクリーンによって支持される、米国特許第5,391,709号明細書に記載の特徴を有する直径8インチ(20.32cm)のPEEK布上に18グラムのポリマーの乾燥重量を均一に広げ、また、Louisville,KentuckyのA2Z Ozoneによって製造された3つのAQUA−6可搬式オゾン発生器によって供給されるオゾンで富化され、ポリマー床に2時間通される180℃の空気によって、固形分の他の分量を乾燥させる。溶融加工可能フッ素化ポリマーに係る試験法、熱誘起変色の計測に記載されているとおり、乾燥粉末を成形してカラーフィルムを得る。得られるL の値は55.8であり、Lの変化%は55.6%であり、これは、乾燥時間は顕著に短いものの、180℃の空気によるポリマーの動的オゾン乾燥ステップによる向上を示している。
実施例4:動的乾燥ステップを用いて乾燥させたPTFE
上記のとおり重合した水性PTFE分散体を脱イオン水で5重量パーセント固形分に希釈する。分散体を凝析し、上記の方法(PTFE分散体の単離)を介して単離する。
固形分の一分量を、170℃に設定した循環空気炉中で2時間静的に乾燥させて乾燥粉末を得る。PTFEに係る試験法、熱誘起変色の計測に記載されているとおり、乾燥したポリマーを熱誘起変色について特徴付けする。得られるL の値は37.7であり、これは未処理ポリマーの熱加工の際のポリマーの極端な変色を示している。計測した色を表4に示す。
次いで、固形分の他の分量を、上記のPTFE乾燥機(PTFEポリマーの乾燥ステップ用装置)を用いて170℃で1時間かけて乾燥させる。PTFEに係る試験法、熱誘起変色の計測に記載されているとおり、乾燥したポリマーを熱誘起変色について特徴付けする。得られるL の値は43.9であり、Lの変化%は7.9%であり、これは、乾燥時間は短いものの、170℃の空気によるポリマーの動的乾燥ステップによる向上を示している。計測結果を表4に示す。
次いで、固形分の他の分量を、オゾン富化空気を添加しながら上記のPTFE乾燥機(PTFEポリマーの乾燥ステップ用装置)を用いて170℃で30分間かけて乾燥させる。乾燥時間の最中に、100cc/分のオゾン富化空気を乾燥機に導入する。最大出力設定で操作されるClearwater Technologies,Inc.Model CD−10オゾン発生器に、100cc/分の空気を通すことによりオゾンを発生させる。得られるL の値は65.9であり、Lの変化%は50.7%であり、これは、170℃でのポリマーのオゾン動的乾燥ステップによる向上を示している。計測結果を表4に示す。

Claims (13)

  1. フッ素化ポリマー樹脂の熱誘起変色を低減させるプロセスであって、
    前記フッ素化ポリマー樹脂は、水性媒体中のフルオロモノマーを重合して水性フッ素化ポリマー分散体を形成する工程、および、前記水性媒体から前記フッ素化ポリマーを単離して前記フッ素化ポリマー樹脂を得る工程により生成され、
    前記プロセスは、
    前記フッ素化ポリマー樹脂を約160℃〜約400℃の温度に加熱する工程、および
    前記加熱されたフッ素化ポリマー樹脂を酸素源に曝露する工程
    を含むプロセス。
  2. 前記プロセスが、CIELABカラースケールにおけるLの変化%により測定される熱誘起変色を少なくとも約10%低減させる、請求項1に記載のプロセス。
  3. 前記水性フッ素化ポリマー分散体が、前記熱誘起変色を引き起こす炭化水素系界面活性剤を含有する、請求項1または2に記載のプロセス。
  4. 前記水性フッ素化ポリマー分散体が炭化水素系界面活性剤の存在下で重合される、請求項3に記載のプロセス。
  5. 前記フッ素化ポリマー樹脂を加熱する工程が約200℃〜約400℃の温度である、請求項1〜4のいずれか一項に記載のプロセス。
  6. 前記フッ素化ポリマー樹脂が溶融加工可能である、請求項1〜5のいずれか一項に記載のプロセス。
  7. 前記フッ素化ポリマー樹脂を酸素源に曝露させる工程が、その融点を超えて加熱された前記フッ素化ポリマー樹脂で実施される、請求項6に記載のプロセス。
  8. 前記フッ素化ポリマー樹脂がPTFE樹脂である、請求項1〜7のいずれか一項に記載のプロセス。
  9. 前記加熱ステップ中の前記フッ素化ポリマー樹脂が静的条件下にある、請求項1〜8のいずれか一項に記載のプロセス。
  10. 前記加熱ステップ中の前記フッ素化ポリマー樹脂が動的条件下にある、請求項1〜9のいずれか一項に記載のプロセス。
  11. 前記酸素源が、空気、富酸素ガスまたはオゾン含有ガスである、請求項1〜10のいずれか一項に記載のプロセス。
  12. 前記酸素源が、富酸素ガスまたはオゾン含有ガスである、請求項1〜11のいずれか一項に記載のプロセス。
  13. 前記フッ素化ポリマー樹脂が、パーフルオロオクタン酸アンモニウムフッ素系界面活性剤を用いて製造された同等の商業的品質のフッ素化ポリマー樹脂のL値よりも、CIELABカラースケールで少なくとも約4Lユニット低い初期熱誘起変色値(L )を有する、請求項1〜12のいずれか一項に記載のプロセス。
JP2015511544A 2012-05-09 2013-05-03 変色を低減させるための加熱および酸素源を利用するフッ素化ポリマー樹脂処理 Active JP6280917B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261644664P 2012-05-09 2012-05-09
US61/644,664 2012-05-09
PCT/US2013/039372 WO2013169573A1 (en) 2012-05-09 2013-05-03 Fluoropolymer resin treatment employing heating and oxygen source to reduce discoloration

Publications (3)

Publication Number Publication Date
JP2015516025A true JP2015516025A (ja) 2015-06-04
JP2015516025A5 JP2015516025A5 (ja) 2016-06-23
JP6280917B2 JP6280917B2 (ja) 2018-02-14

Family

ID=48428703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015511544A Active JP6280917B2 (ja) 2012-05-09 2013-05-03 変色を低減させるための加熱および酸素源を利用するフッ素化ポリマー樹脂処理

Country Status (5)

Country Link
US (1) US9175115B2 (ja)
EP (1) EP2847236B1 (ja)
JP (1) JP6280917B2 (ja)
CN (1) CN104284910B (ja)
WO (1) WO2013169573A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516026A (ja) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 変色を低減させるための溶融押出し成形および酸素源への曝露を利用するフッ素化ポリマー樹脂処理
JP2018100314A (ja) * 2016-12-19 2018-06-28 東ソー株式会社 超高分子量ポリエチレンパウダー及びその製造方法
JPWO2019031617A1 (ja) * 2017-08-10 2020-08-06 ダイキン工業株式会社 精製ポリテトラフルオロエチレン水性分散液の製造方法、改質ポリテトラフルオロエチレン粉末の製造方法、ポリテトラフルオロエチレン成形体の製造方法、及び、組成物
US11851519B2 (en) 2017-08-10 2023-12-26 Daikin Industries, Ltd. Method for producing purified polytetrafluoroethylene aqueous dispersion liquid, method for producing modified polytetrafluoroethylene powder, method for producing polytetrafluoroethylene molded body, and composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9646268B1 (en) * 2011-06-16 2017-05-09 Brunswick Corporation Systems and methods of supporting a product life cycle management (PLM) implementation
KR102134128B1 (ko) * 2013-03-27 2020-07-15 에이지씨 가부시키가이샤 말단기 변환 방법 및 말단 안정화 방법
CN111675814B (zh) * 2020-04-27 2022-06-07 山东东岳高分子材料有限公司 一种高流动氟树脂浆料及其制备方法
JP7376877B2 (ja) 2021-04-20 2023-11-09 古河電気工業株式会社 絶縁被覆導線

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4538906B1 (ja) * 1967-12-27 1970-12-08 Daikin Ind Ltd
JP2010229163A (ja) * 2007-07-24 2010-10-14 Daikin Ind Ltd 精製含フッ素ポリマーの製造方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE462019A (ja) * 1943-10-25
US2784170A (en) 1953-04-23 1957-03-05 Union Carbide & Carbon Corp Heat-stabilized polychlorotrifluoro-ethylene utilizing metal nitrites
FR1140964A (fr) 1956-01-04 1957-08-22 Pechiney Perfectionnement aux polymères d'oléfines fluorées et chlorofluorées
FR1143777A (fr) 1956-02-22 1957-10-04 Electro Chimie Soc D Procédé d'amélioration des polymères fluorés
NL121076C (ja) 1959-05-05
US3282875A (en) 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
US3391099A (en) 1966-04-25 1968-07-02 Du Pont Polymerization process
FR1600355A (ja) 1968-01-18 1970-07-20
DE2015279A1 (de) 1969-04-01 1970-10-08 E.I. du Pont de Nemours and'Company, Wilmington, Del. (V.St.A.) Dispersionspolymerisation von Tetrafluoräthylen
US3700627A (en) 1970-05-25 1972-10-24 Pennwalt Corp Decolorized polytetrafluoroethylene
US4036802A (en) 1975-09-24 1977-07-19 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymer fine powder resin
US4358545A (en) 1980-06-11 1982-11-09 The Dow Chemical Company Sulfonic acid electrolytic cell having flourinated polymer membrane with hydration product less than 22,000
US4552631A (en) 1983-03-10 1985-11-12 E. I. Du Pont De Nemours And Company Reinforced membrane, electrochemical cell and electrolysis process
US4626587A (en) 1984-01-16 1986-12-02 E. I. Du Pont De Nemours And Company Extrusion finishing of perfluorinated copolymers
US4743658A (en) 1985-10-21 1988-05-10 E. I. Du Pont De Nemours And Company Stable tetrafluoroethylene copolymers
US4675380A (en) 1985-10-25 1987-06-23 E. I. Du Pont De Nemours And Company Melt-processible tetrafluoroethylene/perfluoroolefin copolymer granules and processes for preparing them
US4940525A (en) 1987-05-08 1990-07-10 The Dow Chemical Company Low equivalent weight sulfonic fluoropolymers
GB9017156D0 (en) 1990-08-03 1990-09-19 Ici Plc Stabilisation of fluoropolymers
US5277943A (en) * 1992-06-30 1994-01-11 Pall Corporation Thermal bleaching process for non-contaminating fluorocarbon fiber media
TW272214B (ja) 1993-03-26 1996-03-11 Hercules Inc
US5391709A (en) 1993-11-17 1995-02-21 E. I. Du Pont De Nemours And Company Purification process of PTFE using fiber bed and heated air
US5637748A (en) 1995-03-01 1997-06-10 E. I. Du Pont De Nemours And Company Process for synthesizing fluorinated nitrile compounds
US5703185A (en) 1995-08-17 1997-12-30 E. I. Du Pont De Nemours And Company Fluoropolymer extrusion process
US5859086A (en) * 1996-08-07 1999-01-12 Competitive Technologies Of Pa, Inc. Light directed modification fluoropolymers
JP3852136B2 (ja) 1996-09-09 2006-11-29 ダイキン工業株式会社 含フッ素重合体の安定化方法
US6664337B2 (en) 1996-09-09 2003-12-16 Daikin Industries, Ltd. Method for stabilizing fluorine-containing polymer
US5969067A (en) 1996-09-13 1999-10-19 E.I. Dupont De Nemours And Company Phosphorus-containing fluoromonomers and polymers thereof
US5866711A (en) 1996-09-13 1999-02-02 E. I. Du Pont De Nemours And Company Fluorocyanate and fluorocarbamate monomers and polymers thereof
US6689833B1 (en) 1997-04-09 2004-02-10 E. I. Du Pont De Nemours And Company Fluoropolymer stabilization
JPH11100543A (ja) 1997-09-29 1999-04-13 Daikin Ind Ltd 塗料組成物
JPH11181098A (ja) 1997-12-25 1999-07-06 Daikin Ind Ltd 含フッ素重合体の改質方法
JP4792612B2 (ja) 1998-11-04 2011-10-12 ダイキン工業株式会社 含フッ素重合体の安定化方法
EP1054023A1 (fr) 1999-05-21 2000-11-22 Atofina Procédé de modification chimique de polymères fluorés électrodes de batterie lithium-ion et revètement de substrats métallique comportant ces polymères ainsi modifiés
JP2003082020A (ja) 2001-09-11 2003-03-19 Daikin Ind Ltd 含フッ素重合体の製造方法
FR2842203A1 (fr) 2002-07-12 2004-01-16 Atofina Procede de fabrication du polymere du fluorure de vinylidene
US6875902B2 (en) 2002-11-06 2005-04-05 National Institute Of Advanced Industrial Science And Technology Method decomposing fluorine-containing organic material
US6838545B2 (en) * 2002-11-08 2005-01-04 E. I. Du Pont De Nemours And Company Reaction of fluoropolymer melts
EP2452955B1 (en) 2003-09-10 2016-12-14 Asahi Kasei Kabushiki Kaisha Stabilized fluoropolymer and method for producing same
WO2005033150A1 (ja) 2003-10-01 2005-04-14 Daikin Industries, Ltd. 含フッ素重合体組成物製造方法及び含フッ素重合体組成物
US7790041B2 (en) 2004-08-11 2010-09-07 E.I. Du Pont De Nemours And Company Removing fluorosurfactant from aqueous fluoropolymer dispersions
US7671111B2 (en) 2005-02-10 2010-03-02 E.I. Du Pont De Nemours And Company Monitoring column breakthrough in a process for removing fluorosurfactant from aqueous fluoropolymer dispersions
ITMI20050705A1 (it) 2005-04-20 2006-10-21 Solvay Solexis Spa Processo per la preparazione di dispersori di fluoropolimeri
JP5106396B2 (ja) 2005-08-08 2012-12-26 アーケマ・インコーポレイテッド 非フッ素化界面活性剤を用いたフルオロポリマーの重合
US7763680B2 (en) 2005-11-18 2010-07-27 E.I. Du Pont De Nemours And Company Melt-fabricable core/shell perfluoropolymer
EP1845116A1 (en) 2006-04-11 2007-10-17 Solvay Solexis S.p.A. Fluoropolymer dispersion purification
JP5338667B2 (ja) 2007-08-07 2013-11-13 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
WO2009157416A1 (ja) 2008-06-24 2009-12-30 旭硝子株式会社 含フッ素化合物の精製方法
US20130303717A1 (en) 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Dispersion Treatment Employing Oxidizing Agent to Reduce Fluoropolymer Resin Discoloration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4538906B1 (ja) * 1967-12-27 1970-12-08 Daikin Ind Ltd
JP2010229163A (ja) * 2007-07-24 2010-10-14 Daikin Ind Ltd 精製含フッ素ポリマーの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516026A (ja) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 変色を低減させるための溶融押出し成形および酸素源への曝露を利用するフッ素化ポリマー樹脂処理
JP2018100314A (ja) * 2016-12-19 2018-06-28 東ソー株式会社 超高分子量ポリエチレンパウダー及びその製造方法
JPWO2019031617A1 (ja) * 2017-08-10 2020-08-06 ダイキン工業株式会社 精製ポリテトラフルオロエチレン水性分散液の製造方法、改質ポリテトラフルオロエチレン粉末の製造方法、ポリテトラフルオロエチレン成形体の製造方法、及び、組成物
JP2022036099A (ja) * 2017-08-10 2022-03-04 ダイキン工業株式会社 精製ポリテトラフルオロエチレン水性分散液の製造方法、改質ポリテトラフルオロエチレン粉末の製造方法、ポリテトラフルオロエチレン成形体の製造方法、及び、組成物
US11851519B2 (en) 2017-08-10 2023-12-26 Daikin Industries, Ltd. Method for producing purified polytetrafluoroethylene aqueous dispersion liquid, method for producing modified polytetrafluoroethylene powder, method for producing polytetrafluoroethylene molded body, and composition

Also Published As

Publication number Publication date
JP6280917B2 (ja) 2018-02-14
CN104284910A (zh) 2015-01-14
EP2847236B1 (en) 2022-01-19
US9175115B2 (en) 2015-11-03
CN104284910B (zh) 2017-12-15
EP2847236A1 (en) 2015-03-18
US20130303715A1 (en) 2013-11-14
WO2013169573A1 (en) 2013-11-14

Similar Documents

Publication Publication Date Title
JP6280917B2 (ja) 変色を低減させるための加熱および酸素源を利用するフッ素化ポリマー樹脂処理
JP6441791B2 (ja) 変色を低減させるためのフッ素化ポリマー樹脂の前処理およびフッ素化の利用
JP2015516028A (ja) フッ素化ポリマー樹脂変色を低減させるための酸化剤を利用するフッ素化ポリマー分散体処理
JP2015516029A (ja) 変色を低減するための酸化剤を利用するフッ素化ポリマー樹脂処理
JP6318146B2 (ja) 変色を低減するための湿潤フッ素化ポリマー樹脂の乾燥および酸素源への曝露
US8785516B2 (en) Fluoropolymer dispersion treatment employing ultraviolet light and oxygen source to reduce fluoropolymer resin discoloration
WO2013169564A1 (en) Fluoropolymer dispersion treatment employing hydrogen peroxide to reduce fluoropolymer resin discoloration
JP6402095B2 (ja) 変色を低減させるための溶融押出し成形および酸素源への曝露を利用するフッ素化ポリマー樹脂処理
US20130303708A1 (en) Fluoropolymer Dispersion Treatment Employing Hypochlorite Salts or Nitrite Salts to Reduce Fluoropolymer Resin Discoloration
US20130303707A1 (en) Fluorination of Fluoropolymer Resin to Reduce Discoloration
US9574027B2 (en) Fluoropolymer resin treatment employing sorbent to reduce fluoropolymer resin discoloration
US20130303652A1 (en) Fluoropolymer Dispersion Treatment Employing Light and Oxygen Source in Presence of Photocatalyst to Reduce Fluoropolymer Resin Discoloration
WO2013169568A1 (en) Fluoropolymer dispersion treatment employing high ph and oxygen source to reduce fluoropolymer resin discoloration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170522

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6280917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250