JP2015219199A - 分析装置及び校正方法 - Google Patents

分析装置及び校正方法 Download PDF

Info

Publication number
JP2015219199A
JP2015219199A JP2014104789A JP2014104789A JP2015219199A JP 2015219199 A JP2015219199 A JP 2015219199A JP 2014104789 A JP2014104789 A JP 2014104789A JP 2014104789 A JP2014104789 A JP 2014104789A JP 2015219199 A JP2015219199 A JP 2015219199A
Authority
JP
Japan
Prior art keywords
timing
unit
ray intensity
ray
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014104789A
Other languages
English (en)
Other versions
JP6412340B2 (ja
Inventor
裕介 水野
Yusuke Mizuno
裕介 水野
朋樹 青山
Tomoki Aoyama
朋樹 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2014104789A priority Critical patent/JP6412340B2/ja
Priority to CN201510257968.7A priority patent/CN105092624B/zh
Priority to US14/715,812 priority patent/US9594037B2/en
Publication of JP2015219199A publication Critical patent/JP2015219199A/ja
Application granted granted Critical
Publication of JP6412340B2 publication Critical patent/JP6412340B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】大気雰囲気中にて蛍光X線を用いて成分分析を行う分析装置において、経時的な変化による影響に対する校正を行う。【解決手段】分析装置100は、照射部51と、検出部53と、環境測定部8と、経時変化量算出部96と、を備える。照射部51は一次X線を照射する。検出部53は大気雰囲気中を通過する二次X線強度を検出する。環境測定部8は、大気雰囲気を定義する環境パラメータを測定する。経時変化量算出部96は、第1の環境パラメータと、第1の二次X線強度と、第2の環境パラメータと、第2の二次X線強度と、に基づいて第1のタイミングと第2のタイミングとの間の経時的な二次X線強度の変化量を算出する。【選択図】図7

Description

本発明は、粒子状物質の分析行う分析装置、及び、当該分析装置の装置校正を行う校正方法に関する。
近年、大気中の粒径が2.5μm以下の浮遊粒子状物質であるPM2.5が大きな環境問題になっている。そして、PM2.5の状況を把握することを目的として、PM2.5の大気中の濃度やPM2.5に含まれる元素を分析する装置が開発されている。PM2.5に含まれる元素を分析すれば、当該PM2.5の発生源を推定できると考えられている。
例えば、特許文献1には、大気中の浮遊粒子状物質を構成する元素種類を連続的、かつ、自動的に分析する測定装置が開示されている。この測定装置は、最初に、分級器によって粒径2.5μmを超える粗大粒子の全量を含む空気とPM2.5以下の微小粒子を含む空気とに分級する。次に、測定装置は、分級された空気中の浮遊粒子状物質をフィルタに捕集する。その後、測定装置は、X線分析器を用いて粗大粒子と微小粒子とを個別に蛍光元素分析する。
特開2008−261712号公報
上記の測定装置など蛍光X線を用いて元素の成分分析を行う分析装置においては、一次X線(測定対象に照射して蛍光X線を発生させるためのX線)を発生させるX線源や、蛍光X線を検出する検出器などは、経時的にその特性を変化させる。そのため、上記の測定装置などにおいては、このような経時的な変化による分析結果への影響を減少するため、スパン校正用の標準試料などを用いて、成分分析の実行毎にX線強度の校正を行っている。上記のように、成分分析の実行毎にX線強度の校正を行う場合には、分析装置における経時的な変化(経時劣化など)による影響は、校正の実行毎に解消できていた。
一方、捕集したPM2.5などの粒子状物質の成分分析を連続的に行う場合には、X線が通過する周囲の雰囲気を制御することは困難となる。なぜなら、粒子状物質の入れ替え毎(成分分析の実行毎)にX線が通過する周囲の雰囲気を成分分析の実行毎に同じにすることは困難で時間がかかるからである。そのため、連続的に粒子状物質を測定する場合には、大気雰囲気中にて蛍光X線の測定が行われている。所定の短い間隔(例えば、1時間毎)にて成分分析が実行されるため、時間がかかる標準試料などを用いた校正は実行できない。そのため、従来のX線強度の補正方法を、連続的に成分分析を行う分析装置に適用した場合、成分分析結果に分析装置などの経時的な変化による影響が含まれていた。
本発明の課題は、大気雰囲気中にて蛍光X線を用いて成分分析を行う分析装置において、測定対象元素毎に影響が異なる経時的な変化による影響に対する補正を行うことにある。
以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
本発明の一見地に係る分析装置は、照射部と、検出部と、環境測定部と、経時変化量算出部と、を備える。照射部は、大気雰囲気中において、粒子状物質を励起して蛍光X線を発生させる一次X線を照射する。検出部は、1次X線を照射することにより発生し、大気雰囲気中を通過する二次X線強度を検出する。環境測定部は、大気雰囲気を定義する環境パラメータを測定する。経時変化量算出部は、第1の環境パラメータと、第1の二次X線強度と、第2の環境パラメータと、第2の二次X線強度と、に基づいて第1のタイミングと第2のタイミングとの間の経時的な二次X線強度の変化量又は変化率を算出する。第1の環境パラメータは、第1のタイミングにおいて環境測定部で測定された環境パラメータである。第1の二次X線強度は、第1のタイミングにおいて検出部で検出された二次X線強度である。第2の環境パラメータは、第1のタイミングより所定時間前である第2のタイミングにおける環境測定部で測定された環境パラメータである。第2の二次X線強度は、第2のタイミングにおいて検出部で検出された二次X線強度である。
上記の分析装置においては、経時変化量算出部が、第1の環境パラメータと、第1の二次X線強度と、第2の環境パラメータと、第2の二次X線強度と、に基づいて第1のタイミングと第2のタイミングとの間の経時的な二次X線強度の変化量を算出している。これにより、測定対象元素毎に影響が異なる経時的な変化による影響に対する補正を行える。
上記の分析装置は、粒子状物質を捕集するための捕集フィルタをさらに備えていてもよい。このとき、第1の二次X線強度及び第2の二次X線強度は、捕集フィルタの無捕集領域に一次X線を照射することにより発生する散乱二次X線の強度である。これにより、分析装置の各構成要素の配置を変化することなく、二次X線強度を検出部にて検出できる。
本発明の他の見地に係る校正方法は、粒子状物質から発生する蛍光X線に基づいて粒子状物質の成分分析を行う分析装置の校正方法である。校正方法は、以下のステップを含む。
◎第1のタイミングにおいて、第1の環境パラメータを測定するステップ。
◎第1のタイミングにおいて、第1の二次X線強度を測定するステップ。
◎第1のタイミングより所定時間前である第2のタイミングにおいて、第2の環境パラメータを測定するステップ。
◎第2のタイミングにおいて、第2の二次X線強度を測定するステップ。
◎第1の環境パラメータと、第1の二次X線強度と、第2の環境パラメータと、第2の二次X線強度とに基づいて、第1のタイミングと第2のタイミングとの間の経時的な二次X線強度の変化量又は変化率を算出するステップ。
を備える校正方法。
上記の校正方法においては、第1の環境パラメータと、第1の二次X線強度と、第2の環境パラメータと、第2の二次X線強度と、に基づいて第1のタイミングと第2のタイミングとの間の経時的な二次X線強度の変化量が算出されている。これにより、測定対象元素毎に影響が異なる経時的な変化による影響に対する補正を行える。
大気雰囲気中にて蛍光X線を用いて成分分析を行う分析装置において、測定対象元素毎に影響が異なる経時的な変化による影響に対する補正を行える。
分析装置の構成を示す図。 制御部の構成を示す図。 分析装置の基本動作を示すフローチャート。 スパン校正の実行時におけるスパン校正用基材と捕集フィルタの配置と、一次X線の照射状態と検出されるX線の様子を示す図。 スパン校正用データの一例を示す図。 バックグランド校正用データの一例を示す図。 粒子状物質の成分分析方法を示すフローチャート。
(1)第1実施形態
第1実施形態に係る分析装置100の構成を、図1を用いて説明する。図1は、分析装置の構成を示す図である。分析装置100は、粒子状物質P(後述)に一次X線X1(後述)を照射することにより、粒子状物質Pから発生する蛍光X線に基づいて粒子状物質Pの成分分析を行う分析装置である。分析装置100は、捕集フィルタ1と、サンプリング部3と、分析部5と、フィルタ移動部7と、環境測定部8と、制御部9と、を備える。
捕集フィルタ1は、サンプリング部3(後述)においてサンプリングされた大気に含まれる粒子状物質Pを捕集する。そのため、捕集フィルタ1は、粒子状物質Pをトラップできる孔を有する捕集層11を有している。捕集層11の材料としては、例えば、フッ素系樹脂(例えば、四フッ化エチレン樹脂(PTFE))などを用いることができる。
また、捕集層11の厚さは、一次X線及び蛍光X線などのX線の捕集層11における吸収が所定量以下となるよう調整されている。本実施形態において、捕集層11の厚さは、例えば、3〜35μm程度である。さらに、捕集フィルタ1は、捕集層11の主面上に、捕集層11を補強する補強層13を有している。すなわち、捕集フィルタ1は、捕集層11と補強層13とを有する二層構造となっている。
捕集層11と補強層13とを合わせた捕集フィルタ1の厚みは、捕集フィルタ1によるX線吸収を所定量以下とするため、平均値として100〜200μm程度(例えば、140μm)に調整されている。補強層13としては、ガス流通が可能であり、測定対象元素となる元素をほとんど含まず、かつ、十分な強度を有する材料が選択される。このような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ナイロン、ポリエステル、ポリアミドなどの不織布を用いることができる。特に、ポリプロピレンとポリエステルからなる不織布は、蛍光X線分析においてノイズとなる不純物を含まず、かつ、十分な強度を有するため、より精度の高い測定を可能とする。
サンプリング部3は、分析装置100が設置された周囲の大気をサンプリングし、サンプリングした大気を捕集フィルタ1に吹き付ける。これにより、サンプリングした大気に含まれている粒子状物質Pを、捕集フィルタ1に捕集できる。
具体的には、吸引部31に設けられた第1開口部31aを吸引ポンプ33により負圧とした状態にて捕集フィルタ1の一方の主面に近接させる。また、排出部35に設けられ、サンプリングポート37とガス流通可能に接続された第2開口部35aを捕集フィルタ1の他方の主面に近接させる。この結果、サンプリングポート37から大気が第2開口部35aへと吸引される。吸引された大気は、第2開口部35aから捕集フィルタ1の他方の主面に吹き付けられる。その結果、捕集フィルタ1の捕集層11に設けられた孔に、大気に含まれていた粒子状物質Pが捕集される。また、大気は捕集フィルタ1を通過して、吸引部31に吸引される。
なお、上記の第1開口部31aには、捕集フィルタ1をサポートする網目状のサポート部材が設けられていてもよい。これにより、捕集フィルタ1を吸引することによるフィルタの変形や破壊などを防止できる。
サンプリング部3は、さらに、β線照射部38とβ線検出部39とを有する。β線照射部38は、第2開口部35a中に設けられ、捕集フィルタ1に向けてβ線を照射する。β線検出部39は、第1開口部31a中に設けられ、捕集フィルタ1(と粒子状物質P)を通過したβ線を検出する。
分析部5は、粒子状物質Pから発生する蛍光X線を用いて、粒子状物質Pに含まれる元素の成分分析を行う。本実施形態において、分析部5は、粒子状物質Pに含まれる金属元素の成分分析を主に行う。大気中の粒子状物質Pに含まれている金属元素としては、ナトリウム、アルミニウム、カルシウム、チタン、バナジウム、マンガン、亜鉛、鉛、バリウム、アンチモン、ランタン、サマリウム、などがある。また、金属元素以外の硫黄、塩素、臭素などの元素の成分分析も行われる。
粒子状物質Pにどの元素が含まれているかを成分分析することにより、捕集フィルタ1に捕集された粒子状物質Pの由来を知ることができる。なお、分析部5の構成については、後ほど詳しく説明する。
フィルタ移動部7は、捕集フィルタ1に捕集された粒子状物質Pを移動させる。具体的には、フィルタ移動部7は、回転可能に軸支された送り出しリール7aから捕集フィルタ1を送り出す。そして、回転可能に軸支された巻き取りリール7bは、捕集フィルタ1を巻き取る。その結果、捕集フィルタ1に捕集された粒子状物質Pが、サンプリング部3から分析部5へ移動させられる。
環境測定部8は、分析部5とその周辺領域の環境パラメータを測定する。環境パラメータは、分析部5とその周辺領域の大気雰囲気を定義するパラメータである。従って、環境パラメータとしては、例えば、分析部5とその周辺領域の温度と、気圧と、湿度を用いることができる。従って、環境測定部8は、温度計と、気圧計と、湿度計と(いずれも図示せず)により構成されている。
制御部9は、分析装置100の各部を制御する。また、制御部9は、分析部5の検出部53において検出されたX線を入力し、入力したX線を用いて各種処理を行う。例えば、検出部53において粒子状物質Pからの蛍光X線を含んだX線が検出された場合には、制御部9は、入力した当該蛍光X線を用いて、粒子状物質Pに含まれる元素の成分分析を行う。
また、分析装置100の校正の実行時においては、制御部9は、入力したX線を用いて、分析装置100の校正を行う。なお、制御部9の構成については、後ほど詳しく説明する。
(2)分析部の構成
次に、分析部5の構成について説明する。分析部5は、捕集フィルタ1に捕集された粒子状物質Pから蛍光X線を発生させ検出する。そのため、分析部5は、照射部51と検出部53とを有する。なお、分析部5において、照射部51と検出部53は、外部の大気雰囲気と隔離された筐体などに納められていない。これにより、分析部5は、照射部51と検出部53とを納めた筐体などの内部の雰囲気を制御することなく、連続的かつ高速に粒子状物質Pの成分分析を行える。
照射部51は、大気雰囲気中において、測定領域Aに一次X線X1を照射する。測定領域Aは、分析装置100において成分分析を行う際に、サンプリング部3において捕集された粒子状物質Pがフィルタ移動部7により送られてくる領域である。
本実施形態において、照射部51はX線発生装置である。X線発生装置は、ターゲット(本実施形態においては、パラジウム)に電子線を照射することによりX線を発生させる装置である。従って、照射部51から照射される一次X線X1には、制動放射によるX線と、ターゲットに特有の特性X線とが含まれている。
また、照射部51の一次X線が発生する出口には一次フィルタ(図示せず)が設けられ、測定対象元素から発生する蛍光X線の波長に対応する波長領域の一次X線の強度を減少している。これは、一次X線には、測定対象元素からの蛍光X線よりもエネルギーが高いX線成分が含まれていれば十分だからである。これにより、検出部53(後述)において検出されるX線のバックグランド成分を減少できる。
検出部53は、1次X線X1を照射することにより発生し、大気雰囲気中を通過する二次X線強度を検出する。従って、検出部53としては、例えば、シリコン半導体検出器又はシリコンドリフト検出器(SDD)などの半導体検出器を用いることができる。特に、シリコンドリフト検出器SDDを用いることにより、冷却に液体窒素などを用いる必要がなくなるため、分析装置100をコンパクトにできる。
(3)制御部の構成
次に、制御部9の構成について、図2を用いて説明する。図2は、制御部の構成を示す図である。制御部9は、CPU(Central Processing Unit)と、RAM、ROM、ハードディスク、SSD(Soild State Disk)などの記憶装置と、表示部と、各種インターフェースと、などを有するコンピュータシステムである。以下に説明する制御部9の各構成要素の一部又は全部の機能は、上記のコンピュータシステムの記憶装置に記憶されたプログラムにより実現されていてもよい。また、制御部9の各構成要素の機能の一部又は全部の機能は、カスタムICなどの半導体装置により実現されていてもよい。
制御部9は、フィルタ制御部91と、サンプリング制御部92と、照射制御部93と、X線計数部94と、成分分析部95と、経時変化量算出部96と、粒子質量濃度算出部97と、を有する。
フィルタ制御部91は、フィルタ移動部7を制御する。具体的には、フィルタ制御部91は、例えば、巻き取りリール7bの回転を制御するモータなど(図示せず)の回転を制御する巻き取りリール制御信号を、フィルタ移動部7に出力する。フィルタ制御部91は、フィルタ抑え制御信号を出力し、捕集フィルタ1の押さえつけ力を調節できる。
サンプリング制御部92は、サンプリング部3を制御する。具体的には、サンプリング制御部92は、例えば、吸引部31と吸引ポンプ33とをガス流通可能に接続する配管の途中に設けられたニードルバルブなどのバルブの開度を調整する流量制御信号を当該バルブに出力する。これにより、吸引部31の吸引力及びサンプリング部3における大気の流量を制御できる。
照射制御部93は、照射部51を制御する。具体的には、照射部51のX線発生装置において、電子線を発生させる電子線源に印加する電圧及び/又は電流を制御する。これにより、照射部51からの一次X線X1の強度を調整できる。
X線計数部94は、検出部53から出力されるパルス信号の個数を計数する。具体的には、X線計数部94は、所定の信号値範囲内のパルス信号の個数を計数し、得られた結果を計数結果として出力する。
成分分析部95は、分析部5の校正と粒子状物質Pの成分分析とを行う。なお、成分分析部95における分析部5の校正方法及び粒子状物質Pの成分分析方法については、後ほど詳しく説明する。
経時変化量算出部96は、第1のタイミング(後述)と第2のタイミング(後述)にて検出される二次X線強度の変化量を算出する。経時変化量算出部96における変化量の算出方法は、後ほど説明する。
粒子質量濃度算出部97は、β線検出部39からβ線検出信号を受信し、粒子状物質Pを透過したβ線の強度に基づいて、捕集フィルタ1に捕集された粒子状物質Pの粒子質量濃度を測定する。
(4)分析装置の動作
I.基本動作
次に、分析装置100の動作について説明する。分析装置100の動作を開始すると、成分分析部95は、例えば、前回の校正の実行時から所定の時間以上(例えば、1ヶ月以上)経過している場合に、スパン校正用基材SS(後述)及び/又はバックグランド校正用基材を用いて校正を行う。所定の時間が経過していない場合には、成分分析部95は、粒子状物質Pの成分分析を開始する。
以下、分析装置100における校正方法及び粒子状物質Pの成分分析方法について詳しく説明する。
II.校正
ステップS2における分析部5の校正は、主に、校正用試料CSが基材MS上に積層されたスパン校正用基材SS(図3)を用いて行われる。また、必要に応じて、バックグランド校正用基材BSを用いた校正が行われる。
スパン校正用基材SSは、スパン校正を行うための校正用基材である。そのため、標準物質である校正用試料CSは、測定対象元素を少なくとも含んだ粒子状の物質である。このような校正用試料CSとしては、例えば、NIST(National Institute of Standards & Technology)にて規定された標準物質を用いることができる。
スパン校正用基材SSの基材MSは、X線に対してほとんど透明(すなわち、X線をほとんど透過する)である材料(例えば、ポリカーボネート)により構成された(板状の)基材である。
なお、ステップS2における分析部5の校正においては、図3に示すように、スパン校正用基材SSを捕集フィルタ1と共に配置し、スパン校正用基材SS(の校正用試料CS)と捕集フィルタ1とに一次X線X1を照射したときに検出部53において検出される二次X線X2を用いて、スパン校正用データを生成することが好ましい。図3は、スパン校正の実行時におけるスパン校正用基材と捕集フィルタの配置と、一次X線の照射状態と検出されるX線の様子を示す図である。これにより、捕集フィルタ1のX線吸収を考慮したスパン校正データを取得できる。
次に、照射部51が上記のようにスパン校正用基材SSを配置した状態において一次X線X1を照射し、それにより発生した二次X線X2を検出部53にて検出した計数結果をスパン校正用データとして、制御部9の記憶装置などに記憶する。なお、スパン校正用データは、各測定対象元素と、各測定対象元素の校正用試料CS中の元素量と、測定対象元素の蛍光X線が出現するエネルギー値と、上記計数結果における蛍光X線が出現するエネルギー値におけるX線強度と、を関連づけて記憶しておいてもよい。
一方、バックグランド校正用基材BSは、例えば、スパン校正用基材SSの基材MSと同じ材料(ポリカーボネートなど)により構成されたX線に対してほぼ透明な(板状の)基材である。バックグランド校正は、バックグランド校正用データが記憶されていない場合や、バックグランドやゼロ点が前回の校正時よりも大きくずれた場合などに行われる。
バックグランド校正の実行時もスパン校正の実行時と同様に、バックグランド校正用基材BSを捕集フィルタ1と共に配置した状態にて一次X線X1を照射したときに検出部53において検出される二次X線X2を用いて、バックグランド校正用データを生成することが好ましい。
次に、バックグランド校正用基材BSを捕集フィルタ1と共に配置した状態にて一次X線X1を照射し、それにより発生した二次X線X2を検出部53にて検出した計数結果をバックグランド校正用データとして、制御部9の記憶装置などに記憶する。バックグランド校正用データも、各測定対象元素と、各測定対象元素の蛍光X線が出現するエネルギー値と、上記計数結果における蛍光X線が出現するエネルギー値におけるX線強度と、を関連づけて記憶しておいてもよい。
また、成分分析部95は、スパン校正用データ及び/又はバックグランド校正用データの取得時に、環境測定部8から測定された環境パラメータを入力し、スパン校正用データ及び/又はバックグランド校正用データとともに、記憶装置などに記憶する。
バックグランド校正用データ及びスパン校正用データを生成し記憶装置などに記憶した後、成分分析部95は、バックグランド校正用データとスパン校正用データとを用いて、測定対象元素毎に検量線を生成する。
具体的には、例えば、バックグランド校正用データにおいて、測定対象元素Dからの蛍光X線のエネルギー値Eを有するX線の強度がBと記憶されており、スパン校正用データにおいて、校正用試料CS中に測定対象元素Dが元素量aだけ含まれており、このときのエネルギー値Eを有するX線の強度がIと記憶されていたとする。この場合、上記のある測定対象元素の元素量Xに対する蛍光X線強度Yの関係を示す検量線は、Y=((I−B)/a)*X+Bという式として生成される。
III.粒子状物質の成分分析
次に、ステップS3における粒子状物質Pの成分分析について、図4を用いて説明する。図4は、粒子状物質の成分分析方法を示すフローチャートである。
分析装置100において成分分析が開始されると、まず、経時変化によるX線強度の補正が実行される(ステップS301)。具体的な補正方法については、後ほど詳しく説明する。
経時変化によるX線強度の補正の実行後、成分分析が開始される。まず、サンプリング制御部92が、サンプリング部3に対して、大気に含まれる粒子状物質Pを捕集フィルタ1に捕集する(ステップS302)よう指令する。その後、フィルタ制御部91が、フィルタ移動部7に対して、捕集フィルタ1の捕集領域を測定領域Aまで移動するよう指令する。
その後、照射制御部93が照射部51に対して照射部制御信号を送信し、一次X線X1が捕集フィルタ1に捕集された粒子状物質Pに照射され(ステップS303)、粒子状物質Pに含まれる元素に特有のエネルギー値を有する蛍光X線が発生する。
捕集領域中の粒子状物質Pに一次X線X1を照射した状態にて、検出部53が、捕集領域からの二次X線X2を検出する(ステップS304)。その結果、図5に示すような計数結果が生成される。図5は、粒子状物質からの蛍光X線を含む計数結果のプロファイルの一例を示す図である。図5に示すX線プロファイルには、鉄、亜鉛、鉛、チタンの蛍光X線が特に顕著に見られている。
計数結果を取得後、成分分析部95は、計数結果を用いて粒子状物質Pの成分分析を行う(ステップS305)。具体的には、成分分析部95は、まず、計数結果から成分分析を行うためのX線強度を抽出する。例えば、図5に示す計数結果から、鉄(Fe)を測定対象元素として成分分析を行う場合を考える。今、鉄の蛍光X線が出現するエネルギー値をE(既知)であるとする。このとき、図5に示す計数結果において、エネルギー値Eを有するX線の強度はI’である。
次に、成分分析部95は、鉄ための検量線を記憶装置などから読み出す。その後、成分分析部95は、鉄のための検量線を表す式(例えば、Y=αFeX+βFe)に上記のX線強度I’を代入(上記の式においてはYに代入)し、元素量(上記の式においてはX)についての方程式を解くことにより、鉄の元素量を定量する。
粒子状物質Pの各測定対象元素についての成分分析を実行後、成分分析部95は、他の成分分析を実行するかどうかを判断する(ステップS306)。例えば、成分分析部95は、制御部9の入力部(図示せず)などからの所定の指令を受信したときに、成分分析を終了する。
成分分析が終了したと判断された場合(ステップS306において「No」の場合)、分析装置100における成分分析を終了する。
一方、成分分析部95が上記の指令を受信せず他の成分分析を実行すると判断した場合(ステップS306において「Yes」の場合)、フィルタ移動部7が、捕集フィルタ1を移動させることで、成分分析済みの粒子状物質Pを測定領域Aから送出する(ステップS307)。その後、プロセスはステップS301に戻る。これにより、粒子状物質Pが再び捕集フィルタ1の他の領域に捕集されて、それらの他の成分分析を実行できる。これにより、分析装置100においては、所定の時間毎に複数の成分分析を連続的に実行できる。
IV.経時変化によるX線強度の補正方法
次に、上記のステップS301において実行される経時変化によるX線強度の補正方法について、図6を用いて説明する。図6は、X線強度の校正方法を示すフローチャートである。
X線強度の校正が実行されると、まず、経時変化量算出部96が、照射部51及び/又は検出部53の経時的な二次X線強度の変化量を算出するかどうかを判断する(ステップS3011)。例えば、前回の算出からの経過時間が所定時間以上(例えば、1日以上)となった場合に、経時的な二次X線強度の変化量を算出必要と判断する。
二次X線強度の経時的な変化量を算出必要と判断された場合(ステップS3011において「Yes」の場合)、ステップS3012に進む。一方、算出不要と判断された場合(ステップS3011において「No」の場合)、ステップS3018に進み、環境パラメータの変化によるX線強度の校正が実行される。
経時的な変化量の算出が開始されると、まず、経時変化量算出部96が、制御部9の記憶装置などに現在記憶されている第2の環境パラメータを読み込む(ステップS3012)。このとき、経時変化量算出部96は、前回のバックグランド校正 (スパン校正)の実行時(すなわち、バックグラウンド校正(スパン校正)の実行時が第2のタイミングに対応)の環境パラメータを第2の環境パラメータとして読み込んでもよいし、前回の経時的な変化量の算出の実行時(前回の算出の実行時が第2のタイミングに対応)における環境パラメータを第2の環境パラメータとして読み込んでもよい。
経時変化量算出部96は、記憶装置などに現在記憶されている第2の二次X線強度を読み込む(ステップS3013)。ステップS3012において、第2の環境パラメータとして前回のバックグランド校正の実行時の環境パラメータを読み込んだ場合は、バックグランド校正用データを第2の二次X線強度として読み込む。
一方、前回の経時的な変化量の算出における環境パラメータを第2の環境パラメータとして読み込んだ場合には、前回の経時的な変化量の算出において取得した二次X線データ(後述)を第2の二次X線強度として読み込む。
次に、経時変化量算出部96は、現在の環境パラメータ(現時点が、第1のタイミングに対応)を、第1の環境パラメータとして環境測定部8から入力する。また、入力した第1の環境パラメータは、記憶装置に記憶される(ステップS3014)。
第1の環境パラメータを測定後、経時変化量算出部96は、照射制御部に対して、一次X線X1を捕集フィルタ1の無捕集領域に向けて照射するように指令する(ステップS3015)。本実施形態において、捕集フィルタ1の無捕集領域は、粒子状物質Pが捕集されていない領域である。無捕集領域に一次X線が照射されると、検出部53にて検出される二次X線X2は、一次X線X1が捕集フィルタ1にて散乱して生じる散乱二次X線である。これにより、より簡単に分析装置の各構成要素の構成を変化することなく、二次X線X2を発生できる。
上記の散乱二次X線X2の強度を第1の二次X線強度として取得後、経時変化量算出部96は、経時的な二次X線強度の変化量を算出する(ステップS3016)。具体的には、以下のようにして、経時的な二次X線強度の変化量又は変化率を算出する。
まず、異なる環境パラメータにて取得した、第1の二次X線強度と第2の二次X線強度とを、同一の環境パラメータにて取得された二次X線強度に変換する。例えば、上記の第1の環境パラメータ(第1にタイミング)にて上記2つの二次X線強度が取得されたとしたい場合には、第2の二次X線強度に対して、以下のようにして、第2の環境パラメータから第1の環境パラメータの変化による影響の補正を行う。
例えば、予め複数の異なる環境パラメータにて測定され記憶装置などに記憶されている基準となる二次X線強度において、第1の環境パラメータに近い環境パラメータにて取得された基準となる二次X線強度と、第2の環境パラメータに近い環境パラメータにて取得された基準となる二次X線強度との比を算出する。次に、当該比を上記の第2の二次X線強度に乗ずることにより、環境パラメータの変化による影響の補正を行える。
その他、第2の環境パラメータ(第2のタイミング)にて上記2つの二次X線強度が取得されたとしたい場合には、第1の二次X線強度に対して、第1の環境パラメータから第2の環境パラメータへの変化により影響の補正を、上記と同様にして行う。
さらに、別の第3の環境パラメータ(第3のタイミング)にて上記2つの二次X線強度が取得されたとしたい場合には、第1の二次X線強度に対して、第1の環境パラメータから第3の環境パラメータへの変化により影響の補正を、第2の二次X線強度に対して、第2の環境パラメータから第3の環境パラメータへの変化により影響の補正を行う。
二次X線強度に対して環境パラメータの変化による影響の補正を行った後、同一の第1の環境パラメータにて取得されたとした第1の二次X線強度と第2の二次X線強度を用いて、第1のタイミング(第1の環境パラメータの測定時)と第2のタイミング(第2の環境パラメータの測定時)との間の経時的な二次X線強度の変化量を算出する。
具体的には、例えば、上記の第1の環境パラメータにて取得されたと補正された第2の二次X線強度と、第1の二次X線強度との比を算出し、経時的な二次X線強度の変化量(比であるから、変化率とも言える)とすることができる。上記のようにして算出された経時的な二次X線強度の変化量は、記憶装置などに記憶される。
なお、上記の変化量の算出は、測定対象元素毎(測定対象元素が発生する蛍光X線が出現するエネルギー値毎)に対して実行される。なぜなら、上記の変化量は、測定対象元素毎に特性が異なるからである。
上記の経時的な二次X線強度の変化量を算出後、又は、記憶装置などに記憶されている経時的な変化量を読み出した後、成分分析部95は、当該変化量に対して環境パラメータの変化による影響を考慮した補正を行う(ステップS3017)。
例えば、上記の経時的な二次X線強度の変化量が第4のタイミング(第4の環境パラメータの測定時)にて算出され、現在の第1のタイミングにおいて補正を行いたい場合は、第4のタイミングにおける経時的な変化量に対して、第1の環境パラメータに近い環境パラメータにて取得された基準となる二次X線強度と、第4の環境パラメータに近い環境パラメータにて取得された基準となる二次X線強度との比を算出し、当該比と第4のタイミングにおける経時的な変化量との比を算出することにより補正を行える。
その後、成分分析部95は、上記で説明したステップS3017のように算出した環境パラメータの変化による影響を考慮した補正を行った後の経時的な二次X線強度の変化量を記憶装置などに記憶されている検量線に乗じることにより、経時的な変化による影響と環境パラメータの変化による影響とを含んだ補正を、検量線に実行できる。例えば、環境パラメータが同じであると仮定した場合、検量線は、図7に示すように上記の変化量が1より大となれば、校正前の検量線の傾きよりも大きくなり、変化量が1より小となれば、検量線の傾きは小さくなる。すなわち、経時的な変化量により検量線は変化する。図7は、補正後の検量線の一例を示す図である。
上記のように、経時的な二次X線の変化量を算出することにより、測定対象元素毎に影響が異なる経時的な変化による影響に対する補正を行える。
(5)他の実施形態
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
(A)経時的な変化量の利用形態についての他の実施形態
上記の第1実施形態においては、経時的な変化量は、検量線の校正にのみ用いられていた。しかし、これに限られず、経時的な変化量を、照射部51及び/又は検出部53などの異常やメンテナンスの基準として用いてもよい。
例えば、上記の経時的な変化量が所定の値以下となった場合には、照射部51及び/又は検出部53などが劣化して検出感度が低下したと判断できる。また、上記の経時的な変化量が非常に大きな値となった場合には、照射部51及び/又は検出部53などに異常が生じていると判断できる。
(B)粒子状物質の状態変化による校正
上記の分析装置100においては、測定対象の粒子状物質Pの状態変化を考慮した補正を行ってもよい。粒子状物質Pは、周囲環境の環境パラメータにより影響を受ける。例えば、湿度の高い環境においては、粒子状物質Pは水分を吸収して膨張することがある。また、この環境パラメータの変化による粒子状物質Pの変化は、粒子状物質Pに含まれる元素によって異なる。このような粒子状物質Pの周囲環境の変化によっても、粒子状物質Pから発生する蛍光X線は影響を受ける。従って、これらの粒子状物質Pの変化を考慮した補正を行うことにより、粒子状態の変化を考慮した成分分析を実行できる。
この場合、1日に1回程度上記の経時変化を算出し、粒子状態の変化を考慮した補正については、成分分析毎に行ってもよい。
(C)ピーク位置の校正
また、上記の分析装置100においては、検出部53(及び/又はX線計数部94)の検出結果(計数結果)におけるピーク位置の校正を実行してもよい。検出部53などの経時的な影響などにより、検出部53の検出結果(計数結果)において検出されているX線のエネルギー値が、実際のエネルギー値とは異なる値となっていることがある。
例えば、一次X線X1が捕集フィルタ1において散乱して発生する散乱二次X線に含まれている、出現エネルギー位置が既知で不変の本来のピーク位置に、計数結果におけるピーク位置が重なるように検出部などのスパンやゼロ点を調整することにより、ピーク位置のずれを校正できる。
本発明は、粒子状物質の分析行う分析装置に広く適用できる。
100 分析装置
1 捕集フィルタ
11 捕集層
13 補強層
3 サンプリング部
31 吸引部
31a 第1開口部
33 吸引ポンプ
35 排出部
35a 第2開口部
37 サンプリングポート
5 分析部
51 照射部
53 検出部
7 フィルタ移動部
7a 送り出しリール
7b 巻き取りリール
8 環境測定部
9 制御部
91 フィルタ制御部
92 サンプリング制御部
93 照射制御部
94 X線計数部
95 成分分析部
96
A 測定領域
BS バックグランド校正用基材
CS 校正用試料
MS 基材
P 粒子状物質
SS スパン校正用基材
X1 一次X線
X2 二次X線
H 比率

Claims (3)

  1. 粒子状物質から発生する蛍光X線に基づいて前記粒子状物質の成分分析を行う分析装置であって、
    大気雰囲気中において、前記粒子状物質を励起して蛍光X線を発生させる一次X線を照射する照射部と、
    前記1次X線を照射することにより発生し、前記大気雰囲気中を通過する二次X線強度を検出する検出部と、
    前記大気雰囲気を定義する環境パラメータを測定する環境測定部と、
    第1のタイミングにおける前記環境測定部で測定された第1の環境パラメータと、前記第1のタイミングにおける前記検出部で検出された第1の二次X線強度と、前記第1のタイミングより所定時間前である第2のタイミングにおける前記環境測定部で測定された第2の環境パラメータと、前記第2のタイミングにおける前記検出部で検出された第2の二次X線強度と、に基づいて、前記第1のタイミングと前記第2のタイミングとの間の経時的な二次X線強度の変化量又は変化率を算出する経時変化量算出部と、
    を備える分析装置。
  2. 前記粒子状物質を捕集するための捕集フィルタをさらに備え、
    前記第1の二次X線強度及び前記第2の二次X線強度は、前記捕集フィルタの無捕集領域に前記一次X線を照射することにより発生する散乱二次X線である、請求項1に記載の分析装置。
  3. 粒子状物質に励起X線を照射することにより発生する蛍光X線に基づいて前記粒子状物質の成分分析を行う分析装置の校正方法であって、
    第1のタイミングにおいて、第1の環境パラメータを測定するステップと、
    前記第1のタイミングにおいて、第1の二次X線強度を測定するステップと、
    前記第1のタイミングより所定時間前である第2のタイミングにおいて、第2の環境パラメータを測定するステップと、
    前記第2のタイミングにおいて、第2の二次X線強度を測定するステップと、
    前記第1の環境パラメータと、前記第1の二次X線強度と、前記第2の環境パラメータと、前記第2の二次X線強度とに基づいて、第1のタイミングと第2のタイミングとの間の経時的な二次X線強度の変化量又は変化率を算出するステップと、
    を備える校正方法。
JP2014104789A 2014-05-20 2014-05-20 分析装置及び校正方法 Active JP6412340B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014104789A JP6412340B2 (ja) 2014-05-20 2014-05-20 分析装置及び校正方法
CN201510257968.7A CN105092624B (zh) 2014-05-20 2015-05-19 分析装置和校正方法
US14/715,812 US9594037B2 (en) 2014-05-20 2015-05-19 Analyzing apparatus and calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014104789A JP6412340B2 (ja) 2014-05-20 2014-05-20 分析装置及び校正方法

Publications (2)

Publication Number Publication Date
JP2015219199A true JP2015219199A (ja) 2015-12-07
JP6412340B2 JP6412340B2 (ja) 2018-10-24

Family

ID=54778671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104789A Active JP6412340B2 (ja) 2014-05-20 2014-05-20 分析装置及び校正方法

Country Status (1)

Country Link
JP (1) JP6412340B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106873A (ja) * 2015-12-11 2017-06-15 株式会社堀場製作所 分析装置、分析方法、及びプログラム
WO2018117146A1 (ja) * 2016-12-20 2018-06-28 株式会社堀場製作所 分析装置、分析システム、分析方法、及びプログラム
KR20190027940A (ko) * 2016-08-19 2019-03-15 가부시끼가이샤 이시다 X선 검사 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786030A (en) * 1980-11-17 1982-05-28 Idemitsu Kosan Co Ltd Method and apparatus for analysis of fluorescence x-rays
JPS6061649A (ja) * 1983-09-16 1985-04-09 Rigaku Denki Kogyo Kk 螢光x線分析の補正方法
US5721759A (en) * 1994-11-14 1998-02-24 Ima Engineering Ltd. Oy Method and equipment for determining the content of an element
US20050041774A1 (en) * 2003-04-16 2005-02-24 Katsumi Saitoh Particulate matter analyzer, collecting filter and system for analyzing and collecting samples from fluids
JP2005144647A (ja) * 2003-11-19 2005-06-09 Max Co Ltd ステープラーのワンタッチオープン機構
JP2008261712A (ja) * 2007-04-11 2008-10-30 Kimoto Denshi Kogyo Kk 浮遊粒子状物質の測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786030A (en) * 1980-11-17 1982-05-28 Idemitsu Kosan Co Ltd Method and apparatus for analysis of fluorescence x-rays
JPS6061649A (ja) * 1983-09-16 1985-04-09 Rigaku Denki Kogyo Kk 螢光x線分析の補正方法
US5721759A (en) * 1994-11-14 1998-02-24 Ima Engineering Ltd. Oy Method and equipment for determining the content of an element
US20050041774A1 (en) * 2003-04-16 2005-02-24 Katsumi Saitoh Particulate matter analyzer, collecting filter and system for analyzing and collecting samples from fluids
JP2005144647A (ja) * 2003-11-19 2005-06-09 Max Co Ltd ステープラーのワンタッチオープン機構
JP2008261712A (ja) * 2007-04-11 2008-10-30 Kimoto Denshi Kogyo Kk 浮遊粒子状物質の測定装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106873A (ja) * 2015-12-11 2017-06-15 株式会社堀場製作所 分析装置、分析方法、及びプログラム
KR20190027940A (ko) * 2016-08-19 2019-03-15 가부시끼가이샤 이시다 X선 검사 장치
KR102012291B1 (ko) 2016-08-19 2019-08-20 가부시끼가이샤 이시다 X선 검사 장치
WO2018117146A1 (ja) * 2016-12-20 2018-06-28 株式会社堀場製作所 分析装置、分析システム、分析方法、及びプログラム
JPWO2018117146A1 (ja) * 2016-12-20 2019-10-31 株式会社堀場製作所 分析装置、分析システム、分析方法、及びプログラム
US11131639B2 (en) 2016-12-20 2021-09-28 Horiba, Ltd. Analyzer, analysis system, analysis method and program
JP7018404B2 (ja) 2016-12-20 2022-02-10 株式会社堀場製作所 分析装置、分析システム、分析方法、及びプログラム

Also Published As

Publication number Publication date
JP6412340B2 (ja) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6325338B2 (ja) 分析装置及び校正方法
US20150338357A1 (en) Analyzing apparatus and calibration method
US9746433B2 (en) X-ray fluorescence spectrometer and X-ray fluorescence analyzing method
JP2011099749A (ja) 濃度計測方法及び蛍光x線分析装置
US9945796B2 (en) X-ray fluorescence analysis method and X-ray fluorescence analysis system
JP6412340B2 (ja) 分析装置及び校正方法
JP2015219198A (ja) 分析装置及び校正方法
JP2014021124A (ja) 合成されたスペクトルデータを用いた分光法
JP4928938B2 (ja) 蛍光x線分析方法および蛍光x線分析装置
JP6009963B2 (ja) 試料分析方法および試料分析装置
JP2015219200A (ja) 分析装置及び校正方法
JP2012508379A (ja) X線検出器のシェーピング時間の動的変更
JP2019109201A (ja) 蛍光x線分析装置および分析方法
JP2019158560A (ja) 蛍光x線分析方法、蛍光x線分析装置またはプログラム
JP6655971B2 (ja) 分析装置、分析方法、及びプログラム
JP2017102008A (ja) 微小粒子状物質分析装置
JP2014041065A (ja) X線分析装置及びコンピュータプログラム
JP2012163489A (ja) 蛍光x線分析装置
JP7328135B2 (ja) X線分析装置、分析方法、及びプログラム
JP6613219B2 (ja) 走査型顕微鏡
WO2023210137A1 (ja) 蛍光x線分析方法および蛍光x線分析装置
JP2019090652A (ja) 分析装置
JP5517356B2 (ja) 蛍光x線分析方法及び蛍光x線分析装置
JP7126928B2 (ja) 表面分析装置および表面分析方法
CN115038959B (zh) 荧光x射线分析装置、判断方法和判断程序

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180928

R150 Certificate of patent or registration of utility model

Ref document number: 6412340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250