WO2023210137A1 - 蛍光x線分析方法および蛍光x線分析装置 - Google Patents
蛍光x線分析方法および蛍光x線分析装置 Download PDFInfo
- Publication number
- WO2023210137A1 WO2023210137A1 PCT/JP2023/006695 JP2023006695W WO2023210137A1 WO 2023210137 A1 WO2023210137 A1 WO 2023210137A1 JP 2023006695 W JP2023006695 W JP 2023006695W WO 2023210137 A1 WO2023210137 A1 WO 2023210137A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- tube current
- dead time
- sample
- fluorescent
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000002441 X-ray diffraction Methods 0.000 title claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 76
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 230000001769 paralizing effect Effects 0.000 claims description 25
- 238000004876 x-ray fluorescence Methods 0.000 claims description 20
- 238000004458 analytical method Methods 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 12
- 239000000470 constituent Substances 0.000 claims description 8
- 206010033799 Paralysis Diseases 0.000 abstract description 4
- 239000000523 sample Substances 0.000 description 78
- 238000003384 imaging method Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 102220492605 Numb-like protein_S17A_mutation Human genes 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/223—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
Definitions
- the present disclosure relates to an X-ray fluorescence analysis method and an X-ray fluorescence analysis apparatus.
- Fluorescent X-ray analysis is an analysis method that analyzes the constituent elements of a sample by irradiating the sample with X-rays and measuring the fluorescent X-rays emitted from the sample.
- a counting circuit that counts output pulses from an X-ray detector is used to measure fluorescent X-rays.
- a variable attenuator is used to reduce the dead time of the counting circuit that counts the output pulses of the X-ray detector. Adjust to the optimal value.
- the fluorescent X-ray analyzer disclosed in the above-mentioned Japanese Patent Application Publication No. 2017-26371 has a problem in that it requires a special variable attenuator that is different from general filters and collimators.
- the present disclosure aims to provide a fluorescent X-ray analysis method and a fluorescent X-ray analyzer that can match the dead time of a counting circuit that counts X-rays to a target value without requiring special parts. do.
- a first aspect of the present disclosure relates to a fluorescent X-ray analysis method for analyzing constituent elements of a sample.
- the X-ray fluorescence analysis method consists of the steps of placing a sample in an X-ray fluorescence analyzer, applying a desired dead time rate to a paralytic model to calculate a reference tube current of the X-ray tube, and calculating the reference tube current.
- a fluorescent X-ray analyzer includes a sample stage on which a sample is placed, an X-ray tube configured to irradiate X-rays toward the sample stage, and detects fluorescent X-rays emitted from the sample on the sample stage. It includes a detector and a control device that controls the X-ray tube and the detector. The controller applies a desired dead time rate to the paralytic model to calculate a reference tube current of the X-ray tube, determines a measurement tube current of the X-ray tube based on the reference tube current, and calculates a measurement tube current of the X-ray tube based on the reference tube current. It is configured to flow an electric current through the X-ray tube, irradiate the sample with X-rays, and analyze the fluorescent X-rays detected by the detector.
- the X-ray fluorescence analysis method and the X-ray fluorescence analysis apparatus according to the present disclosure perform the actual measurement after determining the tube current by applying a paralysis model, so that it is possible to accurately obtain the desired dead time of the counting circuit. can.
- FIG. 1 is a diagram schematically showing the overall configuration of an X-ray fluorescence analyzer. It is a figure showing the relationship between dead time rate and tube current.
- 3 is a flowchart for explaining a fluorescent X-ray analysis method executed in the first embodiment.
- 3 is a flowchart for explaining tube current adjustment performed by the control device in the first embodiment.
- 7 is a flowchart for explaining a fluorescent X-ray analysis method executed in Embodiment 2.
- FIG. 7 is a flowchart for explaining tube current adjustment performed by a control device in Embodiment 2.
- FIG. 1 is a diagram schematically showing the overall configuration of an X-ray fluorescence analyzer. It is a figure showing the relationship between dead time rate and tube current.
- 3 is a flowchart for explaining a fluorescent X-ray analysis method executed in the first embodiment.
- 3 is a flowchart for explaining tube current adjustment performed by the control device in the first embodiment.
- 7 is a flowchart for explaining a fluorescent
- FIG. 1 is a diagram schematically showing the overall configuration of an X-ray fluorescence analyzer.
- the X-ray fluorescence analyzer 10 shown in FIG. 1 includes a sample chamber 1, a measurement chamber 5, a control device 14, and a display device 16.
- the fluorescent X-ray analyzer 10 is an energy dispersive X-ray fluorescence spectrometer (EDX) that measures the concentration of elements contained in the sample S.
- EDX energy dispersive X-ray fluorescence spectrometer
- the sample chamber 1 is equipped with a sample stage 2 at the bottom.
- a circular opening 4 is formed in the sample stage 2 .
- a sample S is placed on the sample stage 2 so as to cover the opening 4 .
- the sample S has a front surface SA having a measurement position and a back surface SB located on the opposite side to the front surface SA. During measurement, the sample S is placed on the sample stage 2 so that the measurement position of the surface SA is exposed through the opening 4.
- the measurement chamber 5 is equipped with an X-ray tube 7 and a detector 8 on its wall surface 6.
- the X-ray tube 7 irradiates the sample S with primary X-rays.
- the X-ray tube 7 has a filament that emits thermoelectrons and a target that converts the thermoelectrons into predetermined primary X-rays and emits them.
- the primary X-rays emitted by the X-ray tube 7 are irradiated onto the measurement position of the sample S through the opening 4.
- Secondary X-rays (fluorescent X-rays) emitted by the sample S enter the detector 8, and the energy and intensity of the fluorescent X-rays are measured.
- a shutter 9, a primary X-ray filter 11, and a collimator 13 are installed in the measurement chamber 5.
- the shutter 9, the primary X-ray filter 11, and the collimator 13 are configured to be slidable in a direction perpendicular to the paper plane of FIG. 1 by a drive mechanism 12.
- the shutter 9 is made of an X-ray absorbing material such as lead, and can be inserted into the optical path of the primary X-rays to block the primary X-rays when necessary.
- the primary X-ray filter 11 is formed of a metal foil selected according to the purpose, and attenuates the background component of the primary X-rays emitted from the X-ray tube 7 to produce necessary characteristic X-rays. improve the S/N ratio of In an actual device, a plurality of primary X-ray filters 11 made of different types of metal are used, and the primary X-ray filter 11 selected according to the purpose is driven by a drive mechanism 12 to inserted into the optical path of the line.
- the collimator 13 is an aperture with a circular opening in the center, and determines the size of the primary X-ray beam that irradiates the sample S.
- the collimator 13 is made of an X-ray absorbing material such as lead or brass.
- a plurality of collimators 13 having different opening diameters are arranged in parallel in a direction perpendicular to the plane of the paper in FIG. inserted onto the beamline.
- An imaging unit 20 is installed at the bottom of the measurement chamber 5 in order to observe the measurement position of the sample S before or during measurement. That is, the imaging unit 20 is arranged to face the surface SA of the sample S, and is configured to image the measurement position of the sample S through the opening 4 formed in the sample stage 2.
- the user performing the fluorescent X-ray analysis displays the image acquired by the imaging unit 20 on the display device 16, and adjusts the measurement position of the sample S while viewing this image. Furthermore, when managing the measurement results of fluorescent X-rays, the image data of the measurement position is used as an identifier and stored and managed in association with the measurement results.
- the control device 14 is mainly configured with a CPU (Central Processing Unit) 141, which is an arithmetic processing unit.
- a CPU Central Processing Unit
- a personal computer or the like can be used as the control device 14.
- An X-ray tube 7 , a detector 8 , an imaging section 20 , and a display device 16 are connected to the control device 14 .
- the control device 14 controls the measurement by the fluorescent X-ray analyzer 10 based on measurement conditions inputted through input units such as a keyboard, a mouse, and a touch panel (not shown) that are integrally configured with the display screen of the display device 16. Control. Specifically, the control device 14 controls the tube voltage, tube current, irradiation time, etc. in the X-ray tube 7, and drives each of the shutter 9, the primary X-ray filter 11, and the collimator 13 by the drive mechanism 12. .
- the control device 14 also acquires the secondary X-rays detected by the detector 8 and image data from the imaging unit 20.
- the control device 14 performs quantitative analysis of each element based on the spectrum of the secondary X-rays detected by the detector 8.
- the display device 16 displays images according to the data sent from the control device 14.
- the display device 16 is configured by, for example, an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence).
- the display device 16 can display images of the sample S captured by the imaging section 20 as well as images generated by the control device 14 .
- the display device 16 can also display the analysis results by the control device 14 together with identification information for identifying the sample S (product name, product number, measurement position, etc.).
- the control device 14 includes a CPU 141, a memory 142 that stores programs and data, and a counting circuit 143 that counts secondary X-rays.
- the memory 142 includes ROM (Read Only Memory), RAM (Random Access Memory), and SSD (Solid State Drive).
- An HDD (Hard Disk Drive) may be included instead of the SSD.
- the ROM stores programs executed by the CPU 141.
- the RAM functions as a temporary data memory that temporarily stores data used during execution of a program by the CPU 141 and is used as a work area.
- the SSD is a nonvolatile storage device that stores measurement results by the X-ray fluorescence analyzer 10, image data acquired by the imaging unit 20, and information generated by image processing of the image data.
- Dead time of counting circuit It is known that dead time exists in the counting circuit 143 that counts secondary X-rays. The dead time is the time required from when the counting circuit 143 detects a certain event (incidence of X-rays to the detector) until it detects the next event.
- Some fluorescent X-ray analyzers are equipped with a measurement mode that adjusts the tube current so that the dead time rate [%] is constant.
- tube current and dead time rate changes depending on the optical system (tube, detector, distance, etc.), signal processing (Peaking Time, Flat Top, etc.), and sample condition (weight, base material, etc.).
- the user specifies the dead time rate [%] in response to a request from the screen of the display device 16. Then, the control device 14 (firmware) sets the estimated tube current based on the relational expression and obtains the actual value of the dead time rate [%]. The dead time rate is calculated by the control device as the ratio between uncounted dead time and real time. The control device 14 adjusts the tube current so that the dead time rate falls within a certain range ( ⁇ 1%), and then starts measurement with the tube current constant.
- the dead time rate increases.
- the amount of X-ray signal increases and the actual dead time rate becomes higher than the target dead time rate, so the tube current need to be reduced.
- PeakingTime is shortened, the counting rate increases and the dead time rate decreases, which results in an increase in tube current.
- the sample amount decreases, so it is necessary to increase the tube current. If the base material of the sample is a light element, the amount of X-rays transmitted will increase and the overall X-ray intensity from the sample may decrease, making it necessary to increase the tube current.
- tube current and dead time rate [%] depends on the optical system (tube, detector, distance, etc.), signal processing (PeakingTime, Flat topTime, etc.), and sample condition (weight, base material, etc.) There is. Therefore, the relationship between tube current and dead time rate [%] changes depending on the version of the device and the condition of the sample.
- the control device 14 acquires the values of the tube current A and the dead time rate DT [%] at one or more points as a preliminary measurement for each measurement, and performs calculations to be described later.
- the parameter "a" is calculated by:
- FIG. 2 is a diagram showing the relationship between dead time rate and tube current.
- a circle mark ( ⁇ ) indicates an actual measured value
- a triangle mark ( ⁇ ) indicates a case estimated using a paralytic model
- a square mark ( ⁇ ) indicates a case estimated using a quadratic approximation formula.
- the dead time rate DT is 50% in the case of the quadratic equation approximation, whereas in the case of the quadratic equation approximation explained in the study example, the dead time rate DT is in good agreement with the measured values in all regions. A deviation from the actual value can be seen from around the point where the value exceeds .
- Equation (2) which will be described later, may be modified from a high dead time rate and a recorded count rate m to obtain a high true count rate n to increase sensitivity.
- FIG. 3 is a flowchart for explaining the fluorescent X-ray analysis method executed in the first embodiment.
- the user analyzes the constituent elements of the sample using the fluorescent X-ray analysis method described below.
- step S1 a user places a sample S to be analyzed in the fluorescent X-ray analyzer 10.
- step S2 the control device 14 preliminarily irradiates the sample S with X-rays from the X-ray tube 7, calculates the dead time rate DT corresponding to the irradiated X-rays, and calculates the parameters of the paralytic model. Calculate a.
- the calculation of the parameter a by the X-ray irradiation at this time is defined as a preliminary measurement.
- step S3 the control device 14 applies the desired dead time rate DT given by the user to the above-mentioned equation of the paralytic model incorporating the parameter a to determine the reference tube current of the X-ray tube 7. calculate.
- step S4 the control device 14 determines the measurement tube current of the X-ray tube 7 based on the reference tube current calculated in step S3, and causes the measurement tube current to flow through the X-ray tube 7 to the sample S. Irradiates with X-rays. The irradiation of X-rays at this time and the detection of fluorescent X-rays by the detector 8 using the X-rays are referred to as the main measurement.
- step S5 the control device 14 irradiates the sample S with X-rays and analyzes the obtained fluorescent X-rays. The control device 14 then displays the analysis results on the display device 16.
- the paralytic model used in step S2 is expressed by the following equation as described above, where A is the reference tube current, DT is the dead time rate, and a is the predetermined parameter.
- A a*ln(100/(100-DT))
- the parameter a can be calculated by obtaining the combination (DT, A) of the dead time rate DT [%] and the tube current A at one or more points in a preliminary measurement and performing the calculation described below.
- the relationship between the true count rate n (ICR: Input Count Rate), the recorded count rate m (OCR: Output Count Rate), and the dead time ⁇ is expressed by the following formula (1)
- the dead time rate DT [%] is expressed by the following formula (2).
- Parameter a is calculated from the combination (DT 1 , A 1 ) of tube current A and dead time rate DT. First, equation (11) is transformed to obtain equation (12).
- Equation (13) is obtained by applying (DT 1 , A 1 ) to Equation (12).
- a is calculated by the least squares method. In this case, a is determined so that the sum of squared errors is minimized.
- equations (16) and (17) are obtained.
- FIG. 4 is a flowchart for explaining tube current adjustment performed by the control device in the first embodiment.
- SW indicates software
- FW indicates firmware
- FPGA Field-Programmable Gate Array
- FIG. 4 is merely an example.
- step S11 the user inputs a desired dead time rate DT that meets the measurement conditions into the control device 14.
- the control device 14 registers the measurement conditions in the analysis schedule and starts measurement in step S13.
- the control device 14 executes a preliminary measurement to obtain the parameter a of the paralytic model in step S14.
- the preliminary measurement one to three combinations of tube current A and dead time rate DT are obtained, and a parameter a that determines the relationship between dead time rate DT and tube current A is calculated.
- This parameter a may vary depending on the amount of sample, the type of sample, the optical system, and the signal processing system. Therefore, although not necessarily limited, it is preferable that the frequency of calculating the parameter a is calculated every time the sample S is placed on the sample stage.
- the tube current A is determined after automatic adjustment.
- the tube current A estimated from the dead time rate DT is set from FW (firmware), ICR and OCR are acquired from the FPGA (S15), and the dead time rate DT in the preliminary measurement is calculated (S16).
- step S17 the parameter a is calculated by substituting the tube current A specified in the preliminary measurement and the calculated dead time rate DT into equation (13) or equations (16) and (17).
- the calculated tube current A is passed through the X-ray tube 7 in step S19, the ICR and OCR are acquired from the FPGA (S20), and the dead time rate DT is calculated after determining the parameter a in the preliminary measurement (S21). ).
- step S22 the difference between the dead time rate DT set in step S11 and the dead time rate DT calculated in step S21 is calculated. If the deviation is larger than the threshold value (for example, 1%) (NO in S22), the tube current A is adjusted in step S23. However, if an attempt is made to set the upper limit current (for example, 1000 ⁇ A), the measurement is aborted or the measurement is performed at the upper limit current.
- the threshold value for example, 1%)
- step S24 If the deviation becomes smaller than the threshold (YES in S22), the main measurement is performed in step S24 using the tube current A determined up to that point. Then, the spectrum of the fluorescent X-rays emitted from the sample S is acquired (steps S25 to S27), and the analysis results are displayed on the display device 16.
- the relational expression between the tube current A and the dead time rate DT [%] can be determined experimentally each time.
- Tube current A can be automatically adjusted without recalculating it.
- the parameter a can be dynamically adjusted and the tube current A can be quickly and automatically adjusted.
- parameter a was calculated using equation (16). It is also possible to directly calculate the inter-target current value for obtaining the target dead time rate.
- a 1 A 2 *ln(100/(100-DT 1 ))/ln(100/(100-DT 2 ))...(19)
- the parameter a disappears, and the tube current can be predicted from the dead time DT, regardless of the primary filter, sample material, collimator, etc.
- FIG. 5 is a flowchart for explaining the fluorescent X-ray analysis method executed in the second embodiment.
- the process of step S2A is executed instead of step S2 of the flowchart shown in FIG.
- step S2A calculation of parameter a is not necessary.
- FIG. 6 is a flowchart for explaining tube current adjustment performed by the control device in the second embodiment.
- the process in step S17A is executed instead of steps S17 and S18 in the flowchart shown in FIG.
- step S17 the preliminary measurement DT obtained in step S16 is substituted into DT 2 in equation (19) to obtain tube current A 1 corresponding to target dead time DT 1 .
- the parameter a of the paralytic model there is no need to calculate the parameter a of the paralytic model.
- the first aspect of the present disclosure relates to a fluorescent X-ray analysis method for analyzing constituent elements of a sample.
- the X-ray fluorescence analysis method consists of the steps of placing a sample in an X-ray fluorescence analyzer, applying a desired dead time rate to a paralytic model to calculate a reference tube current of the X-ray tube, and calculating the reference tube current.
- the fluorescent X-ray analysis method includes the step of preliminarily irradiating the sample with X-rays from an X-ray tube and calculating the parameters. Furthermore, it is equipped with. In the step of calculating the reference tube current, a desired dead time rate is applied to the paralytic model incorporating the parameters to calculate the reference tube current.
- the fluorescent X-ray analysis method includes a dead time period in which a preliminary test tube current is passed through the X-ray tube to irradiate the sample with X-rays. further comprising the step of measuring.
- the reference tube current is denoted by A1
- the desired dead time rate is denoted by DT1
- the preliminary test tube current is denoted by A2
- the dead time rate measured by applying the preliminary test tube current is denoted by DT2 .
- the step of irradiating the X-rays includes passing a reference tube current through the X-ray tube to irradiate the sample with X-rays, and increasing the dead time rate. is calculated, and the reference tube current is adjusted based on the difference between the calculated dead time rate and the desired dead time rate to determine the measurement tube current.
- a fluorescent X-ray analyzer that analyzes constituent elements of a sample.
- a fluorescent X-ray analyzer includes a sample stage on which a sample is placed, an X-ray tube configured to irradiate X-rays toward the sample stage, and detects fluorescent X-rays emitted from the sample on the sample stage. It includes a detector and a control device that controls the X-ray tube and the detector.
- the controller applies a desired dead time rate to the paralytic model to calculate a reference tube current of the X-ray tube, determines a measurement tube current of the X-ray tube based on the reference tube current, and calculates a measurement tube current of the X-ray tube based on the reference tube current. It is configured to flow an electric current through the X-ray tube, irradiate the sample with X-rays, and analyze the fluorescent X-rays detected by the detector.
- the paralytic model is such that the tube current is denoted by A, the dead time rate is denoted by DT, and the predetermined parameter is denoted by a.
- A a*ln(100/(100-DT)).
- the control device preliminarily irradiates the sample with X-rays from the X-ray tube, calculates the parameters, and incorporates the parameters. Calculate the reference tube current by applying the desired dead time rate to the sluice model.
- the control device causes a preliminary test tube current to flow through the X-ray tube to irradiate the sample with X-rays and measure the dead time rate. do.
- the reference tube current is denoted by A1
- the desired dead time rate is denoted by DT1
- the preliminary test tube current is denoted by A2
- the dead time rate measured by applying the preliminary test tube current is denoted by DT2 .
- the control device causes a reference tube current to flow through the X-ray tube to irradiate the sample with X-rays, and calculates a dead time rate;
- the measurement tube current is determined by adjusting the reference tube current based on the difference between the calculated dead time rate and the desired dead time rate.
- the X-ray fluorescence analyzer according to Item 6 preferably includes at least one of an X-ray filter and a collimator arranged on the X-ray irradiation path from the X-ray tube to the sample stage. At least one of the X-ray filter and the collimator is configured such that the element used for analysis can be selected from among a plurality of types of elements.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
蛍光X線分析方法は、試料を蛍光X線分析装置に配置するステップ(S1)と、所望のデッドタイム率をまひ型モデルに適用して、X線管の基準管電流を算出するステップ(S3)と、基準管電流に基づいてX線管の測定用管電流を決定し、測定用管電流をX線管に流して試料にX線を照射するステップ(S4)と、X線を試料に照射して得られた蛍光X線を分析するステップ(S5)とを備える。これにより、計数回路の所望のデッドタイムを精度良く得ることができる。
Description
本開示は、蛍光X線分析方法および蛍光X線分析装置に関する。
蛍光X線分析とは、試料に対してX線を照射し、試料から発せられる蛍光X線を測定することで試料の構成元素を分析する分析法である。蛍光X線の測定には、X線検出器の出力パルスを計数する計数回路が使用される。
たとえば、特開2017-26371号公報(特許文献1)に開示された蛍光X線分析装置では、可変アッテネータを用いてX線検出器の出力パルスを計数する計数回路のデッドタイム(不感時間)を最適な値に調整する。
上記の特開2017-26371号公報に開示された蛍光X線分析装置では、一般的なフィルタおよびコリメータとは異なる、特殊な可変アッテネータを必要とするという問題がある。
本開示は、特殊な部品を必要とせずに、X線を計数する計数回路のデッドタイムを目標値に合わせることが可能な蛍光X線分析方法および蛍光X線分析装置を提供することを目的とする。
本開示の第1の態様は、試料の構成元素を分析する蛍光X線分析方法に関する。蛍光X線分析方法は、試料を蛍光X線分析装置に配置するステップと、所望のデッドタイム率をまひ型モデルに適用して、X線管の基準管電流を算出するステップと、基準管電流に基づいてX線管の測定用管電流を決定し、測定用管電流をX線管に流して試料にX線を照射するステップと、X線を試料に照射して得られた蛍光X線を分析するステップとを備える。
本開示の他の局面は、試料の構成元素を分析する蛍光X線分析装置に関する。蛍光X線分析装置は、試料を配置する試料台と、試料台に向けてX線を照射するように構成されたX線管と、試料台上の試料から放出される蛍光X線を検出する検出器と、X線管および検出器を制御する制御装置とを備える。制御装置は、所望のデッドタイム率をまひ型モデルに適用して、X線管の基準管電流を算出し、基準管電流に基づいてX線管の測定用管電流を決定し、測定用管電流をX線管に流して試料にX線を照射し、検出器で検出された蛍光X線を分析する、ように構成される。
本開示における蛍光X線分析方法および蛍光X線分析装置は、まひ型モデルを適用して管電流を決定してから、本測定を行なうので、計数回路の所望のデッドタイムを精度良く得ることができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
図1は、蛍光X線分析装置の全体の構成を概略的に示す図である。図1に示す蛍光X線分析装置10は、試料室1と、測定室5と、制御装置14と、表示装置16とを備える。
蛍光X線分析装置10は、試料S中に含まれる元素の濃度を測定するエネルギー分散型(Energy Dispersive X-ray Fluorescence Spectrometer;EDX)の蛍光X線分析装置である。試料室1および測定室5内部の空間は、筐体3によって気密性を有するように囲まれており、必要に応じて内部を真空に保つことができる。
試料室1は、底部に試料台2を備えている。試料台2には、円形状の開口部4が形成されている。開口部4を覆うように、試料台2上に試料Sが載置される。試料Sは、測定位置を有する表面SAと、表面SAとは反対側に位置する裏面SBとを有する。測定時、試料Sは、表面SAの測定位置が開口部4から露出するように試料台2上に載置される。
測定室5は、その壁面6にX線管7と、検出器8とを備えている。X線管7は試料Sに向けて1次X線を照射する。X線管7は、熱電子を出射するフィラメントと、熱電子を所定の1次X線に変換して出射するターゲットとを有する。X線管7が出射した1次X線は、開口部4を通じて試料Sの測定位置に照射される。試料Sが発した2次X線(蛍光X線)は検出器8に入射し、蛍光X線のエネルギーおよび強度が測定される。
測定室5には、シャッター9、1次X線フィルタ11およびコリメータ13が設置されている。シャッター9、1次X線フィルタ11およびコリメータ13は駆動機構12によって、図1の紙面に垂直な方向にスライド可能に構成されている。
シャッター9は、鉛などのX線吸収材で形成されており、必要なときに1次X線の光路に挿入して1次X線を遮蔽することができる。
1次X線フィルタ11は、目的に応じて選択された金属箔によって形成されており、X線管7から発せられる1次X線のうちのバックグラウンド成分を減衰して、必要な特性X線のS/N比を向上させる。実際の装置では、互いに異なる種類の金属で形成された複数枚の1次X線フィルタ11が使用されており、目的に応じて選択された1次X線フィルタ11が駆動機構12によって1次X線の光路に挿入される。
コリメータ13は、中央に円形状の開口を有するアパーチャ―であり、試料Sを照射する1次X線のビームの大きさを決定する。コリメータ13は、鉛、黄銅などのX線吸収材により形成される。実際の装置では、開口径が互いに異なる複数枚のコリメータ13が、図1の紙面に垂直な方向に並設されており、目的に応じて選択されたコリメータ13が駆動機構12によって1次X線ビームライン上に挿入される。
試料Sの測定位置を測定前または測定中に観察するために、測定室5の下部に撮像部20が設置されている。すなわち、撮像部20は、試料Sの表面SAに対向して配置されており、試料台2に形成された開口部4を通して試料Sの測定位置を撮像するように構成されている。
測定前には、蛍光X線分析を行なうユーザは、この撮像部20により取得された画像を表示装置16に表示させ、この画像を見ながら試料Sの測定位置を調整する。また、蛍光X線の測定結果を管理する際には、測定位置の画像データを識別子として、測定結果と対応付けて保存および管理している。
制御装置14は、演算処理部であるCPU(Central Processing Unit)141を主体として構成される。制御装置14には、たとえばパーソナルコンピュータなどを利用することができる。制御装置14にはX線管7、検出器8、撮像部20および表示装置16が接続される。
制御装置14は、図示しないキーボード、マウス、および、表示装置16の表示画面と一体的に構成されたタッチパネルなどの入力部によって入力された測定条件に基づいて、蛍光X線分析装置10による測定を制御する。具体的には、制御装置14は、X線管7における管電圧、管電流および照射時間などを制御するとともに、シャッター9、1次X線フィルタ11およびコリメータ13の各々を駆動機構12によって駆動する。
制御装置14は、また、検出器8により検出された2次X線、および撮像部20の画像データを取得する。制御装置14は、検出器8で検出された2次X線のスペクトルに基づいて各元素の定量分析を行なう。
表示装置16は、制御装置14から送信されるデータに従う画像を表示する。表示装置16は、たとえばLCD(Liquid Crystal Display)または有機EL(Electro Luminescence)により構成される。表示装置16は、撮像部20で撮像された試料Sの画像の他、制御装置14で生成された画像を表示することができる。表示装置16は、また、制御装置14による分析結果を、試料Sを識別するための識別情報(製品名、品番、測定位置など)とともに表示することができる。
制御装置14は、CPU141と、プログラムおよびデータを格納するメモリ142と、二次X線を計数する計数回路143とを備える。メモリ142は、ROM(Read Only Memory)、RAM(Random Access Memory)およびSSD(Solid State Drive)を含む。SSDに代えてHDD(Hard Disk Drive)を含んでもよい。
ROMは、CPU141にて実行されるプログラムを格納する。RAMは、CPU141におけるプログラムの実行中に利用されるデータを一時的に格納し、作業領域として利用される一時的なデータメモリとして機能する。SSDは、不揮発性の記憶装置であり、蛍光X線分析装置10による測定結果、撮像部20によって取得された画像データ、および当該画像データの画像処理で生成された情報を格納する。
[計数回路のデッドタイム]
二次X線を計数する計数回路143には、デッドタイム(不感時間:DeadTime)が存在することが知られている。不感時間とは、計数回路143がある事象(X線の検出器への入射)を検出してから次の事象を検出するまでに必要な時間である。
二次X線を計数する計数回路143には、デッドタイム(不感時間:DeadTime)が存在することが知られている。不感時間とは、計数回路143がある事象(X線の検出器への入射)を検出してから次の事象を検出するまでに必要な時間である。
蛍光X線分析装置では、デッドタイム率[%]が一定になるように管電流を調整する測定モードを搭載していることがある。
ただし、光学系(管球、検出器、距離など)、信号処理(PeakingTime、Flat topなど)、試料の状態(重量、母材など)によって、管電流とデッドタイム率の関係は変化する。
[検討例]
たとえば、管電流とデッドタイム率の関係を二次式で近似することが考えられる(検討例)。検討例では、設定した管電流と、その管電流を流した場合に検出器8で検出されたX線量の関係から算出したデッドタイム率[%]とを含むデータを取得する。メーカーが実験により何点か管電流を変えてデータを取得し、2次式で近似した関係式を求め、メーカーが固定した関係式がファームウエアで制御装置14に実装される。管電流をY[μA]、デッドタイム率をX[%]で示すと、検討例における関係式は下式のように表わされる。
Y=k1X2+k2X+k3
ユーザは表示装置16の画面からの要求に応じてデッドタイム率[%]を指定する。すると、制御装置14(ファームウエア)が関係式に基づいて推定の管電流を設定し、デッドタイム率[%]の実測値を得る。デッドタイム率は、計数していない不感時間と実時間の比率を制御装置で算出する。制御装置14は、デッドタイム率がある範囲(±1%)に入るように、管電流を調整した後、管電流一定で測定を開始する。
たとえば、管電流とデッドタイム率の関係を二次式で近似することが考えられる(検討例)。検討例では、設定した管電流と、その管電流を流した場合に検出器8で検出されたX線量の関係から算出したデッドタイム率[%]とを含むデータを取得する。メーカーが実験により何点か管電流を変えてデータを取得し、2次式で近似した関係式を求め、メーカーが固定した関係式がファームウエアで制御装置14に実装される。管電流をY[μA]、デッドタイム率をX[%]で示すと、検討例における関係式は下式のように表わされる。
Y=k1X2+k2X+k3
ユーザは表示装置16の画面からの要求に応じてデッドタイム率[%]を指定する。すると、制御装置14(ファームウエア)が関係式に基づいて推定の管電流を設定し、デッドタイム率[%]の実測値を得る。デッドタイム率は、計数していない不感時間と実時間の比率を制御装置で算出する。制御装置14は、デッドタイム率がある範囲(±1%)に入るように、管電流を調整した後、管電流一定で測定を開始する。
しかし、上記の関係式(二次式近似)では、デッドタイム率が所望の範囲に入らない場合および、所望の範囲に到達するために調整に時間を要する場合がある。
たとえば、試料から放射される蛍光X線(二次X線)の線量が多いとデッドタイム率が増加する。目標デッドタイム率(たとえば、DT=40%)に対して実際のデッドタイム率を一致させる場合を考える。管球と試料との間の距離、および試料と検出器との間の距離が短くなると、X線信号量が増えて実際のデッドタイム率が目標デッドタイム率に対して高くなるので、管電流を減らす必要がある。また、PeakingTimeを短くすると計数率が上がり、デッドタイム率が下がるため、管電流を増やすことになる。
また、試料量が減るとX線強度全体が下がるため、管電流を増やす必要がある。試料の母材が軽元素だとX線透過量が増え、試料からのX線強度全体が減る可能性があり、管電流を増やす必要がある。
管電流とデッドタイム率[%]の関係は、光学系(管球、検出器、距離など)、信号処理(PeakingTime、Flat topTimeなど)、試料の状態(重量、母材など)に依存している。このため、装置のバージョンアップおよび試料の状態により管電流とデッドタイム率[%]の関係は変わる。
上記に示したような二次式である関係式をファームウエアに記憶し、固定の関係式にする場合、装置のバージョンアップのたびに、実験で関係式を再取得しファームウエアに反映する必要がある。また、試料の状態が変わった場合は、固定の式ではフィードバックによる電流調整がすぐに収束せず、分析に時間がかかる可能性がある。
[実施の形態1]
[まひ型モデルの適用]
そこで、本実施の形態では、まひ型モデル(拡張死時間モデル、1個のパルスを出力したあと、不感時間以内に次のX線が入射して計数システムが信号を出力するとパルスがつながる応答)を採用し、管電流とデッドタイム率[%]との間の関係式の計数であるパラメータ“a”を予備測定から計算する方法を提案する。
[まひ型モデルの適用]
そこで、本実施の形態では、まひ型モデル(拡張死時間モデル、1個のパルスを出力したあと、不感時間以内に次のX線が入射して計数システムが信号を出力するとパルスがつながる応答)を採用し、管電流とデッドタイム率[%]との間の関係式の計数であるパラメータ“a”を予備測定から計算する方法を提案する。
管電流Aとデッドタイム率DT[%]との間には、まひ型モデルの場合以下の式が成り立つ。
A=a*ln(100/(100-DT))
ただし、“a”はパラメータを示す。“a”は最大OCR(Output Count Rate:計測した計数率)を与える場合の管電流に相当する。
A=a*ln(100/(100-DT))
ただし、“a”はパラメータを示す。“a”は最大OCR(Output Count Rate:計測した計数率)を与える場合の管電流に相当する。
そして、制御装置14は、実際の計測に先立って、計測1回ごとに予備測定で1点以上、管電流Aとデッドタイム率DT[%]の値を取得し、後に説明する計算を行なうことにより、パラメータ“a”を算出する。
図2は、デッドタイム率と管電流との関係を示した図である。丸印(○)は、実測値を示し、三角印(△)はまひ型モデルで推定した場合を示し、四角印(□)は、二次式近似の式を用いて推定した場合を示す。まひ型モデルは、管電流A=10μA、100μAの2点のデータからパラメータaを決定したモデルである。二次式は、デッドタイム率DT=49%までのデータを用いて近似して求めたモデルである。
図2に示されるように、まひ型モデルでは、全領域について、実測値と良く一致しているのに対し、検討例で説明した二次式近似の場合には、デッドタイム率DTが50%を超えるあたりから実測値と乖離が見られる。
本実施の形態によれば、所望のデッドタイム率DTを50%以上にした場合であっても、それを実現する管電流Aが精度良く推定できる。高いデッドタイム率と記録された計数率mから後述する式(2)を変形して、高い真の計数率nを得て感度を高めることがある。
図3は、実施の形態1において実行される蛍光X線分析方法を説明するためのフローチャートである。ユーザは、以下に示す蛍光X線分析方法によって試料の構成元素を分析する。
図1および図3を参照して、蛍光X線分析方法の流れを説明する。まず、ステップS1において、ユーザが、分析したい試料Sを蛍光X線分析装置10に配置する。
続いて、ステップS2において、制御装置14がX線管7から予備的に試料SにX線を照射して、照射されたX線に対応するデッドタイム率DTを算出し、まひ型モデルのパラメータaを算出する。このときのX線の照射によるパラメータaの算出を予備測定とする。
続いて、ステップS3において、制御装置14が、パラメータaを組み込んだまひ型モデルの前述の式にユーザから与えられた所望のデッドタイム率DTを適用して、X線管7の基準管電流を算出する。
続いて、ステップS4において制御装置14は、ステップS3で算出した基準管電流に基づいてX線管7の測定用管電流を決定し、測定用管電流をX線管7に流して試料SにX線を照射する。このときのX線の照射とそれを用いた検出器8による蛍光X線の検出を本測定とする。
そして、ステップS5において制御装置14は、X線を試料Sに照射して得られた蛍光X線を分析する。そして、制御装置14は分析結果を表示装置16に表示する。
ここで、ステップS2で用いられるまひ型モデルは、基準管電流をAで示し、デッドタイム率をDTで示し、所定のパラメータをaで示すと、前述したように次式で表わされる。
A=a*ln(100/(100-DT))
予備測定で1点以上、デッドタイム率DT[%]と管電流Aとの組み合わせ(DT,A)を取得し、以下に説明する計算を行なうことによって、パラメータaを算出することができる。
A=a*ln(100/(100-DT))
予備測定で1点以上、デッドタイム率DT[%]と管電流Aとの組み合わせ(DT,A)を取得し、以下に説明する計算を行なうことによって、パラメータaを算出することができる。
まひ型モデルの場合は、真の計数率n(ICR:Input Count Rate)、記録された計数率m(OCR:Output Count Rate)、不感時間τの関係は下式(1)で表わされ、デッドタイム率DT[%]は、下式(2)で表わされる。
式(2)に式1を代入して下式(3)が得られる。
管電流を増加させていくと、OCRは最大値を示した後に減少していく。この最大値Imaxocrを与えるときの真の計数率nを1/τとして、式(1)を変形すると、下式(4)、(5)、(6)が得られる。
nは、管電流Aに比例するので比例係数をkとして、n=k*Aおよび、比例係数k=e*Imaxocr/aを式(1)に代入し、式変形すると順次式(7)~(11)が得られる。
管電流Aとデッドタイム率DTの組み合わせ(DT1,A1)からパラメータaを算出する。まず式(11)を変形して式(12)を得る。
式(12)に(DT1,A1)を適用して式(13)が得られる。
なお、管電流Aとデッドタイム率DTの組み合わせのデータが2点(DT1,A1)、(DT2,A2)ある場合には、最小二乗法でaを計算する。この場合、誤差の二乗の和が最小となるようにaを求める。
式(14)においてi=1,2である。誤差を最小とする条件から、式(14)の両辺をaで微分すると、式(15)が得られる。
式(15)を変形して、式(16)、(17)が得られる。
なお、式(16)は、デッドタイム率DTと管電流Aの組み合わせが、(DT1,A1)1つのみの場合は、式(13)と同じになる。また、組み合わせが複数ある場合には、式(16)において、i=1,2,3…と組み合わせの数だけiを増やせば良い。
図4は、実施の形態1において制御装置で実行される管電流の調整について説明するためのフローチャートである。図4のフローチャートにおいて、SWはソフトウエアを示し、FWはファームウエアを示し、FPGA(Field-Programmable Gate Array)は製造後に購入者や設計者が構成を設定できる集積回路を示す。ただし、これらの役割分担については適宜変更可能であり、本実施の形態を限定するものではなく、図4に示される役割分担は一例に過ぎない。
まず、ステップS11において、ユーザが測定条件に合った所望のデッドタイム率DTを制御装置14に入力する。制御装置14は、測定条件を分析スケジュールに登録し、ステップS13において測定を開始する。
測定開始にあたり、制御装置14は、ステップS14において、まひ型モデルのパラメータaを取得するための予備測定を実行する。予備測定では、管電流Aとデッドタイム率DTの組み合わせを1~3点取得して、デッドタイム率DTと管電流Aとの関係を決めるパラメータaを算出する。このパラメータaは、試料の量、試料の種類、光学系、信号処理系によって変わることが考えられる。したがって、必ずしも限定するものではないが、パラメータaを算出する頻度は、試料Sを試料台に配置するごとに算出することが好ましい。
管電流を自動調整する場合、制御装置にDT[%]を送り、自動調整後に管電流Aが決まる。デッドタイム率DTから推定される管電流AをFW(ファームウエア)から設定し、FPGAからICR,OCRを取得し(S15)、予備測定におけるデッドタイム率DTを計算する(S16)。
そして、ステップS17において、予備測定で指定した管電流Aと計算されたデッドタイム率DTとを式(13)または式(16)、(17)に代入してパラメータaを算出する。そしてステップS18において、測定条件のデッドタイム率DTを用いて、パラメータaが決定されたまひ型の式A=a*ln(100/(100-DT))から、管電流Aを計算する。
そして、計算された管電流AをステップS19においてX線管7に流し、FPGAからICR,OCRを取得し(S20)、予備測定においてパラメータaを確定した後のデッドタイム率DTを算出する(S21)。
ステップS22では、ステップS11で設定したデッドタイム率DTと、ステップS21で算出したデッドタイム率DTとの間のズレを計算する。ズレが閾値(たとえば1%)よりも大きい場合は(S22でNO)、ステップS23で管電流Aを調整する。ただし、上限電流(たとえば1000μA)に設定しようとした場合には、測定を打切る、または上限電流で測定を行なう。
デッドタイム率DTから推定管電流Aを計算するときに、ファームウエアで固定された二次式モデルよりも、予備測定を行なって試料の量に応じたパラメータaを適用したまひ型モデルの関係式とした方が、ステップS22、S23の管電流Aの調整の際の収束が早くなることが期待される。
ズレが閾値よりも小さくなった場合は(S22でYES)、ステップS24において、それまでに決定された管電流A用いて、本測定を実行する。そして、試料Sから放出された蛍光X線のスペクトルを取得し(ステップS25~S27)、表示装置16に分析結果を表示する。
本実施の形態で説明した蛍光X線分析方法および蛍光X線分析方法によれば、装置のバージョンアップがあったとしてもその都度管電流Aとデッドタイム率DT[%]の関係式を実験で求め直すことなく管電流Aを自動調整できる。
また、試料Sの状態が変わったとしても、動的にパラメータaを調整し、迅速に管電流Aを自動調整できる。なお、限定されないが、本測定1回ごとに予備測定を行なってパラメータaを定めることが好ましい。
[実施の形態2]
実施の形態1では、検討例では二次式(Y=k1X2+k2X+k3)だったため、パラメータがk1,k2,k3,の3つであったが、まひ型モデルを適用することにより、パラメータを式(12)で表わされるaの1つとした。
実施の形態1では、検討例では二次式(Y=k1X2+k2X+k3)だったため、パラメータがk1,k2,k3,の3つであったが、まひ型モデルを適用することにより、パラメータを式(12)で表わされるaの1つとした。
実施の形態1では、パラメータaを用いて管電流Aを調整するために、パラメータaを式(16)で算出したが、パラメータaを用いずに、予備測定時のデッドタイム率および管電流から目標デッドタイム率を得るための目標間電流値を直接算出することもできる。
式(11)を予備測定時の値と、目標値で2つの式を立てて、2つの式の両辺同士を割り算すると、以下の式(18)が得られる。
ln(100/(100-DT1))/ln(100/(100-DT2))=A1/A2 …(18)
DT1:目標デッドタイム率、A1:目標管電流値
DT2:予備測定時のデッドタイム率、A2:予備測定時の管電流値
目標管電流値は、式(18)を変形した以下の式(19)で得られる。
A1=A2*ln(100/(100-DT1))/ln(100/(100-DT2)) …(19)
式(19)を用いると、パラメータaは無くなり、一次フィルタ、試料材質、コリメータなどに寄らず、デッドタイムDTから管電流を予測できる。
ln(100/(100-DT1))/ln(100/(100-DT2))=A1/A2 …(18)
DT1:目標デッドタイム率、A1:目標管電流値
DT2:予備測定時のデッドタイム率、A2:予備測定時の管電流値
目標管電流値は、式(18)を変形した以下の式(19)で得られる。
A1=A2*ln(100/(100-DT1))/ln(100/(100-DT2)) …(19)
式(19)を用いると、パラメータaは無くなり、一次フィルタ、試料材質、コリメータなどに寄らず、デッドタイムDTから管電流を予測できる。
本願発明者による実験結果では、式(19)による目標デッドタイムDTへの管電流調整は良好な結果が得られた。
上記式(19)を用いることによって、実施の形態2では、管電流の調整の処理の一部を簡略化することができる。図5は、実施の形態2において実行される蛍光X線分析方法を説明するためのフローチャートである。図5に示すフローチャートでは、図3に示したフローチャートのステップS2に変えてステップS2Aの処理が実行される。ステップS2Aではパラメータaの算出は不要となっている。図6は、実施の形態2において制御装置で実行される管電流の調整について説明するためのフローチャートである。図6に示すフローチャートでは、図4に示したフローチャートのステップS17,S18に変えてステップS17Aの処理が実行される。
ステップS17では、ステップS16で得られた予備測定のDTを式(19)のDT2に代入し、目標デッドタイムDT1に対応する管電流A1を得る。このようにして、実施の形態2では、まひ型モデルのパラメータaを算出する必要がなくなる。
[態様]
上述した例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
上述した例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)本開示の第1の態様は、試料の構成元素を分析する蛍光X線分析方法に関する。蛍光X線分析方法は、試料を蛍光X線分析装置に配置するステップと、所望のデッドタイム率をまひ型モデルに適用して、X線管の基準管電流を算出するステップと、基準管電流に基づいてX線管の測定用管電流を決定し、測定用管電流をX線管に流して試料にX線を照射するステップと、X線を試料に照射して得られた蛍光X線を分析するステップとを備える。
(第2項)第1項に記載の蛍光X線分析方法において、好ましくは、まひ型モデルは、基準管電流をAで示し、デッドタイム率をDTで示し、所定のパラメータをaで示すと、A=a*ln(100/(100-DT))で表わされる。
(第3項)第2項に記載の蛍光X線分析方法において、より好ましくは、蛍光X線分析方法は、X線管から予備的に試料にX線を照射して、パラメータを算出するステップをさらに備える。基準管電流を算出するステップは、パラメータを組み込んだまひ型モデルに所望のデッドタイム率を適用して、基準管電流を算出する。
(第4項)第1項に記載の蛍光X線分析方法において、好ましくは、蛍光X線分析方法は、予備試験用管電流をX線管に流して試料にX線を照射してデッドタイムを測定するステップをさらに備える。
基準管電流をA1で示し、所望のデッドタイム率をDT1で示し、予備試験用管電流をA2で示し、予備試験用管電流を流して測定されたデッドタイム率をDT2で示すと、基準管電流は、A1=A2*ln(100/(100-DT1))/ln(100/(100-DT2))で表わされる。
(第5項)第1項に記載の蛍光X線分析方法において、好ましくは、X線を照射するステップは、基準管電流をX線管に流して試料にX線を照射し、デッドタイム率を算出し、算出されたデッドタイム率と所望のデッドタイム率との差に基づいて基準管電流を調整して測定用管電流を決定する。
(第6項)本開示の他の局面は、試料の構成元素を分析する蛍光X線分析装置に関する。蛍光X線分析装置は、試料を配置する試料台と、試料台に向けてX線を照射するように構成されたX線管と、試料台上の試料から放出される蛍光X線を検出する検出器と、X線管および検出器を制御する制御装置とを備える。制御装置は、所望のデッドタイム率をまひ型モデルに適用して、X線管の基準管電流を算出し、基準管電流に基づいてX線管の測定用管電流を決定し、測定用管電流をX線管に流して試料にX線を照射し、検出器で検出された蛍光X線を分析する、ように構成される。
(第7項)第6項に記載の蛍光X線分析装置において、好ましくは、まひ型モデルは、管電流をAで示し、デッドタイム率をDTで示し、所定のパラメータをaで示すと、A=a*ln(100/(100-DT))で表わされる。
(第8項)第7項に記載の蛍光X線分析装置において、より好ましくは、制御装置は、X線管から予備的に試料にX線を照射して、パラメータを算出し、パラメータを組み込んだまひ型モデルに所望のデッドタイム率を適用して、基準管電流を算出する。
(第9項)第6項に記載の蛍光X線分析装置において、好ましくは、制御装置は、予備試験用管電流をX線管に流して試料にX線を照射してデッドタイム率を測定する。基準管電流をA1で示し、所望のデッドタイム率をDT1で示し、予備試験用管電流をA2で示し、予備試験用管電流を流して測定されたデッドタイム率をDT2で示すと、基準管電流は、A1=A2*ln(100/(100-DT1))/ln(100/(100-DT2))で表わされる。
(第10項)第6項に記載の蛍光X線分析装置において、好ましくは、制御装置は、基準管電流をX線管に流して試料にX線を照射し、デッドタイム率を算出し、算出されたデッドタイム率と所望のデッドタイム率との差に基づいて基準管電流を調整して測定用管電流を決定するように構成される。
(第11項)第6項に記載の蛍光X線分析装置において、好ましくは、X線管から試料台に至るX線照射経路上に配置されたX線フィルタ、およびコリメータの少なくとも一方を備える。X線フィルタ、およびコリメータの少なくとも一方は、分析に使用する素子が複数種類の素子のうちから選択可能に構成されている。
なお、本明細書の各実施の形態に記載された構成は、自由に組み合わせて使用しても良い。
今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
1 試料室、2 試料台、3 筐体、4 開口部、5 測定室、6 壁面、7 X線管、8 検出器、9 シャッター、10 X線分析装置、11 X線フィルタ、12 駆動機構、13 コリメータ、14 制御装置、16 表示装置、20 撮像部、100 X線分析システム、142 メモリ、143 計数回路、S 試料、SA 表面、SB 裏面。
Claims (11)
- 試料の構成元素を分析する蛍光X線分析方法であって、
前記試料を蛍光X線分析装置に配置するステップと、
所望のデッドタイム率をまひ型モデルに適用して、X線管の基準管電流を算出するステップと、
前記基準管電流に基づいて前記X線管の測定用管電流を決定し、前記測定用管電流を前記X線管に流して前記試料にX線を照射するステップと、
前記X線を前記試料に照射して得られた蛍光X線を分析するステップとを備える、蛍光X線分析方法。 - 前記まひ型モデルは、前記基準管電流をAで示し、デッドタイム率をDTで示し、所定のパラメータをaで示すと、
A=a*ln(100/(100-DT))
で表わされる、請求項1に記載の蛍光X線分析方法。 - 前記X線管から予備的に前記試料にX線を照射して、前記パラメータを算出するステップをさらに備え、
前記基準管電流を算出するステップは、前記パラメータを組み込んだ前記まひ型モデルに前記所望のデッドタイム率を適用して、前記基準管電流を算出する、請求項2に記載の蛍光X線分析方法。 - 予備試験用管電流を前記X線管に流して前記試料にX線を照射してデッドタイムを測定するステップをさらに備え、
前記基準管電流をA1で示し、前記所望のデッドタイム率をDT1で示し、前記予備試験用管電流をA2で示し、前記予備試験用管電流を流して測定されたデッドタイムをDT2で示すと、前記基準管電流は、
A1=A2*ln(100/(100-DT1))/ln(100/(100-DT2))で表わされる、請求項1に記載の蛍光X線分析方法。 - 前記X線を照射するステップは、前記基準管電流を前記X線管に流して前記試料にX線を照射し、デッドタイム率を算出し、算出されたデッドタイム率と前記所望のデッドタイム率との差に基づいて前記基準管電流を調整して前記測定用管電流を決定する、請求項1に記載の蛍光X線分析方法。
- 試料の構成元素を分析する蛍光X線分析装置であって、
前記試料を配置する試料台と、
前記試料台に向けてX線を照射するように構成されたX線管と、
前記試料台上の前記試料から放出される蛍光X線を検出する検出器と、
前記X線管および前記検出器を制御する制御装置とを備え、
前記制御装置は、
所望のデッドタイム率をまひ型モデルに適用して、前記X線管の基準管電流を算出し、
前記基準管電流に基づいて前記X線管の測定用管電流を決定し、前記測定用管電流を前記X線管に流して前記試料にX線を照射し、前記検出器で検出された蛍光X線を分析する、ように構成される、蛍光X線分析装置。 - 前記まひ型モデルは、管電流をAで示し、デッドタイム率をDTで示し、所定のパラメータをaで示すと、
A=a*ln(100/(100-DT))
で表わされる、請求項6に記載の蛍光X線分析装置。 - 前記制御装置は、
前記X線管から予備的に前記試料にX線を照射して、前記パラメータを算出し、前記パラメータを組み込んだ前記まひ型モデルに前記所望のデッドタイム率を適用して、前記基準管電流を算出する、請求項7に記載の蛍光X線分析装置。 - 前記制御装置は、
予備試験用管電流を前記X線管に流して前記試料にX線を照射してデッドタイム率を測定し、
前記基準管電流をA1で示し、前記所望のデッドタイム率をDT1で示し、前記予備試験用管電流をA2で示し、前記予備試験用管電流を流して測定されたデッドタイムをDT2で示すと、前記基準管電流は、
A1=A2*ln(100/(100-DT1))/ln(100/(100-DT2))で表わされる、請求項6に記載の蛍光X線分析装置。 - 前記制御装置は、
前記基準管電流を前記X線管に流して前記試料にX線を照射し、デッドタイム率を算出し、算出されたデッドタイム率と前記所望のデッドタイム率との差に基づいて前記基準管電流を調整して前記測定用管電流を決定するように構成される、請求項6に記載の蛍光X線分析装置。 - 前記X線管から前記試料台に至るX線照射経路上に配置されたX線フィルタ、およびコリメータの少なくとも一方を備え、前記X線フィルタ、および前記コリメータの少なくとも一方は、分析に使用する素子が複数種類の素子のうちから選択可能に構成されている、請求項6に記載の蛍光X線分析装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024517864A JPWO2023210137A1 (ja) | 2022-04-28 | 2023-02-24 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-074483 | 2022-04-28 | ||
JP2022074483 | 2022-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023210137A1 true WO2023210137A1 (ja) | 2023-11-02 |
Family
ID=88518524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/006695 WO2023210137A1 (ja) | 2022-04-28 | 2023-02-24 | 蛍光x線分析方法および蛍光x線分析装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023210137A1 (ja) |
WO (1) | WO2023210137A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61175555A (ja) * | 1985-01-30 | 1986-08-07 | Shimadzu Corp | 螢光x線分析装置を用いる定量分析方法 |
JP2006058296A (ja) * | 2004-08-16 | 2006-03-02 | Siemens Ag | 断層撮影装置および断層撮影装置のための方法 |
CN104378897A (zh) * | 2014-11-18 | 2015-02-25 | 汕头市超声仪器研究所有限公司 | 一种具有管电流控制的x射线发生装置 |
JP2020051900A (ja) * | 2018-09-27 | 2020-04-02 | 株式会社島津製作所 | X線分析用信号処理装置 |
US20210121143A1 (en) * | 2019-09-16 | 2021-04-29 | Redlen Technologies, Inc. | Calibration methods for improving uniformity in x-ray photon counting detectors |
WO2021177865A1 (en) * | 2020-03-02 | 2021-09-10 | Prismatic Sensors Ab | Spectral pileup correction for photon-counting x-ray detectors |
-
2023
- 2023-02-24 WO PCT/JP2023/006695 patent/WO2023210137A1/ja active Application Filing
- 2023-02-24 JP JP2024517864A patent/JPWO2023210137A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61175555A (ja) * | 1985-01-30 | 1986-08-07 | Shimadzu Corp | 螢光x線分析装置を用いる定量分析方法 |
JP2006058296A (ja) * | 2004-08-16 | 2006-03-02 | Siemens Ag | 断層撮影装置および断層撮影装置のための方法 |
CN104378897A (zh) * | 2014-11-18 | 2015-02-25 | 汕头市超声仪器研究所有限公司 | 一种具有管电流控制的x射线发生装置 |
JP2020051900A (ja) * | 2018-09-27 | 2020-04-02 | 株式会社島津製作所 | X線分析用信号処理装置 |
US20210121143A1 (en) * | 2019-09-16 | 2021-04-29 | Redlen Technologies, Inc. | Calibration methods for improving uniformity in x-ray photon counting detectors |
WO2021177865A1 (en) * | 2020-03-02 | 2021-09-10 | Prismatic Sensors Ab | Spectral pileup correction for photon-counting x-ray detectors |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023210137A1 (ja) | 2023-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9746433B2 (en) | X-ray fluorescence spectrometer and X-ray fluorescence analyzing method | |
US7431500B2 (en) | Dynamic exposure control in radiography | |
US7970101B2 (en) | X-ray analyzer and X-ray analysis method | |
JP2008203245A (ja) | X線分析装置及びx線分析方法 | |
US7587025B2 (en) | X-ray analysis apparatus and X-ray analysis method | |
KR20150143339A (ko) | 형광 x 선 분석 장치 | |
JP2008309807A (ja) | X線エネルギースペクトルの放射線量子の背景補正された計数を決定する方法 | |
JP6503145B2 (ja) | 置換サイト計測装置および置換サイト計測方法 | |
WO1997006430A1 (en) | Method and apparatus for total reflection x-ray fluorescence spectroscopy | |
WO2023210137A1 (ja) | 蛍光x線分析方法および蛍光x線分析装置 | |
US7098459B2 (en) | Method of performing analysis using propagation rays and apparatus for performing the same | |
JP2021012054A (ja) | 蛍光x線分析装置及びその校正方法 | |
JP2005513478A5 (ja) | ||
JP5245299B2 (ja) | 蛍光x線分析装置 | |
JP6412340B2 (ja) | 分析装置及び校正方法 | |
JP2015219200A (ja) | 分析装置及び校正方法 | |
JP2000283933A (ja) | 蛍光x線分析装置 | |
JP2000199748A (ja) | 蛍光x線分析方法および蛍光x線分析装置 | |
CN115038959B (zh) | 荧光x射线分析装置、判断方法和判断程序 | |
WO2024095551A1 (ja) | 蛍光x線分析方法、分析プログラム、および蛍光x線分析装置 | |
WO2022113481A1 (ja) | 蛍光x線分析装置 | |
WO2023210136A1 (ja) | 蛍光x線分析装置 | |
JP2019090652A (ja) | 分析装置 | |
JP7126928B2 (ja) | 表面分析装置および表面分析方法 | |
JP2006275756A (ja) | 電子励起によるx線分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23795885 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024517864 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202447077372 Country of ref document: IN |