JP2015211151A - 窒化物半導体を利用する絶縁ゲート型の電界効果トランジスタ - Google Patents

窒化物半導体を利用する絶縁ゲート型の電界効果トランジスタ Download PDF

Info

Publication number
JP2015211151A
JP2015211151A JP2014092447A JP2014092447A JP2015211151A JP 2015211151 A JP2015211151 A JP 2015211151A JP 2014092447 A JP2014092447 A JP 2014092447A JP 2014092447 A JP2014092447 A JP 2014092447A JP 2015211151 A JP2015211151 A JP 2015211151A
Authority
JP
Japan
Prior art keywords
gate electrode
layer
negative fixed
region
fixed charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014092447A
Other languages
English (en)
Other versions
JP6280434B2 (ja
Inventor
哲生 成田
Tetsuo Narita
哲生 成田
大悟 菊田
Daigo Kikuta
大悟 菊田
冨田 一義
Kazuyoshi Tomita
一義 冨田
伊藤 健治
Kenji Ito
健治 伊藤
小山 和博
Kazuhiro Koyama
和博 小山
安史 樋口
Yasushi Higuchi
安史 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2014092447A priority Critical patent/JP6280434B2/ja
Publication of JP2015211151A publication Critical patent/JP2015211151A/ja
Application granted granted Critical
Publication of JP6280434B2 publication Critical patent/JP6280434B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】窒化物半導体のチャネル領域に負固定電荷を導入すると閾値電圧が上昇してノーマリオフにできるが、オン抵抗が上昇する。
【解決手段】ゲート絶縁膜4を介してゲート電極2に対向するチャネル領域12aを、ゲート電極2が延びている方向(y方向)に観測したときに、負固定電荷導入領域14と非導入領域15が交互に出現する構造とする。ゲート電極2に電圧を印加しないと、負固定電荷導入領域14からy方向に空乏層が伸びて非導入領域15が空乏化する。ゲート電極2に電圧を印加すると空乏層が収縮してチャネル抵抗が低下する。空乏層を収縮させるためのゲート電圧が上昇してノーマリオフを実現できる。電子は、移動度が高い非導入領域15を移動するので、オン抵抗が低い。
【選択図】図1

Description

本明細書では、ゲート電極がゲート絶縁膜を介して窒化物半導体に対向しており、ゲート電極に閾値以上の電圧を加えることによって窒化物半導体に広がっていた空乏層が収縮し、ソースとドレイン間の抵抗が低下する電界効果トランジスタを開示する。
窒化物半導体をチャネル領域とする電界効果トランジスタは、閾値電圧がマイナス電圧となってノーマリオンとなりやすい。特許文献1に、閾値電圧をプラス電圧に引き上げてノーマリオフとする技術が記載されている。
特許文献1に記載されている電界効果トランジスタは、図11に示すように、GaN層12とAlGaN層10のヘテロ接合構造を備えており、ゲート電極2がゲート絶縁膜4を介してヘテロ接合界面に対向する構造を備えている。
閾値電圧をプラス電圧に引き上げてノーマリオフとするために、特許文献1の技術では、AlGaN層10の上面から中間深さに達するリセスを設け、そのリセスの底面からフッ素イオンを注入し、負の固定電荷が導入された領域14を形成する。負の固定電荷導入領域14では、n型に反転しづらくなり、閾値電圧がプラス電圧に引き上げられる。なお参照番号6はソース電極であり、16はドレイン電極である。
特許文献1の技術では、チャネル領域に負固定電荷を導入することによって、閾値電圧をプラス電圧に引き上げる。
特開2012−124442号公報
特許文献1の技術は、窒化物半導体を利用する電界効果トランジスタの閾値電圧をプラス電圧に引き上げてノーマリオフ化する有用な技術であるが、オン抵抗まで上昇してしまう。図11の構造では、電子が負固定電荷導入領域14内を左右方向に移動して電流が流れる。電子が負固定電荷導入領域14内を移動する際に、電子がイオン化不純物散乱される。電子の移動度が低下してオン抵抗が上昇する。
本明細書では、オン抵抗の上昇を抑制しながら閾値電圧をプラス側に向けて引き上げる技術を開示する。ここでいう「プラス側に向けて引き上げる」は、結果的にプラス電圧となる場合に限定されない。閾値電圧をプラス側に向けて引き上げることが要求され、引き上げた結果がマイナス電圧に留まっていても、プラス側に向けて引き上げたことが有利に働く場合がある。本明細書に記載の技術は、その場合にも有用な技術である。
本明細書では、窒化物半導体でチャネル領域が形成されている絶縁ゲート型の電界効果トランジスタを開示する。すなわち、ゲート電極がゲート絶縁膜を介してチャネル領域(窒化物半導体で形成されている)と対向しており、ゲート電極に加える電位によってチャネル領域に広がっていた空乏層が収縮してチャネル抵抗が低下する現象を利用する絶縁ゲート型の電界効果トランジスタを開示する。
本明細書で開示する絶縁ゲート型の電界効果トランジスタは、ゲート電極が延びている方向(本明細書では長手方向という)に沿ってチャネル領域を観測したときに、負の固定電荷が導入されている領域(本明細書では負固定電荷導入領域という)と負の固定電荷が導入されていない領域(本明細書では非導入領域という)が交互に出現することを特徴とする。
ゲート絶縁膜を介してゲート電極に対向するチャネル領域をゲート電極の長手方向に沿って観測したときに、負固定電荷導入領域と非導入領域が交互に出現すると、オン抵抗の上昇を抑制しながら閾値電圧をプラス側に向けて引き上げることが可能となる。その理由は次のように考えられる。
(1)ゲート電極に閾値以上の電圧が印加されない状態(ゲート電極の電圧が閾値未満の状態)では、負固定電荷導入領域から非導入領域内に向けて長手方向に空乏層が広がる。ゲート電極に印加する電圧を上昇させると、空乏層が収縮してチャネル抵抗が低下する。負固定電荷導入領域が存在すると、負固定電荷導入領域から非導入領域に広がる空乏層を収縮させるためには、ゲート電極に印加する電圧をプラス側に向けて引き上げる必要がある。負固定電荷導入領域と非導入領域が交互に出現する構造を採用すると、閾値電圧がプラス側に向けて引き上げられる。
(2)ゲート電極に閾値以上の電圧を印加すると、非導入領域に広がっていた空乏層が収縮して電子の移動経路が形成される。非導入領域内にチャネルが形成される。非導入領域では電子の移動度が高く、非導入領域内にチャネルが形成されると低いオン抵抗が得られる。負固定電荷導入領域にはチャネルが形成されにくく、電子の移動経路の横断面積が減少する要因となりえるが、負固定電荷導入領域を部分的に設けることによるオン抵抗の上昇と、図11に示した構造(長手方向に切れ目なく負固定電荷導入領域14を形成する構造)によるオン抵抗の上昇を比較すると、前者の上昇量<後者の上昇量であり、オン抵抗の上昇を許容値内に抑制することができる。
窒化物半導体を利用する電界効果トランジスタには、バンドギャップが狭い窒化物半導体とバンドギャップが広い窒化物半導体のヘテロ接合構造を利用するHEMT(High Mobility Electron Transistor)がよく知られているが、本技術の適用範囲はHEMTに限られない。n型の窒化物半導体の層を電子が走行する電界効果トランジスタに、本明細書に記載の技術を適用することができる。ソースコンタクト領域とドレインコンタクト領域の間を伸びているn型の窒化物半導体層の中間に、i型又はp型の窒化物半導体層を設けることによって、i型又はp型の窒化物半導体層をチャネル領域とする電界効果トランジスタが得られる。i型又はp型の窒化物半導体からなるチャネル領域を長手方向に観察した際に、負固定電荷導入領域と非導入領域が交互に出現する構造を採用すると、オン抵抗の上昇を抑制しながら閾値電圧をプラス側に向けて引き上ることができる。
バンドギャップが狭い窒化物半導体とバンドギャップが広い窒化物半導体のヘテロ接合が存在する場合、前者が電子走行層になり、後者が電子供給層になる。電子走行層と電子供給層の積層構造を備えているHEMTトランジスタに本明細書に記載の技術を適用することができる。
その場合は、電子供給層の上面から電子走行層に向かって延びるリセスを形成するのが望ましい。そのリセスは、電子供給層の中間深さに留まっていてもよいし、電子供給層を貫通して電子走行層の中間深さにまで達していてもよい。前者の場合は、リセスの底面が電子供給層の中間深さにあり、後者の場合はリセスの底面が電子走行層の中間深さにあることになる。HEMTに適用する場合は、底面が電子供給層の中間深さから電子走行層の中間深さまでの間に位置するリセスを利用することが好ましい。そのリセスの壁面はゲート絶縁膜で覆っておく。そして壁面がゲート絶縁膜で覆われている状態のリセスにゲート電極を充填する。
リセスの深さが電子供給層の中間深さに留まっている場合、電子走行層の一部がゲート絶縁膜と電子供給層を介してゲート電極に対向する。リセスが電子供給層を貫通している場合、電子走行層の一部がゲート絶縁膜を介して(電子供給層を介さないで)ゲート電極に対向する。本明細書で「ゲート絶縁膜を介してゲート電極に対向する」という場合は、両者を含む。
本明細書では、ゲート絶縁膜を介してゲート電極に対向する範囲の電子走行層をチャネル領域という。チャネル領域に負固定電荷導入領域が形成されていない場合、ゲート電極に対向する範囲の電子走行層の全体が、ゲート電極の電位によって空乏化したり空乏化しなかったりする。この場合は、チャネル領域=ゲート電極の電位によって空乏化したり空乏化しなかったりする領域ということになる。本明細書に記載の技術では、チャネル領域の一部に負固定電荷導入領域を形成する。負固定電荷導入領域ではゲート電極の電位によって空乏化したり空乏化しなかったりする現象が生じない場合がある。しかしながら本明細書では、ゲート絶縁膜を介してゲート電極に対向する範囲の電子走行層であって、負固定電荷導入領域が形成されていなければゲート電極の電位によって空乏化したり空乏化しなかったりする範囲の全体をチャネル領域という。本明細書でいうチャネル領域には、ゲート電極の電位によって空乏化したり空乏化しなかったりする現象が生じないことがある負固定電荷導入領域が含まれる。また本明細書では、空乏層が消失した状態のチャネル領域をチャネルという。
電子供給層にリセスを設け、そのリセスにゲート電極を充填すると、ゲート電極からそのゲート電極に対向する電子走行層までの距離が短くなり、閾値電圧がプラス側に向けて引き上げられる。ゲート電極をリセスに充填する技術と、所定間隔をおいて出現する負固定電荷導入領域を併用すると、オン抵抗が低いノーマリオフ型のHEMTトランジスタを実現することができる。
電子供給層の上面上に、絶縁膜を積層することがある。本明細書では、スペーサ膜という。スペーサ膜を備えている場合には、スペーサ膜の上面から電子供給層に達するリセスを形成することができる。
ゲート電極に閾値以上の電圧を印加しない状態(オフとしておく状態)で、ソース電極とドレイン電極の間に高電圧が印加されると、ゲート電極の下面のドレイン電極側境界線の近傍に位置するチャネル領域に電界集中が生じやすい。その電界集中が緩和できれば、電界効果トランジスタの耐圧を向上させることができる。そのためには、ゲート電極の下面のドレイン電極側境界線に沿った位置では、負固定電荷導入領域とそれに隣接する負固定電荷導入領域との間の距離を狭くするのが有利である。
すなわち、ゲート電極の下面のソース電極側を延びている線分と、ゲート電極の下面のドレイン電極側を延びている線分に沿って、ゲート絶縁膜を介してゲート電極に対向するチャネル領域を観察したときに、負固定電荷導入領域とそれに隣接する負固定電荷導入領域との間の距離が、前者の線分に沿って観察すると長く(無限大の場合を含む)、後者の線分に沿って観察すると短いという特徴を備えていると耐圧が向上する。
ソース電極とドレイン電極間の電圧を高めていくと、ゲート電極に閾値以上の電圧を印加していないにも関わらず、ソース電極とドレイン電極間に電流が流れてしまう。本明細書でいう耐圧とは、ゲート電極に閾値以上の電圧を印加していないにも関わらず、ソース電極とドレイン電極間に電流が流れ始めてしまうときのソース・ドレイン間電圧のことをいう。
ゲート電極に閾値以上の電圧を印加しない状態でソース電極とドレイン電極の間を流れる微弱電流(リーク電流)に対する対策が必要な場合がある。
その場合は、チャネル領域の下面下に高抵抗層を積層し、負固定電荷導入領域がチャネル領域の上面から高抵抗層まで延びる構造とする。
上記の構造によると、リーク電流が流れる経路に空乏層が広がり、リーク電流が低減される。
本明細書に開示する技術によると、オン抵抗の上昇を抑制しながら閾値電圧をプラス側に向けて引き上げることができる。
その技術を利用して、オン抵抗が低いノーマリオフの電界効果トランジスタを製造することが可能となる。また、負固定電荷導入領域の形状を調整することによって、耐圧を高め、あるいはリーク電流を低減することが可能となる。
第1実施例の絶縁ゲート型の電界効果トランジスタの分解斜視図を示す。 図1のx−z断面図を示す。 図1のx1−z断面図を示す。 図1のy-z断面図を示す。 第2実施例の絶縁ゲート型の電界効果トランジスタの平面図を示す。 第2実施例の絶縁ゲート型の電界効果トランジスタの図2に対応する図を示す。 第3実施例の絶縁ゲート型の電界効果トランジスタの平面図を示す。 第4実施例の絶縁ゲート型の電界効果トランジスタの図2に対応する図を示す。 第4実施例の絶縁ゲート型の電界効果トランジスタの図4に対応する図を示す。 リセスと負固定電荷導入領域の深さのバリエーションを例示する。 従来の絶縁ゲート型の電界効果トランジスタを示す。
以下、本明細書で開示する技術の特徴を整理する。なお、以下に記す事項は、各々単独で技術的な有用性を有している。
(特徴1)チャネル領域を提供する電子走行層がi型GaNまたはn型GaNで形成されており、そのGaNに、F,Cl,C,Mg,Zn,Feの一種類または複数種類が導入されて負固定電荷導入領域が形成されている。
(特徴2)チャネル領域を提供する電子走行層の長手方向の複数個所に凹所が形成され、その凹所に、F,Cl,C,Mg,Zn,Feの一種類または複数種類が導入されている単結晶、多結晶または絶縁体を形成して、負固定電荷導入領域を形成している。
(第1実施例)
図1は、第1実施例の絶縁ゲート型の電界効果トランジスタ20の分解斜視図を示す。ただし、y-z面よりも手前側の構造の図示を省略している。図2は、電界効果トランジスタ20の図1のx−z断面を示し、図3はx1−z断面を示し、図4はy-z断面を示している。図2〜3では、図1では図示されていないドレイン電極16が示されている。
図1において、2か所に図示されているy軸が実際には重なっており、2か所に図示されているy1軸が実際には重なっている。図示のx軸は負固定電荷導入領域14を通過しており、x1軸は隣接する一対の負固定電荷導入領域14の間を通過している。
図1〜図4において、参照番号は下記を示している。
2:ゲート電極:ソース電極6とドレイン電極16の間をy方向に延びている。
4:ゲート絶縁膜:ゲート電極2の下面と側面を覆い、ゲート電極2とソース電極6の間を絶縁し、ゲート電極2と電子供給層10の間を絶縁し、ゲート電極2と電子走行層12の間を絶縁し、ゲート電極2とドレイン電極16の間を絶縁している。
6:ソース電極:電子供給層10に接している。
8:スペーサ膜:絶縁膜で形成されており、ゲート電極2と電子供給層10の間を絶縁するとともに、ゲート電極2と電子供給層10の離反距離を増大させる。
10:電子供給層:AlGaNで形成されている。後記のように、電子走行層がGaNで形成されている場合、一般に、AlInGa1−x−yNを用いることができる。0≦x<1であり、0≦y<1であり、0≦1−x−y<1である。
12:電子走行層:GaNで形成されている。AlGaNのバンドギャップ>GaNのバンドギャップである。一般に、バンドギャップが大きい窒化物半導体とバンドギャップが小さい窒化物半導体の組み合わせによって、電子供給層10と電子走行層12を形成することができる。本実施例では、i型GaNで電子走行層12を形成する。i型GaNに代えてn型GaNを用いてもよい。電子走行層12の一部12aは、ゲート絶縁膜4を介してゲート電極2の下面に対向しており、チャネル領域となる。
14:負固定電荷導入領域:ゲート絶縁膜4を介してゲート電極2に対向する範囲にある電子走行層12(=チャネル領域12a)の一部に、負固定電荷導入領域14が形成されている。チャネル領域12aをy軸に沿って(ゲート電極2の長手方向に)観察すると、負固定電荷導入領域14が所定の距離L15をおいて出現する。
15:非導入領域:隣接する一対の負固定電荷導入領域14,14の間にあり、負固定電荷が導入されていない。
16:ドレイン電極:電子供給層10に接している。
17:ゲート電極2に電圧を印加しない状態で形成される空乏層。
図1〜4の第1実施例では、スペーサ膜8の上面から電子供給層10の下面(=電子走行層12の上面)に達するリセスが形成され、そのリセスの壁面(底面と側面)がゲート絶縁膜4で覆われ、壁面がゲート絶縁膜4で覆われたリセス内にゲート電極2が充填されている。リセスの底面に電子走行層12が露出している。電子層走行層12の上面が、ゲート絶縁膜4に直接に接している。
複数個の負固定電荷導入領域14が、電子走行層12のリセス底面に露出する範囲に形成されている。隣接する一対の負固定電荷導入領域14,14の間の間隔では、電子層走行層12を形成するi型またはn型のGaNに負固定電荷が導入されておらず、非導入領域15となる。非導入領域15は、ゲート絶縁膜4を介してゲート電極2の下面に対向しており、ゲート電極2の電位に依存して空乏化した状態と空乏化しない状態の間で変化する。電子走行層12のうちの非導入領域15にチャネルが形成される。
負固定電荷導入領域14は、電子走行層12の一部に形成されるチャネル領域12aの一部に、F,Cl,C,Mg,Zn,Feの一種類または複数種類を導入することで形成することができる。あるいは、負固定電荷導入領域14を形成する範囲において電子走行層12をエッチングして凹所を設け、その凹所内にp型半導体(例えばp型の多結晶シリコンあるいはp型のGaN)を形成してもよい。凹所内にFなどの負イオンを含む絶縁体を形成してもよい。
チャネル領域12aを提供する電子走行層12にn型GaN層を用いる場合、ゲート電極に閾値以上の電圧を印加しない状態では空乏層が広がり、ゲート電極に閾値以上の電圧を印加したときには高い電子移動度を実現するために、不純物濃度が高すぎないことが好ましい。電子走行層12の不純物濃度<負固定電荷導入領域14の不純物濃度であることが好ましく、電子走行層12の不純物濃度<0.1×負固定電荷導入領域14の不純物濃度であることがさらに好ましい。
ゲート電極2に電圧を印加しない状態では、負固定電荷導入領域14から非導入領域15内に向けてy方向に空乏層が伸びる。第1実施例では、図4に示すように、隣接する一対の負固定電荷導入領域14,14から、その間隔に延びる一対の空乏層17(+y方向に伸びる空乏層と、−y方向に伸びる空乏層)が連続する。すなわち、一対の負固定電荷導入領域14の間の距離L15<空乏層17が連続する距離の関係におかれている。
そのために、この実施例では、バンドギャップが大きい窒化物半導体からなる電子供給層10とバンドギャップが小さい窒化物半導体からなる電子走行層12のヘテロ接合界面に生じる二次元電子ガスが空乏層17によって分断され、ソース電極6とドレイン電極16間に電流が流れない。
ゲート電極2に閾値電圧以上の電圧を印加すると、非導入領域15内に伸びていた空乏層17が収縮し、非導入領域15内に電子の移動経路(チャネル)が開き、電子がソース電極6とドレイン電極16の間を移動する。一対の負固定電荷導入領域14,14の間に存在する非導入領域15は、ゲート電極2の電圧によって、キャリアが移動できる状態と移動できない状態の間で変化する。図1〜図4の構造では、窒化物半導体からなる電子走行層12の一部である非導入領域15にチャネルが形成される。非導入領域15では電子の移動度が高いために、オン抵抗が低くなる。
図1〜4に示す負固定電荷導入領域14は、ゲート電極2が延びている方向(y方向)に沿って断続的に配置されている。ゲート絶縁膜4を介してゲート電極2に対向するチャネル領域12aをゲート電極2が延びている方向に沿って観測したときに、負固定電荷が導入されている領域14と負固定電荷が導入されていない領域15が交互に出現する関係になっている。
第1実施例のトランジスタ20では、ゲート電極2に閾値以上の電圧を印加しない状態では、非導入領域15に空乏層17が広がる。非導入領域15の長さ(=隣接する一対の負固定電荷導入領域14,14間の距離)L15を調整することで、空乏層が収縮して非導入領域15をキャリアが移動できる状態に変化するときのゲート電圧(すなわち閾値電圧)を調整することができる。間隔を狭めれば閾値電圧がプラス側に向けて引き上げられる。一つの具体例では、隣接する一対の負固定電荷導入領域14間の距離L15を1μm以下としたときに閾値電圧がプラス電圧となり、ノーマリオフの特性に調整できた。
第1実施例のトランジスタ20では、ゲート電極2に閾値以上の電圧を印加すると、空乏層が収縮して非導入領域15を電子が移動できる状態となる。非導入領域15は、i型GaNで形成されており、電子の移動度が高い。オン抵抗は低い。
第1実施例のトランジスタ20では、負固定電荷導入領域14を部分的に設ける。図11の構造では、負固定電荷導入領域14を全面的に設ける。
前者の場合、隣接する一対の負固定電荷導入領域14の間の領域(非導入領域15)では、電子が移動しやすい。負固定電荷導入領域14を部分的に設けることによるオン抵抗の上昇幅は小さい。
後者の場合、負固定電荷導入領域14に反転層が形成し、その反転層を電子が移動する現象を利用する。負固定電荷導入領域14を通過する電子は、負固定電荷導入領域14に導入されているイオン不純物によって散乱され、オン抵抗が大きく上昇する。
第1実施例の構造によるオン抵抗の増加は、図11の構造による場合のオン抵抗の上昇よりも格段に低い。
負固定電荷導入領域14を部分的に設ける場合、負固定電荷導入領域14には反転層を形成する必要がなく、負固定電荷導入領域14に導入する負固定電荷の濃度を濃くすることができる。負固定電荷導入領域14の濃度と非導入領域15の長さL15を調整することによって、高い閾値電圧と低いオン抵抗を実現することができる。
第1実施例では、リセスが、電子供給層10の下面(=電子走行層12の上面)に達している。しかしながら、本明細書に記載の技術は、リセスの深さに限定されない。
図10の(A)では、リセス底面が電子供給層10の上面に一致している。(B)ではリセス底面が電子供給層10の中間深さに達している。(A)と(B)の場合は、ゲート絶縁膜4と電子供給層10を介してゲート電極2に対向する範囲の電子走行層12(本明細書でいうチャネル領域)をゲート電極2が延びている方向に沿って観測したときに、負固定電荷導入領域14と非導入領域15が交互に出現することになる。これもまた、本明細書でいうゲート絶縁膜を介してゲート電極に対向するチャネル領域に負固定電荷導入領域と非導入領域が交互に出現する関係に含まれる。(A)の構造では、負固定電荷導入領域14を設けることによって閾値電圧がプラス側に向けて引き上げられるが、ヘテロ接合界面に形成される二次元電子ガスの濃度と負固定電荷の濃度の関係から、閾値電圧をプラス電圧にまでシフトさせることができない場合がある。ノーマリオフのためには、後記する(C)(D)が好ましい。
図10の(C)では、リセス底面が電子供給層10の下面に一致している。すなわち第1実施例で説明したものである。(D)ではリセス底面が電子走行層12の中間深さに達している。(C)と(D)の場合は、ゲート絶縁膜4を介して(電子供給層10を介さないで)ゲート電極2に対向する電子走行層12(チャネル領域)をゲート電極2が延びている方向に沿って観測したときに、負固定電荷導入領域14と非導入領域15が交互に出現することになる。本明細書でいうゲート絶縁膜を介してゲート電極に対向するチャネル領域に負固定電荷導入領域と非導入領域が交互に出現する関係に含まれている。
リセスが、電子走行層12の上面に達するか、あるいはそれよりも深く、チャネル領域を提供する電子走行層12が、電子供給層10を介することなく、ゲート絶縁膜4のみを介してゲート電極2に対向していると、閾値電圧をプラス電圧にシフトさせてノーマリオフに調整し易い。(C)または(D)の構造によると、トランジスタに求められる仕様を満たせることが多い。
(第2実施例)
図5は、第2実施例のトランジスタの平面図を示す。説明済みの部材と同一または類似部材には同一の参照番号を用い、重複説明を省略する。
図5と図6において、線分Aはリセスの底面のソース電極6側の境界線を示し、線分Bはリセスの底面のドレイン電極16側の境界線を示している。実際には、ゲート絶縁膜4の膜厚が図6に図示されているものよりも薄いので、線分Aはゲート電極2の下面のソース電極6側の境界線であり、線分Bはゲート電極2の下面のドレイン電極16側の境界線であるということができる。
図5と図6に示す第2実施例では、負固定電荷導入領域14aが、平面視したときに三角形をなす形状となっている。線分Bに沿って隣接する一対の負固定電荷導入領域14a間の距離L15Bを測定すると短く、線分Bから線分Aに近づくほどその距離が増大する。線分Aに沿った位置にまで負固定電荷導入領域14aが達していないために、線分Aに沿って隣接する一対の負固定電荷導入領域14a間の距離を測定すると、その距離が無限大に引き伸ばされていることがわかる。
図6に示す横型のトランジスタの場合、線分Bの近傍に位置する電子走行層12に電界集中が生じやすい。第2実施例では、電界集中が生じやすい位置では負固定電荷導入領域14aが密に配置されており、集中しやすい電界を効果的に緩和している。第2実施例では電界集中の発生が抑えられ、耐圧を高めることができる。
図5の平面図を多数の単位面積に分割し、その単位面積に含まれる負の固定電荷の量(電荷密度に対応する)を想定する。その場合、線分Bに沿って計測した平均電荷密度が最大となり、線分BからA側に近づくほど平均電荷密度は小さくなる。ゲート電極2の下面のソース電極6側の境界線Aからゲート電極の下面のドレイン電極16側の境界線Bに近づくにつれて前記の平均電荷密度が増大する関係となる負固定電荷導入領域14aを形成することで、トランジスタの耐圧を向上させることができる。
(第3実施例)
図7に示す実施例では、負固定電荷導入領域14bが、線分Aから離れ、線分Bに接近した位置に形成されている。すなわち線分B側に偏った位置に形成されている。この実施例によっても、線分Bの近傍にある電子走行層12に生じやすい電界集中が、線分Bの近傍では密に配置されている負固定電荷導入領域14bによって効果的に緩和される。このために耐圧を高めることができる。
(第4実施例)
ゲート電極に閾値以上の電圧を印加していない状態でも、ソース電極とドレイン電極間に微弱電流が流れ続ける。本明細書ではこの微弱電流をリーク電流という。第4実施例では、リーク電流を減らすことができる。
第4実施例では、電子走行層12の下面下に、高抵抗層18を設け、負固定電荷導入領域14cがゲート絶縁膜4の下面から高抵抗層18の上面にまで達している。すると電子走行層12のほぼ全域に空乏層が広がり、リーク電流が厳しく抑制される。
高抵抗層18は、C,FeまたはZnを添加したGaN層で形成することができる。あるいは電子走行層12を形成する窒化物半導体よりも大きなバンドギャップを持つ窒化物半導体で形成することができる。電子走行層12がGaNで形成されていれば、例えばAlGaN層が高抵抗層18となる。
第4実施例では、負固定電荷導入領域14cが高抵抗層18にまで到達しているが、負固定電荷導入領域14cが高抵抗層18に完全に到達しなくてもよい。負固定電荷導入領域14cが高抵抗層18に接近しているという関係でもリーク電流を抑制することができる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:ゲート電極
4:ゲート絶縁膜
6:ソース電極
8:スペーサ膜(絶縁膜)
10:電子供給層(実施例ではAlGaN層)
12:チャネル領域を提供する電子走行層(実施例ではGaN層)
12a:チャネル領域
14:負固定電荷導入領域
14a,14b,14c:負固定電荷導入領域の変形例
15:非導入領域
L15:隣接する一対の負固定電荷導入領域の間の距離
16:ドレイン電極
17:空乏層
18:高抵抗層
20:電界効果トランジスタ

Claims (4)

  1. ゲート電極がゲート絶縁膜を介して窒化物半導体で形成されているチャネル領域と対向しており、
    前記ゲート電極に加える電位によって前記チャネル領域に広がっていた空乏層が収縮してソース電極とドレイン電極間の抵抗が低下する絶縁ゲート型の電界効果トランジスタであり、
    前記ゲート電極が延びている方向に沿って前記チャネル領域を観測したときに、負固定電荷が導入されている領域と負固定電荷が導入されていない領域が交互に出現することを特徴とする電界効果トランジスタ。
  2. 電子走行層と、前記電子走行層の上面上に積層されている電子供給層を備えており、
    前記電子走行層は、窒化物半導体で形成されており、
    前記電子供給層は、前記電子走行層を形成する窒化物半導体よりバンドギャップが大きい窒化物半導体で形成されており、
    前記電子供給層の上面から前記電子走行層に向かって延びるリセスが形成されており、
    前記リセスの壁面が前記ゲート絶縁膜で覆われており、
    壁面が前記ゲート絶縁膜で覆われている前記リセスに、前記ゲート電極が充填されており、
    前記リセスの底面が、前記電子供給層の中間深さから前記電子走行層の中間深さまでの間に位置しており、
    前記ゲート絶縁膜と前記電子供給層を介して前記ゲート電極に対向する範囲の前記電子走行層、あるいは、前記ゲート絶縁膜を介して前記ゲート電極に対向する範囲の前記電子走行層が前記チャネル領域となることを特徴とする請求項1に記載の電界効果トランジスタ。
  3. 前記ゲート電極の下面の前記ソース電極側を延びる線分と、前記ゲート電極の下面の前記ドレイン電極側を延びる線分に沿って、前記ゲート絶縁膜を介して前記ゲート電極に対向する前記チャネル領域を観察したときに、隣接する一対の負固定電荷導入領域の間の距離が、前者の線分に沿って観察すると長くて後者の線分に沿って観察すると短いことを特徴とする請求項1または2に記載の電界効果トランジスタ。
  4. 前記チャネル領域の下面下に高抵抗層が積層されており、
    前記負固定電荷導入領域が、前記チャネル領域の上面から前記高抵抗層まで延びていることを特徴する請求項1〜3のいずれかの1項に記載の電界効果トランジスタ。
JP2014092447A 2014-04-28 2014-04-28 窒化物半導体を利用する絶縁ゲート型の電界効果トランジスタ Expired - Fee Related JP6280434B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092447A JP6280434B2 (ja) 2014-04-28 2014-04-28 窒化物半導体を利用する絶縁ゲート型の電界効果トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092447A JP6280434B2 (ja) 2014-04-28 2014-04-28 窒化物半導体を利用する絶縁ゲート型の電界効果トランジスタ

Publications (2)

Publication Number Publication Date
JP2015211151A true JP2015211151A (ja) 2015-11-24
JP6280434B2 JP6280434B2 (ja) 2018-02-14

Family

ID=54613128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092447A Expired - Fee Related JP6280434B2 (ja) 2014-04-28 2014-04-28 窒化物半導体を利用する絶縁ゲート型の電界効果トランジスタ

Country Status (1)

Country Link
JP (1) JP6280434B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381471B2 (en) 2016-09-02 2019-08-13 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303031A (ja) * 2005-04-18 2006-11-02 Sanken Electric Co Ltd 半導体装置
JP2007294528A (ja) * 2006-04-21 2007-11-08 Toshiba Corp 窒化物半導体素子
JP2008172055A (ja) * 2007-01-12 2008-07-24 Sharp Corp 窒化物半導体装置及びそれを用いた電力変換装置
JP2012124442A (ja) * 2010-12-10 2012-06-28 Fujitsu Ltd 半導体装置及び半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303031A (ja) * 2005-04-18 2006-11-02 Sanken Electric Co Ltd 半導体装置
JP2007294528A (ja) * 2006-04-21 2007-11-08 Toshiba Corp 窒化物半導体素子
JP2008172055A (ja) * 2007-01-12 2008-07-24 Sharp Corp 窒化物半導体装置及びそれを用いた電力変換装置
JP2012124442A (ja) * 2010-12-10 2012-06-28 Fujitsu Ltd 半導体装置及び半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381471B2 (en) 2016-09-02 2019-08-13 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method

Also Published As

Publication number Publication date
JP6280434B2 (ja) 2018-02-14

Similar Documents

Publication Publication Date Title
JP5900698B2 (ja) 半導体装置
JP6139355B2 (ja) 半導体装置
WO2016152058A1 (ja) 半導体装置
TWI458095B (zh) 半導體裝置
US20160268420A1 (en) Semiconductor device
JP2015133380A (ja) 半導体装置
JP2012069797A (ja) 絶縁ゲート型トランジスタ
TW201541639A (zh) 半導體裝置
US20190305129A1 (en) Semiconductor device
JP2016225333A (ja) Sbd
JP6453188B2 (ja) 炭化珪素半導体装置
JP6618615B2 (ja) 横方向拡散金属酸化物半導体電界効果トランジスタ
US10068972B2 (en) Semiconductor device with opposite conductivity-type impurity regions between source and trench gate for reducing leakage
JP6381101B2 (ja) 炭化珪素半導体装置
JP6268007B2 (ja) 半導体装置
US20210320200A1 (en) Termination for trench field plate power mosfet
JP6299658B2 (ja) 絶縁ゲート型スイッチング素子
JP2015195307A (ja) 半導体装置
JP6280434B2 (ja) 窒化物半導体を利用する絶縁ゲート型の電界効果トランジスタ
TW201535678A (zh) 半導體裝置
JP2016213374A (ja) 半導体装置
JP5456147B2 (ja) 半導体装置
JP7315743B2 (ja) 半導体装置
JP7517206B2 (ja) 電界効果トランジスタ
JP6215647B2 (ja) 半導体装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6280434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees