JP2015171356A - Method of suppressing pest insect on plant body - Google Patents

Method of suppressing pest insect on plant body Download PDF

Info

Publication number
JP2015171356A
JP2015171356A JP2015016822A JP2015016822A JP2015171356A JP 2015171356 A JP2015171356 A JP 2015171356A JP 2015016822 A JP2015016822 A JP 2015016822A JP 2015016822 A JP2015016822 A JP 2015016822A JP 2015171356 A JP2015171356 A JP 2015171356A
Authority
JP
Japan
Prior art keywords
red light
test
thrips
irradiation
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015016822A
Other languages
Japanese (ja)
Other versions
JP6540944B2 (en
Inventor
祐介 片井
Yusuke Katai
祐介 片井
隆輔 石川
Ryusuke Ishikawa
隆輔 石川
伸一 増井
Shinichi Masui
伸一 増井
学 柴尾
Manabu Shibao
学 柴尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Res Inst Of Environment Agriculture & Fisheries Osaka Prefecture
Shizuoka Prefecture
Research Institute of Environment Agriculture and Fisheries Osaka Prefecture
Original Assignee
Res Inst Of Environment Agriculture & Fisheries Osaka Prefecture
Shizuoka Prefecture
Research Institute of Environment Agriculture and Fisheries Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Res Inst Of Environment Agriculture & Fisheries Osaka Prefecture, Shizuoka Prefecture, Research Institute of Environment Agriculture and Fisheries Osaka Prefecture filed Critical Res Inst Of Environment Agriculture & Fisheries Osaka Prefecture
Priority to JP2015016822A priority Critical patent/JP6540944B2/en
Publication of JP2015171356A publication Critical patent/JP2015171356A/en
Application granted granted Critical
Publication of JP6540944B2 publication Critical patent/JP6540944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catching Or Destruction (AREA)
  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress colonization and egg-laying of pest insects on a plant body at a low cost.SOLUTION: A red light source emitting a red light (a light with a wavelength of 600-700 nm) is installed in a greenhouse and is made to emit the red light toward a plant body planted in the greenhouse, in addition to sunlight or light from a fluorescent lamp. Light intensity of the red light on an irradiation surface of the red light on the plant body is equal to or more than 1×10photons/msec. Irradiation of the red light suppresses colonization and egg-laying of pest insects, especially pest insects belonging to Thysanoptera including Thrips palmi Karny, Frankliniella occidentalis Pergande, Frankliniella intonsa and Thrips tabaci Lindeman.

Description

本発明は、害虫の植物体への定着及び産卵を抑制する植物体の害虫抑制方法に関する。   The present invention relates to a pest control method for a plant that suppresses the establishment of the pest on the plant and spawning.

近年、野菜の施設栽培では、冬場に加温することで周年栽培が行われている。このため、微小害虫は年間を通じて発生しており、その防除には主に薬剤が使用されている。しかし、施設という閉鎖空間においては、同一系統の薬剤が年間を通じて複数回散布されるため、害虫の薬剤感受性が低下し、新規登録された薬剤も数年後には防除効果が低下する。一方、新たな薬剤の開発には数年かかることから、薬剤防除だけに依存しない新たな防除方法を確立することが必要となってきている。   In recent years, in the institutional cultivation of vegetables, year-round cultivation is performed by heating in winter. For this reason, micro pests occur throughout the year, and drugs are mainly used to control them. However, in the closed space of the facility, the same strain of drug is sprayed several times throughout the year, so that the pesticide's drug susceptibility decreases, and the newly registered drug also decreases its control effect after several years. On the other hand, since it takes several years to develop a new drug, it is necessary to establish a new control method that does not depend only on drug control.

このような状況下において、光の植物体への照射により、害虫の植物体への定着及び産卵を抑制する害虫抑制方法が開発されてきている。例えば、下記特許文献1には、500〜600nmの波長成分を含ない疑似太陽光を圃場全体に照射するとともに、280〜700nmの波長範囲内にピークを有する誘引光を圃場の一部に照射し、誘引光の光源に集まる昼行性害虫を捕獲して、害虫の植物体への定着及び産卵を抑制する害虫抑制方法が示されている。また、下記特許文献2には、青色光より長い波長成分を含む誘引光(具体的には、470〜960nmの波長成分を含む誘引光)を植物体に照射して、ハダニの天敵害虫であるカブリダニを誘引することによりハダニを駆除するハダニ防除方法が示されている。   Under such circumstances, methods for controlling pests have been developed that suppress the establishment of the pests on the plants and the egg laying by irradiation of the plants with light. For example, in Patent Document 1 below, pseudo-sunlight that does not include a wavelength component of 500 to 600 nm is irradiated to the entire field, and attraction light having a peak in the wavelength range of 280 to 700 nm is irradiated to a part of the field. In addition, a pest control method for capturing diurnal pests gathered in a light source of attracting light to suppress the establishment of the pests in a plant body and spawning is shown. Patent Document 2 below is a natural enemy pest of spider mites by irradiating a plant with attracting light containing a wavelength component longer than blue light (specifically, attracting light containing a wavelength component of 470 to 960 nm). A spider mite control method is shown in which spider mites are exterminated by attracting spider mites.

また、害虫の駆除ではないが、下記特許文献3には、280〜340nmの波長成分を含む紫外線を植物体に照射することにより、白色カビ病、うどんこ病などの糸状菌の成長を抑制することが示されている。さらに、下記特許文献4には、280〜340nmの波長成分と、100〜280nmの波長成分とを含む紫外線を植物体に照射することにより、前記と同種の糸状菌の成長を抑制することも示されている。   Moreover, although it is not extermination of a pest, the following patent document 3 suppresses the growth of filamentous fungi such as white mold disease and powdery mildew by irradiating a plant body with ultraviolet rays containing a wavelength component of 280 to 340 nm. It has been shown. Furthermore, the following Patent Document 4 shows that the growth of the same type of filamentous fungus as described above is suppressed by irradiating the plant with ultraviolet rays containing a wavelength component of 280 to 340 nm and a wavelength component of 100 to 280 nm. Has been.

特開2011−67196号公報JP 2011-67196 A 特開2011−72200号公報JP 2011-72200 A 特開2005−328734号公報JP 2005-328734 A 特開2009−22175号公報JP 2009-22175 A

しかし、上記特許文献1による誘引光を用いた害虫の誘引及び誘引した害虫の捕獲においては、害虫を防除しようとする植物体近傍に生息している害虫以外の害虫、すなわち前記植物体から少し離れた位置に生息している害虫も前記植物体に集まって来て、害虫防除に対して逆効果となる可能性がある。また、上記特許文献2による誘引光を用いたハダニを駆除するハダニ防除方法では、対象植物体の環境によっては、ハダニの天敵害虫であるカブリダニ以外であって、対象植物体に対して害虫となる他の害虫が対象植物体に集まる可能性がある。   However, in attracting pests using attracting light and capturing the attracted pests according to Patent Document 1, the pests other than the pests in the vicinity of the plant body to control the pests, that is, a little away from the plant body. There is a possibility that pests inhabiting at different positions also gather in the plant body and have an adverse effect on pest control. In addition, in the spider mite control method for controlling spider mites using the attracting light according to Patent Document 2, depending on the environment of the target plant body, the spider mite is a natural enemy pest, and the target plant body is a pest. Other pests may gather on the target plant.

また、上記特許文献3,4による紫外線の照射は白色カビ病、うどんこ病などの糸状菌から植物体を守るための植物体の病害防除方法であり、糸状菌と害虫は異なるが、紫外線を植物体に照射すれば、害虫の植物体からの忌避に利用できるとも考えられる。しかし、紫外線を発光する光源装置の価格は非常に高く、低コストで植物体を害虫から防除できないという問題がある。   Moreover, the irradiation of ultraviolet rays according to the above-mentioned Patent Documents 3 and 4 is a method for controlling plant diseases to protect the plant bodies from filamentous fungi such as white mold disease, powdery mildew, and the like. If the plant body is irradiated, it can be used for repelling pests from the plant body. However, the price of the light source device that emits ultraviolet rays is very high, and there is a problem that the plant body cannot be controlled from pests at low cost.

本発明は、上記問題を解決するためになされたものであり、その目的は、低コストで害虫の植物体への定着及び産卵を抑制する害虫抑制方法を提供することにある。なお、下記本発明の各構成要件の記載においては、本発明の理解を容易にするために、実施形態の対応箇所の符号を括弧内に記載しているが、本発明の各構成要件は、実施形態の符号によって示された対応箇所の構成に限定解釈されるべきものではない。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for controlling pests that suppresses the establishment of the pests on the plant body and spawning at low cost. In addition, in the description of each constituent element of the present invention below, in order to facilitate understanding of the present invention, reference numerals of corresponding portions of the embodiment are described in parentheses, but each constituent element of the present invention is The present invention should not be construed as being limited to the configurations of the corresponding portions indicated by the reference numerals of the embodiments.

前記目的を達成するために、本発明の特徴は、赤色光光源(12)からの赤色光を対象植物体(20A,20B)に照射して、対象植物体への害虫の定着及び産卵を抑制する植物体の害虫抑制方法にある。   In order to achieve the above object, the present invention is characterized by irradiating the target plant body (20A, 20B) with red light from the red light source (12) to suppress the establishment of insect pests and egg laying on the target plant body. There is a method for controlling insect pests.

この場合、対象植物体の赤色光の照射面における赤色光の光強度は、例えば、1×1018 photons/m2・sec以上である。また、例えば、害虫は、ミナミキイロアザミウマ、ミカンキイロザミウマ、ヒラズハナアザミウマ及びネギアザミウマを含むアザミウマ類に属する害虫である。また、対象植物体は、例えば、温室(10)内で育てられるメロン(20A,20B)、ナス又はキュウリである。さらに、赤色光は、例えば、太陽光又は蛍光灯による光と共に対象植物体に照射される。 In this case, the light intensity of the red light on the red light irradiation surface of the target plant body is, for example, 1 × 10 18 photons / m 2 · sec or more. In addition, for example, the pests are pests belonging to thrips including Thrips thrips, Thrips thrips, Thrips thrips and Thrips thrips. The target plant is, for example, melon (20A, 20B), eggplant, or cucumber grown in the greenhouse (10). Furthermore, red light is irradiated to a target plant body with the light by sunlight or a fluorescent lamp, for example.

前記本発明は、植物体に寄生する害虫が赤色光を忌避するという本発明者の発見に基づくものであり、後述する試験結果からも理解できるとおり、赤色光を対象植物体に照射すると、対象植物体への害虫の定着及び産卵が抑制される。したがって、本発明によれば、害虫が対象植物体から除去され、対象植物体の害虫による被害を抑えることができる。また、害虫の除去のために対象植物体に薬剤を散布する場合でも、薬剤散布の回数を減らすことができ、害虫の薬剤感受性低下を抑制できて、薬剤の使用寿命を延長させることができる。さらに、紫外線を対象植物に照射する場合に比べて、低コストで本発明を実現できる。   The present invention is based on the discovery of the present inventor that a pest parasitic on a plant body repels red light. As can be understood from the test results described later, the target plant body is irradiated with red light. Insect pests and spawning are suppressed in the plant body. Therefore, according to this invention, a pest is removed from a target plant body and the damage by the pest of a target plant body can be suppressed. In addition, even when a drug is sprayed on a target plant for removing pests, the number of times of spraying the drug can be reduced, a decrease in drug sensitivity of the pests can be suppressed, and the service life of the drug can be extended. Furthermore, the present invention can be realized at a lower cost than in the case where the target plant is irradiated with ultraviolet rays.

また、本発明の他の特徴は、赤色光の照射に加えて、対象植物体が植えられた場所に光反射シートを敷いたことにある。これによれば、後述する試験結果からも理解できるとおり、対象植物体への害虫の定着及び産卵がさらに抑制される。   Another feature of the present invention resides in that a light reflecting sheet is laid in a place where the target plant is planted in addition to the irradiation with red light. According to this, as can be understood from the test results described later, the establishment of the pests on the target plant body and the egg-laying are further suppressed.

本発明の一実施形態に係る植物体の害虫防除方法を採用した温室の概略斜視図である。It is a schematic perspective view of the greenhouse which employ | adopted the pest control method of the plant body which concerns on one Embodiment of this invention. 本発明で用いられる赤色光の発光帯域、試験に用いられた青色光及び白色光の発光帯域を説明するためのグラフである。It is a graph for demonstrating the emission band of the red light used by this invention, the emission band of the blue light used for the test, and white light. 第1試験に用いた試験装置の概略図である。It is the schematic of the test apparatus used for the 1st test. 第8試験に用いた試験装置の概略図である。It is the schematic of the test apparatus used for the 8th test. 第8試験における蛍光灯照射条件下での環境温度の変化を示すグラフである。It is a graph which shows the change of the environmental temperature under the fluorescent lamp irradiation conditions in the 8th test. 第8試験における蛍光灯無照射条件下での環境温度の変化を示すグラフである。It is a graph which shows the change of the environmental temperature on the fluorescent lamp non-irradiation conditions in the 8th test. 第9試験に用いた試験装置の概略図である。It is the schematic of the test apparatus used for the 9th test. 第9試験におけるミナミキイロアザミウマの幼虫及び成虫の合計数の変化を示すグラフである。It is a graph which shows the change of the total number of the southern larva thrips larvae and adults in the 9th test. 第10試験における試験場の概略図である。It is the schematic of the test place in a 10th test. (A)は第10試験におけるアザミウマ類の成虫数の変化を示すグラフであり、(B)は第10試験におけるアザミウマ類の幼虫数の変化を示すグラフである。(A) is a graph showing changes in the number of thrips adults in the tenth test, and (B) is a graph showing changes in the number of thrips larvae in the tenth test. (A)は第10試験におけるミナミキイロアザミウマの成虫数の変化を示すグラフであり、(B)は第10試験におけるミナミキイロアザミウマの幼虫数の変化を示すグラフである。(A) is a graph showing changes in the number of adult southern thrips in the tenth test, and (B) is a graph showing changes in the number of southern thrips larvae in the tenth test.

a.実施形態
以下、本発明の一実施形態に係る植物体の害虫防除方法について説明する。図1は、前記植物体の害虫防除方法を採用した温室10の概略斜視図である。図1においては、左側にて栽培土壌11にメロンの種を播いて苗状態にあるメロン株20Aを高密度で育てている状態を示し、右側にて栽培土壌11に苗状態にあるメロン株20Aを定植して定植後のメロン株20Bをある程度大きな間隔をもって生育させている状態を示している。なお、苗状態にあるメロン株20Aは20〜30cm程度の高さまでの状態をさし、定植後のメロン株20Bは20〜30cmよりも大きく成長した状態をさす。なお、定植後のメロン株20Bは、2m程度の高さまで成長すると、上部がカットされる。
a. Embodiments Hereinafter, a pest control method for a plant body according to an embodiment of the present invention will be described. FIG. 1 is a schematic perspective view of a greenhouse 10 employing the plant pest control method. In FIG. 1, melon seed 20A in seedling state is seeded in cultivated soil 11 on the left side and melon strain 20A in seedling state is grown at high density, and melon strain 20A in seedling state on cultivated soil 11 is shown on the right side. It shows the state where the melon strain 20B after planting is planted and grown at a certain large interval. In addition, melon stock 20A in a seedling state refers to a state up to a height of about 20 to 30 cm, and melon strain 20B after planting refers to a state of growing larger than 20 to 30 cm. In addition, when the melon stock 20B after planting grows to a height of about 2 m, the upper part is cut.

温室10内には、複数の箇所に赤色光光源12が配置されている。この赤色光光源としては、本実施形態では、「鍋清株式会社製の商品名DELED Plants」なる波長帯域が600〜700nmである赤色光を発光するLED光源が用いられている。具体的には、このLED光源による赤色光は、図2の発光帯域のグラフにて実線で示すように、約630nm及び660nmに2つの発光レベルのピークを有し、600〜700nmの波長帯域を有する赤色光である。なお、赤色光光源12としては、600〜700nmの波長帯域を有する赤色光を発光するものであれば、前記LED光源に限らず、種々の光源を利用できる。   In the greenhouse 10, red light sources 12 are arranged at a plurality of locations. As the red light source, in this embodiment, an LED light source that emits red light having a wavelength band of 600 to 700 nm, “trade name DELED Plants manufactured by Nabeyo Co., Ltd.” is used. Specifically, the red light from this LED light source has two emission level peaks at about 630 nm and 660 nm as shown by the solid line in the emission band graph of FIG. 2, and has a wavelength band of 600 to 700 nm. It has red light. The red light source 12 is not limited to the LED light source as long as it emits red light having a wavelength band of 600 to 700 nm, and various light sources can be used.

これらの赤色光光源12は、温室10の上部から吊り下げられるようにして設けられており、それらの高さを変更可能としている。苗状態のメロン株20Aに対しては赤色光光源12を低い位置に位置させ、定植後のメロン株20Bに対しては赤色光光源12を高い位置に位置させている。これにより、苗状態のメロン株20Aにも、定植後のメロン株20Bにも上方から大きな強度の赤色光を照射することができる。そして、本実施形態では、赤色光光源12からの赤色光をメロン株20A,20B(すなわち、メロン株の葉)に照射した際、赤色光の照射面(メロン株の葉の表面)における赤色光の光強度が1×1018 photons/m2・sec以上になるように、赤色光の強度が設定されている。 These red light sources 12 are provided so as to be suspended from the upper part of the greenhouse 10, and their heights can be changed. The red light source 12 is positioned at a low position for the melon stock 20A in a seedling state, and the red light source 12 is positioned at a high position for the melon strain 20B after planting. Thereby, the melon strain 20A in a seedling state and the melon strain 20B after planting can be irradiated with red light having a large intensity from above. In the present embodiment, when the red light from the red light source 12 is irradiated onto the melon strains 20A and 20B (that is, the leaves of the melon strain), the red light on the red light irradiation surface (the surface of the leaves of the melon strain). The intensity of the red light is set so that the light intensity of the light becomes 1 × 10 18 photons / m 2 · sec or more.

また、定植後のメロン株20Bに赤色光を照射する場合には、前述のようにメロン株20Bの上方のみからの赤色光の照射では、メロン株20Bは成長するために、メロン株20Bの下部の葉には適当な強度の赤色光が照射されないことが生じる。したがって、この場合には、メロン株20Bの成長に応じて赤色光光源12を上方に移動させて、赤色光光源12からの適当な強度の赤色光がメロン株20Bの全体の葉に照射されるようにする。また、赤色光をメロン株20Bの横方向から照射したり、上下方向に複数段の赤色光光源12を設けて、1本のメロン株に対して複数段の赤色光光源12からの赤色光を照射したりするようにする。さらには、メロン株20Bが植えられた土壌に光反射シートを敷いて、光反射シートで反射させた赤色光をメロン株20Bに照射するようにする。このようなメロン株20Bへの赤色光の照射により、メロン株20Bの葉にも、葉の表面における光強度が1×1018 photons/m2・sec以上となる赤色光が照射されるようになっている。 In addition, when red light is irradiated on the melon strain 20B after planting, the melon strain 20B grows when irradiated with red light only from above the melon strain 20B as described above. The leaves are not irradiated with red light of appropriate intensity. Therefore, in this case, the red light source 12 is moved upward in accordance with the growth of the melon strain 20B, and red light of appropriate intensity from the red light source 12 is irradiated to the entire leaves of the melon strain 20B. Like that. In addition, the red light is emitted from the lateral direction of the melon stock 20B, or a plurality of red light sources 12 are provided in the vertical direction, and the red light from the multiple red light sources 12 is applied to one melon stock. And so on. Further, a light reflecting sheet is laid on the soil in which the melon strain 20B is planted, and the melon strain 20B is irradiated with red light reflected by the light reflecting sheet. By irradiating the melon strain 20B with red light, the leaves of the melon strain 20B are also irradiated with red light having a light intensity on the leaf surface of 1 × 10 18 photons / m 2 · sec or more. It has become.

また、温室10内には、白色光(400〜800nmを波長帯域とする光)を発光する複数の蛍光灯13も温室10内の天井近傍に設けられている。複数の蛍光灯13は、太陽光が照射されない時間帯、特に日没後の所定時間及び日の出前の所定時間に渡って点灯され、日照時間が短い冬場などに太陽光の照射を補う。なお、夜間にも蛍光灯13を点灯するようにしてもよい。温室10内には、気温の低い冬場などに温室10内の温度を高めるために、暖房装置14も設けられている。さらに、温室10内には、メロン株20A,20Bが植えられた土壌近傍位置に、メロン株20A,20Bに水を与えるためのパイプなどを備えた図示しない給水装置も設けられている。   In the greenhouse 10, a plurality of fluorescent lamps 13 that emit white light (light having a wavelength band of 400 to 800 nm) are also provided near the ceiling in the greenhouse 10. The plurality of fluorescent lamps 13 are lit for a time period in which sunlight is not irradiated, particularly for a predetermined time after sunset and a predetermined time before sunrise, and compensates for the irradiation of sunlight in winter or the like where the sunshine time is short. The fluorescent lamp 13 may be turned on at night. A heating device 14 is also provided in the greenhouse 10 in order to increase the temperature in the greenhouse 10 in winter when the temperature is low. Further, in the greenhouse 10, a water supply device (not shown) provided with a pipe or the like for supplying water to the melon stocks 20A and 20B is provided near the soil where the melon stocks 20A and 20B are planted.

このように構成した温室10においては、太陽光がメロン株20A,20Bに照射される時間帯(すなわち、日中)及び蛍光灯13による白色光がメロン株20A,20Bへ照射される時間帯(例えば、日没後の所定時間及び日の出前の所定時間)に、赤色光光源12が点灯される。これにより、太陽光及び蛍光灯13からの光がメロン株20A,20Bに照射されるのに加えて、赤色光光源12からの赤色光もメロン株20A,20Bに照射される。このように日中及びその前後に赤色光光源12からの赤色光をメロン株20A,20Bに照射する理由は、メロン株に関しては、昼行性害虫であるアザミウマ類の微小害虫(ミナミキイロアザミウマ)による被害が主であるからである。   In the greenhouse 10 configured as described above, a time zone in which sunlight is irradiated on the melon stocks 20A and 20B (that is, daytime) and a time zone in which white light from the fluorescent lamp 13 is irradiated on the melon stocks 20A and 20B ( For example, the red light source 12 is turned on at a predetermined time after sunset and a predetermined time before sunrise. Thereby, in addition to the sunlight and the light from the fluorescent lamp 13 being applied to the melon stocks 20A and 20B, the red light from the red light source 12 is also applied to the melon stocks 20A and 20B. The reason for irradiating the melon strains 20A and 20B with red light from the red light source 12 during the daytime and before and after that is that, as regards the melon strain, the minute pests of thrips that are diurnal pests (the southern thrips) This is because the damage caused by

このような赤色光の照射においては、前述のように、苗状態にあるメロン株20Aに赤色光を照射する場合には、赤色光光源12をメロン株20Aの上方位置に固定して、赤色光をメロン株20Aに照射する。しかし、定植後のメロン株20Bに赤色光を照射する場合には、メロン株20Bの成長に応じて、赤色光光源12の位置、数などを変化させて、赤色光をメロン株20Bに照射する。   In such irradiation with red light, as described above, when irradiating red light to the melon strain 20A in a seedling state, the red light source 12 is fixed at an upper position of the melon strain 20A, and red light is emitted. Is irradiated to melon strain 20A. However, when irradiating red light to the melon strain 20B after planting, the position and number of the red light sources 12 are changed according to the growth of the melon strain 20B, and the red light is irradiated to the melon strain 20B. .

このような赤色光の照射により、詳しくは後述する試験結果を用いて説明するように、アザミウマ類の害虫(ミナミキイロアザミウマ)は、赤色光を忌避する。したがって、このようにして、害虫の苗状態にあるメロン株20Aへの産卵(図示X1参照)、害虫の苗状態にあるメロン株20Aへの飛び込み(図示X2参照)、害虫の定植後のメロン株20Bへの飛び込み及び定着(図示X3参照)、害虫の外部から温室10への飛び込み(図示X4参照)などが抑制される。言い換えれば、メロン株20A,20Bである対象植物体への害虫の定着及び産卵を抑制することにより、対象植物体から害虫を除去することになる。   As will be described in detail using the test results described later, the thrips pests (the southern thrips) repel red light. Therefore, in this way, egg laying on the melon strain 20A in the pest seedling state (see X1 in the figure), jumping into the melon strain 20A in the pest seedling state (see X2 in the figure), and the melon strain after the planting of the pests Jumping into and setting on 20B (see X3 in the figure), jumping into the greenhouse 10 from outside the pest (see X4 in the figure), and the like are suppressed. In other words, the insect pests are removed from the target plant body by suppressing the colonization and spawning of the insect pests on the target plant bodies that are the melon strains 20A and 20B.

その結果、前記のような赤色光の照射による害虫の除去により、対象植物体に対する害虫による被害を抑えることができる。また、害虫の除去により、対象植物体に薬剤を散布する場合でも、薬剤散布の回数を減らすことができ、害虫の薬剤感受性低下を抑制できるとともに、薬剤の使用寿命を延長させることができる。また、紫外線を対象植物体に照射する場合に比べて、前記実施形態の方法ではコストを低く抑えることができる。   As a result, by removing the pests by irradiation with red light as described above, damage to the target plant by the pests can be suppressed. In addition, by removing the pests, even when the drug is sprayed on the target plant body, the number of times the drug is sprayed can be reduced, a decrease in the drug sensitivity of the pests can be suppressed, and the service life of the drug can be extended. Moreover, compared with the case where an object plant body is irradiated with ultraviolet rays, the cost of the method of the above embodiment can be reduced.

なお、前述のような苗状態にあるメロン株20A及び定植後のメロン株20Bに対する害虫の除去のために、メロン株20A,20Bに赤色光を照射しても、メロンの生育、特にメロン果実の収穫に対する影響は全くなかった。   In order to remove pests on the melon strain 20A in the seedling state as described above and the melon strain 20B after planting, even if the melon strains 20A and 20B are irradiated with red light, the growth of melon, especially the melon fruit There was no impact on the harvest.

b.試験
次に、苗状態にあるメロン株20A及び定植後のメロン株20Bに対する害虫(アザミウマ類等の微小害虫)の除去に関し、本発明者が行った第1乃至第10試験について説明する。
b. Test Next, the first to tenth tests conducted by the present inventor regarding the removal of pests (micro pests such as thrips) on the melon strain 20A in a seedling state and the melon strain 20B after planting will be described.

b1.第1試験
アザミウマ類等の微小害虫(ミナミキイロアザミウマ)の赤色光に対する忌避についての第1試験を行った。試験装置としては、塩化ビニール製のパイプで25cm×25cm×1.2mの骨組みを作り、上面及び側面を紫外線が透過する農業用ポリ塩化ビニールシートで覆い、底面に光反射シート31を敷いたものを採用した。そして、図3に示すように、光反射シート31の上面において、その延設方向の中央位置(図示X位置)から両側50cmの位置にシャーレをそれぞれ置くとともに、各シャーレの上面に湿らせたろ紙を敷き、シャーレの大きさに合わせて切断したインゲンの一枚の葉32a,32bを各ろ紙の上にそれぞれ載せて、25℃に保たれた室内にて、光反射シート31の全面に照度1000ルクスの蛍光灯の光(白色光)を照射した。なお、前記蛍光灯の1000ルクスの照度とは、一般的な室内の照明程度の明るさである。この条件下で、インゲンの葉32aの20cm上方の位置から、光源33からの赤色光及び青色光をインゲンの葉32aにそれぞれ照射した。この試験で用いた光源33は、赤色光の場合には「CCS社製ISL−150×150H4RR(LED光源)」であり、青色光の場合には「CCS社製ISL−150×150BB(LED光源)」である。
b1. 1st test The 1st test about the repelling with respect to red light of micro pests (Thysanoptera thrips), such as thrips, was done. As a test device, a 25cm x 25cm x 1.2m frame is made with a pipe made of vinyl chloride, and the upper and side surfaces are covered with an agricultural polyvinyl chloride sheet that transmits ultraviolet light, and a light reflecting sheet 31 is laid on the bottom surface. It was adopted. Then, as shown in FIG. 3, on the upper surface of the light reflecting sheet 31, a petri dish is placed at a position 50 cm on both sides from the center position (X position in the drawing) in the extending direction, and the filter paper is moistened on the upper surface of each petri dish. A leaf of green beans 32a and 32b cut according to the size of the petri dish is placed on each filter paper, and the entire surface of the light reflecting sheet 31 has an illuminance of 1000 in a room kept at 25 ° C. It was irradiated with light from a lux fluorescent lamp (white light). The illuminance of 1000 lux of the fluorescent lamp is as bright as general indoor lighting. Under this condition, the green beans 32a were irradiated with red light and blue light from the light source 33 from a position 20 cm above the green beans 32a. The light source 33 used in this test is “ISL-150 × 150H4RR (LED light source) manufactured by CCS” in the case of red light, and “ISL-150 × 150BB manufactured by CCS (LED light source) in the case of blue light. ) ”.

この場合、図3のX位置(インゲンの葉32a,32b間の中央位置)に、メロンを栽培中の温室で採取した15頭のミナミキイロアザミウマの雌成虫を採取直後に放飼し、赤色光をインゲンの葉32aのみに24時間連続して照射した後に、赤色光を照射した側のインゲンの葉32aに定着したミナミキイロアザミウマの数と、赤色光を照射しない側のインゲンの葉32bに定着したミナミキイロアザミウマの数とを計測して、両数を比較した。この赤色光の照射においては、赤色光の照射面(インゲンの葉32aの上面)における赤色光の光強度が1×1017photons/m2・sec、1×1018photons/m2・sec、1×1019photons/m2・secにそれぞれなるように、赤色光の強度を変更した。 In this case, 15 adult females of Thrips thrips collected in the greenhouse where the melon is cultivated are released immediately after collection at the X position in FIG. 3 (the central position between the green beans 32a and 32b), and the red light Of the kidney beans 32a for 24 hours continuously and then the number of southern thrips colonized on the kidney beans 32a on the side irradiated with red light and the plants on the kidney leaf 32b on the side not irradiated with red light. The number of southern thrips was counted and compared. In this red light irradiation, the light intensity of the red light on the red light irradiation surface (the upper surface of the bean leaf 32a) is 1 × 10 17 photons / m 2 · sec, 1 × 10 18 photons / m 2 · sec, The intensity of red light was changed so as to be 1 × 10 19 photons / m 2 · sec, respectively.

また、赤色光の場合と同様にミナミキイロアザミウマの雌成虫を放飼し、青色光をインゲンの葉32aのみに24時間連続して照射した後に、青色光を照射した側のインゲンの葉32aに定着したミナミキイロアザミウマの数と、青色光を照射しない側のインゲンの葉32bに定着したミナミキイロアザミウマの数とを計測して、両数を比較した。この青色光の照射においては、青色光の照射面(インゲンの葉32aの上面)における青色光の光強度が1×1018photons/m2・secになるように、青色光の強度を設定した。 Further, as in the case of red light, female adults of Southern Thrips thrips are released, and after blue light is irradiated only to the kidney beans 32a for 24 hours continuously, the kidney beans 32a on the side irradiated with blue light are irradiated. The number of the southern thrips settled and the number of the southern thrips settled on the kidney leaf 32b on the side not irradiated with blue light were measured and compared. In this blue light irradiation, the intensity of the blue light was set so that the light intensity of the blue light on the surface irradiated with blue light (the upper surface of the kidney beans 32a) was 1 × 10 18 photons / m 2 · sec. .

なお、光強度1×1017photons/m2・secは1000ルクスの蛍光灯下で人間が赤色光を認識し難い程度の光の強度であり、光強度1×1018photons/m2・secは1000ルクスの蛍光灯下で人間が赤色光及び青色光を認識できる光の強度である。また、この試験は2反復である。この試験結果を下記表1に示す。なお、表1においては、放飼したミナミキイロアザミウマの総数に対して、インゲンの葉32aに定着したミナミキイロアザミウマの数の割合を太い縦線で示し、インゲンの葉32bに定着したミナミキイロアザミウマの数の割合を斜線で示している。 The light intensity of 1 × 10 17 photons / m 2 · sec is a light intensity that makes it difficult for humans to recognize red light under a 1000 lux fluorescent lamp. The light intensity is 1 × 10 18 photons / m 2 · sec. Is the intensity of light that allows humans to recognize red light and blue light under a 1000 lux fluorescent lamp. This test is repeated twice. The test results are shown in Table 1 below. In Table 1, the ratio of the number of southern thrips settled on kidney beans 32a to the total number of released thrips is shown by thick vertical lines, and southern thrips settled on kidney beans 32b. The ratio of the number is shown by diagonal lines.

Figure 2015171356
Figure 2015171356

この試験によれば、赤色光の全ての場合について、ミナミキイロアザミウマは赤色光を照射した側のインゲンの葉32aを忌避して、赤色光を照射しない側(表1の無照射側)のインゲンの葉32bに定着したことが、カイ2乗検定(x2検定)による5%水準での有意差ありとして確認された。なお、この表1及び後述する表2においては、前記有意差ありをマーク「*」により表し、前記有意差なしにはマークを付していない。青色光をインゲンの葉32aに照射した場合には、赤色光の場合とは逆に、ミナミキイロアザミウマは青色光を照射した側のインゲンの葉32aに定着することが確認された。   According to this test, for all cases of red light, the southern thrips avoids the bean leaf 32a on the side irradiated with red light and does not irradiate the red light (non-irradiated side in Table 1). It was confirmed that there was a significant difference at the 5% level by chi-square test (x2 test). In Table 1 and Table 2 to be described later, the significant difference is indicated by a mark “*”, and the mark is not given without the significant difference. In contrast to the case of red light, it was confirmed that the southern thrips settled on the kidney leaf 32a on the side irradiated with the blue light when the blue light was irradiated on the green beans 32a.

さらに、前記試験装置を用いて、太陽光が入射するガラスで覆った温室内においても、前記と同様な試験を行った。ただし、この場合には、インゲンの葉32a,32bから図3のX位置(インゲンの葉32a,32b間の中央位置)までの距離を30cmとし、X位置におけるミナミキイロアザミウマの放飼数を30頭とした。そして、両葉32a,32bに対して太陽光を照射し、かつ葉32aのみに対して赤色光を24時間照射する試験を行った。また、赤色光の照射においては、赤色光の照射面(インゲンの葉32aの上面)における赤色光の光強度が1×1017photons/m2・sec、1×1018photons/m2・secにそれぞれなるように、赤色光の強度を2種類で変更し、青色光の照射による試験を省略した。他の条件は、前記試験と同じである。なお、この試験も2反復である。そして、この試験結果を、下記表2に示す。なお、表2の記述態様も、前記表1の記述態様と同じである。 Further, using the test apparatus, the same test as described above was performed in a greenhouse covered with glass on which sunlight was incident. However, in this case, the distance from the kidney beans 32a and 32b to the X position in FIG. 3 (the central position between the kidney beans 32a and 32b) is 30 cm, and the number of southern thrips at the X position is 30. It was a head. And the test which irradiates sunlight with respect to both the leaves 32a and 32b, and irradiates red light only with respect to the leaf 32a for 24 hours was done. Further, in the red light irradiation, the light intensity of the red light on the red light irradiation surface (the upper surface of the kidney beans 32a) is 1 × 10 17 photons / m 2 · sec, 1 × 10 18 photons / m 2 · sec. Thus, the intensity of red light was changed in two types, and the test by irradiation with blue light was omitted. Other conditions are the same as in the above test. This test is also repeated twice. The test results are shown in Table 2 below. The description mode of Table 2 is the same as the description mode of Table 1.

Figure 2015171356
Figure 2015171356

この太陽光による照射下(日光下)における赤色光の連続24時間照射による温室内での試験結果によれば、赤色光の照射面における赤色光の光強度が1×1017photons/m2・secである場合には、ミナミキイロアザミウマは赤色光を照射した側のインゲンの葉32aを忌避して、赤色光を照射しない側のインゲンの葉32bに定着する事実は確認されなかった。しかし、赤色光の照射面における赤色光の光強度が1×1018photons/m2・secである場合には、ミナミキイロアザミウマは赤色光を照射した側のインゲンの葉32aを忌避して、赤色光を照射しない側のインゲンの葉32bに定着した事実が確認された。これらから、太陽光の照射下に加えた赤色光の照射においては、照射面における赤色光の光強度が1×1018photons/m2・sec以上であれば、ミナミキイロアザミウマは赤色光を忌避することが分かる。 According to the test results in the greenhouse by continuous 24 hours of red light irradiation under sunlight (under sunlight), the light intensity of red light on the surface irradiated with red light is 1 × 10 17 photons / m 2 · In the case of sec, it was confirmed that the southern blue thrips avoided the kidney beans 32a on the side irradiated with red light and settled on the kidney beans 32b on the side not irradiated with red light. However, when the light intensity of the red light on the irradiated surface of red light is 1 × 10 18 photons / m 2 · sec, the southern thrips avoids the kidney leaf 32a on the side irradiated with the red light, It was confirmed that the green beans 32b on the side not irradiated with red light settled. From these, in the irradiation of red light added under the irradiation of sunlight, if the light intensity of the red light on the irradiated surface is 1 × 10 18 photons / m 2 · sec or more, the southern blue thrips avoids red light I understand that

b2.第2試験
次に、定植後のメロン株におけるアザミウマ類の害虫の赤色光に対する忌避についての第2試験を行った。この試験においては、温室内でメロン株の苗を定植し、定植後のメロン株に対して、太陽光の照射(日中のみの白色光の照射)に加えて、赤色光、青色光及び白色光を14日間それぞれ照射し続けた。また、赤色光、青色光及び白色光を全く照射しない場合の前記試験も行った。なお、この場合には、赤色光、青色光及び白色光を照射せず、温室内で日中の太陽光のもとで育てた育苗苗を定植苗として用いた。そして、定植から7日後及び14日後のメロン株に寄生するミナミキイロアザミウマの1株当たりの幼虫及び成虫の数を調べた。すなわち、赤色光、青色光及び白色光の24時間の連続照射と、赤色光、青色光及び白色光の無照射との4試験区によるミナミキイロアザミウマの定着の差を調べた。なお、この試験においては、1株のメロン株について2反復で行った。
b2. Second Test Next, a second test was performed on the repelling of thrips pests against red light in the melon strain after planting. In this test, seedlings of melon stocks were planted in a greenhouse, and red light, blue light and white light were applied to the melon stock after planting in addition to sunlight irradiation (irradiation of white light only during the day). The light was continuously irradiated for 14 days. In addition, the above test was conducted in the case where no red light, blue light, and white light were irradiated. In this case, the seedlings grown under the sunlight in the greenhouse without being irradiated with red light, blue light and white light were used as the fixed seedlings. Then, the number of larvae and adults per strain of southern blue thrips parasitic on the melon strain 7 days and 14 days after planting was examined. That is, the difference in the fixation of southern blue thrips was examined in four test sections: continuous irradiation of red light, blue light and white light for 24 hours, and no irradiation of red light, blue light and white light. In this test, one melon strain was repeated twice.

さらに、この第2試験においては、日数が増すと、ミナミキイロアザミウマにより葉が食べられて葉の総面積が大きく変化するので、14日後の1株当たりの葉の総面積も調べた。そして、幼虫及び成虫の数を葉の総面積で除算して、単位面積当たりの幼虫及び成虫の数を計算して試験結果とした。   Furthermore, in this second test, as the number of days increased, the leaves were eaten by the southern thrips and the total area of the leaves changed significantly, so the total area of leaves per strain after 14 days was also examined. Then, the number of larvae and adults was divided by the total leaf area, and the number of larvae and adults per unit area was calculated as the test result.

この場合の照射は、定植直後には、メロン株の直上20cmの位置に赤色光光源、青色光光源及び白色光光源をそれぞれ位置させた。しかし、定植後のメロン株の生長は比較的速いので、メロン株の成長に伴い、赤色光光源、青色光光源及び白色光光源をそれぞれ徐々に上方に移動させ、メロン株の上端の直上20cmの位置から常に赤色光、青色光及び白色光がそれぞれ照射されるようにした。また、赤色光光源としては、前記実施形態で用いた「鍋清株式会社製の商品名DELED Plants(LED光源)」を用い、メロン株の上部の赤色光の照射面における赤色光の光強度は1.5×1019photons/m2・secである。青色光光源としては、図2に点線で示す特性の波長帯域400〜500nmを有する青色光を発光する「鍋清株式会社製の商品名DELED Plants(LED光源)」を用い、メロン株の上部の青色光の照射面における青色光の光強度は1.2×1019photons/m2・secである。白色光光源としては、図2に破線で示す特性の波長帯域400〜800nmを有する白色光を発光する「パナソニック製の商品名LDA6N−H昼光色(LED光源)」を用い、メロン株の上部の白色光の照射面における白色光の光強度は1.2×1019photons/m2・secである。 For irradiation in this case, immediately after planting, a red light source, a blue light source, and a white light source were positioned 20 cm above the melon strain. However, since the growth of the melon strain after planting is relatively fast, as the melon strain grows, the red light source, the blue light source, and the white light source are gradually moved upward, and the melon strain grows 20 cm directly above the upper end of the melon strain. Red light, blue light and white light were always irradiated from the position. In addition, as the red light source, the “brand name DELED Plants (LED light source) manufactured by Nabeyoshi Co., Ltd.” used in the above embodiment is used, and the light intensity of the red light on the red light irradiation surface on the upper part of the melon stock is 1.5 × 10 19 photons / m 2 · sec. As the blue light source, “trade name DELED Plants (LED light source) manufactured by Nabeyoshi Co., Ltd.” that emits blue light having a wavelength band of 400 to 500 nm with the characteristic shown by the dotted line in FIG. 2 is used. The light intensity of blue light on the surface irradiated with blue light is 1.2 × 10 19 photons / m 2 · sec. As the white light source, “Panasonic's product name LDA6N-H daylight color (LED light source)” that emits white light having a wavelength band of 400 to 800 nm with the characteristic shown by the broken line in FIG. 2 is used. The light intensity of the white light on the light irradiation surface is 1.2 × 10 19 photons / m 2 · sec.

この試験結果を下記表3に示す。なお、下記表3における符号a,b,c,dは、各試験区における値が他の符号が付された他の試験区の値に対して、テューキー(Turkey)のHSD検定による5%水準での有意差ありとして確認されたことを示す。そして、同一の符合が付された複数の異なる試験区における値に関しては、各値間で前記有意差なしとして確認されたことを示す。また、複数の符合(例えば、符号a,b)の付された試験区における値に関しては、複数の符合のうちの一方の符号(例えば、符号a又は符号b)が付された他の試験区における値に対して前記有意差なしとして確認されたことを示す。この種の符号に関しては、後述する表4〜6でも同様である。   The test results are shown in Table 3 below. The symbols a, b, c, and d in Table 3 below are the 5% level according to the Tukey's HSD test with respect to the values of the other test sections where the values in each test section are given other signs. It was confirmed that there was a significant difference in. And about the value in several different test divisions to which the same code | symbol was attached | subjected, it shows having confirmed as the said significant difference between each value. In addition, regarding the values in the test sections to which a plurality of codes (for example, symbols a and b) are attached, the other test section to which one of the plurality of codes (for example, code a or code b) is attached. It is shown that the above value was confirmed as having no significant difference. This type of code is the same in Tables 4 to 6 described later.

Figure 2015171356
Figure 2015171356

この試験結果によれば、7日後では、赤色光及び青色光の試験区で成虫及び幼虫の数は、無照射の試験区の成虫及び幼虫の数に比べて少なくなった。しかし、14日後では、全ての試験区で成虫及び幼虫の数はあまり変わらない。これは、白色光及び無照射の試験区では、幼虫及び成虫によって葉が食べられて、葉の面積が非常に小さくなっているためであると考えられる。そこで、葉の単位面積当たりの幼虫及び成虫の数を参照すると、赤色光の試験区の幼虫の数は無照射の試験区の幼虫の数の1/18以下になり、赤色光の試験区の成虫の数は無照射の試験区の成虫の数の1/3以下になっている。ただし、赤色光の試験区の幼虫及び成虫の数は青色光及び白色光の試験区の幼虫及び成虫の数に対して、前記有意差は確認されない。しかし、赤色光の試験区における葉の総面積は他の試験区の葉の総面積に比べて極めて大きい。これは、メロン株の上方からの赤色光の照射では、赤色光は上側の葉に遮られて下側の葉にまで届き難いことが理由であると推定される。したがって、赤色光の照射はミナミキイロアザミウマの密度抑制に有効であったと考えられる。また、この赤色光の遮りを考慮して、赤色光をメロン株の横方向から照射するなどの対策も考える必要がある。   According to this test result, after 7 days, the numbers of adults and larvae in the red light and blue light test groups were smaller than the number of adults and larvae in the non-irradiated test group. However, after 14 days, the numbers of adults and larvae do not change much in all test sections. This is presumably because the leaves were eaten by larvae and adults in the white light and non-irradiated test group, and the area of the leaves was very small. Therefore, referring to the number of larvae and adults per unit area of the leaf, the number of larvae in the red light test group is 1/18 or less of the number of larvae in the non-irradiated test group. The number of adults is 1/3 or less of the number of adults in the non-irradiated test section. However, the number of larvae and adults in the test group of red light is not confirmed to be significantly different from the number of larvae and adults in the test group of blue light and white light. However, the total area of the leaves in the red light test area is much larger than the total area of the leaves in the other test areas. This is presumably because the red light is blocked by the upper leaves and does not easily reach the lower leaves when irradiated with red light from above the melon strain. Therefore, it is considered that the irradiation with red light was effective in suppressing the density of southern thrips. In addition, taking into account the blocking of red light, it is necessary to consider measures such as irradiating red light from the lateral direction of the melon stock.

b3.第3試験
次に、赤色光の直接照射によるミナミキイロアザミウマの孵化抑制効果についての第3試験を行った。この試験においては、恒温室内において、プラスチックシャーレに、湿らせたろ紙と、約2cm四方に切断したインゲンの葉と、メロン温室で捕獲した10頭のミナミキイロアザミウマの雌成虫とを入れ、赤色光及び青色光をそれぞれ上面から24時間に渡って照射するとともに、赤色光及び青色光を照射しない試験(無照射の試験)も行った。すなわち、この試験では、赤色光24時間照射、青色光24時間照射及び無照射の3試験区に分けた。この場合、赤色光光源としては「CCS社製の商品名ISL−150×150H4RR:660nm(LED光源)」を用いるとともに、青色光光源としては「CCS社製の商品名ISL−150×150BB:470nm(LED光源)」を用い、これらの赤色光光源及び青色光光源をプラスチックシャーレの上方20cmの位置にそれぞれ位置させて、ろ紙及びインゲンの葉の赤色光及び青色光の照射面(インゲンの葉の表面)における赤色光及び青色光の光強度がそれぞれ1×1018photons/m2・secになるように、赤色光及び青色光の強度を設定した。また、全ての試験区において、プラスチックシャーレは、16時間点灯かつ8時間消灯の約1000ルクスの蛍光灯下に置かれた。すなわち、無照射区においても、プラスチックシャーレは16時間点灯かつ8時間消灯の約1000ルクスの蛍光灯下に置かれた。
b3. Third Test Next, a third test was conducted on the hatching suppression effect of southern thrips by direct irradiation with red light. In this test, in a constant temperature room, a plastic petri dish is filled with moistened filter paper, green beans cut approximately 2 cm square, and 10 female adults of Thrips thrips captured in a melon greenhouse. And blue light were irradiated from the top surface for 24 hours, respectively, and a test (non-irradiation test) in which red light and blue light were not irradiated was also performed. That is, in this test, it was divided into three test sections: irradiation with red light for 24 hours, irradiation with blue light for 24 hours, and no irradiation. In this case, as the red light source, “trade name ISL-150 × 150H4RR manufactured by CCS: 660 nm (LED light source)” is used, and as the blue light source, “trade name ISL-150 × 150 BB manufactured by CCS: 470 nm”. (LED light source) ", and the red light source and the blue light source are respectively positioned 20 cm above the plastic petri dish, and the red light and blue light irradiation surfaces of the filter paper and the green beans (the leaves of the green beans) The intensities of red light and blue light were set so that the light intensities of red light and blue light on the surface) were 1 × 10 18 photons / m 2 · sec, respectively. In all the test sections, the plastic petri dish was placed under a fluorescent lamp of about 1000 lux that was turned on for 16 hours and turned off for 8 hours. That is, even in the non-irradiated section, the plastic petri dish was placed under a fluorescent lamp of about 1000 lux that was turned on for 16 hours and turned off for 8 hours.

この24時間に渡る赤色光及び青色光のそれぞれ照射後、並びに24時間に渡る無照射後、雌成虫を全て取出し、プラスチックシャーレを、前記と同じ1日当たり16時間点灯かつ8時間消灯の蛍光灯による照射条件下におき、96時間後に孵化した幼虫数を調べた。試験は、各試験区を、10反復で行った。この試験結果を下記表4に示す。   After each irradiation of red light and blue light for 24 hours, and after no irradiation for 24 hours, all female adults are removed, and the plastic petri dish is turned on for 16 hours per day with a fluorescent lamp that is turned off for 8 hours. Under irradiation conditions, the number of larvae hatched after 96 hours was examined. In the test, each test group was repeated 10 times. The test results are shown in Table 4 below.

Figure 2015171356
Figure 2015171356

この試験結果によれば、赤色光照射区における第一世代の幼虫の孵化数は減少し、無照射区に対する減少に対してテューキー(Turkey)のHSD検定による5%水準での有意差ありとして確認された。ただし、赤色光照射区における孵化数の減少は青色光照射区における孵化数の減少よりも大きいが、テューキー(Turkey)のHSD検定による5%水準での有意差ありとは確認されなかった。なお、24時間に渡る赤色光及び青色光の照射、並びに24時間に渡る無照射の直後には、全ての雌成虫は生存していた。   According to this test result, the number of first-generation larvae hatched in the red light-irradiated area decreased, and it was confirmed that there was a significant difference at the 5% level by the Tukey HSD test against the decrease in the non-irradiated area It was done. However, although the decrease in the number of hatching in the red light irradiation section was larger than the decrease in the hatching number in the blue light irradiation section, it was not confirmed that there was a significant difference at the 5% level by the Tukey HSD test. Note that all female adults were alive immediately after irradiation with red light and blue light for 24 hours and no irradiation for 24 hours.

b4.第4試験
次に、メロン育苗期間における赤色光の照射によるミナミキイロアザミウマの密度抑制効果及び植物体への影響についての第4試験を行った。この試験においては、メロン(品種:アールス雅春秋系)の種を2日間に渡って水に浸漬し、発根が確認できた種をプラスチックポットに播種し、赤色光光源からの赤色光を播種した種(育苗苗)に育苗期間中照射した。赤色光光源としては、「鍋清株式会社製の商品名DPDL−R−9W:波長620−630nm(LED光源)」を用いた。この試験では、24時間照射、12時間昼間照射、12時間夜間照射及び無照射の4試験区に分けて、赤色光を照射した。この場合、ポットを温室内に配置し、1つの赤色光光源で5ポットを同時に照射した。また、赤色光光源の高さはポットの上面から110cmの高さであり、ポット上面の赤色光の照射面における赤色光の光強度が1×1018photons/m2・secになるように、赤色光の強度を設定した。そして、照射開始から7日後、14日後及び21日後のミナミキイロアザミウマの幼虫数、成虫数及び本葉数を調べた。また、21日後の育苗苗を温室内に定植し、定植から雌花開花までの日数も併せて調べた。なお、本葉数とは、種から発芽した双葉を除く葉の数である。試験は、1区5株とし、6反復で行った。この試験結果を下記表5に示す。なお、下記表5においては、本葉数を省略している。
b4. 4th test Next, the 4th test about the density inhibitory effect of the southern blue thrips by the irradiation of the red light in the melon seedling raising period, and the influence on a plant body was done. In this test, seeds of melon (variety: Earls Masaharu) were immersed in water for 2 days, seeds whose rooting was confirmed were seeded in a plastic pot, and red light from a red light source was seeded. The seeds (nurturing seedlings) were irradiated during the raising period. As a red light source, “trade name DPDL-R-9W: wavelength 620-630 nm (LED light source) manufactured by Nabei Co., Ltd.” was used. In this test, red light was irradiated in four test sections: 24 hours irradiation, 12 hours daytime irradiation, 12 hours nighttime irradiation, and no irradiation. In this case, the pots were placed in a greenhouse, and 5 pots were simultaneously irradiated with one red light source. The height of the red light source is 110 cm from the top surface of the pot, and the light intensity of the red light on the red light irradiation surface on the top surface of the pot is 1 × 10 18 photons / m 2 · sec. The intensity of red light was set. Then, the number of larvae, adults and true leaves of the southern blue thrips 7 days, 14 days and 21 days after the start of irradiation was examined. In addition, the seedlings after 21 days were planted in a greenhouse, and the number of days from planting to flowering of female flowers was also examined. The number of leaves is the number of leaves excluding the foliage germinated from the seed. The test was performed 6 times with 5 strains per section. The test results are shown in Table 5 below. In Table 5 below, the number of true leaves is omitted.

Figure 2015171356
Figure 2015171356

この試験結果によれば、播種21日後のミナミキイロアザミウマの幼虫及び成虫の発生数は、無照射区に対して、赤色光の24時間照射区及び12時間昼間照射区で減少したことがテューキー(Turkey)のHSD検定による5%水準での有意差ありとして確認された。また、本葉数(データ省略)及び雌花開花日数に対する影響は見られなかった。   According to this test result, it was confirmed that the number of larvae and adults of Thrips thrips 21 days after sowing decreased in the 24-hour irradiation zone of red light and the 12-hour daytime irradiation zone compared to the non-irradiated zone. (Turkey) HSD test confirmed that there was a significant difference at the 5% level. Moreover, the influence with respect to the number of true leaves (data abbreviation) and female flowering days was not seen.

b5.第5試験
次に、メロンの定植後における赤色光の照射によるミナミキイロアザミウマの密度抑制効果及び天敵の植物体上の定着への影響についての第5試験を行った。この試験においては、メロン(品種:アールス雅春秋系)を温室内に定植し、メロン株の定植直後(赤色光の照射開始直後)、メロン株の定植から14日後、28日後、42日後及び56日後における、1葉当たりのミナミキイロアザミウマの幼虫数及び成虫数を調べた。また、前記14日後、28日後及び42日後における本葉数を調べるとともに、定植から雌花開花までの日数も合わせて調べた。前記56日後の本葉数を調べない理由は、42日間のメロン株の成長のために、メロン株の上部をカットしたためである。さらに、メロン株の定植から14日後、28日後、42日後及び56日後における、ミナミキイロアザミウマの天敵であるスワルスキーカブリダニの数も調べた。なお、定植前のメロン株の苗は、ミナミキイロアザミウマがほとんど侵入しない閉鎖空間で育てられており、定植直後のミナミキイロアザミウマの幼虫数及び成虫数は極めて少ない。また、スワルスキーカブリダニは、メロン株の定植時に、農業使用登録上の使用量(1アール当たり250mlの容器に入った量のスワルスキーカブリダニの量)に準じて放飼された。
b5. Fifth Test Next, a fifth test was conducted on the density suppression effect of southern thrips and the effect of natural enemies on the plant body by irradiation with red light after melon planting. In this test, melon (variety: Earls Masaharu) was planted in a greenhouse, immediately after planting of the melon strain (immediately after the start of irradiation with red light), 14 days, 28 days, 42 days later, and 56 The number of southern thrips larvae and adults per leaf was examined after one day. In addition, the number of true leaves was examined after 14 days, 28 days and 42 days, and the number of days from planting to female flowering was also examined. The reason why the number of true leaves after 56 days is not examined is that the upper part of the melon strain was cut for the growth of the melon strain for 42 days. Furthermore, the number of Swarsky cabbage mites, natural enemies of the southern blue thrips, was examined 14 days, 28 days, 42 days and 56 days after the planting of the melon strain. In addition, the seedlings of the melon strain before planting are grown in a closed space where almost no southern blue thrips enter, and the number of larvae and adults of the southern blue thrips immediately after planting is extremely small. In addition, Swarsky red spider mite was released in accordance with the amount used in the agricultural use registration (the amount of Swarsky red spider mite in an amount of 250 ml per are) at the time of planting the melon strain.

この場合、スワルスキーカブリダニを放飼したうえで赤色光を24時間にわって連続照射する第1試験区、スワルスキーカブリダニを放飼することなく赤色光を24時間に渡って連続照射する第2試験区、赤色光を照射することなくスワルスキーカブリダニの放飼のみを行った第3試験区、及び赤色光の照射及びスワルスキーカブリダニの放飼の両方を行わない無処理の第4試験区に分けて行った。また、赤色光を発光する赤色光光源としては、「鍋清株式会社製の商品名DPDL−R−9W:620−630nm(LED光源)」を用いた。また、赤色光光源の高さに関しては、定植から21日目までは、メロンの生長点の赤色光の照射面における赤色光の光強度が1×1018photons/m2・sec以上になるように、メロンの生長点と赤色光光源間の距離を110cmに調整し、定植から21日目以降には赤色光光源の高さを固定した。 In this case, the first test area in which red light is continuously irradiated for 24 hours after the Swarsky red mite is released, and the second light is continuously irradiated with red light for 24 hours without being released. In the test group, the third test group in which only Swarsky burdock mites were released without irradiating red light, and the fourth treatment group in which no red light irradiation and Swarsky burdock mites were released. I went separately. Moreover, as a red light source which emits red light, “trade name DPDL-R-9W: 620-630 nm (LED light source) manufactured by Nabeyoshi Co., Ltd.” was used. As for the height of the red light source, from the planting to the 21st day, the light intensity of the red light on the red light irradiation surface of the melon growth point is 1 × 10 18 photons / m 2 · sec or more. In addition, the distance between the melon growth point and the red light source was adjusted to 110 cm, and the height of the red light source was fixed after the 21st day after planting.

また、この試験においては、各試験区ごとに12株のメロン株を採用して、両端の2株ずつを除く8株を調査対象とし、各メロン株の上部位置と下部位置の2つの葉をそれぞれ抽出して、1葉当たりのミナミキイロアザミウマの幼虫数及び成虫数を調べた。そして、試験は3反復行った。この試験結果であるミナミキイロアザミウマの幼虫数及び成虫数を下記表6に示す。   In addition, in this test, 12 melon strains were adopted for each test area, and 8 strains excluding 2 at both ends were investigated, and two leaves at the upper and lower positions of each melon strain were examined. Each was extracted, and the number of larvae and adults of southern thrips per leaf was examined. The test was repeated three times. Table 6 shows the numbers of larvae and adults of the southern thrips, which are the test results.

Figure 2015171356
Figure 2015171356

また、本葉数及び雌花開花までの日数に関する試験結果を下記表7に示し、スワルスキーカブリダニの数に関する試験結果を下記表8に示す。   Moreover, the test result regarding the number of true leaves and the number of days until the flowering of female flowers is shown in Table 7 below, and the test result regarding the number of Swarsky red mite is shown in Table 8 below.

Figure 2015171356
Figure 2015171356

Figure 2015171356
Figure 2015171356

この試験結果によれば、第1乃至第3試験区の赤色光の照射又はスワルスキーカブリダニの放飼により、定植42日後からミナミキイロアザミウマの幼虫及び成虫の発生数の減少は、第4試験区の無処理の場合に対して激減したことがテューキー(Turkey)のHSD検定による5%水準での有意差ありとして確認された(表6参照)。また、赤色光の照射及びスワルスキーカブリダニの放飼は、本葉数及び雌花開花日数に対して影響しないことも確認された(表7参照)。また、スワルスキーカブリダニの数の減少に関しては、赤色光を照射した場合と赤色光を照射しない場合とでは、定植から28日以降はほとんど変わらないことも確認された(表8参照)。さらに、表6と表8を参照すれば、赤色光の照射はスワルスキーカブリダニ(ミナミキイロアザミウマの天敵)のメロン株への定着に対して影響なく、赤色光の照射とスワルスキーカブリダニの放飼との併用は可能かつ有効であることが理解できる。   According to the test results, the decrease in the number of southern blue thrips larvae and adults from 42 days after planting by the irradiation of red light in the first to third test areas or the release of Swarsky red mite was observed in the fourth test group. It was confirmed that there was a significant difference at the 5% level according to the Tukey HSD test (see Table 6). In addition, it was also confirmed that the irradiation with red light and the release of Swarsky burdock mites had no effect on the number of true leaves and the number of female flowering days (see Table 7). In addition, regarding the decrease in the number of Swarsky spider mites, it was also confirmed that there was almost no change after 28 days from planting when irradiated with red light and when not irradiated with red light (see Table 8). Furthermore, referring to Table 6 and Table 8, red light irradiation has no effect on colonization of Swarsky red spider mite (natural enemy of Southern Thrips thrips) on melon stock, and red light irradiation and release of Swarsky red spider mite It can be understood that the combination with is possible and effective.

b6.第6試験
次に、赤色光の照射が、アザミウマ類に属するミカンキイロアザミウマの産卵、孵化及び次世代幼虫数に与える影響についての第6試験を行った。試験装置としては、直径25mm及び高さ25mmのガラス管の両面に、粘着性かつ伸長性を有するポリエチレン・ブタジエン・ラバーフィルム(東京硝子器械株式会社製・商品名ノビックス)を貼り付けたものを用いた。以下、このポリエチレン・ブタジエン・ラバーフィルムを単にラバーフィルムという。
b6. Sixth Test Next, a sixth test was conducted on the effects of red light irradiation on egg laying, hatching, and the number of next-generation larvae of citrus yellow thrips belonging to thrips. The test equipment used is a glass tube with a diameter of 25 mm and a height of 25 mm, with a sticky and extensible polyethylene butadiene rubber film (manufactured by Tokyo Glass Instrument Co., Ltd., trade name Novix) attached. It was. Hereinafter, this polyethylene-butadiene rubber film is simply referred to as a rubber film.

まず、ミカンキイロアザミウマの産卵の試験について説明する。ガラス管の下面にラバーフィルムを貼り付けて下面を閉じ、ガラス管内へ5頭のミカンキイロアザミウマの雌成虫を入れるとともに、餌としてチャの花粉を入れた。そして、ガラス管の上面にラバーフィルムを貼り付けて上面を閉じ、上面のラバーフィルム上に水を滴下し、その上にラバーフィルムを別途貼り付けた。これは、ミカンキイロアザミウマに、ガラス管の上面の2枚のラバーフィルムを植物の葉と誤認させるためである。   First, the egg-laying test of the mandarin orange thrips will be described. A rubber film was affixed to the lower surface of the glass tube and the lower surface was closed. Five adult females of the citrus thrips were placed in the glass tube and tea pollen was added as food. And the rubber film was affixed on the upper surface of the glass tube, the upper surface was closed, water was dripped on the rubber film of an upper surface, and the rubber film was affixed separately on it. This is to cause the orange thrips to mistake the two rubber films on the upper surface of the glass tube as plant leaves.

そして、赤色光光源からの赤色光を照射する赤色光照射区と、赤色光をしない無照射区での試験を行った。赤色光照射区では、ガラス管を蛍光灯下に設置して、赤色光光源からの赤色光を24時間連続照射した後に、ガラス管の上面の2枚のラバーフィルム間の水中に産卵された卵数を計測した。赤色光光源としては「CCS社製ISL−150×150H4RR(LED光源)を用い、ガラス管に、約1×1018photons/m2・secの光強度の赤色光を照射した。また、無照射区では、ガラス管を蛍光灯下に設置して、24時間後に、ガラス管の上面の2枚のラバーフィルム間の水中に産卵された卵数を計測した。なお、ガラス管は、赤色光照射区及び無照射区の両区にて共に、蛍光灯が16時間点灯されるとともに8時間消灯され、かつ25℃の環境下に置かれた。試験は、20反復行い、StudentのT検定により統計処理を行った。この試験結果である1頭の雌成虫当たりの卵数を下記表9に示す。 And the test in the red light irradiation area | region which irradiates the red light from a red light source, and the non-irradiation area which does not emit red light was done. In the red light irradiation zone, the glass tube is placed under a fluorescent lamp, and the red light from the red light source is continuously irradiated for 24 hours, and then eggs laid in water between the two rubber films on the upper surface of the glass tube The number was measured. As the red light source, “CSL ISL-150 × 150H4RR (LED light source) was used, and the glass tube was irradiated with red light having a light intensity of about 1 × 10 18 photons / m 2 · sec. In the ward, a glass tube was placed under a fluorescent lamp, and 24 hours later, the number of eggs laid in the water between the two rubber films on the upper surface of the glass tube was counted. Fluorescent lamps were turned on for 16 hours, turned off for 8 hours, and placed in an environment of 25 ° C. in both the non-irradiated and non-irradiated areas, and the test was repeated 20 times, and statistical analysis was performed by Student's T test. Table 9 below shows the number of eggs per female adult that is the result of this test.

Figure 2015171356
Figure 2015171356

この試験によれば、ミカンキイロアザミウマの産卵数は、赤色光を照射することで無照射と比べて少なくなったことが確認された。そして、赤色光の照射が、ミカンキイロアザミウマの産卵に与える影響は、赤色光照射区と無照射区とで、StudentのT検定により5%水準で有意差ありとして確認された。   According to this test, it was confirmed that the number of laying eggs of the citrus yellow thrips was reduced by irradiating with red light compared to non-irradiated. The effect of red light irradiation on egg laying of the citrus yellow thrips was confirmed to be significantly different at the 5% level by the Student's T-test between the red light irradiation group and the non-irradiation group.

また、ミカンキイロアザミウマの孵化率の試験について説明する。この場合も、前記産卵数の試験と同様に、ガラス管内へ5頭のミカンキイロアザミウマの雌成虫を入れるとともに、餌としてチャの花粉を入れ、かつ赤色光光源からの赤色光を照射する赤色光照射区と、赤色光をしない無照射区での試験を行った。   Moreover, the test of the hatching rate of Citrus thrips will be described. In this case as well, as in the test for the number of eggs laid, 5 adult females of Thrips thrips are placed in a glass tube, cha pollen is added as food, and red light is emitted from the red light source. The test was performed in the irradiated zone and in the non-irradiated zone where no red light was emitted.

この試験では、赤色光照射区と無照射区との両試験区で、それぞれ5頭のミカンキイロアザミウマの雌成虫に24時間産卵させ、ガラス管から雌成虫を取出した後に、卵数を計測する。この24時間の産卵においても、ガラス管は、蛍光灯が16時間点灯されるとともに8時間消灯され、かつ25℃の環境下に置かれた。なお、この24時間の産卵においては、赤色光照射区でも赤色光は照射されてない。   In this test, 5 female thrips of Thrips thrips were laid for 24 hours in both the red light-irradiated and non-irradiated groups, and the number of eggs was counted after removing the female adult from the glass tube. . In this 24-hour egg-laying, the glass tube was placed in an environment of 25 ° C. with the fluorescent lamp turned on for 16 hours, turned off for 8 hours. In this 24-hour egg laying, no red light is irradiated even in the red light irradiation section.

その後、赤色光照射区では、ガラス管を蛍光灯下に設置して、赤色光光源からの赤色光を96時間連続照射した後に、ガラス管の上面の2枚のラバーフィルム間における未孵化の卵数を計測し、幼虫の孵化率を計算した。なお、この場合も、赤色光光源としては「CCS社製ISL−150×150H4RR(LED光源)を用い、ガラス管に、約1×1018photons/m2・secの光強度の赤色光を照射した。また、無照射区では、ガラス管を蛍光灯下に設置して、96時間後に、前記と同様にして、幼虫の孵化率を計算した。なお、この96時間の間、ガラス管は、赤色光照射区及び無照射区の両区にて共に、蛍光灯が16時間点灯されるとともに8時間消灯され、かつ25℃の環境下に置かれた。試験は、10反復行い、カイ二乗検定により統計処理を行った。この試験結果を下記表10に示す。 Thereafter, in the red light irradiation section, the glass tube is placed under a fluorescent lamp, and after irradiating the red light from the red light source continuously for 96 hours, an egg that has not yet hatched between the two rubber films on the upper surface of the glass tube The number was counted and the hatching rate of the larvae was calculated. In this case as well, “CSL ISL-150 × 150H4RR (LED light source) is used as the red light source, and the glass tube is irradiated with red light having a light intensity of about 1 × 10 18 photons / m 2 · sec. In the non-irradiated section, a glass tube was placed under a fluorescent lamp, and 96 hours later, the hatching rate of the larvae was calculated in the same manner as described above. Fluorescent lamps were turned on for 16 hours, turned off for 8 hours, and placed in an environment of 25 ° C. in both the red light irradiation and non-irradiation areas. The test results are shown in Table 10 below.

Figure 2015171356
Figure 2015171356

この試験によれば、ミカンキイロアザミウマの孵化率は、赤色光を照射することで無照射と比べて低下することが確認された。そして、赤色光の照射が、ミカンキイロアザミウマの孵化に与える影響は、赤色光照射区と無照射区とで、カイ二乗検定により5%水準で有意差ありとして確認された。   According to this test, it was confirmed that the hatching rate of Citrus thrips was reduced by irradiating red light compared to non-irradiated. The effect of red light irradiation on the hatching of Citrus thrips was confirmed to be significantly different at the 5% level by the chi-square test between the red light irradiated group and the non-irradiated group.

また、ミカンキイロアザミウマの孵化幼虫数の試験について説明する。この場合も、前記産卵数及び孵化率の試験と同様に、ガラス管内へ5頭のミカンキイロアザミウマの雌成虫を入れるとともに、餌としてチャの花粉を入れ、かつ赤色光光源からの赤色光を照射する赤色光照射区と、赤色光をしない無照射区での試験を行った。   Moreover, the examination of the number of hatching larvae of the citrus thrips will be explained. In this case as well, as in the test of the number of eggs laid and the hatching rate, 5 adult females of Thrips thrips were placed in a glass tube, cha pollen was added as food, and red light from a red light source was irradiated. The test was performed in a red light irradiation zone where no red light was emitted.

この試験では、前記孵化率の試験と同様に、5頭のミカンキイロアザミウマの雌成虫に24時間産卵させ、ガラス管から雌成虫を取出す。そして、赤色光照射区では、ガラス管を蛍光灯下に設置して、赤色光光源からの赤色光を96時間連続照射した後に、ガラス管の上面の2枚のラバーフィルム間における幼虫数を計測した。なお、この場合も、赤色光光源としては「CCS社製ISL−150×150H4RR(LED光源)を用い、ガラス管に、約1×1018photons/m2・secの光強度の赤色光を照射した。また、無照射区では、ガラス管を蛍光灯下に設置して、96時間後に、前記と同様にして、幼虫数を計測した。なお、この96時間の間、ガラス管は、赤色光照射区及び無照射区の両区にて共に、蛍光灯が16時間点灯されるとともに8時間消灯され、かつ25℃の環境下に置かれた。試験は、10反復行い、StudentのT検定により統計処理を行った。この試験結果である次世代幼虫数を、下記表11に示す。 In this test, similar to the hatching rate test, 5 female thrips of Thrips thrips are laid for 24 hours, and the adult female is removed from the glass tube. In the red light irradiation section, the glass tube is placed under a fluorescent lamp, and the red light from the red light source is continuously irradiated for 96 hours, and then the number of larvae between the two rubber films on the upper surface of the glass tube is measured. did. In this case as well, “CSL ISL-150 × 150H4RR (LED light source) is used as the red light source, and the glass tube is irradiated with red light having a light intensity of about 1 × 10 18 photons / m 2 · sec. In the non-irradiated section, the glass tube was placed under a fluorescent lamp, and 96 hours later, the number of larvae was measured in the same manner as described above. In both the irradiated and non-irradiated areas, the fluorescent lamp was turned on for 16 hours, turned off for 8 hours, and placed in an environment of 25 ° C. The test was repeated 10 times, according to Student's T test. Table 11 below shows the number of next-generation larvae as a result of this test.

Figure 2015171356
Figure 2015171356

この試験によれば、ミカンキイロアザミウマの次世代幼虫数は、赤色光を照射することで無照射と比べて少なくなったことが確認された。そして、赤色光の照射が、ミカンキイロアザミウマの次世代へ与える影響は、赤色光照射区と無照射区とで、StudentのT検定により5%水準で有意差ありとして確認された。   According to this test, it was confirmed that the number of next generation larvae of the citrus yellow thrips was reduced by irradiating red light compared to non-irradiated. The effect of red light irradiation on the next generation of Citrus thrips was confirmed to be significantly different at the 5% level by the Student's T-test between the red light irradiation section and the non-irradiation section.

このような第6試験によれば、赤色光の照射が、ミカンキイロアザミウマの産卵、孵化及び次世代幼虫数を抑制することに対して、有効であることが判明した。したがって、赤色光の照射は、ミカンキイロアザミウマによる植物への被害も抑制できることが判明した。   According to such a sixth test, it has been found that irradiation with red light is effective for suppressing egg-laying, hatching, and the number of next-generation larvae of Citrus thrips. Therefore, it was found that irradiation with red light can also suppress damage to plants caused by citrus yellow thrips.

b7.第7試験
次に、赤色光の照射が、アザミウマ類に属するヒラズハナアザミウマの産卵、孵化及び次世代幼虫数に与える影響についての第7試験を行った。試験装置に関しては、上記第6試験の場合と同様な装置を用いる。
b7. Seventh Test Next, a seventh test was conducted on the effects of red light irradiation on egg laying, hatching, and the number of next-generation larvae of the black thrips belonging to the thrips. As for the test apparatus, the same apparatus as in the sixth test is used.

まず、ヒラズハナアザミウマの産卵の試験について説明する。この場合も、上記第6試験における産卵の試験の場合と同様に、5頭のヒラズハナアザミウマの雌成虫をガラス管内に入れるとともに、餌としてチャの花粉を入れた。   First, the egg-laying test of the Hirazana thrips will be described. In this case, as in the case of the egg-laying test in the sixth test, five female adults of Thrips thrips were placed in a glass tube and tea pollen was added as food.

そして、赤色光光源からの赤色光を照射する赤色光照射区と、赤色光をしない無照射区での試験を行った。この試験では、赤色光照射区では赤色光光源からの赤色光を48時間連続照射した後に産卵された卵数を計測する点、無照射区では48時間後に産卵された卵数を計測する点で、上記第6試験における産卵数の試験とは異なる。しかし、赤色光光源、赤色光の強度、環境温度、蛍光灯の点灯時間及び消灯時間については上記第6試験における産卵の試験と全く同じであるので、詳しい説明を省略する。また、試験は、10反復行い、StudentのT検定により統計処理を行った。この試験結果である1頭の雌成虫当たりの卵数を下記表12に示す。   And the test in the red light irradiation area | region which irradiates the red light from a red light source, and the non-irradiation area which does not emit red light was done. In this test, the number of eggs laid after 48 hours of continuous irradiation with red light from a red light source was measured in the red light irradiation zone, and the number of eggs laid after 48 hours in the non-irradiation zone was measured. This is different from the egg production test in the sixth test. However, since the red light source, the intensity of the red light, the environmental temperature, the lighting time and the extinguishing time of the fluorescent lamp are exactly the same as the egg-laying test in the sixth test, detailed description is omitted. The test was repeated 10 times and statistical processing was performed by Student's T test. Table 12 below shows the number of eggs per female adult that is the result of this test.

Figure 2015171356
Figure 2015171356

この試験によれば、ヒラズハナアザミウマの産卵数は、赤色光を照射することで無照射と比べて少なくなったことが確認された。しかし、赤色光の照射が、ヒラズハナアザミウマの産卵に与える影響は、赤色光照射区と無照射区とで、StudentのT検定により5%水準で有意差ありとは確認されなかった。   According to this test, it was confirmed that the number of eggs laid by Thrips thrips was reduced by irradiating with red light compared to non-irradiated. However, the effect of red light irradiation on egg-laying of the black thrips was not confirmed to be significantly different at the 5% level by the Student's T-test between the red light irradiated group and the non-irradiated group.

また、ヒラズハナアザミウマの孵化率の試験について説明する。この場合も、前記第6試験における孵化率の試験と同様に、ガラス管内へ5頭のヒラズハナアザミウマの雌成虫を入れるとともに、餌としてチャの花粉を入れ、かつ赤色光光源からの赤色光を照射する赤色光照射区と、赤色光をしない無照射区での試験を行った。   Moreover, the examination of the hatching rate of the black thrips will be described. In this case as well, in the same way as in the hatching test in the sixth test, five adult females of Thrips thrips were placed in a glass tube, tea pollen was added as food, and red light from a red light source was irradiated. The test was performed in a red light irradiation section and a non-irradiation section in which no red light was emitted.

この試験では、5頭のヒラズハナアザミウマの雌成虫に48時間産卵させ、雌成虫を取出した後に卵数を計測する。この48時間の産卵においても、ガラス管は、蛍光灯が16時間点灯されるとともに8時間消灯され、かつ25℃の環境下に置かれた。なお、この48時間の産卵においては、赤色光照射区でも赤色光は照射されてない。   In this test, 5 adult females of Thrips thrips were laid for 48 hours, and the number of eggs was counted after removing the female adults. In this 48-hour egg-laying process, the glass tube was placed in an environment of 25 ° C. with the fluorescent lamp turned on for 16 hours and turned off for 8 hours. In this 48-hour egg-laying, no red light is irradiated even in the red light irradiation section.

その後、赤色光照射区では、赤色光光源からの赤色光を144時間連続照射した後に、未孵化の卵数を計測して、幼虫の孵化率を計算した。また、無照射区では、144時間後に、未孵化の卵数を計測して、幼虫の孵化率を計算した。この試験における赤色光光源、光色光の強度、環境温度、蛍光灯の点灯時間及び消灯時間については上記第6試験における孵化率の試験と全く同じであるので、詳しい説明を省略する。そして、試験は、10反復行い、StudentのT検定により統計処理を行った。この試験結果を下記表13に示す。   Thereafter, in the red light irradiation section, red light from a red light source was continuously irradiated for 144 hours, and then the number of unhatched eggs was measured to calculate the hatching rate of larvae. In the non-irradiated section, the number of unincubated eggs was measured after 144 hours, and the hatching rate of larvae was calculated. The red light source, light color light intensity, ambient temperature, lighting time and extinguishing time of the fluorescent lamp in this test are exactly the same as the hatching rate test in the sixth test, and detailed description thereof is omitted. The test was repeated 10 times, and statistical processing was performed by Student's T test. The test results are shown in Table 13 below.

Figure 2015171356
Figure 2015171356

この試験によれば、ヒラズハナアザミウマの孵化率は、赤色光を照射することで無照射と比べて低下することが確認された。しかし、赤色光の照射が、ヒラズハナアザミウマの孵化率に与える影響は、赤色光照射区と無照射区とで、StudentのT検定により5%水準で有意差ありとは確認されなかった。   According to this test, it was confirmed that the hatching rate of the thrips was reduced by irradiating red light as compared to non-irradiation. However, the effect of red light irradiation on the hatching rate of the black thrips was not confirmed to be significantly different at the 5% level by the Student's T-test between the red light irradiated group and the non-irradiated group.

また、ヒラズハナアザミウマの孵化幼虫数の試験について説明する。この場合も、前記第6試験における孵化幼虫数の試験と同様に、ガラス管内へ5頭のヒラズハナアザミウマの雌成虫を入れるとともに、餌としてチャの花粉を入れ、かつ赤色光光源からの赤色光を照射する赤色光照射区と、赤色光をしない無照射区での試験を行った。   In addition, a test of the number of hatched larvae of the black thrips will be described. In this case as well, in the same manner as in the test for the number of hatching larvae in the sixth test, five female adults of Thrips thrips were placed in a glass tube, cha pollen was added as food, and red light from a red light source was irradiated. The test was performed in a red light irradiation zone where no red light was emitted.

この試験では、前記孵化率の試験と同様にして、5頭のヒラズハナアザミウマの雌成虫に48時間産卵させ、ガラス管から雌成虫を取出す。そして、赤色光照射区では、赤色光光源からの赤色光を144時間連続照射した後に、ガラス管の上面の2枚のラバーフィルム間における幼虫数を計測した。また、無照射区では、144時間後に、前記と同様にして、幼虫数を計測した。この試験における赤色光光源、光色光の強度、環境温度、蛍光灯の点灯時間及び消灯時間については上記第6試験における孵化幼虫数の試験と全く同じであるので、詳しい説明を省略する。そして、試験は、10反復行い、StudentのT検定により統計処理を行った。この試験結果を下記表14に示す。   In this test, in the same manner as the hatchability test, 5 female thrips of Thrips thrips were laid for 48 hours, and the adult female was removed from the glass tube. In the red light irradiation section, red light from a red light source was continuously irradiated for 144 hours, and then the number of larvae between the two rubber films on the upper surface of the glass tube was measured. In the non-irradiated section, the number of larvae was measured in the same manner as described above after 144 hours. The red light source, light color light intensity, ambient temperature, fluorescent lamp turn-on time and turn-off time in this test are exactly the same as the test for the number of hatched larvae in the sixth test, and detailed description thereof is omitted. The test was repeated 10 times, and statistical processing was performed by Student's T test. The test results are shown in Table 14 below.

Figure 2015171356
Figure 2015171356

この試験によれば、ヒラズハナアザミウマの次世代幼虫数は、赤色光を照射することで無照射と比べて少なくなったことが確認された。しかし、赤色光の照射が、ヒラズハナアザミウマの次世代へ与える影響は、赤色光照射区と無照射区とで、StudentのT検定により5%水準で有意差ありとは確認されなかった。   According to this test, it was confirmed that the number of next generation larvae of the black-tailed thrips was reduced by irradiating with red light compared to non-irradiated. However, the effect of red light irradiation on the next generation of the black thrips was not confirmed to be significantly different at the 5% level by the Student's T-test between the red light irradiated area and the non-irradiated area.

このような第7試験によれば、赤色光の照射が、ヒラズハナアザミウマの産卵、孵化及び次世代幼虫数を抑えることに対して、有効であることが判明した。したがって、赤色光の照射は、ヒラズハナアザミウマによる植物への被害も抑制できることが判明した。   According to such a seventh test, it was found that irradiation with red light is effective for suppressing spawning, hatching, and the number of next-generation larvae of the black thrips. Therefore, it has been found that irradiation with red light can also suppress damage to plants caused by Thrips thrips.

b8.第8試験
次に、赤色光の照射が、アザミウマ類に属するミカンキイロアザミウマ及びヒラズハナアザミウマ、並びにアザミウマ類に属さないオンシツコナジラミ及びワタアブラムシの移動分散に与える影響についての第8試験を行った。試験装置としては、図4に示すように、縦40cm、横40cm及び高さ40cmを有する立方体状の3つの透明のプラスチック製の容器41,42,43を蛍光灯下に横1列に並べ、赤色光光源44として「CCS社製の商品名ISL−150×150H4RR(LED光源)」を容器41の上方に位置させた。図4において、容器41の左面、上面及び下面は閉止され、容器41の右面は解放され、かつ容器41の前面及び後面には細かな網が設けられている。容器42の上面及び下面は閉止され、容器42の左面及び右面は解放され、かつ容器42の前面及び後面には細かな網が設けられている。容器43の右面、上面及び下面は閉止され、容器43の左面は解放され、かつ容器43の前面及び後面には細かな網が設けられている。これにより、容器41,42,43により、外部からは遮断され、かつ内部に直方体状の連続した空間が形成されている。また、前記内部の空間は前後面から通気される。
b8. Eighth Test Next, an eighth test was conducted on the effect of red light irradiation on the migration of citrus white thrips and white thrips belonging to thrips, and the white fly and cotton aphids that do not belong to thrips. As a test apparatus, as shown in FIG. 4, three cubic plastic containers 41, 42, and 43 having a length of 40 cm, a width of 40 cm, and a height of 40 cm are arranged in a horizontal row under a fluorescent lamp. As the red light source 44, “trade name ISL-150 × 150H4RR (LED light source) manufactured by CCS” was positioned above the container 41. In FIG. 4, the left surface, upper surface, and lower surface of the container 41 are closed, the right surface of the container 41 is released, and a fine net is provided on the front surface and the rear surface of the container 41. The upper and lower surfaces of the container 42 are closed, the left and right surfaces of the container 42 are released, and fine meshes are provided on the front and rear surfaces of the container 42. The right surface, upper surface, and lower surface of the container 43 are closed, the left surface of the container 43 is released, and a fine net is provided on the front surface and the rear surface of the container 43. Accordingly, the containers 41, 42, and 43 are cut off from the outside, and a rectangular parallelepiped continuous space is formed inside. The internal space is vented from the front and rear surfaces.

そして、容器41,43の底面中央にインゲンの株(初生葉展開期)45a,45bをそれぞれ置き、インゲンの株45aには、赤色光光源から、約1×1018photons/m2・secの光強度の赤色光が照射されるようにした。この場合、赤色光を照射した試験区(容器41)を赤色光照射区とし、赤色光が照射されない試験区(容器43)を無照射区とする。 Then, bean stocks (primary leaf development stage) 45a and 45b are respectively placed in the bottom center of the containers 41 and 43, and the bean stock 45a is about 1 × 10 18 photons / m 2 · sec from a red light source. Red light with light intensity was irradiated. In this case, the test section (container 41) irradiated with red light is defined as a red light irradiation section, and the test section (container 43) not irradiated with red light is defined as a non-irradiated section.

そして、ミカンキイロアザミウマの雌成虫、ヒラズハナアザミウマの雌成虫、オンシツコナジラミの雄雌成虫及びワタアブラムシの有翅虫(雌)をそれぞれ50頭ずつ、容器42に放飼して、48時間後にインゲンの株45a,45bに移動した虫数を計測した。試験は、温度25℃かつ蛍光灯照射条件下(16時間点灯及び8時間消灯)と、温度25℃かつ蛍光灯無照射条件下との2条件下で行った。試験は、3反復行い、StudentのT検定により統計処理を行った。蛍光灯照射条件下での試験結果を下記表15に示すとともに、蛍光灯無照射条件下での試験結果を下記表16に示す。なお、表15,16中における「*」は有意差ありを表し、「**」は顕著に有意差ありを表し、「n・s」は有意差なしを表している。   Then, 50 female adults of citrus white thrips, adult females of Thrips thrips, male and female adults of whitefly white lice, and cotton aphid worms (female) were released to the container 42 48 hours later. , 45b was counted. The test was performed under two conditions: a temperature of 25 ° C. and fluorescent lamp irradiation conditions (16 hours on and 8 hours off) and a temperature of 25 ° C. and no fluorescent lamp irradiation conditions. The test was repeated three times, and statistical processing was performed by Student's T test. The test results under the fluorescent lamp irradiation conditions are shown in Table 15 below, and the test results under the fluorescent lamp non-irradiation conditions are shown in Table 16 below. In Tables 15 and 16, “*” indicates that there is a significant difference, “**” indicates that there is a significant difference, and “n · s” indicates that there is no significant difference.

Figure 2015171356
Figure 2015171356

Figure 2015171356
Figure 2015171356

この蛍光灯照射条件下での試験結果によれば、ミカンキイロアザミウマ及びヒラズハナアザミウマは、無照射区と比べ、赤色光照射区への移動分散が減少することが確認された。そして、赤色光の照射が、前記赤色光照射区への移動分散の減少は、赤色光照射区と無照射区とで、StudentのT検定により5%水準で有意差ありとして確認された。しかし、アザミウマ類に属さないオンシツコナジラミ及びワタアブラムシの移動分散は無照射区と赤色光照射区とで差がないことが確認された。また、蛍光灯無照射条件下での試験結果によれば、ミカンキイロアザミウマ、ヒラズハナアザミウマ、オンシツコナジラミ及びワタアブラムシの全てが、赤色光照射区に多く移動した。   According to the test results under the fluorescent lamp irradiation conditions, it was confirmed that the citrus yellow thrips and the black thrips were less moved and dispersed in the red light irradiation section than in the non-irradiation section. The decrease in the movement dispersion of the red light irradiation to the red light irradiation area was confirmed to be significantly different at the 5% level by the Student's T test between the red light irradiation area and the non-irradiation area. However, it was confirmed that there was no difference in the movement and dispersion of the white fly and cotton aphid, which do not belong to Thrips, between the non-irradiated group and the red light-irradiated group. In addition, according to the test results under the fluorescent light non-irradiation conditions, the citrus white thrips, the white thrips, the white spotted lice, and the cotton aphids all moved to the red light irradiation area.

なお、この試験には影響しなかったと思われるが、48時間の試験中の環境温度の変化も測定したので、その測定結果を示しておく。図5は、蛍光灯照射条件下における48時間の試験中の環境温度の変化を示している。図6は、蛍光灯無照射条件下における48時間の試験中の環境温度の変化を示している。図5,6においては、実線により赤色光照射区の温度変化を示し、破線により無照射区の温度変化を示している。蛍光灯照射条件下における環境温度の大きな変化は、蛍光灯の点灯及び消灯によるものと思われる。また、環境温度の細かな変化は、温度を25℃に保つためのエアーコンディショナーの作動変化によるものと思われる。   In addition, although it seems that it did not affect this test, since the change of the environmental temperature during the 48-hour test was also measured, the measurement result is shown. FIG. 5 shows the change in ambient temperature during the 48 hour test under fluorescent lamp illumination conditions. FIG. 6 shows the change in ambient temperature during the 48-hour test under fluorescent lamp-free conditions. 5 and 6, the solid line shows the temperature change in the red light irradiation area, and the broken line shows the temperature change in the non-irradiation area. The large change in the environmental temperature under the fluorescent lamp irradiation condition seems to be due to the lighting and extinguishing of the fluorescent lamp. Moreover, it seems that the minute change of environmental temperature is due to the change of the operation of the air conditioner for keeping the temperature at 25 ° C.

この第8試験によれば、蛍光灯照射条件下では、赤色光照射が、アザミウマ類に属するミカンキイロアザミウマ及びヒラズハナアザミウマの植物体上への移動分散阻害があることが明らかとなった。一方、アザミウマ類に属さないオンシツコナジラミ及びワタアブラムシについては、赤色光の照射の影響は見られなかったことが分かる。   According to the eighth test, it has been clarified that, under the fluorescent lamp irradiation conditions, red light irradiation inhibits migration and dispersion of citrus yellow thrips and thrips thrips belonging to thrips on plants. On the other hand, it can be seen that the effect of red light irradiation was not observed for the white fly and cotton aphid, which do not belong to thrips.

b9.第9試験
次に、光反射シートとの併用による赤色光の照射が、ミナミキイロアザミウマの密度抑制に与える影響についての第9試験を行った。試験装置としては、図7(A)の断面図で示すように、ビニールハウス内に設置され、上方を解放させて方形状に形成されたベンチ51内に土により畝52を形成し、12本のメロン53(53〜5312)を畝52に沿って等間隔で順に一列に定植した。メロン53〜5312は、5月14日に播種したメロン株を6月4日に定植した。そして、後述する第1及び第3試験区において、白色に光る光反射シート54(デュポン社製の商品名タイベック400WP)を、メロン53〜5312の両側にてベンチ51の全体を覆うように配置した。また、後述する全ての試験区において、定植時にベストガード粒剤を1株当たり2gずつ散布した。
b9. Ninth Test Next, a ninth test was conducted on the effect of red light irradiation in combination with a light reflecting sheet on density suppression of southern thrips. As shown in the cross-sectional view of FIG. 7 (A), the test apparatus is installed in a greenhouse, and the upper part is opened to form a square 52 in a bench 51 formed into a square shape. Of melons 53 x (53 1 to 53 12 ) were planted in a line along the ridges 52 at regular intervals. Melons 53 1 to 53 12 were planted on June 4 with a melon strain sown on May 14. And in the 1st and 3rd test section mentioned below, the light reflection sheet 54 (trade name Tyvek 400WP manufactured by DuPont) that covers white is covered on both sides of the melons 53 1 to 53 12. Arranged. In all test plots described later, 2 g of best guard granules were sprayed per strain at the time of planting.

この試験では、赤色光照射及び光反射シート配置を第1試験区とし、赤色光照射のみを第2試験区とし、光反射シート配置のみを第3試験区とし、無処理を第4試験区とした。この場合、第1及び第2試験区では、5つの赤色光光源55を、12本のメロン53〜5312のうちの両端に位置するメロン53,5312を除く10本のメロン53〜5311に対して、メロン53,53、メロン53,53、メロン53,53、メロン53,53及びメロン5310,5311の各中間位置の上方に配置した。赤色光光源55としては、鍋清株式会社製の商品名DPDL−R−9W:波長620−630nm(LED光源)を用いた。10本のメロン53〜5311の生長点での光強度が、約1×1018photons/m2・sec以上になるように、24時間連続で照射した。 In this test, the red light irradiation and light reflection sheet arrangement is the first test section, only the red light irradiation is the second test section, only the light reflection sheet arrangement is the third test section, and no treatment is the fourth test section. did. In this case, the first and second test group, five red light source 55, located at both ends of the 12 pieces of melon 53 1-53 12 melon 53 1, 53 12 10 present except melon 53 2 relative to 53 11, melon 53 2, 53 3, and arranged above each intermediate position of the melon 53 4, 53 5, melon 53 6, 53 7, melon 53 8, 53 9 and melon 53 10, 53 11 . As the red light source 55, trade name DPDL-R-9W: wavelength 620-630 nm (LED light source) manufactured by Nabeyoshi Co., Ltd. was used. Irradiation was continued for 24 hours so that the light intensity at the growth point of 10 melons 53 2 to 53 11 was about 1 × 10 18 photons / m 2 · sec or more.

そして、第1乃至第4試験区において、定植日(6月4日)から収穫期である8月13日まで2週間ごとに、両端のメロン53,5312を除く10本のメロン53〜5311の上位葉、中位葉及び下位葉の3葉に寄生するミナミキイロアザミウマの幼虫数及び成虫数を計測した。第1乃至第4試験区における各試験は、3反復でそれぞれ行った。また、花芽形成への影響も調べるため、最初の雌花開花までの日数も調べた。 In the first to fourth test zones, 10 melons 53 2 excluding melons 53 1 and 53 12 at both ends are removed every two weeks from the planting date (June 4) to the harvesting time of August 13th. to 53 11 upper leaf was measured larvae number and the number of adults of thrips palmi parasitic 3 leaf medium leaves and lower leaves. Each test in the first to fourth test sections was performed in three replicates. In addition, in order to investigate the influence on flower bud formation, the number of days until the first female flowering was also examined.

図8は、第1乃至第4試験区におけるメロン30株当たりのミナミキイロアザミウマの幼虫及び成虫の合計数の変化をそれぞれ示すグラフである。下記表17は、第1乃至第4試験区における雌花開花日までの日数を示す。   FIG. 8 is a graph showing changes in the total number of southern thrips larvae and adults per 30 melon strains in the first to fourth test sections. Table 17 below shows the number of days until the flowering date of female flowers in the first to fourth test sections.

Figure 2015171356
Figure 2015171356

この第9試験によれば、第1試験区(赤色光と光反射シートの併用区)、第2試験区(赤色光区)及び第3試験区(光反射シート区)では、収穫期におけるミナミキイロアザミウマの幼虫数及び成虫数が無照射区よりも少なくなった。特に、第1試験区(赤色光と光反射シートの併用区)では、収穫期におけるミナミキイロアザミウマの幼虫数及び成虫数が最も少なくなった。さらに、赤色光及び光反射シート設置が雌花開花の日数に与える影響は見られなかったことが分かった。したがって、赤色光及び光反射シートを併用することが、有効であることが分かる。   According to this 9th test, in the 1st test section (combination section of red light and light reflection sheet), the 2nd test section (red light section) and the 3rd test section (light reflection sheet section), the southern The number of larvae and adults of yellow thrips was lower than that in the non-irradiated group. In particular, in the first test group (a combination group of red light and a light reflecting sheet), the number of larvae and adults of southern blue thrips at the harvesting time was the smallest. Furthermore, it turned out that the influence which red light and light reflection sheet installation have on the number of days of female flowering was not seen. Therefore, it turns out that it is effective to use red light and a light reflection sheet together.

b10.第10試験
次に、メロン以外の植物であるナス及びキュウリに対する光反射シートとの併用による赤色光の照射が、アザミウマの発生密度抑制に与える影響についての第10試験を行った。試験場所としては、面積41m2(間口4.5m及び奥行9m)かつ高さ2,5mのハウス内に、図9に示すように、幅130cmの3本の畝61を設ける。ハウス開口部は1mm目合いの防虫ネットを転張し、サイドビニルは自動巻上げ装置により25℃以下で閉じるようにした。そして、ナス及びキュウリを、株間55cmの間隔でそれぞれ一条植して、1ハウス当たり39株ずつそれぞれ定植した。ナスは5月13日に定植し、キュウリは8月28日に定植した。
b10. Tenth Test Next, a tenth test was conducted on the effect of irradiation with red light on the eggplant and cucumber, which are plants other than melon, on the suppression of thrips generation density. As a test place, as shown in FIG. 9, three ridges 61 having a width of 130 cm are provided in a house having an area of 41 m 2 (a frontage of 4.5 m and a depth of 9 m) and a height of 2.5 m. The house opening was rolled with a 1 mm mesh insect repellent, and the side vinyl was closed at 25 ° C. or lower by an automatic winder. Then, eggplants and cucumbers were planted one by one at intervals of 55 cm between the plants, and 39 plants were planted per house. Eggplants were planted on May 13 and cucumbers were planted on August 28.

第1試験区を赤色蛍光灯区とし、第2試験区を赤色光を照射しない無処理区とした。赤色蛍光灯区では、畝61間に3本ずつ2列の赤色光光源62を均等な間隔で全てのナス及びキュウリの生長点から約20cm上方位置に配置した。赤色光光源62としては、赤色蛍光灯(パナソニック株式会社製の商品名FL20SR、ピーク波長660nm)に、600nm以下の波長を除去する赤色フィルム(パナソニック株式会社製の商品名NK92050R)を巻き付けたものを用いた。なお、各赤色光光源62の長さは、100cmである。光強度に関しては、ナスでは、生長点付近の光強度が、最大値3.9×1019photons/m2・sec、最小値1.3×1018photons/m2・sec及び平均値2.0×1019photons/m2・secであった。キュウリでは、生長点付近の光強度が、最大値2.6×1019photons/m2・sec、最小値8.8×1017photons/m2・sec及び平均値1.6×1019photons/m2・secであった。 The first test zone was a red fluorescent lamp zone, and the second test zone was an untreated zone where no red light was irradiated. In the red fluorescent lamp section, three rows of red light sources 62 are arranged between the ridges 61 at an equal interval approximately 20 cm above the growth point of all eggplants and cucumbers. As the red light source 62, a red fluorescent lamp (trade name: FL20SR, manufactured by Panasonic Corporation, peak wavelength: 660 nm) and a red film (trade name: NK92050R, manufactured by Panasonic Corporation) that removes a wavelength of 600 nm or less is wound. Using. The length of each red light source 62 is 100 cm. With regard to light intensity, in eggplant, the light intensity near the growth point has a maximum value of 3.9 × 10 19 photons / m 2 · sec, a minimum value of 1.3 × 10 18 photons / m 2 · sec, and an average value of 2. It was 0 × 10 19 photons / m 2 · sec. In cucumber, the light intensity near the growth point has a maximum value of 2.6 × 10 19 photons / m 2 · sec, a minimum value of 8.8 × 10 17 photons / m 2 · sec, and an average value of 1.6 × 10 19 photons. / M 2 · sec.

そして、赤色蛍光灯区では、ナスに対して定植時である5月13日から7月2日までに渡って、赤色光を24時間連続照射した。また、キュウリに対しては、定植時である8月28日から10月15日までに渡って、赤色光を24時間連続照射した。また、赤色蛍光灯区では、光反射シート(デュポン社製の商品名タイベック700AG)を畝61間の通路に敷いた。   In the red fluorescent lamp section, red light was continuously irradiated for 24 hours from May 13 to July 2 when planting the eggplant. The cucumber was continuously irradiated with red light for 24 hours from August 28 to October 15 at the time of planting. In the red fluorescent lamp section, a light reflecting sheet (trade name Tyvek 700AG manufactured by DuPont) was laid in the passage between the eaves 61.

調査方法としては、ナスでは5月20日から7月2日まで7日ごとに7回、キュウリでは9月4日から10月15日まで7日ごとに7回、赤色蛍光灯区及び無処理区でそれぞれ30株の上位及び中位の2葉(計60葉)についてアザミウマ類の生息虫数を調べた。ただし、ナスでは複数種類のアザミウマ類の発生が見られたために、無処理区において、6月24日に葉に生息していたアザミウマ類の成虫28頭を捕獲し、実体顕微鏡で種を同定したところ、ネギアザミウマが54%、ミナミキイロアザミウマが46%であった。キュウリではミナミキイロアザミウマが優占していた。   The survey method is 7 times every 7 days from May 20 to July 2 in eggplant, 7 times every 7 days from September 4 to October 15 in cucumber, red fluorescent lamp zone and no treatment The number of thrips inhabitants was examined on the upper and middle two leaves (total 60 leaves) of 30 strains in each ward. However, since the occurrence of multiple types of thrips was seen in eggplant, 28 adult thrips that lived in the leaves on June 24th were captured in the untreated area, and the species was identified with a stereomicroscope. However, 54% were Negia thrips and 46% were Southern thrips. In the cucumber, southern thrips were dominant.

また、ナスでは5月23日と6月19日に気門封鎖剤を散布した。キュウリでは薬剤散布は行わなかった。   In eggplants, an air blocking agent was sprayed on May 23 and June 19. The cucumber was not sprayed.

図10(A)は、赤色蛍光灯区及び無処理区における、ナス1葉当たりのアザミウマ類の成虫数の変化をそれぞれ示している。図10(B)は、赤色蛍光灯区及び無処理区における、ナス1葉当たりのアザミウマ類の幼虫数の変化をそれぞれ示している。図11(A)は、赤色蛍光灯区及び無処理区における、キュウリ1葉当たりのミナミキイロアザミウマの成虫数の変化をそれぞれ示している。図11(B)は、赤色蛍光灯区及び無処理区における、キュウリ1葉当たりのミナミキイロアザミウマの幼虫数の変化をそれぞれ示している。   FIG. 10A shows changes in the number of adult thrips per eggplant leaf in the red fluorescent lamp group and the untreated group, respectively. FIG. 10B shows the change in the number of thrips larvae per eggplant leaf in the red fluorescent lamp group and the untreated group, respectively. FIG. 11 (A) shows the change in the number of adult southern thrips per leaf of cucumber in the red fluorescent lamp group and the untreated group, respectively. FIG. 11 (B) shows the change in the number of southern thrips larvae per cucumber leaf in the red fluorescent lamp group and the untreated group, respectively.

この第10試験によれば、ナスにおいても、赤色蛍光灯区におけるアザミウマ類(ネギアザミウマ及びミナミキイロアザミウマ)の生息密度は、無処理区と比べて減少した。これにより、ナスにおいても、赤色光照射と光反射シートの併用によるアザミウマ類の密度抑制効果があることが分かる。キュウリにおいても、赤色蛍光灯区におけるミナミキイロアザミウマの生息密度は、無処理区と比べて顕著に減少した。これにより、キュウリにおいては、赤色光照射と光反射シートの併用によるミナミキイロアザミウマの密度抑制効果は高いことが分かる。   According to the tenth test, also in eggplant, the density of thrips (negia thrips and southern thrips) in the red fluorescent light section decreased compared to the untreated section. Thereby, even in eggplant, it turns out that there is a density suppression effect of thrips by combined use of red light irradiation and a light reflection sheet. Also in cucumber, the density of southern blue thrips in the red fluorescent light section was significantly reduced compared to the untreated section. Thereby, in cucumber, it turns out that the density inhibitory effect of southern black thrips by combined use of red light irradiation and a light reflection sheet is high.

c.他の適用例
さらに、前記第1乃至第10試験によれば、微小害虫であるアザミウマ類のメロン株上での密度抑制及び産卵抑制を確認した。特に、アザミウマ類に属するミナミキイロアザミウマ、ヒラズハナアザミウマ、ミカンキイロアザミウマ及びネギアザミウマなどについて確認した。そして、前記各種アザミウマと同類であるアザミウマ類に属する他害虫も、前記各種アザミウマと類似した性質を有するので、本発明は、前記アザミウマ類に属する他害虫の植物体への定着及び産卵の抑制にも適用され得る。
c. Other Application Examples Further, according to the first to tenth tests, density suppression and egg-laying suppression of thrips that are micro pests on melon strains were confirmed. In particular, we identified the southern blue thrips, the black thrips, the red thrips and the white thrips belonging to the thrips. Since other pests belonging to the thrips that are similar to the various thrips also have similar properties to the various thrips, the present invention is effective for the establishment of other pests belonging to the thrips and the suppression of spawning. Can also be applied.

また、第10試験によれば、ナス及びキュウリにおける、前記アザミウマ類に属する害虫の密度抑制も確認した。したがって、赤色光の照射は、メロンに加えて、ナス及びキュウリにおける、前記アザミウマ類に属する害虫の密度抑制効果もある。また、アザミウマ類の害虫は、メロン、ナス及びキュウリ以外のピーマン、ネギなどの野菜(植物体)、及びカーネーション、バラ、キクなどの花卉(植物体)にも定着するとともに産卵して、これらの植物体に害を与えることは分かっている。したがって、上記実施形態のように、これらの植物体に上記実施形態の赤色光を照射すれば(又は赤色光の照射と光反射シートとを併用すれば)、これらの植物体へのアザミウマ類に属する害虫による被害を防ぐことも可能である。すなわち、本発明の赤色光を照射する(又は赤色光の照射と光反射シートと併用する)対象植物体は、メロン、ナス及びキュウリ以外のピーマン、ネギ、カーネーション、バラ、キクなどの植物体でもよい。   Moreover, according to the 10th test, the density suppression of the pest which belongs to the said thrips in eggplant and cucumber was also confirmed. Therefore, irradiation with red light has an effect of suppressing the density of pests belonging to the thrips in eggplant and cucumber in addition to melon. Thrips pests also settle and lay eggs in vegetables (plants) such as bell peppers, green onions, etc. other than melon, eggplant and cucumber, and flower buds (plants) such as carnations, roses, and chrysanthemum. It is known to harm plants. Therefore, as in the above embodiment, if these plants are irradiated with the red light of the above embodiment (or if the red light irradiation and the light reflection sheet are used in combination), the thrips to these plants are used. It is also possible to prevent damage from the pests to which they belong. That is, the target plant irradiated with the red light of the present invention (or used in combination with the red light irradiation and the light reflecting sheet) may be a plant other than melon, eggplant, and cucumber, such as pepper, leek, carnation, rose, chrysanthemum. Good.

10…温室、11…栽培土壌、12,44,55,62…赤色光光源、13…蛍光灯、14…暖房装置、20A…苗の状態にあるメロン株、20B…定植後のメロン株、31,54…光反射シート、32a,32b,45a,45b…インゲンの葉、33…光源、41〜43…容器、51…ベンチ、52,61…畝、53-5312,53…メロン DESCRIPTION OF SYMBOLS 10 ... Greenhouse, 11 ... Cultivated soil, 12, 44, 55, 62 ... Red light source, 13 ... Fluorescent lamp, 14 ... Heating device, 20A ... Melon stock in seedling state, 20B ... Melon stock after planting, 31 , 54 ... Light reflecting sheet, 32a, 32b, 45a, 45b ... Green beans leaf, 33 ... Light source, 41 to 43 ... Container, 51 ... Bench, 52, 61 ... Firewood, 53 1 -53 12 , 53 x ... Melon

Claims (7)

赤色光光源からの赤色光を対象植物体に照射して、前記対象植物体への害虫の定着及び産卵を抑制する植物体の害虫抑制方法。   A method for controlling a pest of a plant, which irradiates the target plant with red light from a red light source and suppresses the establishment of the pest and the egg laying on the target plant. 前記対象植物体の赤色光の照射面における赤色光の光強度は、1×1018 photons/m2・sec以上である請求項1に記載した植物体の害虫抑制方法。 2. The method for controlling plant pests according to claim 1, wherein the light intensity of the red light on the red light irradiation surface of the target plant is 1 × 10 18 photons / m 2 · sec or more. 前記害虫は、ミナミキイロアザミウマ、ミカンキイロザミウマ、ヒラズハナアザミウマ及びネギアザミウマを含むアザミウマ類に属する害虫である請求項1又は2に記載した植物体の害虫抑制方法。   The plant pest control method according to claim 1, wherein the pest is a pest belonging to thrips including Thrips thrips, Citrus thrips, Japanese thrips, and Thrips thrips. 前記対象植物体は、メロン、ナス又はキュウリである1乃至3のうちのいずれか一つに記載した植物体の害虫抑制方法。   The method for controlling pests of a plant according to any one of 1 to 3, wherein the target plant is melon, eggplant, or cucumber. 前記対象植物体は、温室内で育成される請求項1乃至4のうちのいずれか一つに記載した植物体の害虫抑制方法。   The method for controlling pests of a plant according to any one of claims 1 to 4, wherein the target plant is grown in a greenhouse. 前記赤色光は、太陽光又は蛍光灯による光と共に前記対象植物体に照射される請求項1乃至5のうちのいずれか一つに記載した植物体の害虫抑制方法。   The plant insect pest control method according to any one of claims 1 to 5, wherein the red light is applied to the target plant body together with sunlight or light from a fluorescent lamp. 前記対象植物体が植えられた場所に光反射シートを敷いたことを特徴とする請求項1乃至6のうちのいずれか一つに記載した植物体の害虫抑制方法。   The plant pest control method according to any one of claims 1 to 6, wherein a light reflecting sheet is laid at a place where the target plant is planted.
JP2015016822A 2014-02-19 2015-01-30 Pest control method of plant body Active JP6540944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016822A JP6540944B2 (en) 2014-02-19 2015-01-30 Pest control method of plant body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014029080 2014-02-19
JP2014029080 2014-02-19
JP2015016822A JP6540944B2 (en) 2014-02-19 2015-01-30 Pest control method of plant body

Publications (2)

Publication Number Publication Date
JP2015171356A true JP2015171356A (en) 2015-10-01
JP6540944B2 JP6540944B2 (en) 2019-07-10

Family

ID=54259148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016822A Active JP6540944B2 (en) 2014-02-19 2015-01-30 Pest control method of plant body

Country Status (1)

Country Link
JP (1) JP6540944B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044780A1 (en) * 2017-08-29 2019-03-07 国立大学法人浜松医科大学 Device for emitting light having low attraction to insects, display device, method for emitting light having low attraction to insects, and display method
WO2021075586A1 (en) * 2019-10-18 2021-04-22 考司 新谷 Method for suppressing flying of insect pest with natural light and red light
US11517007B2 (en) 2016-08-18 2022-12-06 Panasonic Intellectual Property Management Co., Ltd. Pest control apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116847U (en) * 1984-01-13 1985-08-07 積水化成品工業株式会社 Fruit and vegetable table
JP2004000093A (en) * 2002-05-31 2004-01-08 Toshiba Lighting & Technology Corp Light emitter and lighting equipment
JP2005137358A (en) * 2003-10-17 2005-06-02 Masami Takegawa Rope for insect control in which two colors having insect control effect are formed, and device for insect control such as rope device for insect control, net for insect control using the rope for insect control
JP2007180040A (en) * 2007-01-30 2007-07-12 Matsushita Electric Works Ltd Optical filter, and lighting fixture using same
US20100071257A1 (en) * 2008-09-20 2010-03-25 Shang-Chieh Tsai Illuminating Device and system for Killing and/or Intefering with Pests, and Method for Killing and/or Interfering with Pests
JP2010068754A (en) * 2008-09-18 2010-04-02 Sharp Corp Cultivating method for plant lighting having insect control effect, and lighting system for plant cultivation
JP2010115193A (en) * 2008-10-15 2010-05-27 Tokyo Univ Of Science Cultivation method for agricultural crop using fluorescence radiation material, and material to be used for the same
JP2010259374A (en) * 2009-05-07 2010-11-18 Mkv Dream Co Ltd Method for cultivating plant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116847U (en) * 1984-01-13 1985-08-07 積水化成品工業株式会社 Fruit and vegetable table
JP2004000093A (en) * 2002-05-31 2004-01-08 Toshiba Lighting & Technology Corp Light emitter and lighting equipment
JP2005137358A (en) * 2003-10-17 2005-06-02 Masami Takegawa Rope for insect control in which two colors having insect control effect are formed, and device for insect control such as rope device for insect control, net for insect control using the rope for insect control
JP2007180040A (en) * 2007-01-30 2007-07-12 Matsushita Electric Works Ltd Optical filter, and lighting fixture using same
JP2010068754A (en) * 2008-09-18 2010-04-02 Sharp Corp Cultivating method for plant lighting having insect control effect, and lighting system for plant cultivation
US20100071257A1 (en) * 2008-09-20 2010-03-25 Shang-Chieh Tsai Illuminating Device and system for Killing and/or Intefering with Pests, and Method for Killing and/or Interfering with Pests
JP2010115193A (en) * 2008-10-15 2010-05-27 Tokyo Univ Of Science Cultivation method for agricultural crop using fluorescence radiation material, and material to be used for the same
JP2010259374A (en) * 2009-05-07 2010-11-18 Mkv Dream Co Ltd Method for cultivating plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11517007B2 (en) 2016-08-18 2022-12-06 Panasonic Intellectual Property Management Co., Ltd. Pest control apparatus
WO2019044780A1 (en) * 2017-08-29 2019-03-07 国立大学法人浜松医科大学 Device for emitting light having low attraction to insects, display device, method for emitting light having low attraction to insects, and display method
CN111050546A (en) * 2017-08-29 2020-04-21 国立大学法人浜松医科大学 Low-insect-attracting light-emitting device, display device, low-insect-attracting light-emitting method and display method
JPWO2019044780A1 (en) * 2017-08-29 2020-12-03 国立大学法人浜松医科大学 Low insect light emitting device, display device, low insect light emitting method and display method
JP7146212B2 (en) 2017-08-29 2022-10-04 国立大学法人浜松医科大学 Low insect-attracting light-emitting device, display device, low insect-attracting light-emitting method and display method
WO2021075586A1 (en) * 2019-10-18 2021-04-22 考司 新谷 Method for suppressing flying of insect pest with natural light and red light
JP2021065205A (en) * 2019-10-18 2021-04-30 考司 新谷 Pest control method by degradation of visibility and preference from pest insect

Also Published As

Publication number Publication date
JP6540944B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6555466B2 (en) Insect control method by flashing illumination and lighting device for insect control
CN101616577A (en) Vermin exterminating apparatus
KR20070005503A (en) Method and device for promoting eclosion and mating of insects
CN101861789A (en) Preventing and controlling method of tea-plant pests
Gulidov et al. Control of aphids and whiteflies on Brussels sprouts by means of UV-absorbing plastic films
CN102870742A (en) Large-scale artificial feeding method for eretmocerus hayati
WO2009084900A2 (en) Sticky trap using color contrast and method for controlling insects using the same
KR101273580B1 (en) A method and apparatus for attracting Plutella xylostella using LED
JP6540944B2 (en) Pest control method of plant body
Sampson Management of the western flower thrips on strawberry
CN111903618A (en) Artificial cultivation method of Anagrus nilaparvatae (Anagrus nilaparvatae)
Ingwell et al. Tailoring insect biocontrol for high tunnels
CN110692598A (en) Method for synchronously and ecologically producing poultry, vegetables and fishes in same land
JP4533988B2 (en) Feeding method and feeding apparatus for breeding natural enemy insects
JP2006158348A (en) Method for controlling organism
JP2014131506A5 (en)
JP2010136650A (en) Method for controlling insect pest and method for growing crop
JP2006109726A (en) Method for controlling organism
KR101102113B1 (en) The system and the method of managing the green field environmentally-friendly
CN104756960A (en) Large-speckle small yellow bee breeding method
JP2008029248A (en) Biopesticide for controlling scale insect and method for controlling the same
JP2006180805A (en) Insecticidal method and apparatus for insect pest
RU2462033C1 (en) Method of biological control of phytophagous mites-pests
ES2763224B2 (en) Use of (Z) -3-hexenyl esters and method to protect plants against pests
CN103733920A (en) Control method for trialeurodes vaporariorum

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190528

R150 Certificate of patent or registration of utility model

Ref document number: 6540944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250