JP2014131506A - Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase - Google Patents

Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase Download PDF

Info

Publication number
JP2014131506A
JP2014131506A JP2013259581A JP2013259581A JP2014131506A JP 2014131506 A JP2014131506 A JP 2014131506A JP 2013259581 A JP2013259581 A JP 2013259581A JP 2013259581 A JP2013259581 A JP 2013259581A JP 2014131506 A JP2014131506 A JP 2014131506A
Authority
JP
Japan
Prior art keywords
light
led
green
blue
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013259581A
Other languages
Japanese (ja)
Other versions
JP2014131506A5 (en
Inventor
Nobuyuki Takahashi
信之 高橋
Kuniaki Takahashi
邦明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013259581A priority Critical patent/JP2014131506A/en
Publication of JP2014131506A publication Critical patent/JP2014131506A/en
Publication of JP2014131506A5 publication Critical patent/JP2014131506A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Catching Or Destruction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of controlling pests causing damage to plants, such as killing of them, by making the pests suck in the solution of leaves of plants.SOLUTION: A single blue light beam, a single green light beam, and blue-green composite light beams are radiated to leaves of plants at night to increase the content of phenol in the leaves, thereby destroying imagoes and hatched larvae of pests while inhibiting the growth of them.

Description

本発明は、植物の葉体に夜間に青色光、緑色光を照射し植物の葉体内にフェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用の害虫防除の方法に関する。且つ植物の葉体に夜間に青色光、緑色光、黄色光、赤色光の複合光線を照射し植物の葉体内にケルダール窒素、とフェノール含有量を増加せしめる植物育成制御方法と装置に関する。The present invention irradiates a plant leaf body with blue light and green light at night to increase the phenol content in the plant leaf body, causing an adult insect or hatching larva to suck the leaf fluid of the plant, The present invention relates to a method for controlling light-using pests that are killed while suppressing the growth of hatching larvae. In addition, the present invention relates to a plant growth control method and apparatus for increasing the Kjeldahl nitrogen and phenol content in the plant leaves by irradiating the plant leaves with blue, green, yellow, and red light combined at night.

植物の栽培において害虫による被害により、作物生産量の減収が大きな問題となっている。害虫を防除の為に多大な経費を掛け農薬にての防除を施用しているのが現実であります。しかし薬剤の害虫への耐性が付きやすく農薬防除が困難になっている。農薬害虫防除の処理回数の多さにより、植物の成育を妨げている。Decrease in crop production has become a major problem due to damage by pests in plant cultivation. The reality is that pesticide control is applied at a great expense to control pests. However, it is difficult to control pesticides due to the resistance of drugs to pests. Plant growth is hindered by the high frequency of pesticide pest control.

発明が解決しようとする課題Problems to be solved by the invention

特にハダニ、アブラムシ等の害虫の防除に関しては点滴昆虫の利用が普及してきた。
しかし点滴昆虫に影響のない農薬との併用での使用防除の為に多く困難さがある。
又農薬害虫防除の回数の多く処理すればするほど、植物の成育を遅らせる原因となる。
In particular, the use of drip insects has become widespread for the control of pests such as spider mites and aphids.
However, there are many difficulties in controlling the use in combination with pesticides that do not affect drip insects.
Moreover, the more the number of times of controlling pesticide pests, the slower the growth of the plant.

課題を解決するための手段Means for solving the problem

植物の葉体内に本来植物は、害虫を防除するための弱いフェノール物質含有している、当該植物の含有量を増加させる為に、青色、緑色の単独光線や、青色、緑色の複合させた光線を夜間に照射し、フェノール物質の含有量を増加させ害虫防除を特徴とする。
青色、緑色、赤色、黄色の複合させた光線を夜間に照射し、ケルダール窒素の含有量を増加させて、害虫防除の為のフェノール物質含有量の過大な増加による、当該植物の過度のフェノール物質によるストレスを和らげながら、うどんこ病、ダニ等の病害虫の防除をし、植物育成制御技術に利用する装置と方法。
The plant leaves contain a weak phenolic substance to control pests. In order to increase the content of the plant, blue and green single rays and blue and green combined rays are used. Is characterized by pest control by increasing the content of phenolic substances at night.
Excessive phenolic substances in the plant due to excessive increase in phenolic substance content for pest control by irradiating blue, green, red, yellow combined light at night, increasing Kjeldahl nitrogen content An apparatus and method for controlling plant pests such as powdery mildew and mites while relieving the stress caused by the plant and utilizing it for plant growth control technology.

本来植物自体生合成している物質で、害虫が葉体を大量に食べ続けるとやがて害虫は弱り死滅することにより、植物自体の育成を保持させて、害虫の大量発生を防止させている穏やかな毒といわれているのが、フェノール物質であります。フェノール物質とケルダール窒素即ち、たんぱく質等の増加効果は、植物自体の病害虫防除や植物の育成を制御できる。A substance that is inherently biosynthesized by the plant itself, and when the pests continue to eat large amounts of leaf bodies, the pests will eventually weaken and die, thereby maintaining the growth of the plant itself and preventing the generation of large numbers of pests. What is said to be poison is phenolic substances. Increasing effects of phenolic substances and Kjeldahl nitrogen, ie, proteins, can control pest control of plants themselves and plant growth.

本発明によれば、青色、緑色の単独光線、青と緑色の複合色光線を利用し夜間照射することにより、自然な方法で当該植物の葉体内にフェノール物質を増加させ害虫たる成虫や孵化幼虫に当該植物の葉液を吸汁させて害虫の生育を抑制せしめ、やがて死滅させる事を特徴とする。又青色、緑色、黄色、赤色の複合色光線を利用し夜間照射し、ケルダール物質を増加させながら、フェノール物質の過大増加による植物のストレスをも和らげ、植物の育成を制御できる装置と方法。According to the present invention, adults and hatching larvae which are pests by increasing the phenolic substance in the leaves of the plant in a natural manner by irradiating at night using blue, green single light, blue and green composite light. It is characterized in that the plant leaves are sucked to suppress the growth of pests and eventually die. Also, an apparatus and method capable of controlling plant growth by mitigating plant stress due to an excessive increase in phenolic substances while irradiating at night using blue, green, yellow and red composite color rays and increasing Kjeldahl substances.

特許公開2010−279345
特許公開2011−115
特許公開2011−55816
上記記載の文献にて光線利用にて葉体内にたんぱく質が増加していく事が実証されている事が明記されている。
Patent Publication 2010-279345
Patent Publication 2011-115
Patent Publication 2011-55816
It is specified in the above-mentioned literature that it has been demonstrated that protein increases in the leaf body using light.

当該植物の葉体内に青色光を夜間照射しフェノール物質を増加させながら前記記載の「[0007]」項にて記載実証明示されているごとく、当該植物の葉体内に青色光と緑色光とを複合照射し、当該植物の葉体内にたんぱく質を蓄へ備へ、当該植物の葉体内の栄養濃度であるたんぱく質を高濃度に保持しながら、当該植物の葉体内のフェノール物質をも増加含有せしめ、当該植物の葉液を、害虫たる成虫や孵化幼虫に、吸汁させて害虫の生育を抑制せしめ、やがて死滅させる事を可能にした。特に害虫であるハダニ、によるいちご作物被害の軽減、とまと作物被害をもたらすシルバーリーフコナジラミやタバココナジラミによる黄化葉巻病の軽減、等アブラムシ、青虫、ヨトウ虫、コナジラミ、コナガ、アザミウマ等の、葉の葉液を吸汁する害虫等を防除出来る。
又植物の葉体に夜間に青色光、緑色光、黄色光、赤色光の複合光線を照射し植物の葉体内にケルダール窒素を増加させて植物育成することにより、植物自体に徐々に増加する害虫防除効果を持つフェノール物質、害虫駆除の為に過大に増加したフェノール物質が、育成植物の生長を抑制をもたらす、ストレスとなる為に、当該育成植物体内の栄養蛋白質たる、ケルダール窒素をも増加せしめて、当該育成植物のストレスを和らげ、且つ植物の生育、生産スピードを上げ、害虫防除をも出来る植物育成制御が可能になった装置と方法。
As shown in the above-mentioned section “[0007]”, blue light and green light are emitted into the leaves of the plant while irradiating the leaves of the plant with blue light at night to increase phenolic substances. Combined irradiation, to store protein in the leaf body of the plant, to maintain a high concentration of protein, which is the nutrient concentration in the leaf body of the plant, while increasing the content of phenolic substance in the leaf body of the plant, The leaf liquid of the plant is sucked by adult insects and hatching larvae to suppress the growth of the pests, and can eventually be killed. In particular, alleviation of damage to strawberry crops caused by spider mites, pesticide damage, reduction of yellow leaf curl disease caused by silver leaf whitefly and tobacco whitefly, etc. Can control pests that absorb leaf liquid.
Pests that gradually increase in the plant itself by irradiating the plant leaves with compound light of blue light, green light, yellow light, and red light at night to increase the Kjeldahl nitrogen in the plant leaves. Phenol substances that have a controlling effect, and phenol substances that have been excessively increased to control pests, suppress the growth of the growing plant and cause stress, so increase the Kjeldahl nitrogen, which is a nutrient protein in the growing plant. Thus, an apparatus and a method capable of reducing plant stress, increasing plant growth and production speed, and controlling plant growth capable of controlling pests.

青色、緑色の単独光線、青と緑色複合色光線を夜間照射処理ことにより、いちご植物とまと、きゅうり、ピーマン、すいか、メロン等の果菜類や小松菜、チンゲン菜、ほうれん草等の葉菜類植物や菊、ガーベラ、カーネンション、らん、シクラメン、ユリ等の花卉類又さくらんぼ、オウトウ等の果樹類の害虫防除が出来る。
又、上記記載植物の葉体に夜間に青色光、緑色光、黄色光、赤色光を複合光線照射し植物の葉体内にケルダール窒素増加させながら、植物育成することにより、植物自体に徐々に増加し、害虫駆除効果を有する、フェノール物質過大の増加による育成植物のストレスを和らげながら、成育スピードを上げることが出来る植物育成制御装置と方法が可能になった。
又植物の種類により、複合光線の光線色による花芽等に、影響無き調整をして夜間植物に照射することが出来る植物育成制御装置と方法が可能になった。
By irradiating blue and green single rays and blue and green combined rays at night, strawberry plants and cucumbers, green peppers, green peppers, melons and other fruit vegetables, komatsuna, chingen vegetables, spinach and other leafy vegetables plants, chrysanthemum, gerbera , Pest control of fruit trees such as carnations, orchids, cyclamen, and lilies, and cherries and cherry trees.
In addition, the plant body is gradually increased by radiating blue light, green light, yellow light, and red light to the plant leaves at night to increase the Kjeldahl nitrogen in the plant leaf body, thereby gradually increasing the plant itself. However, a plant growth control apparatus and method that can increase the growth speed while reducing the stress of the grown plant due to an increase in phenolic substance excess, which has a pest control effect, has become possible.
Moreover, the plant growth control apparatus and method which can irradiate a plant at night by adjusting the flower buds by the light color of the composite light beam without any influence depending on the kind of the plant became possible.

本発明の実施形態を、フェノール含有量を精度の高い方法にて4−アミノアンチピリン測定法にて測定する。当発明の基準になった上記記載の4−アミノアンチピリン測定法に基ずき、いちご植物の葉体を乾燥後熱湯にて煮沸し、ろ過抽出しクロロホルム、フェノール試薬処理をし、2段階分析後にサンプルを取り出しHACH社製分光光度計3000Rにてフェノール含有量の測定を行っています。
又、本発明の実施形態を、タンパク質の定量法として、精度の高い方法として燃焼後に窒素量を測定するデルマ法と、硫酸分解後にアンモニア量を測定するケルダール法等があります。当発明の基準になった測定法は、後者の方法でいちご植物の葉柄、葉体をHACH社製ダイジェスタール23130−20型で強酸の硫酸にて440度Cにて煮沸させながら強酸化剤過酸化水素水を点滴し、2段階分解後にサンプルを取り出し、HACH社製分光光度計3000Rにてアンモニア量を測定するゲルタール法に基づくものであり,精度の高いタンパク質の定量法にて測定を行なっています。
In the embodiment of the present invention, the phenol content is measured by a 4-aminoantipyrine measurement method by a highly accurate method. Based on the 4-aminoantipyrine measurement method described above, which was the basis of the present invention, the leaves of strawberry plants were dried and boiled in hot water, filtered and extracted, treated with chloroform and phenol reagents, and analyzed in two steps. The sample is taken out and the phenol content is measured with a spectrophotometer 3000R manufactured by HACH.
In addition, embodiments of the present invention include a derma method for measuring the amount of nitrogen after combustion and a Kjeldahl method for measuring the amount of ammonia after sulfuric acid decomposition, as a highly accurate method for protein quantification. The measurement method which became the standard of the present invention is that the latter method is a method in which strawberry plant petioles and leaf bodies are boiled with sulfuric acid of strong acid at 440 ° C. with a digester type 23130-20 manufactured by HACH, and a strong oxidizing agent is added. It is based on the gel tar method in which hydrogen oxide water is instilled, the sample is taken out after two-stage decomposition, and the amount of ammonia is measured with a spectrophotometer 3000R manufactured by HACH, and is measured by a highly accurate protein quantification method. The

いちごハウスの中において、いちご植物の育成中の葉体に無照射、緑色単独光、青色単独光、青色光と緑色光を一平面上からの複合光等の照射条件の光線源たる蛍光灯型LED電源を設け、設定し、当該いちご植物の上面1.5mの高さから夜間にいちご植物に照射し、当該いちご植物の葉体内にフェノールを蓄積させ、当該いちご植物の葉体内に蓄積された含有させたフェノールを、当該いちご植物の葉液をハダニに吸汁させてハダニの減少度合いを比較検証した。In the strawberry house, a fluorescent lamp type is used as a light source for irradiation conditions such as no irradiation to green leaves growing strawberry plants, green single light, blue single light, blue light and green light from a single plane. LED power supply was installed and set, and the strawberry plant was irradiated at night from the height of 1.5m above the strawberry plant, and phenol was accumulated in the leaves of the strawberry plant, and accumulated in the leaves of the strawberry plant. Spider mites sucked the leaf fluid of the strawberry plant from the contained phenol, and the degree of spider mite reduction was compared and verified.

育成中のいちご植物のビニールハウス間口6m奥行100m、定植苗3800本のハウス内において、ハダニの発生をしたビニールハウス100m内を試験区とした。In the house of 6m depth 100m depth and 3800 planted seedlings of the greenhouse of the strawberry plant being cultivated, the inside of the greenhouse 100m where the spider mite was generated was taken as the test area.

上記「[0012]」記載のビニールハウス内において効果および実証結果を図1、図2、図3、図4、図5及び表1、表2、実施例、に基づき詳細に説明する。
ビニールハウス平面図1のA−A矢視立面図2の表示の如く、いちご植物の定植苗4の上面1.5mの高さに青色光の蛍光灯型LED1をビニールハウス平面図1の表示の如くビニールハウス3の奥行に5m間隔にハウス3の間口と平行に吊り下げ設置した。
The effects and demonstration results in the above-mentioned “[0012]” greenhouse will be described in detail with reference to FIGS. 1, 2, 3, 4, 5, and Tables 1, 2, and Examples.
As shown in the elevational view AA in the greenhouse plan view 1, a blue fluorescent light-emitting LED 1 is placed at a height of 1.5 m on the upper surface of the strawberry planted seedling 4. As shown in the figure, it was suspended from the depth of the greenhouse 3 at intervals of 5 m in parallel with the entrance of the house 3.

次にビニールハウス平面図1のB−B矢視図立面図3の表示の如く、いちご植物の定植苗5の上面1.5mの高さに緑色光の蛍光灯型LED2をビニールハウス平面図1の表示の如くビニールハウス3の奥行に5m間隔にビニールハウス3の間口と平行に吊り下げ設置した。Next, as shown in the elevation view 3 of the arrow BB in the plan view of the greenhouse 1, the green fluorescent lamp type LED 2 is placed at a height of 1.5 m on the upper surface of the strawberry planting seedling 5. As indicated by 1, it was suspended and installed in the depth of the greenhouse 3 at intervals of 5 m in parallel with the entrance of the greenhouse 3.

次にビニールハウス平面図1のC−C矢視図立面図4の表示の如く、いちご植物の定植苗6の上面1.5mの高さに緑色光の蛍光灯型LED2を5m間隔に吊り下げ設置し、緑色光の蛍光灯型LED2を5m間隔に吊り下げ設置した緑色光の蛍光灯型LED2と緑色光の蛍光灯型LED2との中間部にビニールハウス3の間口と直角方向に青色光の蛍光灯型LED1をビニールハウス平面図1の表示の如く吊り下げ設置した。Next, as shown in the elevation view 4 of the arrow C-C in the greenhouse plan view 1, green fluorescent fluorescent LED 2 is suspended at a height of 1.5 m on the upper surface of the fixed seedling 6 of the strawberry plant at intervals of 5 m. Blue light in the direction perpendicular to the entrance of the greenhouse 3 in the middle between the green light fluorescent LED 2 and the green fluorescent light LED 2 in which the green fluorescent light LED 2 is suspended and installed at intervals of 5 m. The fluorescent LED 1 was suspended and installed as shown in the plan view of the greenhouse.

次にビニールハウス平面図1のD−D矢視図立面図5の表示の如く、いちご植物の定植苗7の上面には、無照射とした。Next, as shown in the elevation view of the arrow D-D of the greenhouse plan view 1, the upper surface of the strawberry plant seedling 7 was not irradiated.

前記記載の「[0012]」「[0013]」「[0014]」「[0015]」「[0016]」にて、表示説明のごとく、青色光の蛍光灯型LED1単独光を照射、緑色光の蛍光灯型LED2単独光を照射、緑色光の蛍光灯型LED2との中間部にハウス3の間口と直角方向に青色光の蛍光灯型LED1をビニールハウス平面図1の表示の如く吊り下げ設置して、複合光を照射、いちご植物の定植苗7の上面には、無照射とし、ビニールハウス3の中の、当該いちご植物の定植苗4、定植苗5、定植苗6、定植苗7、に点灯処理して表1、表2にて点灯後10日後、30日後に、当該いちご植物の定植苗の葉体内のフェノール含有量とハダニの減少度合いを比較検証し表1、表2に表示した。As described in “[0012]”, “[0013]”, “[0014]”, “[0015]”, and “[0016]”, the blue fluorescent LED 1 alone is irradiated and green light is emitted. Fluorescent lamp type LED 2 is irradiated with a single light, and a blue fluorescent lamp type LED 1 is suspended in the middle of the green light fluorescent lamp type LED 2 in the direction perpendicular to the entrance of the house 3 as shown in the plan view of the greenhouse. Then, the compound light is irradiated, and the upper surface of the strawberry plant fixed seedling 7 is not irradiated, and the strawberry plant fixed seedling 4, the fixed planted seedling 5, the fixed planted seedling 6, the fixed planted seedling 7, 10 and 30 days after lighting in Tables 1 and 2, the phenol content in the leaves of the planted seedlings of the strawberry plant and the degree of mite reduction were compared and displayed in Tables 1 and 2 did.

表1は、点灯照射後10日後であり、青色光の蛍光灯型LED1は、フェノール含有量0.190mg/L,ハダニ数7匹、緑色光の蛍光灯型LED2は、フェノール含有量0.175mg/L,ハダニ数20匹、青色光の蛍光灯型LED1と緑色光の蛍光灯型LED2の複合光は、フェノール含有量0.2mg/L,ハダニ数8匹、無照射のフェノール含有量0.160mg/L,ハダニ数50匹であった。Table 1 shows 10 days after lighting irradiation, the blue light fluorescent LED 1 has a phenol content of 0.190 mg / L, the number of spider mites, and the green light fluorescent LED 2 has a phenol content of 0.175 mg. / L, 20 spider mites, combined light of blue fluorescent LED 1 and blue fluorescent light LED 2 has a phenol content of 0.2 mg / L, 8 spider mites, a non-irradiated phenol content of 0. It was 160 mg / L and the number of spider mites was 50.

表2は、点灯照射後30日後であり、青色光の蛍光灯型LED1は、フェノール含有量0.214mg/L,ハダニ数0匹、緑色光の蛍光灯型LED2は、フェノール含有量0.188mg/L,ハダニ数7匹、青色光の蛍光灯型LED1と緑色光の蛍光灯型LED2の複合光は、フェノール含有量0.251mg/L,ハダニ数0匹、無照射のフェノール含有量0.172mg/L,ハダニ数150匹であった。Table 2 shows 30 days after the lighting irradiation, the blue fluorescent lamp type LED1 has a phenol content of 0.214 mg / L, the number of spider mites, and the green fluorescent lamp type LED 2 has a phenol content of 0.188 mg. / L, number of spider mites, combined light of fluorescent LED 1 of blue light and LED 2 of green light, phenol content 0.251 mg / L, number of spider mites, phenol content of non-irradiated 0. It was 172 mg / L and the number of spider mites was 150.

前記記載の「[0018]」表1、「[0019]」表2の如く表1に基ずき説明すると、点灯10日後に於いて青色光の蛍光灯型LED1と緑色光の蛍光灯型LED2との複合光は、フェノール含有量0.2mg/L,ハダニ数8匹であり、青色光の蛍光灯型LED1は、フェノール含有量0.190mg/L,ハダニ数7匹であり、緑色光の蛍光灯型LED2は、フェノール含有量0.175mg/L,ハダニ数20匹であった、無照射のフェノール含有量0.160mg/L,ハダニ数50匹であった。10日後に於いてフェノール含有量の多い当該いちご定植苗にはハダニの数は少なく、フェノール含有量の少ない当該いちご定植苗にはハダニの数は多くあらわれている。The description will be made based on Table 1 as shown in the above-mentioned “[0018]” Table 1 and “[0019]” Table 2. After 10 days of lighting, the blue-light fluorescent LED 1 and the green-light fluorescent LED 2 are used. The compound light with a phenol content of 0.2 mg / L and a spider mite number of 8 and the blue light fluorescent LED 1 has a phenol content of 0.190 mg / L and a spider mite count of 7 and a green light The fluorescent lamp type LED 2 had a phenol content of 0.175 mg / L and a number of spider mites of 20 and a non-irradiated phenol content of 0.160 mg / L and a number of spider mites of 50. After 10 days, the number of spider mites appears in the strawberry fixed seedlings with a high phenol content, and the number of spider mites appears in the strawberry fixed seedlings with a low phenol content.

点灯30日後に於いて青色光の蛍光灯型LED1と緑色光の蛍光灯型LED2の複合光は、フェノール含有量0.251mg/L,ハダニ数0匹であり、青色光の蛍光灯型LED1は、フェノール含有量0.214mg/L,ハダニ数0匹、緑色光の蛍光灯型LED2は、フェノール含有量0.188mg/L,ハダニ数7匹であり、無照射のフェノール含有量0.172mg/L,ハダニ数150匹であった。30日後に於いては、フェノール含有量の増加するに従いハダニが減少し、無点灯の当該いちご定植苗のフェノール含有量が少なく、30日後にてもフェノール含有量に変動変化のない当該いちご定植苗にはハダニは異常に増加している。30 days after lighting, the composite light of the blue fluorescent light LED 1 and the green fluorescent light LED 2 has a phenol content of 0.251 mg / L and a spider mite number 0, and the blue fluorescent light LED 1 , Phenol content 0.214 mg / L, spider mite number 0, green light fluorescent LED 2 has a phenol content of 0.188 mg / L, spider mite number 7, and non-irradiated phenol content of 0.172 mg / L L, spider mite number 150. After 30 days, spider mites decrease as the phenol content increases, and the non-lighted strawberry fixed seedlings have a low phenol content, and even after 30 days the strawberry fixed seedlings have no change in phenol content. Spider mites are abnormally increased.

上記記載の実施例の如く青色光、緑色光、青色光と緑色光との複合光線による当該いちご植物の定植苗にてフェノール含有量の増加によりハダニが当該いちご植物の定植苗の葉体の葉液を吸汁し弱り死滅することを実証した。

Figure 2014131506
Figure 2014131506
Figure 2014131506
Figure 2014131506
Figure 2014131506
又、表5によると、表4表示の50日目に消灯し表5表示の表5の如く消灯15日間にて、青色単独光はフェノール含有量は、0.28mg/Lから0.19mg/Lに減少、緑色単独光は、0.26mg/Lから0.18mg/Lに減少、青色と緑色の複合光0.35mg/Lから0.24mg/Lに減少、無照射は0.17mg/Lから0.16mg/Lに微小に減少している。
表1、と表4に基づく考察によると無照射はフェノール含有量は微少の減少であるが、青色と緑色の複合光は表1の含有量0.2mg/Lから表4の含有量0.35mg/Lに増加、緑色単独光の表1の含有量0.175mg/Lから表4の含有量0.26mg/Lに増加、青色の単独光、は表1の含有量0.19mg/Lから表4の含有量0.28mg/Lに増加量が、増加している。
表1、と表5に基づき考察すると、消灯後15日目にて、ハダニの減少割合とフェノール含有量とを比較検証すると、緑色単独光ハダニ数が20から15、青色単独光7から5、青色と緑色の複合光は8から0であり、フェノール含有量は消灯後15日目に緑色の単独光は、0.18mg/L、青色の単独光は、0.19mg/L、青色と緑色の複合光は、0.24mg/Lである。フェノール増加量の多さが消灯後15日目にてもハダニが減少していることが明らかである。
青色と緑色の複合光は、緑色単独光青色単独光フェノール含有量より多いことにより、ハダニがより多く減少させていることが、表1、表2、表3、表4、表5の表示の如く実施例に基づき実証した。As in the above-described embodiments, spider mite is caused by an increase in the phenol content in the planted seedling of the strawberry plant by blue light, green light, or a combined light beam of blue light and green light. It was proved that the liquid was sucked and weakened and died.
Figure 2014131506
Figure 2014131506
Figure 2014131506
Figure 2014131506
Figure 2014131506
Further, according to Table 5, the light was turned off on the 50th day shown in Table 4 and turned off for 15 days as shown in Table 5 shown in Table 5. The blue single light had a phenol content of 0.28 mg / L to 0.19 mg / L. Reduced to L, green single light decreased from 0.26 mg / L to 0.18 mg / L, blue and green combined light decreased from 0.35 mg / L to 0.24 mg / L, no irradiation 0.17 mg / L It is slightly reduced from L to 0.16 mg / L.
According to the considerations based on Tables 1 and 4, the non-irradiation has a slight decrease in phenol content, but the blue and green composite light has a content of 0.2 mg / L in Table 1 to a content of 0. Increased to 35 mg / L, the content of green single light in Table 1 from 0.175 mg / L to the content of Table 4 in 0.26 mg / L, blue single light, the content of Table 1 in 0.19 mg / L From Table 4, the amount of increase increased to a content of 0.28 mg / L.
Considering based on Table 1 and Table 5, on the 15th day after the extinction, when comparing the mite reduction ratio and the phenol content, the number of green single light spider mites is 20 to 15, the number of blue single light 7 to 5, Blue and green combined light is 8 to 0, phenol content is 15 days after extinction, green single light is 0.18 mg / L, blue single light is 0.19 mg / L, blue and green The combined light is 0.24 mg / L. It is clear that spider mites are decreasing even on the 15th day after the lights are turned off.
The composite light of blue and green has a greater decrease in spider mites due to the content of the green single light blue single light phenol content, which is shown in Table 1, Table 2, Table 3, Table 4, Table 5 It demonstrated based on the Example as follows.

いちごハウスの中において、いちご植物の育成中の葉体に緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該LED。
緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該LED。
緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と黄色光線の複合光線を有する当該LEDと青色光の青色LEDとの複合光線とを有する当該LED。
緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの配置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と赤色光線との複合光線を有する当該LEDと青色光の青色LEDとの複合光線とを有する当該LED。
上記記載のLEDを一平面上から設定し、設置し、当該いちご定植苗の上面1.5mの高さから夜間にいちご植物に照射し、当該いちご定植苗の葉体内にフェノール含有量とケルダール窒素含有量を蓄積させ、当該いちご定植苗の葉体内に蓄積されうるフェノール含有量とケルダール窒素含有量の割合を比較し、又当該いちご定植苗の葉体に夜間に青色光、緑色光、黄色光、赤色光の複合光線を照射し当該いちご定植苗の葉体内にケルダール窒素を増加させて植物育成する、又植物自体に徐々に増加する害虫防除効果を持つフェノール物質しかし、害虫駆除の為に過大に増加したフェノール物質が、育成植物の生長の抑制をもたらす、当該いちご定植苗の葉の展開スピードに対してのストレスとなっている。表3、表4に基づき説明すると、表3表示の如く、青色光フェノール、0.27mg/L、緑色光フェノール、0.24mg/L、青色と緑色の複合光フェノール0.31mg/L、表4の表示の如く、青色光フェノール、0.28mg/L、緑色光フェノール、0.26mg/L、青色と緑色の複合光フェノール0.35mg/L、である。しかし表3表示の当該いちご定植苗の葉体内のケルダール窒素すなわち、葉体内の栄養濃度を司る、タンパク質濃度は、表3表示の如く、青色光ケルダール窒素は、100PPM,緑色光ケルダール窒素は110PPM、青色と緑色の複合光ケルダール窒素は、135PPM、表4の表示の如く、青色光ケルダール窒素は、108PPM,緑色光ケルダール窒素は123PPM、青色と緑色の複合光ケルダール窒素は、146PPM、が表示されている。
葉の展開枚数は、表示3にては、青色光は、13枚、緑色光は、14枚、青色と緑色の複合光は、15枚である。表示4にては、青色光は、14枚、緑色光は、15.5枚、青色と緑色の複合光は、17枚弱である。上記表示3、表示4のデータによると、フェノール含有量が青色と緑色の複合光を考察すると、0.31mg/Lから0.35mg/Lに多く増加していても、葉体内の栄養濃度を司る、ケルダール窒素が135PPMから146PPMに多く増加することにより、当該いちご定植苗の葉の展開枚数が15枚から17枚弱に増えている値と、青色単独光のフェノール含有量が0.27mg/Lから0.28mg/Lに増加して、葉体内の栄養濃度を司る、ケルダール窒素が100PPMから108PPMに増加し、緑色単独光のフェノール含有量が0.24mg/Lから0.26mg/Lに増加して、葉体内の栄養濃度を司る、ケルダール窒素が110PPMから123PPMに増加している、しかし青色と緑色の複合光は、青色単独光は、13枚から14枚に増へ、緑色単独光は14枚から15.5枚に増えている、しかし、当該いちご定植苗の葉の展開枚数が青色と緑色の複合光は、15枚から17枚弱に増へている、青色と緑色の複合光はケルダール窒素の増加量多い事による成長スピードすなわち、葉の展開枚数の差すなわち、青色単独光は1枚、緑色単独光は1.5枚青色と緑色の複合光は2枚葉の展開の差の効果がケルダール窒素の増加による成長の効果として実証できた。
複合光を利用し、当該育成植物体内の栄養蛋白質たる、ケルダール窒素をも増加せしめて、当該いちご定植苗の育成中にいちご定植苗の過大に増加したフェノール含有量の多さによる、ストレスを和らげながら、且つ植物の生育、生産スピードを上げ、害虫防除をも出来る植物育成制御装置と方法が青色光、緑色光、黄色光、赤色光の複合光線を照射することにより、当該いちご定植苗の葉体内にケルダール窒素を増加せしめ、植物育成することが可能になったことを検証した事を、実施例に基づき説明する。
In the strawberry house, a green light green LED and a yellow light yellow LED are arranged and installed on the leaf body during the growth of the strawberry plant, and the yellow light yellow LED in relation to the green light green LED In the arrangement, the yellow LED is repeatedly arranged several times while maintaining the arrangement ratio of about 5% with respect to the green LED. The LED having a light beam.
The green LED and the red LED are arranged and installed, and the arrangement and installation ratio of the red LED of red light is about 5% with respect to the green LED of green light. The LED having a composite light beam, in which the red LED is repeatedly arranged several times while maintaining an arrangement ratio of about 5% with respect to the green LED.
A green light green LED and a yellow light yellow LED are arranged and installed, and the installation ratio of the yellow light yellow LED to the green light green LED is about 5%. The yellow LED is placed repeatedly and arranged several times while maintaining an arrangement ratio of about 5% with respect to the green LED, and the LED and the blue light having the combined light of the green light and the yellow light of the LED. LED having a composite light beam with a blue LED.
The green light green LED and the red light red LED are arranged and installed, and the arrangement ratio of the red light red LED to the green light green LED is about 5%. The yellow LED is placed repeatedly and arranged several times while maintaining the arrangement ratio of about 5% with respect to the green LED, and the LED having the combined light of the green light and red light of the LED and blue The LED having a composite light beam with a light blue LED.
The above-mentioned LED is set and installed from a single plane, and the strawberry plant is irradiated at night from a height of 1.5 m above the strawberry planted seedling, and the phenol content and Kjeldahl nitrogen in the leaves of the strawberry planted seedling Accumulate the content, compare the ratio of phenol content and Kjeldahl nitrogen content that can be accumulated in the leaves of the strawberry planted seedlings, and also blue light, green light, yellow light at night in the strawberry planted seedlings A phenolic substance that irradiates compound light of red light to increase the Kjeldahl nitrogen in the leaves of the strawberry planted seedlings and has a pest control effect that gradually increases on the plant itself, but it is excessive for pest control The increased phenolic substance is a stress on the development speed of the strawberry fixed seedlings, which brings about the suppression of the growth of the growing plant. Explaining based on Table 3 and Table 4, as shown in Table 3, blue light phenol, 0.27 mg / L, green light phenol, 0.24 mg / L, blue and green composite photophenol 0.31 mg / L, table As indicated by 4, blue light phenol, 0.28 mg / L, green light phenol, 0.26 mg / L, and blue and green composite light phenol 0.35 mg / L. However, the Kjeldahl nitrogen in the leaves of the strawberry seedlings shown in Table 3, that is, the nutrient concentration in the leaves, the protein concentration is 100 PPM for blue light Kjeldahl nitrogen and 110 PPM for green light Kjeldahl, as shown in Table 3. Blue and green composite light Kjeldahl nitrogen is 135PPM, as shown in Table 4, blue light Kjeldahl nitrogen is 108PPM, green light Kjeldahl nitrogen is 123PPM, blue and green compound light Kjeldahl nitrogen is 146PPM Yes.
In the display 3, the number of leaves developed is 13 for blue light, 14 for green light, and 15 for blue and green combined light. In display 4, there are 14 blue lights, 15.5 green lights, and less than 17 blue and green combined lights. According to the data of the above display 3 and display 4, considering the complex light of the blue and green phenol content, the nutrient concentration in the leaf body is increased even if it is increased from 0.31 mg / L to 0.35 mg / L. The increase in Kjeldahl nitrogen from 135 PPM to 146 PPM increases the number of leaves deployed from 15 to 17 and the phenol content of blue single light is 0.27 mg / Increased from L to 0.28 mg / L, the Kjeldahl nitrogen, which controls the nutrient concentration in the leaves, increased from 100 PPM to 108 PPM, and the green content of phenol alone from 0.24 mg / L to 0.26 mg / L The Kjeldahl nitrogen is increasing from 110 PPM to 123 PPM, which controls the nutrient concentration in the leaf body, but the blue and green combined light is the blue single light, The number of green single light has increased from 14 to 15.5, increasing from 3 to 14; however, the combined number of leaves of blue and green strawberry seedlings is 15 to 17 The compound light of blue and green, which is increasing slightly, is the growth speed due to the increased amount of Kjeldahl nitrogen, that is, the difference in the number of deployed leaves, that is, blue single light is 1, blue green light is 1.5 blue The combined effects of green and green demonstrated that the difference in the expansion of the two leaves can be demonstrated as the growth effect due to an increase in Kjeldahl nitrogen.
Utilizing complex light, increase the Keldar nitrogen, which is a nutrient protein in the growing plant body, to relieve stress due to the excessively high phenol content of the strawberry fixed planting seedling during the growth of the strawberry fixed planting seedling However, the plant growth control device and method that can increase the growth and production speed of the plant and also control the pests can irradiate the compound light of blue light, green light, yellow light and red light, so that the leaves of the strawberry fixed planting seedling The fact that Kjeldahl nitrogen is increased in the body and it has become possible to grow plants will be described based on examples.

育成中のいちご定植のビニールハウス間口6m奥行50mに定植苗1900本のハウス内に定植し、ビニールハウス50m内のいちご定植苗のケルダール窒素の含有量とフェノールの含有量の比較試験区とした。The strawberry fixed planting under cultivation is planted in a house of 1,900 fixed seedlings at a depth of 6m in the greenhouse 6m depth and set as a comparative test section for the content of Kjeldahl nitrogen and phenol content of the strawberry fixed planting seedlings in the greenhouse 50m.

上記「[0024]」記載のビニールハウス内において効果および実証結果を図6、図7、図8、図9、図10及び表6、表7、表示8、実施例、に基づき詳細に説明する。
ビニールハウス平面図6のE−E矢視立面図、図7の表示の如く、いちご植物の定植苗11の上面1.5mの高さに緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されている蛍光型LEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該蛍光型LED8をビニールハウス平面図、図6の表示の如くビニールハウス10の奥行に5m間隔にハウス10の間口と平行に吊り下げ設置した。
The effects and demonstration results in the above-mentioned “[0024]” greenhouse will be described in detail based on FIGS. 6, 7, 8, 9, 10, and 6, and Table 7, display 8, and examples. .
As shown in the elevation view of arrow EE in the greenhouse plan view 6 and the display of FIG. 7, a green light green LED and a yellow light yellow LED are arranged at a height of 1.5 m on the upper surface of the strawberry planted seedling 11. The arrangement of the yellow LED of the yellow light with respect to the green LED of the green light, the installation ratio is about 5%, and in the arrangement, the yellow LED with respect to the green LED Is about 5% in the depth of the greenhouse 10 as shown in the plan view of the greenhouse, as shown in FIG. It was suspended and installed parallel to the front of the house 10 at intervals.

次にビニールハウス平面図6のF−F矢視図立面図、図8の表示の如く、いちご植物の定植苗12の上面1.5mの高さに緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されている蛍光型LEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LED蛍光灯型LED9をビニールハウス平面図、図6の表示の如くビニールハウス10の奥行に5m間隔にビニールハウス10の間口と平行に吊り下げ設置した。Next, as shown in the elevation view of the FF arrow in the greenhouse plan view 6 and the display of FIG. 8, the green LED with green light and the red light with red light at a height of 1.5 m on the upper surface of the fixed seedling 12 of the strawberry plant. The LED is a fluorescent LED in which the LED is arranged and installed. The arrangement and installation ratio of the red LED of red light with respect to the green LED of green light is about 5%. The red LED is arranged repeatedly several times while maintaining the arrangement ratio of about 5%. The LED fluorescent LED 9 is placed in the depth of the greenhouse 10 as shown in the plan view of the greenhouse, as shown in FIG. It was suspended and installed in parallel with the entrance of the greenhouse 10 at intervals of 5 m.

次にビニールハウス平面図、図6のG−G矢視図立面図、図9の表示の如く、いちご植物の定植苗13の上面1.5mの高さに緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されている蛍光型LEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と黄色光線との複合光線を有する当該LEDの蛍光灯型LED8を5m間隔に吊り下げ設置し、当該LED,蛍光灯型LED8を5m間隔に吊り下げ設置した当該LED,蛍光灯型LED8と当該LED,蛍光灯型LED8との中間部にビニールハウス平面図、図6の間口と直角方向に青色光の蛍光灯型青色LED15をビニールハウス平面図、図6の表示の如く吊り下げ設置した。Next, as shown in the plan view of the greenhouse, the GG arrow elevation view of FIG. 6 and the display of FIG. The yellow LED is arranged and installed, and the installation ratio of the yellow LED of yellow light is about 5% with respect to the green LED of green light. The yellow LED is arranged repeatedly several times while maintaining an arrangement ratio of about 5%, and the fluorescent lamp type LED 8 of the LED having a composite light beam of the green light and the yellow light of the LED is spaced by 5 m. 6 is a plan view of a greenhouse in the middle of the LED, fluorescent lamp type LED8 and the LED, fluorescent lamp type LED8. Of blue light in the direction perpendicular to Greenhouses plan view light lamp type blue LED 15, was placed in a suspended state as the display of FIG.

次にビニールハウス平面図、図6のH−H矢視図立面図、図10の表示の如く、いちご植物の定植苗14の上面1.5mの高さに緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されている蛍光型LEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と赤色光線との複合光線を有する当該LEDの蛍光灯型LED9を5m間隔に吊り下げ設置し、当該LED,蛍光灯型LED9を5m間隔に吊り下げ設置した当該LED,蛍光灯型LED9と当該LED,蛍光灯型LED9との中間部にビニールハウス平面図、図6の間口と直角方向に青色光の蛍光灯型青色LED15をビニールハウス平面図、図6の表示の如く吊り下げ設置した。  Next, as shown in the plan view of the greenhouse, the HH arrow elevation view of FIG. 6, and the display of FIG. The red LED is arranged and installed, and the installation ratio of the red LED of the red light is about 5% with respect to the green LED of the green light. The red LED is arranged repeatedly several times while maintaining the arrangement ratio of about 5%, and the fluorescent lamp type LED 9 of the LED having the combined light of the green light and the red light of the LED is spaced by 5 m. 6 is a plan view of the greenhouse in the middle of the LED and fluorescent lamp type LED 9 and the LED and fluorescent lamp type LED 9 that are suspended and installed at 5 m intervals. Blue light in the direction perpendicular to Fluorescent type blue LED15 the greenhouses plan view, installed in a suspended state as the display of FIG.

前記記載の「[0024]」「[0025]」「[0026]」「[0027]」「[0028]」にて、表示説明のごとく、緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該LED蛍光灯型LED8をいちご植物の1.5mの高さから定植苗に照射した。
緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該LED蛍光灯型LED9をいちご植物の1.5mの高さから定植苗に照射した。
緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該LED蛍光灯型LED8と当該LED、蛍光灯型LED8との中間部にハウス平面図、図6の間口と直角方向に青色光の蛍光灯型青色LED15をビニールハウス平面図、図6の表示の如く吊り下げ設置して、複合光をいちご植物の1.5mの高さから定植苗に照射した。
又緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該LED蛍光灯型LED9と当該LED蛍光灯型LED9との中間部にハウス平面図6の間口と直角方向に青色光の蛍光灯型青色LED15をビニールハウス平面図、図6の表示の如く吊り下げ設置して、複合光をいちご植物の1.5mの高さから定植苗に照射した。
ビニールハウス10の中の、当該いちご定植苗11、いちご定植苗12、いちご定植苗13、いちご定植苗14、に40日間点灯処理して表6に表示、40日照射処理後に、10日間消灯して表7に表示、当該いちご植物の定植苗の葉体内のフェノール含有量とケルダール窒素の含有量の度合いを比較検証し表6、表7、表示8にて表示した。

Figure 2014131506
Figure 2014131506
但し 表6、表7のデータのいちご定植苗の無照射データは下記の表示8の通り。
Figure 2014131506
表、表示についてLEDの光源、表6、表7の緑色と黄色複合光とは、緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されているLEDで、緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は、約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LED蛍光型LEDである。
表、表示についてLEDの光源、表6、表7緑色と赤色複合光とは、緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LED蛍光型LEDである。
表、表示についてLEDの光源、表6、表7の緑色と黄色複合光+青色とは、緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と黄色光線の複合光線を有する当該LED蛍光型LEDと青色光の青色LED蛍光型LEDとの複合光である。
表、表示についてLEDの光源、表6、表7の緑色と赤色複合光+青色とは、緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LED蛍光型LEDの緑光線と黄色光線の複合光線を有する当該LEDと青色光の青色蛍光型LEDとの複合光である。As described in “[0024]”, “[0025]”, “[0026]”, “[0027]”, and “[0028]” in the above description, the yellow light yellow LED is compared with the green light green LED. The arrangement and installation ratio is about 5%, and in the arrangement, the yellow LED is repeatedly arranged several times while maintaining the arrangement ratio of about 5% with respect to the green LED. The planted seedlings were irradiated with the LED fluorescent lamp type LED 8 having a height of 1.5 m from a strawberry plant.
The arrangement and installation ratio of the red LED of the red light with respect to the green LED of the green light is about 5%, and in the arrangement, the red LED maintains an arrangement ratio of about 5% with respect to the green LED. The planted seedlings were irradiated from the height of 1.5 m of the strawberry plant with the LED fluorescent lamp type LED 9 having a composite light beam, which was repeatedly placed several times and installed.
The arrangement and installation ratio of yellow LED of yellow light to green LED of green light is about 5%, and in the arrangement, the yellow LED maintains an arrangement ratio of about 5% with respect to the green LED. The LED fluorescent lamp-type LED 8 having a composite light beam, which is repeatedly arranged several times and installed, and a plan view of the house in the middle of the LED and the fluorescent lamp-type LED 8, and blue light in a direction perpendicular to the front of FIG. The fluorescent blue LED 15 was suspended and installed as shown in the plan view of the greenhouse, as shown in FIG. 6, and the composite light was irradiated to the planted seedling from a height of 1.5 m of the strawberry plant.
In addition, the arrangement and installation ratio of the red LED of the red light with respect to the green LED of the green light is about 5%. In the arrangement, the red LED maintains the arrangement ratio of 5% with respect to the green LED. Fluorescent lamp type of blue light in a direction perpendicular to the front of the house plan view 6 at the middle part of the LED fluorescent lamp type LED 9 having a composite light beam and the LED fluorescent lamp type LED 9 which are repeatedly arranged several times. The blue LED 15 was suspended and installed as shown in the plan view of the greenhouse, as shown in FIG. 6, and composite light was applied to the planted seedlings from a height of 1.5 m of the strawberry plant.
In the greenhouse 10, the strawberry fixed seedling 11, the strawberry fixed seedling 12, the strawberry fixed seedling 13 and the strawberry fixed seedling 14 are turned on for 40 days and displayed in Table 6. After 40 days of irradiation treatment, the lights are turned off for 10 days. Table 7 and the degree of phenol content and Kjeldahl nitrogen content in the leaves of the fixed seedlings of the strawberry plant were compared and verified and displayed in Table 6, Table 7, and Display 8.
Figure 2014131506
Figure 2014131506
However, the data shown in Tables 6 and 7 are as follows.
Figure 2014131506
Table, display LED light source, green and yellow composite light in Tables 6 and 7 are the LEDs in which a green LED of green light and a yellow LED of yellow light are arranged and installed, with respect to the green LED of green light The arrangement and installation ratio of yellow LEDs with yellow light is about 5%, and in the arrangement, the yellow LEDs are repeatedly arranged several times while maintaining the arrangement ratio of about 5% with respect to the green LEDs. This LED fluorescent LED is installed.
Table, display LED light source, Table 6, Table 7 Green and red composite light is an LED in which a green light green LED and a red light red LED are arranged and installed. The arrangement and installation ratio of red LEDs for red light is about 5%. In the arrangement, the red LEDs are repeatedly arranged several times while maintaining the arrangement ratio of about 5% with respect to the green LEDs. This LED fluorescent LED is installed.
Tables and displays LED light source, green and yellow composite light + blue in Tables 6 and 7 are LEDs in which a green LED of green light and a yellow LED of yellow light are arranged and installed. The installation ratio of yellow LED of yellow light to LED is about 5%, and in the arrangement, the yellow LED is repeatedly arranged several times while maintaining the arrangement ratio of about 5% to the green LED. It is the composite light of the said LED fluorescent LED which has the composite light of the green light of the said LED, and the yellow light and the blue LED fluorescent LED of blue light currently installed.
Table and display LED light source, green and red composite light + blue in Table 6 and Table 7 are LEDs in which a green green LED and a red red LED are arranged and installed. The installation ratio of red LED of red light to LED is about 5%, and in the arrangement, the red LED is repeatedly arranged several times while maintaining the arrangement ratio of about 5% to the green LED. The combined light of the LED having the combined light of green light and yellow light of the LED fluorescent LED and the blue fluorescent LED of blue light.

表6は、点灯照射後40日目である、緑色と黄色の複合光のフェノール含有量が、0.245mg/Lであり、表7の消灯後10日目にて緑色と黄色の複合光のフェノール含有量は0.178mg/Lに減少。
表6は、点灯照射後40日目である、緑色と赤色の複合光のフェノール含有量が、0.2mg/Lであり、表7の消灯後10日目にて緑色と赤色の複合光のフェノール含有量は0.128mg/Lに減少。
表6は、点灯照射後40日目である、緑色と黄色の複合光+青色のフェノール含有量が、0.30mg/Lであり、表7の消灯後10日目にて緑色と黄色の複合光+青色のフェノール含有量は0.23mg/Lに減少。
表6は、点灯照射後40日目である、緑色と赤色の複合光+青色のフェノール含有量が、0.26mg/Lであり、表7の消灯後10日目にて緑色と赤色の複合光+青色のフェノール含有量は0.180mg/Lに減少。
表6は、点灯照射後40日目である、緑色と黄色の複合光のケルダール窒素含有量が、120PPMであり、表7の消灯後10日目にて緑色と黄色の複合光のケルダール窒素含有量が、105PPMに減少。
表6は、点灯照射後40日目である、緑色と赤色の複合光のケルダール窒素含有量が、112PPMであり、表7の消灯後10日目にて緑色と赤色の複合光のケルダール窒素含有量が、98PPMに減少。
表6は、点灯照射後40日目である、緑色と黄色の複合光+青色のケルダール窒素含有量が、132PPMであり、表7の消灯後10日目にて緑色と黄色+青色の複合光のケルダール窒素含有量が、120PPMに減少。
表6は、点灯照射後40日目である、緑色と赤色の複合光+青色のケルダール窒素含有量が、129PPMであり、表7の消灯後10日目にて緑色と赤色+青色の複合光のケルダール窒素含有量が、118PPMに減少。
表示8は、無照射のいちご定植苗でフェノール含有量は0.16mg/Lである。
ケルダール窒素の含有量は、80PPMである。
上記データに基づき考察すると、いちご定植苗に複合光線を照射時と消灯後10日目でも、表示8の如く、無照射のいちご定植苗でフェノール含有量は約0.16mg/Lであった。ケルダール窒素の含有量は、約80PPMであった。
いちご定植苗に複合光線を照射した当該いちご定植苗の数値が表7の如く、消灯後も上記表示の如く、高く維持し害虫に駆除能力をもつフェノール含有量を保持しながら、植物体内の栄養濃度を司る、ケルダール窒素をも高い値を保持している。
表3、表4にても、「[0023]」にて検証した前記記載や、上記「[0030]」記載の如く、複合光線を植物に照射することにより、植物自体に徐々に増加する害虫防除効果を持つフェノール物質の増加方法及び装置、又フェノール物質が多大な増加が、育成植物の生長の抑制をもたらす物質となる為に、当該育成植物体内の栄養蛋白質たる、ケルダール窒素をも増加せしめて、当該いちご定植苗の育成中に増加するフェノール物質による成育の抑制にもなる、ストレスをも和らげ、且つ植物の生育、生産スピードを上げ、害虫防除をも出来うる、ケルダール窒素増加方法及び装置が、青色光、緑色光、黄色光、赤色光の複合光線を照射し、当該いちご定植苗の葉体内にケルダール窒素を増加せしめ、徐々に増加する害虫防除効果を持つフェノール物質の増加方法及び装置により植物育成制御が可能になったことを検証した。
Table 6 shows that the phenol content of the green and yellow composite light on the 40th day after the lighting irradiation is 0.245 mg / L, and the green and yellow composite light on the 10th day after the light is turned off in Table 7 Phenol content is reduced to 0.178 mg / L.
Table 6 shows that the phenol content of the green and red composite light on the 40th day after the lighting irradiation is 0.2 mg / L, and the green and red composite light on the 10th day after the extinction of Table 7 Phenol content is reduced to 0.128 mg / L.
Table 6 shows that the green and yellow composite light + blue phenol content is 0.30 mg / L on the 40th day after the lighting irradiation, and the green and yellow composites on the 10th day after the light is turned off in Table 7. Light + blue phenol content decreased to 0.23 mg / L.
Table 6 shows the green and red composite light + blue phenol content of 0.26 mg / L on the 40th day after the lighting irradiation, and the green and red composite on the 10th day after the extinction of Table 7. Light + blue phenol content decreased to 0.180 mg / L.
Table 6 shows that the Kjeldahl nitrogen content of the green and yellow composite light, which is the 40th day after the lighting irradiation, is 120 PPM, and the Kjeldahl nitrogen content of the green and yellow composite light is 10 days after the light is turned off in Table 7. The amount is reduced to 105PPM.
Table 6 shows that the Kjeldahl nitrogen content of the green and red composite light on the 40th day after the lighting irradiation is 112 PPM, and the Kjeldahl nitrogen content of the green and red composite light on the 10th day after the extinction of Table 7 The amount is reduced to 98 PPM.
Table 6 shows the composite light of green and yellow + blue combined light of blue and Keldar, which is 40 days after the irradiation of irradiation, and the Kjeldahl nitrogen content of 132 PPM. Kjeldahl nitrogen content decreased to 120PPM.
Table 6 shows the compound light of green and red + blue Kjeldahl nitrogen content of 129 PPM on the 40th day after the lighting irradiation, and the combination of green and red + blue light on the 10th day after the extinction of Table 7. Kjeldahl nitrogen content decreased to 118PPM.
The display 8 is a non-irradiated strawberry fixed planting seedling, and the phenol content is 0.16 mg / L.
The content of Kjeldahl nitrogen is 80 PPM.
Considering based on the above data, the phenol content of the non-irradiated strawberry planted seedling was about 0.16 mg / L as shown in the display 8 even when the strawberry planted seedling was irradiated with the composite light and on the 10th day after the light was turned off. The content of Kjeldahl nitrogen was about 80 PPM.
Nutrients in the plant body while maintaining the phenol content of the strawberry planted seedlings irradiated with compound light as shown in Table 7 and maintaining a high phenol content with the ability to control pests as shown above, as shown in Table 7. Kjeldahl nitrogen, which controls the concentration, also maintains a high value.
Also in Tables 3 and 4, as described above in “[0023]” and as described in the above “[0030]”, a pest that gradually increases on the plant itself by irradiating the plant with a composite beam. The method and apparatus for increasing phenolic substances that have a controlling effect, and because the large increase in phenolic substances can be a substance that suppresses the growth of the growing plant, it also increases the Kjeldahl nitrogen, which is a nutrient protein in the growing plant. Kjeldahl nitrogen increase method and apparatus that can also suppress growth by phenolic substances that increase during the cultivation of the strawberry fixed seedlings, relieve stress, increase plant growth and production speed, and can also control pests However, by irradiating compound light of blue light, green light, yellow light and red light, the Keldar nitrogen is increased in the leaves of the strawberry planted seedlings, and it has a pest control effect that gradually increases. It was verified that it is now possible to plant growth control by increasing the method and apparatus of the phenolic material.

は、ビニールハウス平面図。Is a greenhouse top view. は、A−A矢視立面図。These are AA arrow elevation views. は、B−B矢視立面図。These are BB arrow elevation views. は、C−C矢視立面図。FIG. は、D−D矢視立面図。FIG. は、ビニールハウス平面図。Is a greenhouse top view. は、E−E矢視立面図。Is an EE arrow elevation view. は、F−F矢視立面図。These are FF arrow elevation views. は、G−G矢視立面図。FIG. は、H−H矢視立面図。FIG.

1・・青色光の蛍光型LED 2・・緑色光の蛍光型LED 3・・ビニールハウス4・・いちご植物定植苗 5・・いちご植物定植苗 6・・いちご植物定植苗
7・・いちご植物定植苗 8・・緑色光の緑色LEDと黄色光の黄色LEDが配置、設 置されている蛍光型LED
9・・緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されている蛍光型LED
10・・ビニールハウス 11・・いちご定植苗
12・・いちご定植苗 13・・いちご定植苗 14・・いちご定植苗
15・・青色光の蛍光型青色LED
1. Blue fluorescent LED 2. Green light fluorescent LED 3. Greenhouse 4. Strawberry planting seedling 5. Strawberry planting planting seedling 6. Strawberry planting planting seedling 7. Strawberry planting planting Seedling 8 ・ ・ Fluorescent LED with green LED and yellow LED
9 ・ ・ Fluorescent LED with green LED and green LED
10. ・ Vinylhouse 11. ・ Strawberry fixed planting seedling 12. ・ Strawberry fixed planting seedling 13. ・ Strawberry fixed planting seedling 14. ・ Strawberry fixed planting seedling 15. ・ Blue fluorescent fluorescent blue LED

本発明は、植物の葉体に夜間に青色光、緑色光を照射し植物の葉体内にフェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用の害虫防除の方法に関する。且つ植物の葉体に夜間に青色光、緑色光、黄色光、赤色光の複合光線を照射しうる装置にて、植物の葉体内にケルダール窒素、とフェノール含有量を増加せしめる植物育成制御方法に関する。The present invention irradiates a plant leaf body with blue light and green light at night to increase the phenol content in the plant leaf body, causing an adult insect or hatching larva to suck the leaf fluid of the plant, The present invention relates to a method for controlling light-using pests that are killed while suppressing the growth of hatching larvae. Further, the present invention relates to a plant growth control method for increasing the Kjeldahl nitrogen and phenol content in a plant leaf body with an apparatus capable of irradiating the plant leaf body with blue, green, yellow and red light at night. .

植物の栽培において害虫による被害により、作物生産量の減収が大きな問題となっている。害虫を防除の為に多大な経費を掛け農薬にての防除を施用しているのが現実であります。しかし薬剤の害虫への耐性が付きやすく農薬防除が困難になっている。
農薬害虫防除の処理回数の多さにより、植物の成育を妨げている。
Decrease in crop production has become a major problem due to damage by pests in plant cultivation. The reality is that pesticide control is applied at a great expense to control pests. However, it is difficult to control pesticides due to the resistance of drugs to pests.
Plant growth is hindered by the high frequency of pesticide pest control.

発明が解決しようとする課題Problems to be solved by the invention

特にハダニ、アブラムシ等の害虫の防除に関しては点滴昆虫の利用が普及してきた。
しかし点滴昆虫に影響のない農薬との併用での使用防除の為に多く困難さがある。
又農薬害虫防除の回数の多く処理すればするほど、植物の成育を遅らせる原因となる。
In particular, the use of drip insects has become widespread for the control of pests such as spider mites and aphids.
However, there are many difficulties in controlling the use in combination with pesticides that do not affect drip insects.
Moreover, the more the number of times of controlling pesticide pests, the slower the growth of the plant.

課題を解決するための手段Means for solving the problem

植物の葉体内に本来植物は、害虫を防除するための弱いフェノール物質含有している、当該植物の含有量を増加させる為に、青色、緑色の単独光線や、青色、緑色の複合させた光線を夜間に照射し、フェノール物質の含有量を増加させ害虫防除を特徴とする。
青色、緑色、赤色、黄色の複合させた光線を夜間に、照射しうる装置にて、ケルダール窒素の含有量を増加させて、害虫防除の為のフェノール物質含有量の過大な増加による、当該植物の過度のフェノール物質による当該植物の育成の抑制となるストレスを和らげながら、うどんこ病、ダニ等の病害虫の防除をする、植物育成制御技術に利用する方法。
The plant leaves contain a weak phenolic substance to control pests. In order to increase the content of the plant, blue and green single rays and blue and green combined rays are used. Is characterized by pest control by increasing the content of phenolic substances at night.
The plant by increasing the content of Kjeldahl nitrogen in an apparatus that can irradiate a light beam combined with blue, green, red, and yellow at night, and increasing the content of phenolic substances for pest control A method used for plant growth control technology for controlling pests such as powdery mildew and ticks while relieving the stress that suppresses the growth of the plant due to excessive phenolic substances.

本来植物自体生合成している物質で、害虫が葉体を大量に食べ続けるとやがて害虫は弱り死滅することにより、植物自体の育成を保持させて、害虫の大量発生を防止させている穏やかな毒といわれているのが、フェノール物質であります。フェノール物質とケルダール窒素即ち、たんぱく質等の増加効果は、植物自体の病害虫防除や植物の育成を制御できる。A substance that is inherently biosynthesized by the plant itself, and when the pests continue to eat large amounts of leaf bodies, the pests will eventually weaken and die, thereby maintaining the growth of the plant itself and preventing the generation of large numbers of pests. What is said to be poison is phenolic substances. Increasing effects of phenolic substances and Kjeldahl nitrogen, ie, proteins, can control pest control of plants themselves and plant growth.

本発明によれば、青色、緑色の単独光線、青と緑色の複合色光線を利用し夜間照射することにより、自然な方法で当該植物の葉体内にフェノール物質を増加させ害虫たる成虫や孵化幼虫に当該植物の葉液を吸汁させて害虫の生育を抑制せしめ、やがて死滅させる事を特徴とする。又青色、緑色、黄色、赤色の複合色光線を利用しうる装置にて、夜間照射し、ケルダール物質を増加させながら、フェノール物質の過大増加による当該植物の育成の抑制となるストレスをも和らげ、植物の育成を制御できる方法。According to the present invention, adults and hatching larvae which are pests by increasing the phenolic substance in the leaves of the plant in a natural manner by irradiating at night using blue, green single light, blue and green composite light. It is characterized in that the plant leaves are sucked to suppress the growth of pests and eventually die. In addition, with a device that can use blue, green, yellow, and red complex color rays, while irradiating at night and increasing the Kjeldahl substance, it also relieves the stress that suppresses the growth of the plant due to an excessive increase in the phenolic substance, A method that can control the growth of plants.

特許公開2010−279345
特許公開2011−115
特許公開2011−55816
上記記載の文献にて光線利用にて葉体内にたんぱく質が増加していく事が実証されている事が明記されている。
Patent Publication 2010-279345
Patent Publication 2011-115
Patent Publication 2011-55816
It is specified in the above-mentioned literature that it has been demonstrated that protein increases in the leaf body using light.

当該植物の葉体内に青色光を夜間照射しフェノール物質を増加させながら前記記載の「[0007]」項にて記載実証明示されているごとく、当該植物の葉体内に青色光と緑色光とを複合照射し、当該植物の葉体内にたんぱく質を蓄え備へ、当該植物の葉体内の栄養濃度であるたんぱく質を高濃度に保持しながら、当該植物の葉体内のフェノール物質をも増加含有せしめ、当該植物の葉液を、害虫たる成虫や孵化幼虫に、吸汁させて害虫の生育を抑制せしめ、やがて死滅させる事を可能にした。
特に害虫であるハダニ、によるいちご作物被害の軽減、とまと作物被害をもたらすシルバーリーフコナジラミやタバココナジラミによる黄化葉巻病の軽減、等アブラムシ、青虫、ヨトウ虫、コナジラミ、コナガ、アザミウマ等の、葉の葉液を吸汁する害虫等を防除出来る。
As shown in the above-mentioned section “[0007]”, blue light and green light are emitted into the leaves of the plant while irradiating the leaves of the plant with blue light at night to increase phenolic substances. Combined irradiation, to store protein in the plant's leaf body, while maintaining a high concentration of protein, which is a nutrient concentration in the plant's leaf body, to increase the content of phenolic substances in the plant's leaf body, The plant leaf fluid is sucked by the adult insects and hatching larvae to suppress the growth of the insects and can be killed.
In particular, alleviation of damage to strawberry crops caused by spider mites, pesticide damage, reduction of yellow leaf curl disease caused by silver leaf whitefly and tobacco whitefly, etc. Can control pests that absorb leaf liquid.

又植物の葉体に夜間に青色光、緑色光、黄色光、赤色光の複合光線を有する装置にて当該植物に照射し、当該植物の葉体内にケルダール窒素を増加させて植物育成する、又植物自体に徐々に増加する害虫防除効果を持つフェノール物質、害虫駆除の為に過大フェノール物質が増加する、又当該植物の育成の抑制をもたらす、ストレスとなる為に、当該育成植物体内の栄養蛋白質たる、ケルダール窒素をも増加せしめて、当該育成植物の育成の抑制となるストレスを和らげ、且つ植物の生育、生産スピードを上げ、害虫防除をも出来る植物育成制御が可能になる方法。Also, the plant leaves are irradiated at night with a device having a composite light beam of blue light, green light, yellow light and red light, and the plants are grown by increasing Kjeldahl nitrogen in the leaves of the plant. Phenol substances that have a pest control effect that gradually increases on the plant itself, excessive phenol substances increase to control pests, and also cause the suppression of the growth of the plant. In other words, a method of increasing plant Kjeldahl nitrogen to relieve stress that suppresses the growth of the growing plant, increase the growth and production speed of the plant, and enable pest control.

青色、緑色の単独光線、青と緑色複合色光線を夜間照射処理ことにより、いちご植物とまと、きゅうり、ピーマン、すいか、メロン等の果菜類や小松菜、チンゲン菜、ほうれん草等の葉菜類植物や菊、ガーベラ、カーネンション、らん、シクラメン、ユリ等の花卉類又さくらんぼ、オウトウ等の果樹類の害虫防除が出来る。By irradiating blue and green single rays and blue and green combined rays at night, strawberry plants and cucumbers, green peppers, green peppers, melons and other fruit vegetables, komatsuna, chingen vegetables, spinach and other leafy vegetables plants, chrysanthemum, gerbera , Pest control of fruit trees such as carnations, orchids, cyclamen, and lilies, and cherries and cherry trees.

又、上記記載植物の葉体に夜間に青色光、緑色光、黄色光、赤色光との複合光線を有する装置として照射し、当該植物の葉体内にケルダール窒素増加させながら、当該植物を育成すると共に、当該植物の葉体内に徐々に増加しうる、害虫駆除効果を有する、フェノール物質も過大の増加をもたらす。Further, the plant leaves are irradiated at night as a device having a composite light beam of blue light, green light, yellow light, and red light, and the plant is grown while increasing Kjeldahl nitrogen in the leaves of the plant. At the same time, phenolic substances having a pest control effect that can gradually increase in the leaves of the plant also cause an excessive increase.

当該植物に過剰に増加するフェノール物質は、当該植物の育成の抑制となるストレスをもたらす為、当該植物の葉体内にケルダール窒素増加をうながし、過剰に増加するフェノール物質による当該植物の育成を抑制するストレスを和らげながら、成育スピードを上げることが出来る植物育成制御方法が可能になった。An excessively increased phenolic substance in the plant causes stress that suppresses the growth of the plant, and thus increases the Kjeldahl nitrogen in the leaf body of the plant, thereby suppressing the growth of the plant by the excessively increased phenolic substance. Plant growth control methods that can increase the growth speed while relieving stress have become possible.

又植物の種類により、複合光線の光線色の装置により、花芽には、影響を与えないようにし、当該複合光線の装置にて、光線色、光量調整をして、夜間、暗黒時において植物に照射することが出来、植物育成制御の利用方法が可能になった。Depending on the type of plant, the light beam color device of the composite light beam does not affect the flower buds, and the light beam color and light amount are adjusted with the composite light beam device so that it can be applied to the plant at night and in the dark. Irradiation was possible, and the use of plant growth control became possible.

夜間とは、植物への太陽光等の自然光線が減少または、遮断した状態を云う。Nighttime refers to a state in which natural light such as sunlight on a plant is reduced or blocked.

本発明の実施形態を、フェノール含有量を精度の高い方法にて4−アミノアンチピリン測定法にて測定ああする。当発明の基準になった上記記載の4−アミノアンチピリン測定法に基づき、いちご植物の葉体を乾燥後熱湯にて煮沸し、ろ過抽出しクロロホルム、フェノール試薬処理をし、2段階分析後にサンプルを取り出しHACH社製分光光度計3000Rにてフェノール含有量の測定を行っています。In the embodiment of the present invention, the phenol content is measured by a 4-aminoantipyrine measurement method by a highly accurate method. Based on the above-mentioned 4-aminoantipyrine measurement method, which is the standard of the present invention, the leaves of strawberry plants are dried and boiled in hot water, filtered and extracted, treated with chloroform and phenol reagents, and samples are analyzed after two-stage analysis. The phenol content is measured with the HACH spectrophotometer 3000R.

又、本発明の実施形態を、タンパク質の定量法として、精度の高い方法として燃焼後に窒素量を測定するデルマ法と、硫酸分解後にアンモニア量を測定するケルダール法等があります。当発明の基準になった測定法は、後者の方法でいちご植物の葉柄、葉体をHACH社製ダイジェスタール23130−20型で強酸の硫酸にて440度Cにて煮沸させながら強酸化剤過酸化水素水を点滴し、2段階分解後にサンプルを取り出し、HACH社製分光光度計3000Rにてアンモニア量を測定するゲルタール法に基づくものであり,精度の高いタンパク質の定量法にて測定を行なっています。In addition, embodiments of the present invention include a derma method for measuring the amount of nitrogen after combustion and a Kjeldahl method for measuring the amount of ammonia after sulfuric acid decomposition, as a highly accurate method for protein quantification. The measurement method which became the standard of the present invention is that the latter method is a method in which strawberry plant petioles and leaf bodies are boiled with sulfuric acid of strong acid at 440 ° C. with a digester type 23130-20 manufactured by HACH, and a strong oxidizing agent is added. It is based on the gel tar method in which hydrogen oxide water is instilled, the sample is taken out after two-stage decomposition, and the amount of ammonia is measured with a spectrophotometer 3000R manufactured by HACH, and is measured by a highly accurate protein quantification method. The

いちごハウスの中において、いちご植物の育成中の葉体に無照射、緑色単独光、青色単独光、青色光と緑色光を一平面上からの複合光等の照射条件の光線源たる蛍光灯型LED電源を設け、設定し、当該いちご植物の上面1.5mの高さから夜間にいちご植物に照射し、当該いちご植物の葉体内にフェノールを蓄積させ、当該いちご植物の葉体内に蓄積された含有させたフェノールを、当該いちご植物の葉液をハダニに吸汁させてハダニの減少度合いを比較検証した。In the strawberry house, a fluorescent lamp type is used as a light source for irradiation conditions such as no irradiation to green leaves growing strawberry plants, green single light, blue single light, blue light and green light from a single plane. LED power supply was installed and set, and the strawberry plant was irradiated at night from the height of 1.5m above the strawberry plant, and phenol was accumulated in the leaves of the strawberry plant, and accumulated in the leaves of the strawberry plant. Spider mites sucked the leaf fluid of the strawberry plant from the contained phenol, and the degree of spider mite reduction was compared and verified.

育成中のいちご植物のビニールハウス間口6m奥行100m、定植苗3800本のハウス内において、ハダニの発生をしたビニールハウス100m内を試験区とした。In the house of 6m depth 100m depth and 3800 planted seedlings of the greenhouse of the strawberry plant being cultivated, the inside of the greenhouse 100m where the spider mite was generated was taken as the test area.

上記「[0018]」記載のビニールハウス内において効果および実証結果を図1、図2、図3、図4、図5及び表1、表2、実施例、に基づき詳細に説明する。
ビニールハウス平面図1のA−A矢視立面図2の表示の如く、いちご植物の定植苗4の上面1.5mの高さに青色光の蛍光灯型LED1をビニールハウス平面図1の表示の如くビニールハウス3の奥行に5m間隔にハウス3の間口と平行に吊り下げ設置した。
The effects and demonstration results in the greenhouse described in “[0018]” will be described in detail based on FIG. 1, FIG. 2, FIG. 3, FIG. 4 and FIG.
As shown in the elevational view AA in the greenhouse plan view 1, a blue fluorescent light-emitting LED 1 is placed at a height of 1.5 m on the upper surface of the strawberry planted seedling 4. As shown in the figure, it was suspended from the depth of the greenhouse 3 at intervals of 5 m in parallel with the entrance of the house 3.

次にビニールハウス平面図1のB−B矢視図立面図3の表示の如く、いちご植物の定植苗5の上面1.5mの高さに緑色光の蛍光灯型LED2をビニールハウス平面図1の表示の如くビニールハウス3の奥行に5m間隔にビニールハウス3の間口と平行に吊り下げ設置した。Next, as shown in the elevation view 3 of the arrow BB in the plan view of the greenhouse 1, the green fluorescent lamp type LED 2 is placed at a height of 1.5 m on the upper surface of the strawberry planting seedling 5. As indicated by 1, it was suspended and installed in the depth of the greenhouse 3 at intervals of 5 m in parallel with the entrance of the greenhouse 3.

次にビニールハウス平面図1のC−C矢視図立面図4の表示の如く、いちご植物の定植苗6の上面1.5mの高さに緑色光の蛍光灯型LED2を5m間隔に吊り下げ設置し、緑色光の蛍光灯型LED2を5m間隔に吊り下げ設置した緑色光の蛍光灯型LED2と緑色光の蛍光灯型LED2との中間部にビニールハウス3の間口と直角方向に青色光の蛍光灯型LED1をビニールハウス平面図1の表示の如く吊り下げ設置した。Next, as shown in the elevation view 4 of the arrow C-C in the greenhouse plan view 1, green fluorescent fluorescent LED 2 is suspended at a height of 1.5 m on the upper surface of the fixed seedling 6 of the strawberry plant at intervals of 5 m. Blue light in the direction perpendicular to the entrance of the greenhouse 3 in the middle between the green light fluorescent LED 2 and the green fluorescent light LED 2 in which the green fluorescent light LED 2 is suspended and installed at intervals of 5 m. The fluorescent LED 1 was suspended and installed as shown in the plan view of the greenhouse.

次にビニールハウス平面図1のD−D矢視図立面図5の表示の如く、いちご植物の定植苗7の上面には、無照射とした。Next, as shown in the elevation view of the arrow D-D of the greenhouse plan view 1, the upper surface of the strawberry plant seedling 7 was not irradiated.

記載の「[0018]」「[0019]」「[0020]」「[0021]」「[0022]」にて、表示説明のごとく、青色光の蛍光灯型LED1単独光を照射、緑色光の蛍光灯型LED2単独光を照射、緑色光の蛍光灯型LED2との中間部にハウス3の間口と直角方向に青色光の蛍光灯型LED1をビニールハウス平面図1の表示の如く吊り下げ設置して、複合光を照射、いちご植物の定植苗7の上面には、無照射とし、ビニールハウス3の中の、当該いちご植物の定植苗4、定植苗5、定植苗6、定植苗7、に点灯処理して表1、表2にて点灯後10日後、30日後に、当該いちご植物の定植苗の葉体内のフェノール含有量とハダニの減少度合いを比較検証し表1、表2に表示した。As described in “[0018]”, “[0019]”, “[0020]”, “[0021]”, and “[0022]”, the blue fluorescent LED 1 alone is irradiated and green light is emitted. Fluorescent lamp type LED 2 is irradiated with single light, and blue fluorescent lamp type LED 1 is suspended and installed in the middle of the green light fluorescent lamp type LED 2 in the direction perpendicular to the entrance of the house 3 as shown in the plan view of the greenhouse. In the greenhouse 3, the strawberry plant fixed seedling 4, the fixed planted seedling 5, the fixed planted seedling 6, and the fixed planted seedling 7 Tables 1 and 2 show the results of comparing and verifying the phenol content in the leaves of the fixed seedlings of the strawberry plant and the degree of spider mite after 10 and 30 days after lighting in Tables 1 and 2. .

表1は、点灯照射後10日後であり、青色光の蛍光灯型LED1は、フェノール含有量0.190mg/L,ハダニ数7匹、緑色光の蛍光灯型LED2は、フェノール含有量0.175mg/L,ハダニ数20匹、青色光の蛍光灯型LED1と緑色光の蛍光灯型LED2の複合光は、フェノール含有量0.2mg/L,ハダニ数8匹、無照射のフェノール含有量0.160mg/L,ハダニ数50匹であった。Table 1 shows 10 days after lighting irradiation, the blue light fluorescent LED 1 has a phenol content of 0.190 mg / L, the number of spider mites, and the green light fluorescent LED 2 has a phenol content of 0.175 mg. / L, 20 spider mites, combined light of blue fluorescent LED 1 and blue fluorescent light LED 2 has a phenol content of 0.2 mg / L, 8 spider mites, a non-irradiated phenol content of 0. It was 160 mg / L and the number of spider mites was 50.

表2は、点灯照射後30日後であり、青色光の蛍光灯型LED1は、フェノール含有量0.214mg/L,ハダニ数0匹、緑色光の蛍光灯型LED2は、フェノール含有量0.188mg/L,ハダニ数7匹、青色光の蛍光灯型LED1と緑色光の蛍光灯型LED2の複合光は、フェノール含有量0.251mg/L,ハダニ数0匹、無照射のフェノール含有量0.172mg/L,ハダニ数150匹であった。Table 2 shows 30 days after the lighting irradiation, the blue fluorescent lamp type LED1 has a phenol content of 0.214 mg / L, the number of spider mites, and the green fluorescent lamp type LED 2 has a phenol content of 0.188 mg. / L, number of spider mites, combined light of fluorescent LED 1 of blue light and LED 2 of green light, phenol content 0.251 mg / L, number of spider mites, phenol content of non-irradiated 0. It was 172 mg / L and the number of spider mites was 150.

前記記載の「[0024]」表1、「[0025]」表2の如く表1に基づき説明すると、点灯10日後に於いて青色光の蛍光灯型LED1と緑色光の蛍光灯型LED2との複合光は、フェノール含有量0.2mg/L,ハダニ数8匹であり、青色光の蛍光灯型LED1は、フェノール含有量0.190mg/L,ハダニ数7匹であり、緑色光の蛍光灯型LED2は、フェノール含有量0.175mg/L,ハダニ数20匹であった、無照射のフェノール含有量0.160mg/L,ハダニ数50匹であった。10日後に於いてフェノール含有量の多い当該いちご定植苗にはハダニの数は少なく、フェノール含有量の少ない当該いちご定植苗にはハダニの数は多くあらわれている。Describing based on Table 1 as shown in “[0024]” Table 1 and “[0025]” Table 2 described above, the blue fluorescent light LED 1 and the green fluorescent light LED 2 after 10 days of lighting. The composite light has a phenol content of 0.2 mg / L and a number of spider mites, and the blue fluorescent lamp type LED 1 has a phenol content of 0.190 mg / L and a number of spider mites and has a green light fluorescent lamp. Type LED2 had a phenol content of 0.175 mg / L and a number of spider mites of 20 and a non-irradiated phenol content of 0.160 mg / L and a number of spider mites of 50. After 10 days, the number of spider mites appears in the strawberry fixed seedlings with a high phenol content, and the number of spider mites appears in the strawberry fixed seedlings with a low phenol content.

点灯30日後に於いて青色光の蛍光灯型LED1と緑色光の蛍光灯型LED2の複合光は、フェノール含有量0.251mg/L,ハダニ数0匹であり、青色光の蛍光灯型LED1は、フェノール含有量0.214mg/L,ハダニ数0匹、緑色光の蛍光灯型LED2は、フェノール含有量0.188mg/L,ハダニ数7匹であり、無照射のフェノール含有量0.172mg/L,ハダニ数150匹であった。30日後に於いては、フェノール含有量の増加するに従いハダニが減少し、無点灯の当該いちご定植苗のフェノール含有量が少なく、30日後にてもフェノール含有量に変動変化のない当該いちご定植苗にはハダニは異常に増加している。30 days after lighting, the composite light of the blue fluorescent light LED 1 and the green fluorescent light LED 2 has a phenol content of 0.251 mg / L and a spider mite number 0, and the blue fluorescent light LED 1 , Phenol content 0.214 mg / L, spider mite number 0, green light fluorescent LED 2 has a phenol content of 0.188 mg / L, spider mite number 7, and non-irradiated phenol content of 0.172 mg / L L, spider mite number 150. After 30 days, spider mites decrease as the phenol content increases, and the non-lighted strawberry fixed seedlings have a low phenol content, and even after 30 days the strawberry fixed seedlings have no change in phenol content. Spider mites are abnormally increased.

上記記載の「[実施例1]」の如く青色光、緑色光、青色光と緑色光との複合光線による当該いちご植物の定植苗にてフェノール含有量の増加によりハダニが当該いちご植物の定植苗の葉体の葉液を吸汁し弱り死滅することを実証した。

Figure 2014131506
Figure 2014131506
Figure 2014131506
Figure 2014131506
Figure 2014131506
又、表5によると、表4表示の50日目に消灯し表5表示の表5の如く消灯15日間にて、青色単独光はフェノール含有量は、0.28mg/Lから0.19mg/Lに減少、緑色単独光は、0.26mg/Lから0.18mg/Lに減少、青色と緑色の複合光0.35mg/Lから0.24mg/Lに減少、無照射は0.17mg/Lから0.16mg/Lに微小に減少している。
表1、と表4に基づく考察によると無照射は、フェノール含有量は、微少の減少であるが、青色と緑色の複合光は、表1の含有量0.2mg/Lから表4の含有量0.35mg/Lに増加、緑色単独光は、表1の含有量0.175mg/Lから表4の含有量0.26mg/Lに増加、青色の単独光は、表1の含有量0.19mg/Lから表4の含有量0.28mg/Lに増加量が、増加している。
表1、と表5に基づき考察すると、消灯後15日目にて、ハダニの減少割合とフェノール含有量とを比較検証すると、緑色単独光ハダニ数が20から15、青色単独光7から5、青色と緑色の複合光は8から0であり、フェノール含有量は消灯後15日目に緑色の単独光は、0.18mg/L、青色の単独光は、0.19mg/L、青色と緑色の複合光は、0.24mg/Lである。フェノール増加量の多さが消灯後15日目にてもハダニが減少していることが明らかである。
青色と緑色の複合光は、緑色単独光青色、単独光フェノール含有量が、より多いことにより、ハダニがより多く減少させていることが、表1、表2、表3、表4、表5の表示の如く「[実施例1]」実施例に基づき実証した。As in the above-mentioned “[Example 1]”, the spider mite is planted in the strawberry plant by increasing the phenol content in the planted seedling of the strawberry plant by blue light, green light, the combined light of blue light and green light. It was proved that the leaf fluid of the cadaver was sucked and weakened.
Figure 2014131506
Figure 2014131506
Figure 2014131506
Figure 2014131506
Figure 2014131506
Further, according to Table 5, the light was turned off on the 50th day shown in Table 4 and turned off for 15 days as shown in Table 5 shown in Table 5. The blue single light had a phenol content of 0.28 mg / L to 0.19 mg / L. Reduced to L, green single light decreased from 0.26 mg / L to 0.18 mg / L, blue and green combined light decreased from 0.35 mg / L to 0.24 mg / L, no irradiation 0.17 mg / L It is slightly reduced from L to 0.16 mg / L.
According to the considerations based on Tables 1 and 4, no irradiation has a slight decrease in phenol content, but blue and green composite light has a content of Table 4 from 0.2 mg / L in Table 1. The amount is increased to 0.35 mg / L, the green single light is increased from the content of 0.175 mg / L in Table 1 to the content of 0.26 mg / L in Table 4, and the blue single light is a content of 0 in Table 1. The amount of increase increased from 19 mg / L to the content of 0.28 mg / L in Table 4.
Considering based on Table 1 and Table 5, on the 15th day after the extinction, when comparing the mite reduction ratio and the phenol content, the number of green single light spider mites is 20 to 15, the number of blue single light 7 to 5, Blue and green combined light is 8 to 0, phenol content is 15 days after extinction, green single light is 0.18 mg / L, blue single light is 0.19 mg / L, blue and green The combined light is 0.24 mg / L. It is clear that spider mites are decreasing even on the 15th day after the lights are turned off.
Table 1, Table 2, Table 3, Table 4, Table 5 that blue and green composite light has more green single light blue, single light phenol content, and more spider mites are reduced. As shown in the above, “[Example 1]” was demonstrated based on the example.

又表3、表4に基づき説明すると、表3表示の如く、青色光フェノール、0.27mg/L、緑色光フェノール、0.24mg/L、青色と緑色の複合光フェノール0.31mg/L、表4の表示の如く、青色光フェノール、0.28mg/L、緑色光フェノール、0.26mg/L、青色と緑色の複合光フェノール0.35mg/L、である。Also, based on Tables 3 and 4, as shown in Table 3, blue light phenol, 0.27 mg / L, green light phenol, 0.24 mg / L, blue and green composite light phenol 0.31 mg / L, As shown in Table 4, blue light phenol, 0.28 mg / L, green light phenol, 0.26 mg / L, and blue and green composite light phenol 0.35 mg / L.

表3表示の当該いちご定植苗の葉体内のケルダール窒素すなわち、葉体内の栄養濃度を司る、タンパク質濃度は、表3表示の如く、青色光ケルダール窒素は、100PPM,緑色光ケルダール窒素は110PPM、青色と緑色の複合光ケルダール窒素は、135PPMである。Keldar nitrogen in the leaves of the strawberry fixed seedlings shown in Table 3, that is, the protein concentration governing the nutrient concentration in the leaves, as shown in Table 3, blue light Kjeldahl nitrogen is 100 PPM, green light Kjeldahl nitrogen is 110 PPM, blue And the green composite light Kjeldahl nitrogen is 135 PPM.

表4の表示は、青色光ケルダール窒素は、108PPM,緑色光ケルダール窒素は123PPM、青色と緑色の複合光ケルダール窒素は、146PPM、が表示されている。The display in Table 4 displays 108 PPM for blue light Kjeldahl nitrogen, 123 PPM for green light Kjeldahl nitrogen, and 146 PPM for blue and green combined light Kjeldahl nitrogen.

葉の展開枚数は、表示3にては、青色光は、13枚、緑色光は、14枚、青色と緑色の複合光は、15枚である。In the display 3, the number of leaves developed is 13 for blue light, 14 for green light, and 15 for blue and green combined light.

表示4にては、青色光は、14枚、緑色光は、15.5枚、青色と緑色の複合光は、17枚弱である。In display 4, there are 14 blue lights, 15.5 green lights, and less than 17 blue and green combined lights.

上記表示3、表示4のデータによると、フェノール含有量が青色と緑色の複合光を考察すると、0.31mg/Lから0.35mg/Lに多く増加していても、葉体内の栄養濃度を司る、ケルダール窒素が135PPMから146PPMに多く増加することにより、当該いちご定植苗の葉の展開枚数が15枚から17枚弱に増えている。According to the data of the above display 3 and display 4, considering the complex light of the blue and green phenol content, the nutrient concentration in the leaf body is increased even if it is increased from 0.31 mg / L to 0.35 mg / L. The increase in Kjeldahl nitrogen from 135 PPM to 146 PPM increases the number of leaves of the strawberry fixed planting seeds from 15 to less than 17.

青色単独光のフェノール含有量が0.27mg/Lから0.28mg/Lに増加している。又葉体内の栄養濃度を司る、ケルダール窒素が100PPMから108PPMに増加している。The phenol content of blue single light is increased from 0.27 mg / L to 0.28 mg / L. Kjeldahl nitrogen, which controls the nutrient concentration in the leaves, has increased from 100 PPM to 108 PPM.

緑色単独光のフェノール含有量が0.24mg/Lから0.26mg/Lに増加して、葉体内の栄養濃度を司る、ケルダール窒素が110PPMから123PPMに増加している。The phenol content of green single light is increased from 0.24 mg / L to 0.26 mg / L, and Kjeldahl nitrogen, which controls the nutrient concentration in the leaves, is increased from 110 PPM to 123 PPM.

青色単独光は、13枚から14枚に増えている。Blue single light has increased from 13 to 14.

緑色単独光は14枚から15.5枚に増えている。Green single light has increased from 14 to 15.5.

当該いちご定植苗の葉の展開枚数が青色と緑色の複合光は、15枚から17枚弱に増えている。The number of blue and green combined lights with the number of leaves of the strawberry planted seedlings increased from 15 to less than 17.

青色と緑色の複合光はケルダール窒素の増加量多い事による成長スピードすなわち、葉の展開枚数の差すなわち、青色単独光は1枚、緑色単独光は1.5枚青色と緑色の複合光は2枚葉の展開の差の効果がケルダール窒素の増加による成長の効果として実証できた。Blue and green composite light has a growth rate due to a large increase in Kjeldahl nitrogen, that is, the difference in the number of leaf deployments, that is, blue single light is 1.5, green single light is 1.5, and blue and green composite light is 2 The effect of the difference in the development of single wafers can be demonstrated as the effect of growth by increasing Kjeldahl nitrogen.

青色光、緑色光、黄色光、赤色光の複合光線を利用し、当該育成植物体内の栄養蛋白質たる、ケルダール窒素をも増加せしめ、且つ当該いちご定植苗の育成中にいちご定植苗にフェノール含有量をも増加させる。Utilizing a composite light beam of blue light, green light, yellow light, and red light, the nutrient protein in the growing plant body, Kjeldahl nitrogen is also increased, and the content of phenol in the fixed strawberry seedlings during the growth of the fixed strawberry seedlings Also increase.

過大に害虫防除効果のフェノール含有量を増加させると、当該育成植物の成育の抑制となりうるストレスを和らげ無ければならぬことになる。If the phenol content of the pest control effect is excessively increased, the stress that can suppress the growth of the growing plant must be relieved.

且つ植物の生育、生産スピードを上げ、害虫防除をも出来る植物育成制御方法が青色光、緑色光、黄色光、赤色光の複合光線有する装置にて当該植物に照射することにより、当該いちご定植苗の葉体内にケルダール窒素を増加せしめ、且つフェノール含有量を増加させ植物育成することが可能になったことを検証した事を、実施例に基づき説明する。Moreover, the plant growth control method that can increase the growth and production speed of the plant and also control the pests irradiates the plant with an apparatus having a composite light beam of blue light, green light, yellow light, and red light, so that the strawberry fixed planting The fact that it has become possible to grow plants by increasing Kjeldahl nitrogen in the foliage and increasing the phenol content will be described based on examples.

育成中のいちご定植のビニールハウス間口6m奥行50mに定植苗1900本のハウス内に定植し、ビニールハウス50m内のいちご定植苗のケルダール窒素の含有量とフェノールの含有量の比較試験区とした。The strawberry fixed planting under cultivation is planted in a house of 1,900 fixed seedlings at a depth of 6m in the greenhouse 6m depth and set as a comparative test section for the content of Kjeldahl nitrogen and phenol content of the strawberry fixed planting seedlings in the greenhouse 50m.

上記「[0037]」記載のビニールハウス内において効果および実証結果を図6、図7、図8、図9、図10及び表6、表7、表示8、「[実施例2]」に基づき詳細に説明する。ビニールハウス平面図6のE−E矢視立面図、図7の表示の如く、いちご植物の定植苗11の上面1.5mの高さに緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されている複合光線を有するLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該複合光線を有するLED8をビニールハウス平面図、図6の表示の如くビニールハウス10の奥行に5m間隔にハウス10の間口と平行に吊り下げ設置した。Based on FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG. 10, FIG. 10 and Table 6, Table 7, Display 8, “[Example 2]” in the greenhouse described in “[0037]”. This will be described in detail. As shown in the elevation view of arrow EE in the greenhouse plan view 6 and the display of FIG. 7, a green light green LED and a yellow light yellow LED are arranged at a height of 1.5 m on the upper surface of the strawberry planted seedling 11. , The LED having a composite light beam, the arrangement of the yellow light yellow LED with respect to the green light green LED, the installation ratio is about 5%, and in the arrangement, the green LED The yellow LED is placed repeatedly and arranged several times while maintaining the arrangement ratio of about 5%. The LED 8 having the composite light beam having the composite light beam is a plan view of the greenhouse, and the greenhouse 10 is displayed as shown in FIG. At a depth of 5 m, it was hung in parallel with the front of the house 10 at intervals of 5 m.

次にビニールハウス平面図6のF−F矢視図立面図、図8の表示の如く、いちご植物の定植苗12の上面1.5mの高さに緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されている複合光線を有するLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている。複合光線を有する当該複合光線を有するLED9をビニールハウス平面図、図6の表示の如くビニールハウス10の奥行に5m間隔にビニールハウス10の間口と平行に吊り下げ設置した。Next, as shown in the elevation view of the FF arrow in the greenhouse plan view 6 and the display of FIG. 8, the green LED with green light and the red light with red light at a height of 1.5 m on the upper surface of the fixed seedling 12 of the strawberry plant. The LED is an LED having a composite light beam that is arranged and installed, and the arrangement and installation ratio of the red LED of the red light is about 5% with respect to the green LED of the green light. On the other hand, the red LEDs are repeatedly arranged several times while maintaining an arrangement ratio of about 5%. LED9 which has the said composite light beam which has the said composite light beam was suspended and installed in the depth of the greenhouse 10 at the 5-m space | interval in parallel with the opening of the greenhouse 10 like the display of a greenhouse.

次にビニールハウス平面図、図6のG−G矢視図立面図、図9の表示の如く、いちご植物の定植苗13の上面1.5mの高さに緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されている複合光線を有するLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている。
当該LEDの緑光線と黄色光線との複合光線を有する当該複合光線を有するLED8を5m間隔に吊り下げ設置した。
当該複合光線を有するLED8と当該複合光線を有するLED8との中間部にビニールハウス平面図、図6の間口と直角方向に青色光の蛍光灯型青色LED15をビニールハウス平面図、図6の表示の如く吊り下げ設置した。
Next, as shown in the plan view of the greenhouse, the GG arrow elevation view of FIG. 6 and the display of FIG. The yellow LED is a LED having a composite light beam, and the installation ratio of the yellow light yellow LED is about 5% with respect to the green light green LED. On the other hand, the yellow LEDs are repeatedly arranged several times while maintaining the arrangement ratio of about 5%.
LED8 which has the said composite light beam which has the composite light beam of the green light of the said LED, and a yellow light ray was suspended and installed by 5 m space | interval.
A plan view of the greenhouse at an intermediate portion between the LED 8 having the composite light beam and the LED 8 having the composite light beam, a blue fluorescent light type blue LED 15 in a direction perpendicular to the front edge of FIG. 6, and a plan view of the greenhouse in FIG. It was suspended and installed.

次にビニールハウス平面図、図6のH−H矢視図立面図、図10の表示の如く、いちご植物の定植苗14の上面1.5mの高さに緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されている複合光線を有するLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている。
当該LEDの緑光線と赤色光線との複合光線を有する当該複合光線を有するLED9を5m間隔に吊り下げ設置した。
当該複合光線を有するLED9と当該複合光線を有するLED9との中間部にビニールハウス平面図、図6の間口と直角方向に青色光の蛍光灯型青色LED15をビニールハウス平面図、図6の表示の如く吊り下げ設置した。
Next, as shown in the plan view of the greenhouse, the HH arrow elevation view of FIG. 6, and the display of FIG. The red LED is an LED having a composite light beam, and the installation ratio of the red LED of the red light is about 5% with respect to the green LED of the green light. On the other hand, the red LEDs are repeatedly arranged several times while maintaining an arrangement ratio of about 5%.
LED9 which has the said composite light beam which has the composite light beam of the green light of this LED and a red light beam was suspended and installed by 5 m space | interval.
6 is a plan view of the greenhouse in the middle of the LED 9 having the composite light beam and the LED 9 having the composite light beam, and a blue light fluorescent blue LED 15 in a direction perpendicular to the entrance of FIG. 6 is a plan view of the greenhouse. It was suspended and installed.

前記記載の「[0045]」「[0046]」「[0047]」「[0048]」にて、表示説明のごとく、緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該複合光線を有するLED8をいちご植物の1.5mの高さから定植苗11に照射した。As described in “[0045]”, “[0046]”, “[0047]”, and “[0048]”, the arrangement and installation ratio of yellow light yellow LEDs with respect to green light green LEDs are as follows. The composite light beam having a composite light beam, which is about 5%, and in the arrangement, the yellow LED is repeatedly arranged several times while maintaining the arrangement ratio of about 5% with respect to the green LED. The planted seedlings 11 were irradiated from the height of 1.5 m of the strawberry plant.

緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該複合光線を有するLED9をいちご植物の1.5mの高さから定植苗12に照射した。The arrangement and installation ratio of the red LED of the red light with respect to the green LED of the green light is about 5%, and in the arrangement, the red LED maintains an arrangement ratio of about 5% with respect to the green LED. The planted seedlings 12 were irradiated from a height of 1.5 m of the strawberry plant with the LED 9 having the composite light beam, which was repeatedly placed several times and installed.

緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該複合光線を有するLED8と当該複合光線を有するLED8との中間部にハウス平面図、図6の間口と直角方向に青色光の蛍光灯型青色LED15をビニールハウス平面図、図6の表示の如く吊り下げ設置して、複合光をいちご植物の1.5mの高さから定植苗13に照射した。The arrangement and installation ratio of yellow LED of yellow light to green LED of green light is about 5%, and in the arrangement, the yellow LED maintains an arrangement ratio of about 5% with respect to the green LED. A plan view of the house in the middle of the LED 8 having the composite light beam and the LED 8 having the composite light beam, which is repeatedly placed several times and arranged, and fluorescence of blue light in a direction perpendicular to the front of FIG. The light blue LED 15 was suspended and installed as shown in the plan view of the greenhouse, as shown in FIG. 6, and the planted seedling 13 was irradiated with composite light from a height of 1.5 m of the strawberry plant.

又緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該複合光線を有するLED9と当該複合光線を有するLED9との中間部にハウス平面図6の間口と直角方向に青色光の蛍光灯型青色LED15をビニールハウス平面図、図6の表示の如く吊り下げ設置して、複合光をいちご植物の1.5mの高さから定植苗14に照射した。In addition, the arrangement and installation ratio of the red LED of the red light with respect to the green LED of the green light is about 5%. In the arrangement, the red LED has an arrangement ratio of about 5% with respect to the green LED. While being arranged repeatedly several times, the fluorescent light of blue light in the direction perpendicular to the frontage of the house plan view 6 at the middle part of the LED 9 having the composite light beam and the LED 9 having the composite light beam, which is installed repeatedly The type blue LED 15 was suspended and installed as shown in the plan view of the greenhouse, as shown in FIG. 6, and the planted seedling 14 was irradiated with composite light from a height of 1.5 m of the strawberry plant.

ビニールハウス10の中の、当該いちご定植苗11、いちご定植苗12、いちご定植苗13、いちご定植苗14、に40日間点灯処理して表6に表示、40日照射処理後に、10日間消灯して表7に表示、当該いちご植物の定植苗の葉体内のフェノール含有量とケルダール窒素の含有量の度合いを比較検証し表6、表7、表示8にて表示した。

Figure 2014131506
Figure 2014131506
但し 表6、表7のデータの、いちご定植苗の無照射データは下記の表示8の通り。
Figure 2014131506
表、表示についてLEDの光源、表6、表7の緑色と黄色の複合光とは、緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されている複合光線を有するLEDで、緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は、約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該複合光線を有するLEDである。In the greenhouse 10, the strawberry fixed seedling 11, the strawberry fixed seedling 12, the strawberry fixed seedling 13 and the strawberry fixed seedling 14 are turned on for 40 days and displayed in Table 6. After 40 days of irradiation treatment, the lights are turned off for 10 days. Table 7 and the degree of phenol content and Kjeldahl nitrogen content in the leaves of the fixed seedlings of the strawberry plant were compared and verified and displayed in Table 6, Table 7, and Display 8.
Figure 2014131506
Figure 2014131506
However, the non-irradiation data of strawberry fixed seedlings in the data of Tables 6 and 7 is shown in the following display 8.
Figure 2014131506
Tables and displays LED light source, green and yellow composite light in Tables 6 and 7 are green light and green light yellow LEDs that are arranged and installed, and have green light. The arrangement and installation ratio of yellow light yellow LED to the green LED is about 5%, and in the arrangement, the yellow LED maintains an arrangement ratio of about 5% with respect to the green LED. It is LED which has the said composite light beam installed repeatedly and arranged several times.

表、表示についてLEDの光源、表6、表7緑色と赤色の複合光とは、緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されている複合光線を有するLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該複合光線を有するLEDである。Table, display LED light source, Table 6, Table 7 Green and red composite light is an LED having a composite light beam in which a green green LED and a red red LED are arranged and installed. The arrangement and installation ratio of the red LED of red light with respect to the green LED is about 5%, and in the arrangement, the red LED is several times while maintaining the arrangement ratio of about 5% with respect to the green LED. It is LED which has the said composite light ray installed repeatedly arranged side by side.

表、表示についてLEDの光源、表6、表7の緑色と黄色複合光+青色光とは、緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されている複合光線を有するLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの設置割合は約5%であり、配列にては、当該緑色LEDに対して当該黄色LEDは、約5%なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該複合光線を有するLEDと青色光の青色蛍光型LEDとの複合光である。Table, LED light source, green and yellow composite light + blue light in Table 6 and Table 7 are LEDs having a composite light beam in which a green light green LED and a yellow light yellow LED are arranged and installed. The installation ratio of yellow LED of yellow light to green LED of green light is about 5%, and in the arrangement, the yellow LED maintains an arrangement ratio of about 5% with respect to the green LED. This is a composite light of an LED having a composite light beam and a blue fluorescent LED of blue light, which is repeatedly placed several times.

表、表示についてLEDの光源、表6、表7の緑色と赤色複合光+青色光とは、緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの設置割合は約5%であり、配列にては、当該緑色LEDに対して当該赤色LEDは、約5%なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、複合光線を有する当該LED当該複合光線を有するLEDと青色光の青色蛍光型LEDとの複合光である。Table, LED light source, green and red composite light + blue light in Table 6 and Table 7 are LEDs in which a green green LED and a red red LED are arranged and installed. The installation ratio of red LED of red light to green LED is about 5%, and in the arrangement, the red LED is repeatedly placed several times while maintaining the arrangement ratio of about 5% to the green LED. The LED having a composite light beam arranged in a line is a composite light of an LED having the composite light beam and a blue fluorescent LED of blue light.

表6は、点灯照射後40日目である、緑色と黄色の複合光のフェノール含有量が、0.245mg/Lであり、表7の消灯後10日目にて緑色と黄色の複合光のフェノール含有量は0.178mg/Lに減少している。Table 6 shows that the phenol content of the green and yellow composite light on the 40th day after the lighting irradiation is 0.245 mg / L, and the green and yellow composite light on the 10th day after the light is turned off in Table 7 The phenol content is reduced to 0.178 mg / L.

表6は、点灯照射後40日目である、緑色と赤色の複合光のフェノール含有量が、0.2mg/Lであり、表7の消灯後10日目にて緑色と赤色の複合光のフェノール含有量は0.128mg/Lに減少している。Table 6 shows that the phenol content of the green and red composite light on the 40th day after the lighting irradiation is 0.2 mg / L, and the green and red composite light on the 10th day after the extinction of Table 7 The phenol content is reduced to 0.128 mg / L.

表6は、点灯照射後40日目である、緑色と黄色の複合光+青色光のフェノール含有量が、0.30mg/Lであり、表7の消灯後10日目にて緑色と黄色の複合光+青色光のフェノール含有量は0.23mg/Lに減少している。Table 6 shows that the phenol content of the green and yellow composite light + blue light, which is 40 days after the lighting irradiation, is 0.30 mg / L. The phenol content of the composite light + blue light is reduced to 0.23 mg / L.

表6は、点灯照射後40日目である、緑色と赤色の複合光+青色光のフェノール含有量が、0.26mg/Lであり、表7の消灯後10日目にて緑色と赤色の複合光+青色光のフェノール含有量は0.180mg/Lに減少している。Table 6 shows that the phenol content of the composite light of green and red + blue light, which is 40 days after the lighting irradiation, is 0.26 mg / L. The phenol content of the composite light + blue light is reduced to 0.180 mg / L.

表6は、点灯照射後40日目である、緑色と黄色の複合光のケルダール窒素含有量が、120PPMであり、表7の消灯後10日目にて緑色と黄色の複合光のケルダール窒素含有量が、105PPMに減少している。Table 6 shows that the Kjeldahl nitrogen content of the green and yellow composite light, which is the 40th day after the lighting irradiation, is 120 PPM, and the Kjeldahl nitrogen content of the green and yellow composite light is 10 days after the light is turned off in Table 7. The amount is reduced to 105 PPM.

表6は、点灯照射後40日目である、緑色と赤色の複合光のケルダール窒素含有量が、112PPMであり、表7の消灯後10日目にて緑色と赤色の複合光のケルダール窒素含有量が、98PPMに減少している。Table 6 shows that the Kjeldahl nitrogen content of the green and red composite light on the 40th day after the lighting irradiation is 112 PPM, and the Kjeldahl nitrogen content of the green and red composite light on the 10th day after the extinction of Table 7 The amount is reduced to 98 PPM.

表6は、点灯照射後40日目である、緑色と黄色の複合光+青色光のケルダール窒素含有量が、132PPMであり、表7の消灯後10日目にて緑色と黄色+青色光の複合光のケルダール窒素含有量が、120PPMに減少している。Table 6 shows that the Kjeldahl nitrogen content of the green and yellow composite light + blue light, which is 40 days after the lighting irradiation, is 132 PPM, and the green, yellow + blue light of 10 days after the light is turned off in Table 7 The Kjeldahl nitrogen content of the composite light is reduced to 120 PPM.

表6は、点灯照射後40日目である、緑色と赤色の複合光+青色光のケルダール窒素含有量が、129PPMであり、表7の消灯後10日目にて緑色と赤色+青色光の複合光のケルダール窒素含有量が、118PPMに減少している。Table 6 shows that the Kjeldahl nitrogen content of the green and red composite light + blue light on the 40th day after the lighting irradiation is 129 PPM, and the green, red + blue light on the 10th day after turning off in Table 7 The Kjeldahl nitrogen content of the composite light is reduced to 118 PPM.

表示8は、無照射のいちご定植苗でフェノール含有量は0.16mg/Lである。
ケルダール窒素の含有量は、80PPMである。
The display 8 is a non-irradiated strawberry fixed planting seedling, and the phenol content is 0.16 mg / L.
The content of Kjeldahl nitrogen is 80 PPM.

上記データに基づき考察すると、いちご定植苗に複合光線を照射時と消灯後10日目でも、表示8の如く、無照射のいちご定植苗でフェノール含有量は約0.16mg/Lであった。ケルダール窒素の含有量は、約80PPMであった。
いちご定植苗に複合光線を照射した当該いちご定植苗の数値が表7の如く、消灯後も上記表示の如く、高く維持し害虫に駆除能力をもつフェノール含有量を保持しながら、植物体内の栄養濃度を司る、ケルダール窒素をも高い値を保持している。
Considering based on the above data, the phenol content of the non-irradiated strawberry planted seedling was about 0.16 mg / L as shown in the display 8 even when the strawberry planted seedling was irradiated with the composite light and on the 10th day after the light was turned off. The content of Kjeldahl nitrogen was about 80 PPM.
Nutrients in the plant body while maintaining the phenol content of the strawberry planted seedlings irradiated with compound light as shown in Table 7 and maintaining a high phenol content with the ability to control pests as shown above, as shown in Table 7. Kjeldahl nitrogen, which controls the concentration, also maintains a high value.

表3、表4にても、「[0029]」にて実証した前記記載や、上記「[0030]」「[0031]」「[0032]」「[0033]」「[0034]」「[0035]」「[0036]」「[0037]」「[0038]」「[0039]」「[0040]」「[0041]」「[0042]」「[0043]」「[0044]」「[0045]」「[0046]」「[0047]」「[0048]」「[0049]」「[0050]」「[0051]」「[0052]」「[0053]」「[0054]」「[0055]」「[0056]」「[0057]」「[0058]」「[0059]」「[0060]」「[0061]」「[0062]」「[0063]」「[0064]」「[0065]」「[0066]」記載の如く、複合光線を有する装置にて植物に照射することにより、植物自体に徐々に増加する害虫防除効果を持つフェノール物質の増加方法。Also in Tables 3 and 4, the description described in “[0029]”, the above “[0030]”, “[0031]”, “[0032]”, “[0033]”, “[0034]”, “[ [0035] "[0036]" [0037] "[0038]" [0039] "[0040]" [0041] "[0042]" [0043] "[0044]" [ [0045] "[0046]" [0047] "[0048]" [0049] "[0050]" [0051] "[0052]" [0053] "[0054]" [ [0055] "[0056]" [0057] "[0058]" [0059] "[0060]" [0061] "[0062]" [0063] "[0064]" [ 0065] ”and“ [0066] ” By irradiating the plant in apparatus having a focus light, a method of increasing the phenolic substances with pest control effect gradually increasing the plant itself.

表3、表4にても、「[0029]」にて実証した前記記載や、上記「[0030]」「[0031]」「[0032]」「[0033]」「[0034]」「[0035]」「[0036]」「[0037]」「[0038]」「[0039]」「[0040]」「[0041]」「[0042]」「[0043]」「[0044]」「[0045]」「[0046]」「[0047]」「[0048]」「[0049]」「[0050]」「[0051]」「[0052]」「[0053]」「[0054]」「[0055]」「[0056]」「[0057]」「[0058]」「[0059]」「[0060]」「[0061]」「[0062]」「[0063]」「[0064]」「[0065]」「[0066]」記載の如く、又フェノール物質が多大な増加が、育成植物の生長の抑制をもたらす物質となる為に、当該育成植物体内の栄養蛋白質たる、ケルダール窒素をも増加せしめて、当該いちご定植苗の育成中に増加するフェノール物質による成育の抑制にもなる、ストレスをも和らげ、且つ植物の生育、生産スピードを上げ、害虫防除をも出来うる、ケルダール窒素増加方法。Also in Tables 3 and 4, the description described in “[0029]”, the above “[0030]”, “[0031]”, “[0032]”, “[0033]”, “[0034]”, “[ [0035] "[0036]" [0037] "[0038]" [0039] "[0040]" [0041] "[0042]" [0043] "[0044]" [ [0045] "[0046]" [0047] "[0048]" [0049] "[0050]" [0051] "[0052]" [0053] "[0054]" [ [0055] "[0056]" [0057] "[0058]" [0059] "[0060]" [0061] "[0062]" [0063] "[0064]" [ 0065] ”and“ [0066] ” Since a large increase in the phenolic substance becomes a substance that leads to the suppression of growth of the growing plant, the phenol that increases during the growth of the strawberry fixed planting seedling by increasing the Kjeldahl nitrogen as a nutritional protein in the growing plant. A method for increasing Kjeldahl nitrogen that can also suppress growth caused by substances, relieve stress, increase plant growth and production speed, and control pests.

青色光、緑色光、黄色光、赤色光の複合光線を有する装置にて照射し、当該いちご定植苗の葉体内にケルダール窒素を増加せしめ、徐々に増加する害虫防除効果を持つフェノール物質をも増加方法により植物育成制御が可能になったことを検証した。Irradiation with a device that has a composite light beam of blue light, green light, yellow light, and red light increases the Kjeldahl nitrogen in the leaves of the strawberry planted seedlings, and also increases the amount of phenolic substances that have a pest control effect that gradually increases It was verified that plant growth control became possible by this method.

は、ビニールハウス平面図。Is a greenhouse top view. は、A−A矢視立面図。These are AA arrow elevation views. は、B−B矢視立面図。These are BB arrow elevation views. は、C−C矢視立面図。FIG. は、D−D矢視立面図。FIG. は、ビニールハウス平面図。Is a greenhouse top view. は、E−E矢視立面図。Is an EE arrow elevation view. は、F−F矢視立面図。These are FF arrow elevation views. は、G−G矢視立面図。FIG. は、H−H矢視立面図。FIG.

1・・青色光の蛍光型LED 2・・緑色光の蛍光型LED 3・・ビニールハウス
4・・いちご植物定植苗 5・・いちご植物定植苗 6・・いちご植物定植苗
7・・いちご植物定植苗 8・・緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されている複合光線を有するLED
9・・緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されている複合光線を有するLED
10・・ビニールハウス 11・・いちご定植苗
12・・いちご定植苗 13・・いちご定植苗 14・・いちご定植苗
15・・青色光の蛍光型青色LED
1. Blue fluorescent LED 2. Green light fluorescent LED 3. Greenhouse 4. Strawberry planting seedling 5. Strawberry planting planting seedling 6. Strawberry planting planting seedling 7. Strawberry planting planting Seedlings 8 ・ ・ LEDs with a composite beam in which a green LED of green light and a yellow LED of yellow light are arranged and installed
9. LED with compound light beam, where green LED of green light and red LED of red light are arranged and installed
10. ・ Vinylhouse 11. ・ Strawberry fixed planting seedling 12. ・ Strawberry fixed planting seedling 13. ・ Strawberry fixed planting seedling 14. ・ Strawberry fixed planting seedling 15. ・ Blue fluorescent fluorescent blue LED

Claims (25)

当該植物の葉体に青色光の長波長の光を夜間に照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用の害虫防除の方法。The plant leaves are irradiated with blue light at night to increase the phenol content, and adult insects and hatching larvae that increase the phenol content absorb the plant's leaf fluid to grow adult insects and hatching larvae. A method of controlling pests using light that kills them while suppressing them. 当該植物の葉体に緑色光の長波長の光を夜間に照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用の害虫防除の方法。The plant leaves are irradiated with long-wave light of green light at night to increase the phenol content, and adult insects and hatching larvae that are pests absorb the leaf fluid of the plant to grow adult insects and hatching larvae. A method of controlling pests using light that kills them while suppressing them. 青色光と緑色光の長波長の光を一平面状より当該植物の葉体に夜間に照射しフェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用の害虫防除の方法。A long-wave light of blue light and green light is irradiated from the same plane to the leaves of the plant at night to increase the phenol content, and adult insects and hatching larvae suck the leaf fluid of the plant to infect the insects. A method of pest control using light that kills larvae while suppressing the growth of larvae and hatching larvae. 請求項1記載の青色光の波長が最大ピーク443nmで430nm〜460nmであることを特徴した請求項1記載の光利用の害虫防除の方法。2. The method of pest control using light according to claim 1, wherein the wavelength of blue light according to claim 1 is 430 nm to 460 nm with a maximum peak of 443 nm. 請求項2記載の緑色光の波長が最大ピーク518nmで480nm〜560nmであることを特徴した請求項2記載の光利用の害虫防除の方法。The method for controlling pests using light according to claim 2, wherein the wavelength of the green light according to claim 2 is 480 nm to 560 nm with a maximum peak of 518 nm. 青色光と緑色光の長波長の光を一平面状より当該植物の葉体に夜間に照射し、請求項4、請求項5記載の光利用の害虫防除の方法。6. The method for controlling pests using light according to claim 4, wherein long-wavelength light of blue light and green light is irradiated to the leaves of the plant from one plane at night. 当該植物の葉体に夜間に照射する光の光量子量は2μmol/m/s以上で8μmol/m/s以下であることを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6記載の光利用の害虫防除の方法。2, 2, 3, 3, wherein the photon amount of the light irradiated to the leaves of the plant at night is 2 μmol / m 2 / s or more and 8 μmol / m 2 / s or less. Item 4. The method for controlling pests using light according to item 5, claim 5, and claim 6. 緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの配置、設置割合は少であり、配列にては、当該緑色LEDに対して当該黄色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と黄色光線の複合光線を有する当該LEDの複合光線を当該植物に一平面状より夜間照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用のフェノール含有量増加の方法と装置。The green light LED and the yellow light yellow LED are arranged and installed, and the arrangement and installation ratio of the yellow light yellow LED are small relative to the green light green LED. The yellow LED is placed repeatedly and arranged several times while maintaining a small arrangement ratio with respect to the green LED, and the LED combined light of the green light and yellow light of the LED is combined. Irradiating the plant at night from a single plane, increasing the phenol content, causing adult insects and hatching larvae to absorb the insect's leaf fluid and killing them while suppressing the growth of adult insects and hatching larvae Method and apparatus for increasing phenol content. 緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は少であり、配列にては、当該緑色LEDに対して当該赤色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と赤色光線の複合光線を有する当該LEDの複合光線を一平面状より当該植物に夜間照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用のフェノール含有量増加の方法と装置。It is an LED in which a green LED of green light and a red LED of red light are arranged and installed, and the arrangement and installation ratio of the red LED of red light is small with respect to the green LED of green light. With respect to the green LED, the red LED is repeatedly placed several times while maintaining a small arrangement ratio, and the LED combined light of the green light and the red light is combined. The light is used to irradiate the plant at night from a flat surface, and increase the phenol content to kill adult insects and hatching larvae while sucking the plant's leaf fluid and suppressing the growth of adult insects and hatching larvae. Method and apparatus for increasing phenol content. 緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの設置割合は少であり、配列にては、当該緑色LEDに対して当該黄色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と黄色光線の複合光線を有する当該LEDと青色光の青色LEDとを一平面状に置き並べ当該植物に夜間照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用のフェノール含有量増加の方法と装置。The green light LED and the yellow light yellow LED are arranged and installed, and the installation ratio of the yellow light yellow LED is small with respect to the green light green LED. The yellow LED is placed repeatedly and arranged several times while maintaining a small arrangement ratio with respect to the LED, the LED having the combined light of green light and yellow light of the LED, and blue LED of blue light Are placed on a flat surface and irradiated to the plant at night to increase the phenol content and kill the adult insects and hatching larvae by sucking the leaf fluid of the plant and suppressing the growth of the adult insects and hatching larvae. Method and apparatus for increasing light-utilized phenol content. 緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの配置割合は少であり、配列にては、当該緑色LEDに対して当該赤色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と赤色光線との複合光線を有する当該LEDと青色光の青色LEDとを当該植物に一平面状に置き並べ夜間照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用のフェノール含有量増加の方法と装置。The green light LED and the red light red LED are arranged and installed, and the arrangement ratio of the red light red LED is small with respect to the green light green LED. The red LED is repeatedly arranged several times while maintaining a small arrangement ratio with respect to the LED, and the LED having the combined light of the green light and the red light of the LED and the blue light of blue light. LED is placed on the plant in a single plane and irradiated at night to increase the phenol content, while adult insects and hatching larvae that are harmful insects suck the leaf fluid of the plant and suppress the growth of adult insects and hatching larvae A method and apparatus for killing light-utilized phenol content. 青色光の青色LEDと黄色光の黄色LEDが配置、設置されているLEDであり、青色光の青色LEDに対して黄色光の黄色LEDの配置、設置割合は少であり、配列にては、当該青色LEDに対して当該黄色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの青光線と黄色光線の複合光線を有する当該LEDの複合光線を当該植物に一平面状より夜間照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用のフェノール含有量増加の方法と装置。Blue LED of blue light and yellow LED of yellow light are arranged and installed, and the arrangement and installation ratio of yellow LED of yellow light are small with respect to blue LED of blue light. The yellow LED is placed repeatedly and arranged several times while maintaining a small arrangement ratio with respect to the blue LED, and the LED combined light of blue light and yellow light of the LED is combined. Irradiating the plant at night from a single plane, increasing the phenol content, causing adult insects and hatching larvae to absorb the insect's leaf fluid and killing them while suppressing the growth of adult insects and hatching larvae Method and apparatus for increasing phenol content. 青色光の青色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、青色光の青色LEDに対して赤色光の赤色LEDの配置、設置割合は少であり、配列にては、当該青色LEDに対して当該赤色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの青光線と赤色光線の複合光線を有する当該LEDの複合光線を一平面状より当該植物に夜間照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用のフェノール含有量増加の方法と装置。Blue LED of blue light and red LED of red light are arranged and installed, and the arrangement and installation ratio of red LED of red light are small with respect to blue LED of blue light. The red LED with respect to the blue LED is placed repeatedly and arranged several times while maintaining a small arrangement ratio, and the combined light of the LED having the combined light of the blue light and red light of the LED. The light is used to irradiate the plant at night from a flat surface, and increase the phenol content to kill adult insects and hatching larvae while sucking the plant's leaf fluid and suppressing the growth of adult insects and hatching larvae. Method and apparatus for increasing phenol content. 青色光の青色LEDと黄色光の黄色LEDが配置、設置されているLEDであり、青色光の青色LEDに対して黄色光の黄色LEDの設置割合は少であり、配列にては、当該青色LEDに対して当該黄色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの青光線と黄色光線の複合光線を有する当該LEDと青色光の青色LEDとを一平面状に置き並べ当該植物に夜間照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用のフェノール含有量増加の方法と装置。The blue light blue LED and the yellow light yellow LED are arranged and installed, and the installation ratio of the yellow light yellow LED is small relative to the blue light blue LED. The yellow LED is repeatedly arranged several times while maintaining a small arrangement ratio with respect to the LED, the LED having a blue ray and a yellow ray of the LED, and a blue LED of blue light Are placed on a flat surface and irradiated to the plant at night to increase the phenol content and kill the adult insects and hatching larvae by sucking the leaf fluid of the plant and suppressing the growth of the adult insects and hatching larvae. Method and apparatus for increasing light-utilized phenol content. 青色光の青色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、青色光の青色LEDに対して赤色光の赤色LEDの配置割合は少であり、配列にては、当該青色LEDに対して当該赤色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの青光線と赤色光線との複合光線を有する当該LEDと青色光の青色LEDとを当該植物に一平面状に置き並べ夜間照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用のフェノール含有量増加の方法と装置。Blue LED of blue light and red LED of red light are arranged and installed, and the arrangement ratio of red LED of red light is small with respect to blue LED of blue light. The red LED is repeatedly arranged several times while maintaining a small arrangement ratio with respect to the LED, and the blue LED and the blue light of the LED having the combined light of the blue light and the red light of the LED. LED is placed on the plant in a single plane and irradiated at night to increase the phenol content, while adult insects and hatching larvae that are harmful insects suck the leaf fluid of the plant and suppress the growth of adult insects and hatching larvae A method and apparatus for killing light-utilized phenol content. 青色光の青色LEDと緑色光の緑色LEDが配置、設置されているLEDであり、青色光の青色LEDに対して緑色光の緑色LEDの配置、設置割合は少であり、配列にては、当該青色LEDに対して当該緑色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの青光線と緑色光線の複合光線を有する当該LEDの複合光線を当該植物に一平面状より夜間照射し、フェノール含有量を増加せしめ害虫たる成虫や孵化幼虫に、当該植物の葉液を吸汁させ害虫たる成虫や孵化幼虫の生育を抑制せしめながら死滅させる光利用のフェノール含有量増加の方法と装置。Blue LED of blue light and green LED of green light are arranged and installed, and the arrangement and installation ratio of green LED of green light are small with respect to blue LED of blue light. The green LED with respect to the blue LED is placed repeatedly and arranged several times while maintaining a small arrangement ratio, and the combined light of the LED having the combined light of the blue light and the green light of the LED. Irradiating the plant at night from a single plane, increasing the phenol content, causing adult insects and hatching larvae to absorb the insect's leaf fluid and killing them while suppressing the growth of adult insects and hatching larvae Method and apparatus for increasing phenol content. 植物に夜間に照射する光の光量子量は2μmol/m/s以上で8μmol/m/s以下であることを特徴とする請求項8、請求項9、請求項10、請求項11請求項12、請求項13、請求項14、請求項15,請求項16記載の光利用のフェノール含有量増加の方法と装置。The photon amount of light irradiated to a plant at night is 2 μmol / m 2 / s or more and 8 μmol / m 2 / s or less, 8, 9, 10, 11. 12. A method and apparatus for increasing the phenol content of light utilization according to claim 12, claim 13, claim 14, claim 15 and claim 16. 緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの設置割合は少であり、配列にては、当該緑色LEDに対して当該黄色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と黄色光線との複合光線を有する当該LEDの複合光線を当該植物に一平面状より夜間照射し、植物育成制御のための当該植物に光利用のケルダール窒素の含有量を増加の方法と装置。The green light LED and the yellow light yellow LED are arranged and installed, and the installation ratio of the yellow light yellow LED is small with respect to the green light green LED. The yellow LED is placed repeatedly and arranged several times while maintaining a small arrangement ratio with respect to the LED, the composite light beam of the LED having a composite light beam of the green light and yellow light of the LED A method and apparatus for irradiating a plant at night from one plane, and increasing the content of light-use Kjeldahl nitrogen in the plant for plant growth control. 緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの設置割合は少であり、配列にては、当該緑色LEDに対して当該赤色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と赤色光線との複合光線を有する当該LEDの複合光線を当該植物に一平面状より夜間照射し、植物育成制御のための当該植物に光利用のケルダール窒素の含有量を増加の方法と装置。The green light LED and the red light red LED are arranged and installed, and the installation ratio of the red light red LED is small with respect to the green light green LED. The red LED with respect to the LED is placed repeatedly and arranged several times while maintaining a small arrangement ratio, the combined light of the LED having the combined light of the green light and the red light of the LED A method and apparatus for irradiating a plant at night from one plane, and increasing the content of light-use Kjeldahl nitrogen in the plant for plant growth control. 緑色光の緑色LEDと黄色光の黄色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して黄色光の黄色LEDの設置割合は少であり、配列にては、当該緑色LEDに対して当該黄色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と黄色光線との複合光線を有する当該LEDと青色光の青色LEDとを一平面状に置き並べ当該植物に夜間照射し、植物育成制御のための当該植物に光利用のケルダール窒素の含有量を増加の方法と装置。The green light LED and the yellow light yellow LED are arranged and installed, and the installation ratio of the yellow light yellow LED is small with respect to the green light green LED. The yellow LED is repeatedly arranged several times while maintaining a small arrangement ratio with respect to the LED, and the LED having the combined light of the green light and the yellow light of the LED and the blue light of blue light. A method and apparatus for arranging LEDs in a single plane, irradiating the plant at night, and increasing the content of light-use Kjeldahl nitrogen in the plant for plant growth control. 緑色光の緑色LEDと赤色光の赤色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して赤色光の赤色LEDの配置、設置割合は少であり、配列にては、当該緑色LEDに対して当該黄色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と赤色光線との複合光線を有する当該LEDと青色光の青色LEDとを当該植物に一平面状に置き並べ夜間照射し、植物育成制御のための当該植物に光利用のケルダール窒素の含有量を増加の方法と装置。It is an LED in which a green LED of green light and a red LED of red light are arranged and installed, and the arrangement and installation ratio of the red LED of red light is small with respect to the green LED of green light. The yellow LED is arranged repeatedly several times while maintaining a small arrangement ratio with respect to the green LED, and the LED and the blue light having the combined light of the green light and the red light of the LED. The blue LED is placed on the plant in a plane and irradiated at night to increase the content of light-use Kjeldahl nitrogen in the plant for plant growth control. 緑色光の緑色LEDと青色光の青色LEDが配置されているLEDであり、緑色光の緑色LEDに対して青色光の青色LEDの設置割合は少であり、配列にては、当該緑色LEDに対して当該青色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と青色光線との複合光線を有する当該LEDの複合光線を当該植物に一平面状より夜間照射し、植物育成制御のための当該植物に光利用のケルダール窒素の含有量を増加の方法と装置。It is an LED in which a green LED of green light and a blue LED of blue light are arranged, and the installation ratio of the blue LED of blue light is small with respect to the green LED of green light. On the other hand, the blue LED is repeatedly placed several times while maintaining a small arrangement ratio, and the LED has a composite light beam of the LED's green light and blue light. A method and apparatus for increasing the content of light-use Kjeldahl nitrogen to the plant for plant growth control by irradiating from one plane at night. 緑色光の緑色LEDと青色光の青色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して青色光の青色LEDの配置、設置割合は少であり、配列にては、当該緑色LEDに対して当該青色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と青色光線との複合光線を有する当該LEDと青色光の青色LEDとを当該植物に一平面状に置き並べ夜間照射し、植物育成制御のための当該植物に光利用のケルダール窒素の含有量を増加の方法と装置。The green light green LED and the blue light blue LED are arranged and installed, and the arrangement and installation ratio of the blue light blue LED are small with respect to the green light green LED. The blue LED is disposed repeatedly and arranged several times while maintaining a small arrangement ratio with respect to the green LED, and the LED and the blue light having the combined light of the green light and the blue light of the LED. The blue LED is placed on the plant in a plane and irradiated at night to increase the content of light-use Kjeldahl nitrogen in the plant for plant growth control. 緑色光の緑色LEDと青色光の青色LEDが配置、設置されているLEDであり、緑色光の緑色LEDに対して青色光の青色LEDの配置、設置割合は少であり、配列にては、当該緑色LEDに対して当該青色LEDは、少なる配置割合を保持しつつ数回繰り返し置き並べられて設置されている、当該LEDの緑光線と青色光線との複合光線を有する当該LEDと緑色光の緑色LEDとを当該植物に一平面状に置き並べ夜間照射し、植物育成制御のための当該植物に光利用のケルダール窒素の含有量を増加の方法と装置。The green light green LED and the blue light blue LED are arranged and installed, and the arrangement and installation ratio of the blue light blue LED are small with respect to the green light green LED. The blue LED is placed repeatedly and arranged several times while maintaining a small arrangement ratio with respect to the green LED, and the LED and the green light having the combined light of the green light and blue light of the LED The green LED is placed on the plant in a single plane and irradiated at night to increase the content of light-use Kjeldahl nitrogen in the plant for plant growth control. 植物に夜間に照射する光の光量子量は2μmol/m/s以上で8μmol/m/s以下であることを特徴とする請求項17記載、請求項18記載、請求項19記載、請求項20、請求項21、請求項22、請求項23、請求項24、記載の植物育成制御のための当該植物光利用のケルダール窒素の含有量を増加の方法と装置。The amount of photons of light irradiated to a plant at night is 2 μmol / m 2 / s or more and 8 μmol / m 2 / s or less, claim 17, claim 18, claim 19, claim 20. A method and an apparatus for increasing the content of Kjeldahl nitrogen using plant light for plant growth control according to claim 21, claim 22, claim 23, claim 24.
JP2013259581A 2012-12-03 2013-11-28 Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase Pending JP2014131506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013259581A JP2014131506A (en) 2012-12-03 2013-11-28 Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012277411 2012-12-03
JP2012277411 2012-12-03
JP2013259581A JP2014131506A (en) 2012-12-03 2013-11-28 Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014049413A Division JP5783476B2 (en) 2012-12-03 2014-02-24 A method of controlling the concentration of phenolic substances and Kjeldahl nitrogen in plant leaves using light.

Publications (2)

Publication Number Publication Date
JP2014131506A true JP2014131506A (en) 2014-07-17
JP2014131506A5 JP2014131506A5 (en) 2014-10-02

Family

ID=51410927

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013259581A Pending JP2014131506A (en) 2012-12-03 2013-11-28 Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase
JP2014049413A Active JP5783476B2 (en) 2012-12-03 2014-02-24 A method of controlling the concentration of phenolic substances and Kjeldahl nitrogen in plant leaves using light.

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014049413A Active JP5783476B2 (en) 2012-12-03 2014-02-24 A method of controlling the concentration of phenolic substances and Kjeldahl nitrogen in plant leaves using light.

Country Status (1)

Country Link
JP (2) JP2014131506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082134A (en) * 2016-11-16 2018-05-24 高橋 信之 Spread waveform controller for led
JP2021002529A (en) * 2020-09-28 2021-01-07 高橋 信之 Complex waveform control device for led

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098209A (en) * 2015-11-24 2017-06-01 高橋 信之 Complex waveform control device for led
CN111133937B (en) * 2018-11-05 2022-03-25 浙江省农业科学院 Cultivation method for improving flavone and polyphenol content of waxberry fruits by using colored greenhouse film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055816A (en) * 2009-09-09 2011-03-24 Nobuyuki Takahashi Method for controlling growth of plant utilizing light ray

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027521A (en) * 2003-07-08 2005-02-03 Nippon Keiki Works Ltd Mobile light emitting diode (led) lighting system
JP2010279295A (en) * 2009-06-04 2010-12-16 Kyushu Electric Power Co Inc Method and device for cultivating tea tree
JP5505830B2 (en) * 2009-06-22 2014-05-28 信之 高橋 Method for controlling powdery mildew control using light rays
JP5707623B2 (en) * 2009-08-25 2015-04-30 青木 秀敏 Method and apparatus for increasing the antioxidant content or GABA content or catechin content or nucleotide content of agricultural or marine products or livestock products
JP2011097900A (en) * 2009-11-09 2011-05-19 Sharp Corp Light source apparatus for plant growth and plant growth apparatus
JP2011055834A (en) * 2010-09-03 2011-03-24 Nobuyuki Takahashi Method for increasing amount of protein in body of food plant utilizing light ray
JP2012070727A (en) * 2010-09-03 2012-04-12 Hamamatsu Photonics Kk Method for increasing nutrient component content per unit dry weight of tomato fruit
JP5988420B2 (en) * 2011-01-17 2016-09-07 株式会社四国総合研究所 Leafy vegetables production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055816A (en) * 2009-09-09 2011-03-24 Nobuyuki Takahashi Method for controlling growth of plant utilizing light ray

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082134A (en) * 2016-11-16 2018-05-24 高橋 信之 Spread waveform controller for led
JP2021002529A (en) * 2020-09-28 2021-01-07 高橋 信之 Complex waveform control device for led

Also Published As

Publication number Publication date
JP5783476B2 (en) 2015-09-24
JP2014131517A (en) 2014-07-17

Similar Documents

Publication Publication Date Title
KR102107067B1 (en) Photon modulation management system
EP3490364A2 (en) Ultraviolet-based mildew control
JP7091342B2 (en) Plant cultivation method and plant cultivation equipment
CN111771149A (en) Method and device for stimulating the growth of grapevines, grapevines re-plantings or crops
MATYSIAK et al. White, blue and red LED lighting on growth, morphology and accumulation of flavonoid compounds in leafy greens.
CN104620788A (en) Planting method of blueberry seedlings
US20160021830A1 (en) Manipulation of light spectral quality to reduce parasitism by cuscuta and other plant parasites
CN102144503A (en) Method for improving quality of foliage vegetables by utilizing short-term continuous illumination
JP2014131506A (en) Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase
JP2014131506A5 (en)
Nestby et al. Supplemental LED growth light in remontant strawberry at high latitudes
CN114794113A (en) Use of 2-amino-3-phenylbutyric acid or derivatives thereof as plant growth regulators
JP2014131517A5 (en)
WO2007037023A1 (en) Method of plant cultivation
Johkan et al. Improved light conditions at the fruit truss accelerate harvest time and enhance ascorbic acid concentration in a low-truss, high-density tomato production system
JP2016010396A (en) Method for controlling fusarium disease using light beam
KR101889389B1 (en) Plants cultivating apparatus
JP2011055816A (en) Method for controlling growth of plant utilizing light ray
JP2011055816A5 (en)
CN110122140B (en) Camellia oleifera planting method
CN107896756A (en) A kind of method for integrated control of vine pest and disease damage
JP6540944B2 (en) Pest control method of plant body
JP5505830B2 (en) Method for controlling powdery mildew control using light rays
JP2001258389A (en) Method for cultivating plant
US20220400619A1 (en) Device for improving the yield and quality of plants by exposure to uv, associated method and uses

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140623

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216