JP2011055834A - Method for increasing amount of protein in body of food plant utilizing light ray - Google Patents

Method for increasing amount of protein in body of food plant utilizing light ray Download PDF

Info

Publication number
JP2011055834A
JP2011055834A JP2010212773A JP2010212773A JP2011055834A JP 2011055834 A JP2011055834 A JP 2011055834A JP 2010212773 A JP2010212773 A JP 2010212773A JP 2010212773 A JP2010212773 A JP 2010212773A JP 2011055834 A JP2011055834 A JP 2011055834A
Authority
JP
Japan
Prior art keywords
green
plant
blue
light
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010212773A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takahashi
信之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010212773A priority Critical patent/JP2011055834A/en
Publication of JP2011055834A publication Critical patent/JP2011055834A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for increasing an amount of protein in a body of a food plant utilizing light rays comprising irradiating a food plant with green or blue light rays to increase protein which manages an internal nutritive concentration in the food plant so as to produce a food plant. <P>SOLUTION: A method for increasing an amount of protein in a body of a food plant utilizing light rays includes irradiating the food plant with green or blue light rays at night to increase the amount of protein in the food plant body to maintain a balance of an internal nutritive concentration even when unseasonable weather continues so as to produce a food plant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、植物が夜間の呼吸作用の時間帯に青色、緑色光を与え植物の体内栄養濃度をつかさどるタンパク質を食料植物の体内に増加させる方法に関する。The present invention relates to a method for increasing protein in the body of a food plant that gives blue and green light in the nighttime respiratory action period and that controls the nutrient concentration of the plant in the body.

背景の技術Background technology

従来、植物の育成期間中に天候不順になると同化作用が低迷になり体内の栄養をつかさどる蛋白質濃度が低下し、収穫量が減少をもたらした。この様な生育のアンバランスさを解決するために炭酸同化作用を高めるための操作や、肥培管理による窒素同化を高める為の操作技術に頼よっていた。Conventionally, if the weather becomes irregular during the plant growing period, the assimilation effect has been sluggish, the protein concentration responsible for nutrients in the body has decreased, and the yield has been reduced. In order to solve such an imbalance in growth, we have relied on manipulation techniques for enhancing carbon assimilation and manipulation techniques for enhancing nitrogen assimilation by manure management.

発明が解決しようとする課題Problems to be solved by the invention

上記の従来、植物の育成期間中に、天候不順が続くと、植物体内の栄養すなわち蛋白質が減少する原因となり収穫量の減少により苦慮している。Conventionally, if the bad weather continues during the plant growing period, the nutrients in the plant body, that is, the protein is reduced, and it is difficult to reduce the yield.

課題を解決するための手段Means for solving the problem

天候不順時期にも影響されずに緑色、青色の単独光線や、青色、緑色の複合させた光線を夜間に照射し、食料植物の体内の栄養濃度である、タンパク質濃度を増加させることを特徴とする。It is characterized by increasing the protein concentration, which is the nutrient concentration in the body of food plants, by irradiating green and blue single rays or blue and green combined rays at night without being affected by bad weather conditions. To do.

作用Action

収穫期や、育苗中の植物の同化作用、呼吸作用に悪影響をもたらすことなく、タンパク質を増加させることが出来る。Proteins can be increased without adversely affecting the harvesting period, assimilation and respiration of the plants being raised.

発明の効果The invention's effect

本発明によれば、緑色、青色の単独光線、青と緑色複合色光線利用処理することにより、無理なく且つ、自然な方法で天候に左右されることなく、タンパク質を植物の体内に増加させることにより、生産者にとって、収穫量の増大をもたらし、多大の利益となる。According to the present invention, by using green, blue single light, and blue and green composite light ray treatment, it is possible to increase protein in the body of a plant without unreasonableness and without being influenced by the weather in a natural manner. As a result, for the producer, the yield is increased, which is a great profit.

緑色、青色の単独光線、青と緑色複合色光線利用処理することにより植物の体内にタンパク質を増量させた植物を育成し、食料用植物の生産が出来る。又重要食料植物である米、麦、大豆、とうもろこし等の食料植物の蛋白質を増量した生産が出来る。又家畜等の飼料穀物の蛋白質を増量させた穀物の生産が出来る。Plants with an increased amount of protein in the body of the plant can be nurtured by processing using green and blue single rays or blue and green combined rays, thereby producing food plants. In addition, production of protein from food plants such as rice, wheat, soybean and corn, which are important food plants, can be increased. Moreover, it is possible to produce cereals with increased protein in feed grains such as livestock.

緑色、青色の単独光線、青と緑色複合色光線利用処理することにより、とまと、きゅうり、ピーマン、すいか、メロン等の果菜類や小松菜、チンゲン菜等の葉菜類植物の体内にタンパク質を増量させ生産の増収を促すことが出来る。By using green and blue single rays, blue and green composite light rays, the amount of protein is increased in the body of fruit vegetables such as tomato, cucumber, green pepper, watermelon and melon, and leafy vegetables such as komatsuna and chingena. Increase sales.

本発明の実施形態を、タンパク質の定量法としては、精度の高い方法として燃焼後に窒素量を測定するデルマ法と、硫酸分解後にアンモニア量を測定するケルダール法等があります。当発明の基準になった測定法は、後者の方法で食料植物の葉柄、葉体や収穫作物をHACH社製ダイジェスタール23130−20型で強酸の硫酸にて440度Cにて煮沸させながら強酸化剤過酸化水素水を点滴し、2段階分解後にサンプルを取り出し、HACH社製分光光度計3000Rにてアンモニア量を測定するゲルタール法に基づくものであり,精度の高いタンパク質の定量法にて測定を行なっています。食料植物の育成中の葉柄、葉体内や、収穫された作物のケルダール窒素の量すなわち、タンパク質の量が、無照射、緑色のみの光線の照射、青色のみの光線の照射、緑色の光線と青色の光線の組み合わせによる光線の照射等の組み合わせの違いにより、植物の体内のタンパク質の蓄積した量の違いによる効果の違いとしての比較を検証した。
下記、表1は、緑色蛍光灯の緑色光線のみの光線を枝豆植物のサンプル苗50本に照射をした。
青色蛍光灯の青色光線のみ光線を枝豆植物のサンプル苗50本に照射をした。
緑色蛍光灯の緑色光線の上面に青色蛍光灯設置し、青色光線と緑色光線とを、同時に光線を枝豆植物のサンプル苗50本に照射をした。
青色蛍光灯の青色光線の上面に緑色蛍光灯を設置し、緑色光線と青色光線とを、同時に光線を枝豆植物のサンプル苗50本に照射をした。
蛍光灯無しは、光線照射なしにて、枝豆植物サンプル苗50本を用意した。
枝豆植物50本当たりの、緑色光線、青色光線の組み合わせ別による、枝豆植物に照射の違いよる、ケルダール窒素量の比較を表1にて表示した。
尚、ケルダール窒素量は、各サンプル50本の平均値を表1にて表示した。
表2には、緑色LEDの緑色光線のみの光線を、枝豆植物のサンプル苗50本に照射をした。
青色LEDの青色光線のみ光線を枝豆植物のサンプル苗50本に照射をした。
緑色LEDの緑色光線の上面に青色LED設置し、青色光線と緑色光線とを、同時に光線を枝豆植物のサンプル苗50本に照射をした。
青色LEDの青色光線の上面に緑色LEDを設置し、緑色光線と青色光線とを、同時に光線を枝豆植物のサンプル苗50本に照射をした。
LED無しは、光線照射なしにて、枝豆植物サンプル苗50本を用意した。
枝豆植物50本当たりの、緑色光線、青色光線の組み合わせ別による、枝豆植物に照射の違いよる、ケルダール窒素量、枝豆植物の増量の比較を表2にて表示した。
尚、ケルダール窒素量は、各サンプル50本の平均値を表1にて表示した。枝豆植物に照射の違いよる、50本当たりの比較を表示した。
表3は、生産農家の枝豆栽培のパイプハウス内にて、枝豆植物収穫開始が6月上旬より収穫を行なっているハウス内にてケルダール窒素量比較を表示した。
実施ハウスに基づき、緑色、青色蛍光灯をハウス内にて、枝豆植物の生産株より1.5mの高さに設置し、日没から日の出前までの60日間による照射の効果が、ケルダール窒素の量すなわちタンパク質の多い、少ないが本圃の収穫株の差に表れた事を実証した。
In the embodiment of the present invention, protein quantification methods include a derma method for measuring the amount of nitrogen after combustion and a Kjeldahl method for measuring the amount of ammonia after sulfuric acid decomposition as a highly accurate method. The measurement method used as the standard of the present invention is the latter method, in which the petioles, leaf bodies and harvested crops of food plants are boiled at 440 ° C. with a strong acid sulfuric acid in Digestal type 23130-20 manufactured by HACH. It is based on the gel tar method in which the amount of ammonia is measured with a spectrophotometer 3000R manufactured by HACH, and is measured by a highly accurate protein quantification method. Is doing. The amount of Kjeldahl nitrogen in the petiole, leaflets, and harvested crops during the growth of food plants, that is, the amount of protein is unirradiated, irradiation with only green light, irradiation with only blue light, green light and blue The comparison of the difference in effect due to the difference in the amount of protein accumulated in the body of the plant due to the difference in the combination of the irradiation of the light and the like due to the combination of the light of the two was verified.
In Table 1 below, 50 sample seedlings of green soybean plants were irradiated with only green light from a green fluorescent lamp.
50 sample seedlings of green soybean plants were irradiated with only blue light from a blue fluorescent lamp.
A blue fluorescent lamp was installed on the upper surface of the green light beam of the green fluorescent lamp, and the blue light beam and the green light beam were simultaneously irradiated to 50 sample seedlings of the green soybean plant.
A green fluorescent lamp was installed on the upper surface of the blue light of the blue fluorescent lamp, and green light and blue light were simultaneously irradiated to 50 sample seedlings of the green soybean plant.
Without a fluorescent lamp, 50 green soybean sample seedlings were prepared without light irradiation.
Table 1 shows a comparison of the amount of Kjeldahl nitrogen by the difference in the irradiation of green soybeans and green rays per 50 green soybean plants according to the combination of green rays and blue rays.
The Kjeldahl nitrogen amount is shown in Table 1 as an average value of 50 samples.
In Table 2, 50 sample seedlings of green soybean plants were irradiated with only green light from the green LED.
50 sample seedlings of green soybean plants were irradiated with only blue light from a blue LED.
The blue LED was installed on the upper surface of the green light of the green LED, and the light was irradiated to 50 sample seedlings of the green soybean plant simultaneously with the blue light and the green light.
Green LED was installed on the upper surface of blue light of blue LED, and green light and blue light were simultaneously irradiated to 50 sample seedlings of green soybean plants.
Without LED, 50 green soybean sample seedlings were prepared without light irradiation.
Table 2 shows a comparison of the amount of Kjeldahl nitrogen and the increase in the amount of green soybean plants, depending on the irradiation of green soybeans and green rays, depending on the combination of green rays and blue rays per 50 green soybean plants.
The Kjeldahl nitrogen amount is shown in Table 1 as an average value of 50 samples. A comparison of 50 green soybean plants with different irradiations is shown.
Table 3 shows the Kjeldahl nitrogen amount comparison in the house where the start of harvesting of green soybean plants has been harvested since the beginning of June in the pipe house of green soybean cultivation of the producer farmer.
Based on the implementation house, green and blue fluorescent lamps were installed in the house at a height of 1.5 m from the green soybean plant producing strain, and the effect of irradiation for 60 days from sunset to before sunrise was It was proved that the amount of protein, that is, the amount of protein, but the amount of protein, appeared in the difference of the harvested strains in this field.

図面及び実施例、表1、表2、表3に基づき説明する。
図5は、ビニールハウス内にて、育成中の植物枝豆の株13に、1m高さの位置に日没後から日の出までの夜間に緑色の蛍光灯20W、2を照射し、連続60日照射した後に、ケルダール窒素量を測定198ppmを表示した。
図4は、ビニールハウス内にて、育成中の植物枝豆の苗13に1m高さの位置に日没後から日の出までの夜間に青色蛍光灯20W、1を照射し、連続30日照射した後に、ケルダール窒素量を測定170ppmを表示した。
図1は、ビニールハウス内にて、育成中の植物枝豆の株13に、1m高さの位置に日没後から日の出までの夜間に緑色の蛍光灯20W、2の緑色光線を照射させ、当該緑色蛍光灯の上面部より0.5mの高さより青色蛍光灯20W、1を設置し、上部の青色光線と下部の緑色光線を同時に60日間連続植物いちご株13を、照射した後ケルダール窒素量を測定221ppmを表示した。
図2は、ビニールハウス内にて、育成中の植物枝豆の株13に1m高さの位置に日没後から日の出までの夜間に青色蛍光灯20W、1の青色光を照射させ、当該青色蛍光灯の上面部より0.5mの高さより緑色蛍光灯20W、2を設置し、上部の緑色光線と下部の青色光線を同時に60日間連続植物枝豆の株13を、照射した後ケルダール窒素量を測定200ppmを表示した。
図3は、ビニールハウス内にて、育成中の植物枝豆の株13に1m高さの位置に日没後から日の出までの夜間に緑色蛍光灯20W、2と青色蛍光灯20W、1とを一平面状に並べ緑色光線と青色光線を連続60日照射した後ケルダール窒素量を測定230ppmを表示した。
植物枝豆の株13の、育成中のビニールハウス内にて、蛍光灯による光線を照射せずに、60日後ケルダール窒素量を測定88ppmを表示した。
以上、蛍光灯光線照射無しの条件にて測定したケルダール窒素88ppmと比較すると、緑色のみの光線照射によるケルダール窒素量198ppm、次に緑色の光線の上面部から青色光線を与え同時照射したケルダール窒素量221ppm、緑色光線と青色光線を平面状に与え複合させて照射したケルダール窒素量230ppmm植物枝豆株13に1m高さより、緑色蛍光灯の緑色光線の照射と同時に緑色蛍光灯の上面又は、同一平面状に青色蛍光灯の青色光線を同時に、照射すると、緑色光線効果に、青色光線を含ませる事により、多くケルダール窒素量、すなわちタンパク質が増える事がわかる。
This will be described with reference to the drawings and examples, Tables 1, 2 and 3.
FIG. 5 shows that the green soybean lamps 20W and 2 were irradiated to the growing plant green soybean stock 13 at a height of 1 m at night from sunset to sunrise in a greenhouse for 60 consecutive days. Later, the amount of Kjeldahl nitrogen was measured and displayed as 198 ppm.
In FIG. 4, after irradiating blue fluorescent lamps 20W and 1 at night from sunset to sunrise at a position of 1 m height on the growing plant green soybean seedling 13 in the greenhouse, The measurement of Kjeldahl nitrogen was displayed as 170 ppm.
FIG. 1 shows that a green plant light bean 20W is irradiated with green light from a green fluorescent lamp 20W at night from sunset to sunrise at a height of 1 m to a growing plant green soybean stock 13 in a greenhouse. Blue fluorescent lamps 20W, 1 are installed from a height of 0.5 m above the upper surface of the fluorescent lamp, and the upper blue light and the lower green light are simultaneously irradiated for 60 days on the plant strawberry strain 13, and then the Kjeldahl nitrogen amount is measured. 221 ppm was displayed.
FIG. 2 shows a blue fluorescent lamp 20W, which is irradiated with blue fluorescent light 20W and a blue fluorescent lamp 20W at night from sunset to sunrise at a height of 1 m on a growing plant green soybean stock 13 in a greenhouse. Green fluorescent lamps 20W and 2 are installed from a height of 0.5 m above the upper surface of the plant, and the upper green light and the lower blue light are simultaneously irradiated for 60 days on the plant green soybean stock 13 and then measured for Kjeldahl nitrogen content 200 ppm Is displayed.
FIG. 3 shows that the green fluorescent lamps 20W and 2 and the blue fluorescent lamps 20W and 1 are placed on the same plane in the greenhouse in the night from the sunset to the sunrise at a height of 1 m on the growing plant soybean stock 13. After irradiating green light and blue light continuously for 60 days, the Kjeldahl nitrogen amount was measured and displayed as 230 ppm.
In the growing greenhouse of the plant green soybean stock 13, the Kerdar nitrogen content was measured 88 ppm after 60 days without irradiating light with a fluorescent lamp.
As described above, compared with 88 ppm of Kjeldahl nitrogen measured under the condition without irradiation with fluorescent lamp light, the amount of Kjeldahl nitrogen by irradiation with only green light is 198 ppm, and then the Kjeldahl nitrogen amount simultaneously irradiated with blue light from the upper surface of the green light 221ppm, Kjeldahl nitrogen amount 230ppmm plant green soybeans 13 irradiated with green light and blue light in the form of a plane from the height of 1m from the top of the green fluorescent lamp or the same plane at the same time as the green light of green fluorescent light When blue light from a blue fluorescent lamp is irradiated at the same time, the amount of Kjeldahl nitrogen, that is, protein increases by including blue light in the green light effect.

図10は、ビニールハウス内にて、育成中の植物枝豆の株15に、0.1m高さの位置に日没後から日の出までの夜間に緑色のLED4にて緑色光線を照射し、連続して60日後ケルダール窒素量を測定150ppmを表示した。
図9は、ビニールハウス内にて、育成中の植物枝豆の株15に、0.1m高さの位置に日没後から日の出までの夜間青色LED3の青色光線を照射し、連続して60日後ケルダール窒素量を測定130ppmを表示した。
図6は、ビニールハウス内にて、育成中の植物枝豆の株15に0.1m高さの位置に日没後から日の出までの夜間緑色LED4の緑色光線を照射し、上面部より0.1mの高さから、青色LED3にて青色光を照射し、連続して60日後ケルダール窒素量を測定165ppmを表示した。
図7は、ビニールハウス内にて、育成中の植物枝豆の株15に0.1m高さの位置に日没後から日の出までの夜間に、青色LED1の青色光を照射し、当該青色光線の青色LEDの上面部より0,1m高さより、緑色LED4にて緑色光を照射し、連続して60日後にケルダール窒素量を測定159ppmを表示した。
図8は、ビニールハウス内にて、育成中の植物枝豆の株15に0.1m高さの位置に日没後から日の出までの夜間に、緑色LEDと青色LEDとを、一平面状に並べ緑色光線と青色光線との光線を複合させて照射し、連続して60日後ケルダール窒素量を測定186ppmを表示した。
ビニールハウス内にて、LEDによる育成中の植物枝豆の株15に青色、緑色LEDによる光線を照射せずに、60日後ケルダール窒素量を測定88ppmを表示した。
以上、日没後から日の出までの夜間に、緑色、青色LEDの光線照射無しの条件にて60日後ケルダール窒素量を測定88ppmを表示した、ケルダール窒素量との比較をすると、緑色LED4の緑色光線照射による60日後ケルダール窒素量150ppm、次に緑色LED4の緑色光線の上面部から青色LED3の青色光線を同時に照射した60日後ケルダール窒素量165ppm、緑色LED光線と青色LED光線を一平面状に設置し、緑色光線と青色光線を同時に照射した60日後ケルダール窒素量186ppmを表示した。
緑色光線効果が植物枝豆株にとってビニールハウス内にて、育成中の植物枝豆の株5に0.1m高さの位置に日没後から日の出までの夜間に緑色光線の照射による、ケルダール窒素量の増加をした。
緑色LED効果に青色LED光線を含ませると、より多くケルダール窒素量が増す。
しかしながら、前記「0010」項に記載の蛍光灯の光量と、「0011」項記載のLEDの光量との光量差がケルダール窒素量に大きな比較差が見受けられた。以上、ケルダール窒素量の差すなわち、枝豆植物の体内のタンパク質量が増加できる生産を実証した。
下記の「実施例」にて説明する。
FIG. 10 shows that the green soybean 4 is irradiated continuously with green LED 4 at night from sunset to sunrise at a position of 0.1 m height on the growing plant green soybean stock 15 in the greenhouse. After 60 days, the amount of Kjeldahl nitrogen was measured and displayed as 150 ppm.
FIG. 9 shows that the plant green soybean 15 grown in the greenhouse was irradiated with blue light from the blue LED 3 at night from sunset to sunrise at a position 0.1 m high, and after 60 days Kjeldahl. The amount of nitrogen measured is 130 ppm.
FIG. 6 shows that a green shoot of green LED 4 at night from sunset to sunrise is irradiated to a plant 15 of growing plant green soybeans at a height of 0.1 m in a greenhouse, 0.1 m from the top surface. From the height, the blue LED 3 was irradiated with blue light, and after 60 days, the Kjeldahl nitrogen amount was measured and displayed as 165 ppm.
FIG. 7 shows that the green light of the blue LED 1 is irradiated on the growing plant green soybean stock 15 at a position 0.1 m high at night from sunset to sunrise in the greenhouse. The green LED 4 was irradiated with green light from a height of 0.1 m from the upper surface of the LED, and after 60 days, the Kjeldahl nitrogen amount was measured and displayed as 159 ppm.
FIG. 8 shows a green green and blue LED lined up in a flat plane at night from sunset to sunrise at a height of 0.1 m on a growing plant green soybean stock 15 in a greenhouse. Irradiation was carried out by combining light rays and blue light rays, and after 60 days, the Kjeldahl nitrogen amount was measured and displayed as 186 ppm.
In a greenhouse, the cultivated plant soybeans 15 grown with LEDs was irradiated with blue and green LEDs and the Kjeldahl nitrogen content was measured and displayed as 88 ppm after 60 days.
As described above, at the night from sunset to sunrise, the measurement of the Kjeldahl nitrogen amount after 60 days under the condition of no light irradiation of the green and blue LEDs is performed. 60 days after the Kjeldahl nitrogen amount 150 ppm, and then the blue LED 3 blue light is simultaneously irradiated from the upper surface of the green LED 4 green light 60 days after the Kjeldahl nitrogen amount 165 ppm, the green LED light and the blue LED light are installed in one plane, Sixty days after irradiation with green light and blue light simultaneously, the Kjeldahl nitrogen content of 186 ppm was displayed.
Increased Kjeldahl nitrogen amount due to green light irradiation at night from sundown to sunrise at a position 0.1m high on the growing plant green soybean stock 5 in the greenhouse for the green soybean effect Did.
Inclusion of blue LED light in the green LED effect increases the amount of Kjeldahl nitrogen more.
However, a large difference in the amount of light between the light amount of the fluorescent lamp described in the “0010” item and the light amount of the LED described in the “0011” item is found in the Kjeldahl nitrogen amount. As mentioned above, the difference in the amount of Kjeldahl nitrogen, that is, the production that can increase the amount of protein in the green soybean plant has been demonstrated.
This will be described in “Example” below.

枝豆植物のハウスにて、実施例に基づき説明する。
間口5.4m長さ40mのパイプハウスにて、図11は、パイプハウスの立面図である。
ハウス内に定植した枝豆植物苗16の上面より1.5mの高さに緑色の20Wの蛍光灯7をパイプハウスに対し平行に2列設置し、又2列設置した中央に青色の20Wの蛍光灯8をハウスの長手方向に、1列設置した。両側2列に設置した蛍光灯7の緑色の光線と、中央1列に設置した蛍光灯8の青色の光線が、出来るだけ均一に枝豆植物苗に緑色光線と青色光線との複合した緑と青の光線として枝豆株16を照射させる為に、平面図12にて表示のごとく、両側2列に設置した緑色20W蛍光灯1の間隔を6mに設置し、中央1列に設置した青色20W蛍光灯8の間隔を12m間隔に設置し、枝豆定植株16の上面より1.5mの高さに、青色、緑色の全ての蛍光灯を設置した。本圃パイプハウス立面図、図11、本圃パイプハウス平面図、図12表示の本圃ハウス内には、本圃に植物枝豆苗を500本定植した。
An explanation will be given based on the example in the house of the green soybean plant.
FIG. 11 is an elevation view of the pipe house in a pipe house having a length of 5.4 m and a length of 40 m.
Two rows of green 20 W fluorescent lamps 7 are installed in parallel to the pipe house at a height of 1.5 m above the upper surface of the green soybean seedling 16 planted in the house, and a blue 20 W fluorescent lamp is installed in the center of the two rows. One row was installed in the longitudinal direction of the house. The green light of the fluorescent light 7 installed in the two rows on both sides and the blue light of the fluorescent light 8 installed in the center one row are as evenly as possible on the green soybean plants. As shown in the plan view 12, the green 20W fluorescent lamp 1 installed in two rows on both sides is set at a distance of 6m and the blue 20W fluorescent lamp installed in the central row as shown in FIG. The interval of 8 was installed at intervals of 12 m, and all the blue and green fluorescent lamps were installed at a height of 1.5 m from the upper surface of the green soybean planting stock 16. In the main farm house shown in the main farm pipe house elevation, FIG. 11, the main farm pipe house plan view, and FIG. 12, 500 plant green soybean seedlings were planted in the main farm.

又前記、記載の青色、緑色の蛍光灯を設置した当該本圃定植パイプハウス間口5.4m長さ40mのハウスより2M離れた隣の同等の面積を保持したパイプハウス間口5.4m長さ40mハウスには、蛍光灯は、設置せずに、本圃に定植する株500本定植した。In addition, the main house-planted pipe house frontage 5.4m length 40m length 40m long pipe house frontage 5.4m long 40m length house that is 2M away from the 40m long house with the blue and green fluorescent lamps described above. Fluorescent lamps were not installed, and 500 plants were planted in this field.

上記「00013」にて説明したように青色、緑色の蛍光灯を設置したハウスの定植株と青色、緑色の蛍光灯を設置無しの本圃の枝豆ハウスの定植株とのケルダール窒素量の差すなわち、表1、表2、表3にて表示のごとく、枝豆生産のための青色、緑色光線照射有り、無しによる差が、枝豆植物体内に蛋白質が増減差が表れることを実証した。

Figure 2011055834
Figure 2011055834
Figure 2011055834
As described in the above “00013”, the difference in Kjeldahl nitrogen amount between the planted strain of the house with the blue and green fluorescent lamps and the planted plant of the green soybean house without the blue and green fluorescent lamps, that is, As shown in Table 1, Table 2, and Table 3, it was demonstrated that the difference between the presence and absence of irradiation with blue and green rays for green soybean production showed a difference in protein in the green soybean plant.
Figure 2011055834
Figure 2011055834
Figure 2011055834

は、緑色蛍光灯2の上面に青色蛍光灯1を設置し枝豆株13に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic diagram in which the blue fluorescent lamp 1 is installed on the upper surface of the green fluorescent lamp 2 and green soybeans 13 are irradiated with green and blue rays. は、緑色蛍光灯2の上面に青色蛍光灯1を設置し枝豆株13に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic diagram in which the blue fluorescent lamp 1 is installed on the upper surface of the green fluorescent lamp 2 and green soybeans 13 are irradiated with green and blue rays. は、青色蛍光灯1緑色蛍光灯2を一平面上に並べ設置し、枝豆株13に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic diagram in which blue fluorescent lamps 1 and green fluorescent lamps 2 are arranged side by side on a single plane, and green soybeans 13 are irradiated with green and blue rays. は、青色蛍光灯1を枝豆株13の上面に設置し、青色光線を照射する模式図。FIG. 3 is a schematic diagram in which the blue fluorescent lamp 1 is installed on the upper surface of the green soybean stock 13 and irradiated with blue light. は、緑色蛍光灯2を枝豆株13上面に設置し、緑色光線を照射する模式図。FIG. 2 is a schematic diagram in which the green fluorescent lamp 2 is installed on the upper surface of the green soybean stock 13 and irradiated with green light. は、緑色LED4の上面に青色LED3を設置し枝豆株15に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic diagram in which a blue LED 3 is installed on the upper surface of a green LED 4 and green light and blue light are irradiated to the green soybean stock 15. は、青色LED3の上面に緑色LED4を設置し枝豆株15に緑色と青色光線とを照射する模式図。FIG. 3 is a schematic diagram in which a green LED 4 is installed on the upper surface of a blue LED 3 and green soybeans 15 are irradiated with green and blue rays. は、青色LED3と緑色LED4を一平面上に並べ設置し、枝豆株15に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic view in which blue LEDs 3 and green LEDs 4 are arranged side by side on a single plane, and green soybeans 15 are irradiated with green and blue rays. は、青色LED3を枝豆株15の上面に設置し、青色光線を照射する模式図。FIG. 2 is a schematic diagram in which a blue LED 3 is installed on the upper surface of the green soybean stock 15 and irradiated with blue light. は、緑色LED4を枝豆株15上面に設置し、緑色光線を照射する模式図。Fig. 2 is a schematic diagram in which a green LED 4 is installed on the upper surface of the green soybean stock 15 and irradiated with green light. は、パイプハウスの内部両脇に平行に設置した緑色蛍光灯7と中央部に設置した青色の蛍光灯8の配置の立面図。These are the elevation views of arrangement | positioning of the green fluorescent lamp 7 installed in parallel with the both sides inside a pipe house, and the blue fluorescent lamp 8 installed in the center part. は、パイプハウスの内部両脇に平行に設置した緑色蛍光灯7と中央部に設置した青色の蛍光灯8の配置の平面図。These are the top views of arrangement | positioning of the green fluorescent lamp 7 installed in parallel with the both sides inside a pipe house, and the blue fluorescent lamp 8 installed in the center part.

1・・・青色蛍光灯、2・・・緑色蛍光灯、3・・・青色LED
4・・・緑色LED,13・・・枝豆植物苗、15・・・枝豆植物苗、
16・・・枝豆定植苗、7・・・緑色蛍光灯 8・・・青色蛍光灯、
9・・・パイプハウス、
1 ... Blue fluorescent lamp, 2 ... Green fluorescent lamp, 3 ... Blue LED
4 ... green LED, 13 ... green soybean plant seedling, 15 ... green soybean plant seedling,
16 ... green soybean seedlings, 7 ... green fluorescent light 8 ... blue fluorescent light,
9 ... pipe house,

Claims (10)

緑色蛍光灯の緑色光線上面部に青色蛍光灯の青色光線を加え植物に照射することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant by increasing the amount of protein in the body of a plant by adding the blue light of a blue fluorescent light to the upper surface of the green light of the green fluorescent light and irradiating the plant. 青色蛍光灯の青色光線上面部に緑色蛍光灯の緑色光線を加え植物に照射することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant by increasing the amount of protein in the body of a plant by adding the green light of a green fluorescent light to the upper surface of the blue light of a blue fluorescent light and irradiating the plant. 緑色蛍光灯の緑色光線と青色蛍光灯の青色光線を一平面状に並べ、植物に照射することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant in which the amount of protein in the plant body is increased by aligning green light from a green fluorescent light and blue light from a blue fluorescent light in a single plane and irradiating the plant. 緑色LEDの緑色光線上面部に青色LEDの青色光線を加え植物に照射することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant by increasing the amount of protein in the body of a plant by adding a blue light beam of a blue LED to the upper surface of the green light beam of the green LED and irradiating the plant. 青色LEDの青色光線上面部に緑色LEDの緑色光線を加え植物に照射することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant by increasing the amount of protein in the body of a plant by adding the green light of a green LED to the upper surface of the blue light of a blue LED and irradiating the plant. 緑色LEDの緑色光線と青色LEDの青色光線を一平面状に並べ、植物に照射することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant in which the amount of protein is increased in a plant body by arranging the green light of a green LED and the blue light of a blue LED in a flat plane and irradiating the plant. 緑色蛍光灯の緑色光線を植物に照射することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant by increasing the amount of protein in the body of a plant by irradiating the plant with green light from a green fluorescent lamp. 青色蛍光灯の青色光線を植物に照することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant by increasing the amount of protein in the body of a plant by irradiating the plant with the blue light of a blue fluorescent lamp. 緑色LEDの緑色光線を植物に照射することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant by increasing the amount of protein in the body of a plant by irradiating the plant with green light from a green LED. 青色LEDの緑色光線を植物に照射することによる、植物の体内に蛋白質を増量させた食料植物生産方法。A method for producing a food plant by increasing the amount of protein in the plant body by irradiating the plant with green light from a blue LED.
JP2010212773A 2010-09-03 2010-09-03 Method for increasing amount of protein in body of food plant utilizing light ray Pending JP2011055834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212773A JP2011055834A (en) 2010-09-03 2010-09-03 Method for increasing amount of protein in body of food plant utilizing light ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212773A JP2011055834A (en) 2010-09-03 2010-09-03 Method for increasing amount of protein in body of food plant utilizing light ray

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009231947A Division JP2011055816A (en) 2009-09-09 2009-09-09 Method for controlling growth of plant utilizing light ray

Publications (1)

Publication Number Publication Date
JP2011055834A true JP2011055834A (en) 2011-03-24

Family

ID=43944222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212773A Pending JP2011055834A (en) 2010-09-03 2010-09-03 Method for increasing amount of protein in body of food plant utilizing light ray

Country Status (1)

Country Link
JP (1) JP2011055834A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103109702A (en) * 2013-02-25 2013-05-22 中国水稻研究所 Method for controlling rice seedling growth by optical spectrum, and raising spectrum regulating appliance and equipment
JP2014131517A (en) * 2012-12-03 2014-07-17 Nobuyuki Takahashi Method for controlling concentration of phenolic substance and kjeldahl nitrogen in plant leaves by using light rays
US10125370B2 (en) 2013-09-06 2018-11-13 Mitsubishi Chemical Corporation Method for producing protein in plants using lighting with at least 50% red light
CN111050541A (en) * 2017-08-08 2020-04-21 旭硝子绿色技术株式会社 Plant cultivation method and plant cultivation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131517A (en) * 2012-12-03 2014-07-17 Nobuyuki Takahashi Method for controlling concentration of phenolic substance and kjeldahl nitrogen in plant leaves by using light rays
CN103109702A (en) * 2013-02-25 2013-05-22 中国水稻研究所 Method for controlling rice seedling growth by optical spectrum, and raising spectrum regulating appliance and equipment
US10125370B2 (en) 2013-09-06 2018-11-13 Mitsubishi Chemical Corporation Method for producing protein in plants using lighting with at least 50% red light
CN111050541A (en) * 2017-08-08 2020-04-21 旭硝子绿色技术株式会社 Plant cultivation method and plant cultivation device

Similar Documents

Publication Publication Date Title
Hao et al. LED inter-lighting in year-round greenhouse mini-cucumber production
CN103222420B (en) Small vegetable indoor cultivation technique based on LED energy saving light source
Jokinen et al. Improving sweet pepper productivity by LED interlighting
Kumar et al. Comparison of HPS lighting and hybrid lighting with top HPS and intra-canopy LED lighting for high-wire mini-cucumber production
JP2022118185A (en) Production method of leaf vegetables and production device of leaf vegetables
JP6487304B2 (en) Hydroponic cultivation method, leaf vegetable production method, culture solution, and culture solution production method.
CN104813856B (en) A kind of method for inducing tomato to improve low-temperature resistance
CN104115723A (en) Method for planting selenium-rich grapes
CN101828508B (en) Method for rapidly promoting assimilation of nitrate in vegetables planted by soilless culture technology
JP2011055834A (en) Method for increasing amount of protein in body of food plant utilizing light ray
JP2011055816A (en) Method for controlling growth of plant utilizing light ray
JP2011055816A5 (en)
Abbey et al. An Analysis of Strawberry (Fragaria χananassa) Productivity in Northern Latitudinal Aquaponic Growing Conditions
Pepin et al. Beneficial effects of using a 3-D LED interlighting system for organic greenhouse tomato grown in Canada under low natural light conditions
Matysiak et al. The growth, photosynthetic parameters and nitrogen status of basil, coriander and oregano grown under different led light spectra
JP5505830B2 (en) Method for controlling powdery mildew control using light rays
Bowman et al. Improving winter growth in the citrus nursery with LED and HPS supplemental lighting
Wojciechowska et al. Effect of supplemental led lighting on growth and quality of Valerianella locusta L. and economic aspects of cultivation in autumn cycle
WO2020067266A1 (en) Kale cultivation method and salad
CN105917939A (en) Method for raising seedlings by cutting lateral vines of oriental melons
JP2011000115A5 (en)
JP5481968B2 (en) Control method for increasing the number of flowers using light
Hao et al. Optimizing vertical light spectral distribution to improve yield and quality in greenhouse fruit vegetable production
Bergstrand et al. Development of strategies for hydroponic cultivation in vertical systems
Rangaswamy et al. AM; Abdelbacki, A. MM; Elansary, HO; Abdel-Hamid, A. ME Assessing the Impact of Higher Levels of CO2 and Temperature and Their Interactions on Tomato (Solanum lycopersicum L.). Plants 2021, 10, 256