JP2022118185A - Production method of leaf vegetables and production device of leaf vegetables - Google Patents

Production method of leaf vegetables and production device of leaf vegetables Download PDF

Info

Publication number
JP2022118185A
JP2022118185A JP2022100262A JP2022100262A JP2022118185A JP 2022118185 A JP2022118185 A JP 2022118185A JP 2022100262 A JP2022100262 A JP 2022100262A JP 2022100262 A JP2022100262 A JP 2022100262A JP 2022118185 A JP2022118185 A JP 2022118185A
Authority
JP
Japan
Prior art keywords
light
folate
green
leafy vegetables
vegetables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022100262A
Other languages
Japanese (ja)
Inventor
聖一 岡崎
Seiichi Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEYSTONE TECHNOLOGY Inc
Original Assignee
KEYSTONE TECHNOLOGY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEYSTONE TECHNOLOGY Inc filed Critical KEYSTONE TECHNOLOGY Inc
Publication of JP2022118185A publication Critical patent/JP2022118185A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method and a production device of leaf vegetables in which a temperature condition and a light quality condition are changed, for clarifying an environment control for increasing quantity of biosynthesis of folate salt, and leaf vegetables with high folate salt can be produced.
SOLUTION: There is provided a RGB independent modulation light source plant cultivation device 1 for vegetables using water culture under an artificial illumination in which lights of red color, blue color and green color are controlled comprising: a light radiation part 5 for radiating a light to vegetables 3; and a control part 7 for controlling at least one of a ratio of lights of red color, blue color and green color radiated by the light radiation part 5, a photosynthesis effective photon flux density (PPFD) and a growth environment temperature for increasing density of folate salt.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

特許法第30条第2項適用申請有り 平成30年1月29日、第15回赤外放射応用関連学会 東京工科大学蒲田キャンパスPatent Law Article 30, Paragraph 2 Application Applied January 29, 2018, 15th Infrared Radiation Application-Related Conference, Tokyo University of Technology, Kamata Campus

本発明は、葉菜類野菜の生産方法等に関し、赤色、青色及び緑色の光を制御した人工照明下での水耕栽培による葉菜類野菜の生産方法等に関する。 TECHNICAL FIELD The present invention relates to a method for producing leafy vegetables and the like, and more particularly to a method for producing leafy vegetables by hydroponics under artificial lighting in which red, blue and green light is controlled.

現在、人工照明下での水耕栽培による葉菜類野菜の技術が進んできている。特に、赤色、青色及び緑色の光を制御した人工照明下での水耕栽培については、発明者も、技術改良を行ってきた。このような技術の研究においては、赤色と青色との割合を調整するものが多い。 Currently, the technology of hydroponic cultivation of leafy vegetables under artificial lighting is progressing. In particular, the inventors have also improved the technology for hydroponic cultivation under artificial lighting in which red, blue, and green lights are controlled. Many studies on such technology involve adjusting the ratio of red and blue.

ところで、葉菜類野菜のような食品には、葉酸塩が含まれており、具体的には天然ビタミンBである。この葉酸塩の摂取については、例えば、高ホモシステイン血症の治療や胎児の神経管閉鎖障害のリスクに有効と言われている。そのため、厚生労働省からも、妊婦における葉酸塩不足が胎児に障害をもたらす可能性があるとして、妊娠を希望している女性に対し、400μg/日を目安に摂取することを呼びかけている。ここで、このような葉酸塩の生合成については、非特許文献1のようなもので解明が進んでいる。 By the way, foods such as leafy vegetables contain folate, specifically natural vitamin B. Intake of folate is said to be effective, for example, in the treatment of hyperhomocysteinemia and the risk of fetal neural tube defects. Therefore, the Ministry of Health, Labor and Welfare also calls on women who wish to conceive to take folate at around 400 μg/day, as a lack of folate in pregnant women may cause fetal disorders. Here, the biosynthesis of such folate has been elucidated as described in Non-Patent Document 1.

なお、近年は、葉酸塩と葉酸との区別が明確になってきており、葉酸は天然には存在しない人工合成による薬やサプリメントに含まれていると言われている。 In recent years, the distinction between folate and folic acid has become clearer, and folic acid is said to be contained in artificially synthesized medicines and supplements that do not exist naturally.

John Scott, Fabrice Rebeille and John Fletcher, Review: Folic acid and folates: the feasibility for nutritional enhancement in plant foods, Journal of the Science of Food and Agriculture, 80:795-824 (2000).John Scott, Fabrice Rebeille and John Fletcher, Review: Folic acid and folates: the feasibility for nutritional enhancement in plant foods, Journal of the Science of Food and Agriculture, 80:795-824 (2000).

しかしながら、現時点では、葉酸塩の生合成量を増加させる環境制御の解明は十分には行われていない。そこで、発明者は、特に、光質条件の他、温度条件も変化させてその解明を試みた。光質条件としては、R(赤色光)、G(緑色光)、B(青色光)比と光合成有効光量子束密度(PPFD)を変化させて解明を試みた。 However, at present, the environmental regulation that increases the amount of folate biosynthesis has not been sufficiently elucidated. Therefore, the inventor tried to clarify the problem by changing the temperature condition in addition to the light quality condition. As for the light quality conditions, an attempt was made to clarify by changing the R (red light), G (green light), and B (blue light) ratios and the photosynthetically effective photon flux density (PPFD).

ゆえに、本発明は、光質条件の他、温度条件も変化させて、葉酸塩の生合成量を増加させる環境制御の解明を試み、高葉酸塩の葉菜類野菜を生産できる葉菜類野菜の生産方法及び葉菜類野菜の生産装置を提供することを目的とする。 Therefore, the present invention attempts to elucidate the environmental control that increases the amount of biosynthesis of folate by changing not only the light quality condition but also the temperature condition. An object of the present invention is to provide a production apparatus for leafy vegetables.

本発明の第1の観点は、赤色、青色及び緑色の光を制御した人工照明下での水耕栽培による葉菜類野菜の生産装置であって、前記葉菜類野菜に対して光を照射する照射手段と、葉酸塩の濃度を増加させるために、前記照射手段が照射する前記赤色、青色及び緑色の光の比率及び光合成有効光量子束密度(PPFD)並びに生育環境温度の少なくとも1つを制御する制御手段を備えたものである。 A first aspect of the present invention is an apparatus for producing leafy vegetables by hydroponic cultivation under artificial lighting in which red, blue and green light is controlled, comprising irradiation means for irradiating the leafy vegetables with light. , a control means for controlling at least one of the ratio of the red, blue and green light emitted by the irradiation means, the photosynthetically active photon flux density (PPFD), and the growth environment temperature, in order to increase the concentration of folate; It is prepared.

本発明の第2の観点は赤色、青色及び緑色の光を制御した人工照明下での水耕栽培による葉菜類野菜の生産方法であって、前記葉菜類野菜に対して、葉酸塩の濃度を増加させるために、前記赤色、青色及び緑色の光の比率について少なくとも前記緑色の光を含めた光質条件で制御することを特徴とするものである。 A second aspect of the present invention is a method for producing leafy vegetables by hydroponics under artificial lighting with controlled red, blue and green light, wherein the concentration of folate is increased in the leafy vegetables. Therefore, the ratio of the red, blue and green lights is controlled by light quality conditions including at least the green light.

本発明の第3の観点は、第2の観点において、前記葉菜類野菜に対して、葉酸塩の濃度を増加させるために、チップバーンが発生する前の状態を上限としながら光合成有効光量子束密度(PPFD)を増加させた光質条件で制御することを特徴とするものである。 In the third aspect of the present invention, in the second aspect, the photosynthetically active photon flux density ( PPFD) is controlled under the condition of increased light quality.

本発明の第4の観点は、第2又は第3の観点において、前記葉菜類野菜に対して、葉酸塩の濃度を増加させるために、チップバーンが発生する前の状態を上限としながら生育環境温度を高くした温度条件で制御することを特徴とするものである。 In the fourth aspect of the present invention, in the second or third aspect, in order to increase the folate concentration of the leafy vegetables, the growing environment temperature is set to the state before chip burn occurs as the upper limit. It is characterized in that the temperature is controlled under a high temperature condition.

本発明の第5の観点は、光を制御した人工照明下での水耕栽培による葉菜類野菜の生産方法であって、前記葉菜類野菜に対して、葉酸塩の濃度を増加させるために、チップバーンが発生する前の状態を上限としながら生育環境温度を高くした温度条件で制御することを特徴とするものである。 A fifth aspect of the present invention is a method for producing leafy vegetables by hydroponics under light-controlled artificial lighting, wherein chip burn is added to the leafy vegetables in order to increase the concentration of folate. It is characterized in that control is performed under temperature conditions in which the temperature of the growing environment is increased while the upper limit is the state before the occurrence of .

本発明の第6の観点は、光を制御した人工照明下での水耕栽培による葉菜類野菜の生産方法であって、前記葉菜類野菜に対して、葉酸塩の濃度を増加させるために、チップバーンが発生する前の状態を上限としながら光合成有効光量子束密度(PPFD)を増加させた光質条件で制御することを特徴とするものである。 A sixth aspect of the present invention is a method for producing leafy vegetables by hydroponics under light-controlled artificial lighting, wherein chip burn is added to the leafy vegetables in order to increase the concentration of folate. It is characterized in that control is performed under light quality conditions in which the photosynthetically effective photon flux density (PPFD) is increased while the upper limit is the state before the occurrence of .

本発明の第1の観点によれば、葉菜類野菜に照射する赤色、青色及び緑色の光の比率及び光合成有効光量子束密度(PPFD)並びに生育環境温度の少なくとも1つを制御して葉酸塩の濃度を増加させることができる。これにより、高葉酸塩の葉菜類野菜を妊婦などに提供できる。 According to the first aspect of the present invention, the concentration of folate is controlled by controlling at least one of the ratio of red, blue and green light irradiated to leafy vegetables, the photosynthetically active photon flux density (PPFD), and the growth environment temperature. can be increased. This makes it possible to provide high-folate leafy vegetables to pregnant women and the like.

本発明の第2の観点によれば、赤色、青色及び緑色の光の比率について少なくとも緑色の光を含めた光質条件で制御することにより、緑色の光を含めない場合に比べて葉菜類野菜に対して葉酸塩の濃度を増加させることができる。これにより、高葉酸塩の葉菜類野菜を妊婦などに提供できる。 According to the second aspect of the present invention, by controlling the ratio of red, blue and green light with light quality conditions including at least green light, leafy vegetables can be produced more effectively than when green light is not included. Conversely, the concentration of folate can be increased. This makes it possible to provide high-folate leafy vegetables to pregnant women and the like.

本発明の第3、第6の観点によれば、チップバーンが発生する前の状態を上限としながら光合成有効光量子束密度(PPFD)を増加させ光質条件で制御することにより、葉菜類野菜に対して葉酸塩の濃度を増加させることができる。これにより、高葉酸塩の葉菜類野菜を妊婦などに提供できる。 According to the third and sixth aspects of the present invention, by increasing the photosynthetically active photon flux density (PPFD) and controlling the light quality condition while setting the state before chip burn as the upper limit, can be used to increase folate levels. This makes it possible to provide high-folate leafy vegetables to pregnant women and the like.

本発明の第4、第5の観点によれば、チップバーンが発生する前の状態を上限としながら生育環境温度を高くした温度条件で制御することにより、葉菜類野菜に対して葉酸塩の濃度を増加させることができる。これにより、高葉酸塩の葉菜類野菜を妊婦などに提供できる。 According to the fourth and fifth aspects of the present invention, the concentration of folate in leafy vegetables is increased by controlling the temperature conditions in which the growth environment temperature is increased while the state before chip burn occurs is the upper limit. can be increased. This makes it possible to provide high-folate leafy vegetables to pregnant women and the like.

本発明の実施の形態にかかるRGB独立調光光源植物栽培装置のブロック図である。1 is a block diagram of an RGB independent dimming light source plant cultivation apparatus according to an embodiment of the present invention; FIG. 緑系リーフレタス(ファンシーグリーン)の20℃栽培区での各光質条件における葉酸塩含有量についての結果を示したグラフである。Fig. 2 is a graph showing the results of folate content under each light quality condition in a 20°C cultivation plot of green leaf lettuce (fancy green). 緑系リーフレタス(ファンシーグリーン)の25℃栽培区での各光質条件における葉酸塩含有量についての結果を示したグラフである。It is a graph which showed the result about folate content in each light quality condition in the 25 degreeC cultivation division of green leaf lettuce (fancy green). 図2及び図3に示したものを20℃と25℃とで比較し易くしたグラフである。FIG. 4 is a graph for facilitating comparison of the graphs shown in FIGS. 2 and 3 at 20° C. and 25° C. FIG. 栽培気温と葉酸塩生合成における相関(RB)を示したグラフである。It is a graph showing the correlation (RB) between cultivation temperature and folate biosynthesis. 栽培気温と葉酸塩生合成における相関(RGB)を示したグラフである。It is the graph which showed the correlation (RGB) in cultivation temperature and folate biosynthesis.

以下に本発明の実施の形態について図面を参照して詳細に説明するが、本発明はこれに限定されるものではない。 Embodiments of the present invention will be described in detail below with reference to the drawings, but the present invention is not limited thereto.

図1は、本発明の実施の形態にかかるRGB独立調光光源植物栽培装置のブロック図である。 FIG. 1 is a block diagram of an RGB independent dimming light source plant cultivation apparatus according to an embodiment of the present invention.

RGB独立調光光源植物栽培装置1には、野菜3に対して光を照射するためのLED光源である光照射部5が設けられている。ここでは、例えば、赤色は660nm、緑色は525nm、青色は460nm波長に設定している。RGB独立調光光源植物栽培装置1は制御部7を備えており、制御部7は光質条件制御部9と温度条件制御部11とを有している。光質条件制御部9は、光照射部5から野菜3に照射される光質条件について、RGB比を制御し、また、光合成有効光量子束密度(PPFD)を制御する。温度条件制御部11は野菜3の生育環境温度を制御する。すなわち、制御部7は、光質条件のRGB比及び光合成有効光量子束密度(PPFD)並びに生育環境温度条件の3つのうちの少なくとも1つ(又は組み合わせ)を制御できるものとしている。 The RGB independent dimming light source plant cultivation apparatus 1 is provided with a light irradiation section 5 which is an LED light source for irradiating the vegetables 3 with light. Here, for example, red is set to 660 nm, green to 525 nm, and blue to 460 nm. The RGB independent dimming light source plant cultivation apparatus 1 includes a control section 7 , and the control section 7 has a light quality condition control section 9 and a temperature condition control section 11 . The light quality condition control unit 9 controls the RGB ratio and the photosynthetically active photon flux density (PPFD) with respect to the light quality condition of the light emitted from the light irradiation unit 5 to the vegetables 3 . The temperature condition control unit 11 controls the growing environment temperature of the vegetables 3 . That is, the control unit 7 can control at least one (or a combination) of the RGB ratio, the photosynthetically active photon flux density (PPFD), and the growth environment temperature condition of the light quality condition.

以下では、今回の知見である葉酸塩の生合成のメカニズム解明により、RGB比及び光合成有効光量子束密度(PPFD)並びに生育環境温度条件を制御することにより、葉酸塩含有量を増加させることが示された実験について、説明する。 In the following, it is shown that folate content can be increased by controlling the RGB ratio, photosynthetically active photon flux density (PPFD), and growth environment temperature conditions, based on the clarification of the mechanism of folate biosynthesis, which is the findings of this study. I will explain the experiments that were conducted.

[供試植物及び栽培光源設定]
実験では、緑系リーフレタス(ファンシーグリーン)を供試植物として使用した。生育環境温度条件については、生育温度は20℃と25℃の2種類を設定した。光質条件については、RGB比を変えたRB区とRGB区を設け、さらに、それぞれの区において150ppfdと200ppfdという光合成有効光量子束密度(PPFD)の異なるものを設けた。
[Test plants and cultivation light source settings]
In the experiments, green leaf lettuce (fancy green) was used as a test plant. Two types of growth temperature, 20°C and 25°C, were set for the growth environment temperature conditions. As for the light quality conditions, RB and RGB sections with different RGB ratios were provided, and the respective sections were provided with different photosynthetically effective photon flux densities (PPFD) of 150 ppfd and 200 ppfd.

ここで、LED光源を用い、RGBのRed(赤)は660nmの光を用い、Green(緑)は525nmの光を用い、Blue(青)は460nmの光を用いた。RB区に150ppfdについては、Redは112.0ppfd、Blueは38ppfd、200ppfdについては、Redは150.0ppfd、Blueは50.0ppfdとした。RGB区に150ppfdについては、Redは98.0ppfd、Greenは22.0ppfd、Blueは30ppfd、200ppfdについては、Redは139.0ppfd、Greenは21.0ppfd、Blueは40.0ppfdとした。 Here, LED light sources were used, and red (red) of RGB used light of 660 nm, green (green) used light of 525 nm, and blue (blue) used light of 460 nm. Regarding 150 ppfd in the RB section, 112.0 ppfd for Red and 38 ppfd for Blue, and 200 ppfd for 150.0 ppfd for Red and 50.0 ppfd for Blue. Regarding 150 ppfd for RGB, 98.0 ppfd for Red, 22.0 ppfd for Green, 30 ppfd for Blue, and 200 ppfd for 139.0 ppfd for Red, 21.0 ppfd for Green, and 40.0 ppfd for Blue.

栽培装置の環境設定条件としては、次のものを選択した。栽培装置は、インキュベータの一部にプラントセラー(TAPS-6T)を用い、キーストーンテクノロジー社オリジナルである植物生育用LEDライト及びコントローラ(各段独立制御)を用い、肥培管理はpH=6、EC=2dS/m、温湿度は20℃、25℃、60±5%とした。 The following conditions were selected as environmental setting conditions for the cultivation apparatus. Cultivation equipment uses a plant cellar (TAPS-6T) as part of the incubator, uses Keystone Technology's original plant growth LED lights and controllers (independent control of each stage), fertilization management pH = 6, EC = 2 dS/m, and the temperature and humidity were 20°C, 25°C, and 60±5%.

次に、播種から収穫までについて説明する。播種は、ウレタンに直播した。施肥は子葉展開後に黒のトレーに移し、培養液施肥を行った。定植は、播種後21日後に実施した。収穫は定植後21日後に実施した。 Next, the process from seeding to harvesting will be described. Seeds were sown directly on urethane. After cotyledon development, the plants were transferred to a black tray and fertilized with a culture solution. Planting was performed 21 days after sowing. Harvesting was carried out 21 days after planting.

次に、試験区を説明する。今回の実験では、定植から収穫まで21日間の栽培温度を20℃と25℃の2つのパターンを設定した。各栽培温度条件下では、上記もした4つの栽培区を設け、それぞれで3反復の栽培~収穫を行った。 Next, the test plots will be explained. In this experiment, two patterns of cultivation temperature of 20°C and 25°C were set for 21 days from fixed planting to harvest. Under each cultivation temperature condition, the four cultivation plots described above were established, and three repetitions of cultivation to harvesting were carried out in each.

次に、葉酸塩の含有量の測定について説明する。定植から21日間生育したものを収穫し、根(地下部)を取り除いた可食部(地上部)を用いて葉酸塩の分析を行った。分析は、神奈川県産業技術センターに委託し、微生物学的試験方法にて行った。 Next, the measurement of folate content will be described. Plants grown for 21 days from fixed planting were harvested, and folate was analyzed using the edible part (above-ground part) from which the root (underground part) was removed. The analysis was entrusted to the Kanagawa Prefectural Industrial Technology Center and was carried out according to the microbiological test method.

図2は緑系リーフレタス(ファンシーグリーン)の20℃栽培区での各光質条件における葉酸塩含有量についての結果を示したグラフである。図3は緑系リーフレタス(ファンシーグリーン)の25℃栽培区での各光質条件における葉酸塩含有量についての結果を示したグラフである。図4は図2及び図3に示したものを20℃と25℃とで比較し易くしたグラフである。縦軸は、可食部新鮮重量100g当たりの葉酸塩含有量(μg)である。 FIG. 2 is a graph showing the results of folate content under various light quality conditions in a 20° C. cultivation plot for green leaf lettuce (fancy green). FIG. 3 is a graph showing the results of folate content under various light quality conditions in a 25° C. cultivation plot for green leaf lettuce (fancy green). FIG. 4 is a graph for facilitating comparison of the results shown in FIGS. 2 and 3 at 20.degree. C. and 25.degree. The vertical axis is folate content (μg) per 100 g fresh weight of edible portion.

図2及び図3に示すように、各温度では、光合成有効光量子束密度(PPFD)の違いで含有量も違いがあり、Green(緑)が含まれた光と含まれない光とでも含有量の違いがあった。具体的には、150ppfdにおいてはRB区よりもRGB区のほうが有意に葉酸塩含有量は増加していた。200ppfdにおいても、微量だがRB区よりもRGB区のほうが葉酸塩含有量は増加していた。また、図4にも示すように、温度は20℃と25℃とでも含有量の違いがあった。特に、200ppfdのRB区及びRGB区においては、25℃で栽培した場合、20℃で栽培した場合に比べて約2倍の葉酸塩含有量の増加があった。 As shown in FIGS. 2 and 3, at each temperature, the content also differs depending on the difference in the photosynthetically effective photon flux density (PPFD). There was a difference. Specifically, at 150 ppfd, the folate content was significantly higher in the RGB section than in the RB section. Even at 200 ppfd, the folate content was slightly higher in the RGB section than in the RB section. Also, as shown in FIG. 4, there was a difference in the content even at temperatures of 20.degree. C. and 25.degree. In particular, in the 200 ppfd RB and RGB plots, when cultivated at 25°C, the folate content increased about twice as much as when cultivated at 20°C.

以下、まとめる。本実験結果から、リーフレタスにおける可食部の葉酸塩含量を増加させるには、定植後の栽培温度を25℃で生育させるほうが良いことが明らかになった。また光合成有効光量子束密度が150ppfdよりも200ppfdの条件下のほうが葉酸塩含量を増加させることができることが示唆された。葉酸塩の含量を増加させるには、光呼吸を促進させることが有効という見解があり、今回の生育条件のように5℃の温度差で葉酸塩含量が大きく変化したことから、生育温度が葉酸塩含量の高い作物生産方法として有効であると考えられる。さらに、葉酸塩生合成の調節がmethionineによって行われていることから、細胞分裂が盛んな部位でDNAが必要となり、methionineが消費され、同時に葉酸塩が旺盛に生産されると予想される。従って、レタスの生体重成長速度が速い時に葉酸塩濃度が高くなると考えられる。このことから、レタスの生体重量が大きく増加する時期のみ(特に定植後約14日~21日)、栽培温度を25℃にすることで電気代の節約や,同時に栽培している他の作物への影響を抑えつつ、葉酸塩含量を増加させたレタスの栽培が可能になると考えられる。さらに、光条件を比較すると、光合成光量子束密度を高くすることや、緑色光を含んだ光源を使用した試験区の葉酸塩含量が増加していることから、今後は、緑色光の出力比率を高めた光源を使用して最適条件を見出すことで、さらなる葉酸塩含量の増加も期待される。 Below is a summary. From the results of this experiment, it was clarified that in order to increase the folate content of the edible portion of leaf lettuce, it is better to grow at a cultivation temperature of 25°C after planting. It was also suggested that the folate content can be increased more under the condition that the photosynthetically effective photon flux density is 200 ppfd than under the condition of 150 ppfd. There is an opinion that it is effective to promote photorespiration to increase the folate content. It is considered effective as a method of producing crops with high salt content. Furthermore, since folate biosynthesis is regulated by methionine, it is expected that DNA is required at sites where cell division is active, methionine is consumed, and folate is produced vigorously at the same time. Therefore, folate concentrations are thought to be higher when lettuce live weight growth rate is high. From this, only when the live weight of lettuce increases significantly (especially about 14 to 21 days after planting), by setting the cultivation temperature to 25 ° C, it is possible to save electricity costs and other crops cultivated at the same time. It is thought that it will be possible to cultivate lettuce with an increased folate content while suppressing the influence of Furthermore, when comparing the light conditions, the photosynthetic photon flux density was increased, and the folate content in the test plot using a light source containing green light increased. Further increases in folate content are expected by finding optimum conditions using elevated light sources.

なお、光合成有効光量子束密度(PPFD)の大きさの上限と、生育環境温度の上限は、チップバーンが発生しない前の状態が好ましい。ここで、チップバーンとは、葉っぱの先端が茶色に枯れてくる状況を言う。 It should be noted that the upper limit of photosynthetically effective photon flux density (PPFD) and the upper limit of growth environment temperature are preferably in a state before chip burn occurs. Here, tip burn refers to a state in which the tips of leaves wither and turn brown.

また、上記では、実験データとしては、緑系リーフレタス(ファンシーグリーン)について示したが、葉酸塩を含む野菜である緑黄色野菜、特に「葉菜類野菜」のようなものも本願発明の適用範囲になる。なぜなら、「葉菜類野菜」では、光合成が行われて葉酸塩の生合成が重要であり、本願で示される実験結果が葉酸塩の生合成のメカニズムの原理解明に基づくため、他のものでも同様と推論できるからである。ここで、「葉菜類野菜」は、葉や茎の部分を主に食用とする野菜をいい、例えば、レタス、水菜、ホウレンソウ、春菊、小松菜、チンゲンサイ、キャベツ、白菜、しそ、からし菜、ケール、ハーブ類(ルッコラ、バジル等)等が挙げられるが、これに限定されない。 In the above description, the experimental data is for green leaf lettuce (fancy green), but green and yellow vegetables that contain folate, especially "leafy vegetables," are also within the scope of the present invention. . This is because photosynthesis takes place in "leaf vegetables" and biosynthesis of folate is important, and the experimental results presented in this application are based on the elucidation of the principle of the mechanism of folate biosynthesis. Because it can be inferred. Here, "leafy vegetables" refer to vegetables whose leaves and stems are mainly edible. Examples include herbs (arugula, basil, etc.), but are not limited to these.

上記に加えて、さらに考察を記載する。葉酸塩(Folate)生合成の出発物質は、6-hydroxymethyl-dihydropterinであり、この物質はGTP(グアノシン三リン酸)から合成される。GTPはDNAなどの核酸を構成する塩基の一つであるグアニンから合成される。GTPからプテリン、そして6-hydroxymethyl-dihydropterinが合成される。この後は、生合成がさらに進み、最終的にtetrahydrofolateが合成される。Tetrahydrofolateは葉酸塩代謝の起点であり、様々な葉酸塩に変化し役割を果たす。この生合成に使用される酵素であるHPPK、DHPS及びDHFR/TSはミトコンドリアに偏在する。したがって、葉酸塩の生合成は主にミトコンドリアで行われていると考えられる。 In addition to the above, further considerations are described. The starting material for folate biosynthesis is 6-hydroxymethyl-dihydropterin, which is synthesized from GTP (guanosine triphosphate). GTP is synthesized from guanine, one of the bases that make up nucleic acids such as DNA. Pterin and 6-hydroxymethyl-dihydropterin are synthesized from GTP. After this, biosynthesis proceeds further and finally tetrahydrofolate is synthesized. Tetrahydrofolate is the starting point of folate metabolism and changes into various folates to play a role. The enzymes used in this biosynthesis, HPPK, DHPS and DHFR/TS, are ubiquitous in mitochondria. Therefore, folate biosynthesis is thought to occur mainly in mitochondria.

光呼吸の過程でミトコンドリアではglycine-serine変換が行われ、このとき葉酸塩であるtetrahydrofolateと5,10-methylene-tetrahydorofolateが必要となる。つまり、光呼吸の過程で葉酸塩が光合成されるということになる。 Glycine-serine conversion takes place in mitochondria during photorespiration, which requires the folates tetrahydrofolate and 5,10-methylene-tetrahydrofolate. In other words, folate is photosynthesised during the process of photorespiration.

Tetrahydrofolateは、葉酸代謝の出発点であり、要の葉酸塩である。Tetrahydrofolateが沢山含まれる部位は、細胞分裂が盛んな組織である。例えば発芽時の子葉などがある。葉酸塩はDNAの合成に関わる物質であるため細胞分裂時に必要になると考えられる。 Tetrahydrofolate is the starting point and key folate for folic acid metabolism. A site containing a large amount of Tetrahydrofolate is a tissue in which cell division is active. For example, there are cotyledons at the time of germination. Folate is considered to be required during cell division because it is a substance involved in DNA synthesis.

図5及び図6に示すように、栽培環境温度25℃、200ppfdの条件において、RB及びRGBいずれの光質においても相関係数が0.9以上という強い相関関係が示された。 As shown in FIGS. 5 and 6, under conditions of a cultivation environment temperature of 25° C. and 200 ppfd, both RB and RGB light qualities showed a strong correlation with a correlation coefficient of 0.9 or more.

ここで、緑色光を含む光質のRGB区は、栽培温度25℃、150ppfdの条件において栽培環境温度20℃条件時より葉酸塩濃度が40%以上高くなっていることが示された点は、特徴的なことである。RGB区が葉酸塩濃度を相対的に高めたメカニズムは、緑色光照射により気孔が閉じて、細胞内の二酸化炭素濃度が減少した結果、光呼吸が盛んになったと推察される。二次代謝物である葉酸塩生合成には、一次代謝産物が必要十分量生合成されていることが重要である。そのためには細胞内の光合成色素とアンテナ色素を効率よく働かせることが肝要である。 Here, in the RGB section with light quality including green light, the concentration of folate at a cultivation temperature of 25°C and 150 ppfd is 40% or more higher than that at a cultivation environment temperature of 20°C. It is characteristic. It is speculated that the mechanism by which the RGB group relatively increased the folate concentration was that the stomata closed due to green light irradiation, resulting in a decrease in the intracellular carbon dioxide concentration, resulting in active photorespiration. For the biosynthesis of folate, which is a secondary metabolite, it is important that the primary metabolite is biosynthesized in a necessary and sufficient amount. For this purpose, it is important to make the intracellular photosynthetic pigments and antenna pigments work efficiently.

緑色の葉から抽出されたクロロフィルまたは色素の吸収スペクトルは、緑色の光が弱くしか吸収されないことを示しているという指摘もあり、緑色の光は緑色の葉の光合成にとって不十分であると主張されている論文もある。しかしながら、積分球で測定された吸収率(光吸収の絶対値)の多くのスペクトルは、陸域の葉が緑色光のかなりの部分を吸収することを明らかにしている論文もある。葉に吸収された緑色光は、高い効率で光合成を促進することも知られている。 Some have pointed out that the absorption spectra of chlorophyll or pigments extracted from green leaves show that green light is only weakly absorbed, arguing that green light is insufficient for photosynthesis in green leaves. There are also papers that However, many spectra of absorptance (absolute light absorption) measured with an integrating sphere reveal that leaves on land absorb a significant portion of green light. Green light absorbed by leaves is also known to promote photosynthesis with high efficiency.

以上のような考察によっても、図5及び図6に示すように、リーフレタスにおける可食部の葉酸塩含有量を増加させるには、定植後の栽培環境温度を25℃に設定して生育させるほうがよいことが明らかになったうえに、PPFDが150ppfdよりも200ppfdの光質条件下が葉酸塩を増加させることが示唆された。 Based on the above considerations, as shown in FIGS. 5 and 6, in order to increase the folate content of the edible part of leaf lettuce, the cultivation environment temperature after planting is set to 25 ° C. In addition, it was suggested that 200 ppfd of light quality increased folate more than 150 ppfd of PPFD.

1・・・RGB独立調光光源植物栽培装置、5・・・光照射部、7・・・制御部、9・・・光質条件制御部、11・・・温度条件制御部
DESCRIPTION OF SYMBOLS 1... RGB independent light control light source plant cultivation apparatus, 5... Light irradiation part, 7... Control part, 9... Light quality condition control part, 11... Temperature condition control part

Claims (4)

それぞれがピーク波長を持ち、赤色、青色及び緑色による3つのピーク波長のみの光の組み合わせの比率を制御した人工照明下での水耕栽培による葉菜類野菜の生産装置であって、
前記葉菜類野菜に対して光を照射する照射手段と、
葉酸塩の濃度を増加させるために前記葉菜類野菜の光呼吸を促進させるべく、生育環境温度である栽培気温を25℃にした温度条件で制御する制御手段を備えた、葉菜類野菜の生産装置。
An apparatus for producing leafy vegetables by hydroponics under artificial lighting, each having a peak wavelength and controlling the ratio of combinations of light with only three peak wavelengths of red, blue, and green,
irradiating means for irradiating the leafy vegetables with light;
A production apparatus for leafy vegetables, comprising control means for controlling a cultivation temperature, which is a growth environment temperature, under temperature conditions of 25° C. in order to promote photorespiration of the leafy vegetables in order to increase the concentration of folate.
前記制御手段は、前記照射手段が照射する前記赤色、青色及び緑色の光の比率について少なくとも前記緑色を含めた光質条件で制御する、請求項1記載の葉菜類野菜の生産装置。 2. The apparatus for producing leafy vegetables according to claim 1, wherein said control means controls the ratio of said red, blue and green light emitted by said irradiation means according to light quality conditions including at least said green light. それぞれがピーク波長を持ち、赤色、青色及び緑色による3つのピーク波長のみの光の組み合わせの比率を制御した人工照明下での水耕栽培による葉菜類野菜の生産方法であって、
制御手段が、前記葉菜類野菜に対して、葉酸塩の濃度を増加させるために前記葉菜類野菜の光呼吸を促進させるべく、生育環境温度である栽培気温を25℃にした温度条件で制御することを特徴とする、葉菜類野菜の生産方法。
A method for producing leafy vegetables by hydroponics under artificial illumination in which each has a peak wavelength and the ratio of combinations of light with only three peak wavelengths of red, blue, and green is controlled,
The control means controls the leafy vegetables under a temperature condition in which the cultivation temperature, which is the growth environment temperature, is set to 25° C. in order to promote the photorespiration of the leafy vegetables in order to increase the concentration of folate. A method for producing leafy green vegetables, characterized by:
前記制御手段が、前記赤色、青色及び緑色の光の比率について少なくとも前記緑色の光を含めた光質条件で制御する、請求項3記載の葉菜類野菜の生産方法。

4. The method for producing leafy vegetables according to claim 3, wherein said control means controls the ratio of said red, blue and green lights according to light quality conditions including at least said green light.

JP2022100262A 2017-05-31 2022-06-22 Production method of leaf vegetables and production device of leaf vegetables Pending JP2022118185A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017107475 2017-05-31
JP2017107475 2017-05-31
JP2018101482A JP2018201497A (en) 2017-05-31 2018-05-28 Production method of leaf vegetables and production device of leaf vegetables

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018101482A Division JP2018201497A (en) 2017-05-31 2018-05-28 Production method of leaf vegetables and production device of leaf vegetables

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023000915U Continuation JP3242053U (en) 2017-05-31 2023-03-27 leafy vegetable production equipment

Publications (1)

Publication Number Publication Date
JP2022118185A true JP2022118185A (en) 2022-08-12

Family

ID=64954288

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018101482A Pending JP2018201497A (en) 2017-05-31 2018-05-28 Production method of leaf vegetables and production device of leaf vegetables
JP2022100262A Pending JP2022118185A (en) 2017-05-31 2022-06-22 Production method of leaf vegetables and production device of leaf vegetables

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018101482A Pending JP2018201497A (en) 2017-05-31 2018-05-28 Production method of leaf vegetables and production device of leaf vegetables

Country Status (1)

Country Link
JP (2) JP2018201497A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830834B (en) * 2019-04-15 2021-02-09 南通市联缘染业有限公司 Equipment control method based on environment analysis
CN113875514B (en) 2020-07-03 2023-02-03 株式会社理光 Cultivation method, information processing method, control method, information processing device, and control device
CN111919737A (en) * 2020-07-31 2020-11-13 福建省中科生物股份有限公司 Method for promoting root tuber growth of plant factory rhizome medicinal materials
CN112021167A (en) * 2020-09-03 2020-12-04 福建省中科生物股份有限公司 Method for accelerating vegetative growth to reproductive growth of leaf vegetables
CN114731936B (en) * 2022-03-28 2023-07-25 金陵科技学院 Purple green vegetable water planting management method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998665A (en) * 1995-07-28 1997-04-15 Mitsubishi Chem Corp Plant cultivation apparatus
JP2012039996A (en) * 2009-12-03 2012-03-01 Seiichi Okazaki Plant cultivation system
JP2013158317A (en) * 2012-02-07 2013-08-19 Kyoto Univ Plant culture apparatus and plant culture method in completely-controlled plant growing factory

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010864B2 (en) * 2006-07-18 2012-08-29 パナソニック株式会社 Lighting equipment for plant growth
JP2013153691A (en) * 2012-01-31 2013-08-15 Agri Wave Co Ltd Plant cultivation system
JP2013198484A (en) * 2012-02-23 2013-10-03 Kobe Univ Cultivation method of plant
JP5722820B2 (en) * 2012-03-27 2015-05-27 昭和電工株式会社 LED lamp for plant cultivation
JP6304919B2 (en) * 2012-04-10 2018-04-04 一般財団法人電力中央研究所 Komatsuna calcium increase method by light
JP2015112082A (en) * 2013-12-13 2015-06-22 株式会社タムロン Method for growing leaf vegetables, high concentration folic acid-containing lettuce obtained by using the method for growing, and continuous growing method of high concentration folic acid-containing lettuce
JP2017060441A (en) * 2015-09-25 2017-03-30 三菱化学株式会社 Baby leaves
JP2017060442A (en) * 2015-09-25 2017-03-30 三菱化学株式会社 Method for producing mixed vegetable
JP2017127274A (en) * 2016-01-21 2017-07-27 株式会社東芝 Illuminator and cultivation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998665A (en) * 1995-07-28 1997-04-15 Mitsubishi Chem Corp Plant cultivation apparatus
JP2012039996A (en) * 2009-12-03 2012-03-01 Seiichi Okazaki Plant cultivation system
JP2013158317A (en) * 2012-02-07 2013-08-19 Kyoto Univ Plant culture apparatus and plant culture method in completely-controlled plant growing factory

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"リーフレタス (Lactuca sativa L. cv. "Greenwave") の成長モデル", 農業機械学会誌(2004年), vol. 第66巻, JPN7022005607, JP, pages 269 - 270, ISSN: 0004939557 *
"レストランのなかにシェフ自慢の菜園", パンフレット, JPN6022051062, JP, pages 1 - 2, ISSN: 0004939558 *
"店産店消型植物工場栽培システム「LED 菜園 ピッコロ」海外初展示", プレスリース, JPN6022051063, 30 October 2012 (2012-10-30), JP, pages 1 - 2, ISSN: 0004939559 *

Also Published As

Publication number Publication date
JP2018201497A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP2022118185A (en) Production method of leaf vegetables and production device of leaf vegetables
Kang et al. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system
US9326454B2 (en) Method for cultivating plant
CN104303815B (en) A kind of implantation methods of cauliflower
JP5988420B2 (en) Leafy vegetables production method
CN104429498A (en) Planting method of tomatoes
Bergstrand et al. Growth, development and photosynthesis of some horticultural plants as affected by different supplementary lighting technologies
WO2015163217A1 (en) Plant cultivation method
CN106718183B (en) Water culture seedling culture light environment and seedling culture method for lettuce vegetables
Pepin et al. Beneficial effects of using a 3-D LED interlighting system for organic greenhouse tomato grown in Canada under low natural light conditions
JP2011055816A (en) Method for controlling growth of plant utilizing light ray
JP6775812B2 (en) Production method of vegetables with enhanced various antioxidant components by hydroponics
JP2011055834A (en) Method for increasing amount of protein in body of food plant utilizing light ray
JP3242053U (en) leafy vegetable production equipment
JP2013162757A (en) Cultivation method of parsley and parsley with adjusted eating quality
KR101368180B1 (en) Methods for Cultivating Root Medicinal Plants
CN112602489B (en) Double-peak blue light for promoting plant growth
Lee et al. The effect of LED light source on the growth and yield of greenhouse grown tomato
JP2022118844A (en) Plant growth method
Ohashi-Kaneko Functional components in leafy vegetables
CN113016481B (en) Application of mixed light in promoting growth of cuttage plants and cultivation method
JP7166213B2 (en) Method for producing SGS-rich cruciferous vegetables, method for producing food and drink, and food and drink
JP2001037334A (en) Green nutrient soybean sprout cultured by using colored light and its culturing method
KR101036423B1 (en) Culturing method of salicornia herbacea using sea water and the salicornia herbacea produced thereby
KR101159485B1 (en) Culturing method of salicornia herbacea using wasted sea water and the salicornia herbacea produced thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230130