JP5988420B2 - Leafy vegetables production method - Google Patents

Leafy vegetables production method Download PDF

Info

Publication number
JP5988420B2
JP5988420B2 JP2012006609A JP2012006609A JP5988420B2 JP 5988420 B2 JP5988420 B2 JP 5988420B2 JP 2012006609 A JP2012006609 A JP 2012006609A JP 2012006609 A JP2012006609 A JP 2012006609A JP 5988420 B2 JP5988420 B2 JP 5988420B2
Authority
JP
Japan
Prior art keywords
irradiation
test
leaf
green light
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012006609A
Other languages
Japanese (ja)
Other versions
JP2012161313A (en
Inventor
りか 工藤
りか 工藤
山本 敬司
敬司 山本
石田 豊
豊 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Original Assignee
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Shikoku Electric Power Co Inc filed Critical Shikoku Research Institute Inc
Priority to JP2012006609A priority Critical patent/JP5988420B2/en
Publication of JP2012161313A publication Critical patent/JP2012161313A/en
Application granted granted Critical
Publication of JP5988420B2 publication Critical patent/JP5988420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、葉菜類の生産方法に関する。   The present invention relates to a method for producing leafy vegetables.

昨今、健康志向から農作物に含まれるビタミン類やポリフェノールなどの機能性成分に対する関心が高まっており、農産物に含まれるビタミン類やポリフェノールの機能性成分は、活性酸素等のラジカルを除去する抗酸化活性があるため、機能性成分を多く含む農産物のニーズは高い。活性酸素は人体の細胞や組織に損傷を与え、癌、生活習慣病、老化を促進させる要因の一つとなっている。葉菜類は機能性成分を多く含む。   In recent years, interest in functional ingredients such as vitamins and polyphenols contained in agricultural products has increased due to health-consciousness. Therefore, there is a high need for agricultural products that contain many functional ingredients. Reactive oxygen is one of the factors that damage cells and tissues of the human body and promote cancer, lifestyle-related diseases, and aging. Leafy vegetables contain many functional ingredients.

一方、葉菜類の露地栽培は、天候の影響を受け生産量、品質が安定しないことから、高品質の葉菜類の周年栽培が望まれている。これを受けて近年では、天候の影響を受けない施設栽培や植物工場における周年生産が行われるようになった。   On the other hand, outdoor cultivation of leafy vegetables is affected by the weather, and the production and quality are not stable. Therefore, year-round cultivation of high-quality leafy vegetables is desired. In response to this, in recent years, year-round production has been carried out in plant cultivation and plant factories that are not affected by the weather.

従来の植物の品質向上に関する栽培方法としては、植物を養液栽培する際にホウ素、マンガン、鉄、銅などの混合微量要素や亜鉛、モリブデン、セレンから少なくとも一つの微量要素を含む養液を施設や工場内で灌水施用するか葉面散布し、ビタミン類やポリフェノール類を多く含む栽培方法が知られている(特許文献1参照)。   As a conventional cultivation method for improving the quality of plants, when a plant is hydroponically cultivated, a mixed nutrient element such as boron, manganese, iron, copper or a nutrient solution containing at least one trace element from zinc, molybdenum, selenium is provided. Or a cultivating method in which irrigation is applied in the factory or sprayed on the foliage and contains a large amount of vitamins and polyphenols is known (see Patent Document 1).

また、植物を栽培する際に黒酢を希釈した液体を葉面散布することにより抗酸化機能を向上させる栽培方法もある(特許文献2参照)。   Moreover, there is also a cultivation method that improves the antioxidant function by spraying a liquid obtained by diluting black vinegar when cultivating a plant (see Patent Document 2).

しかし、灌水施設の設備、葉面散布は作業コストがかかり、後者は特に大規模な植物工場では薬剤コストがかかる。そこで機能性成分の含有量を高めることのできる照射方法であれば、散布の必要がなく比較的低コストとなる。   However, equipment for irrigation facilities and foliar spraying are costly, and the latter is especially expensive for large plant factories. Then, if it is the irradiation method which can raise content of a functional component, there will be no need of spraying and it will become comparatively low cost.

係る照射方法は、栽培植物の明期に通常の生育条件下での光強度の5倍以上に上げて照射するものであり、これにより植物体ポリフェノールが増収される(特許文献3参照)。   This irradiation method is to irradiate the cultivated plant with a light intensity of 5 times or more of the light intensity under normal growth conditions, thereby increasing the yield of plant polyphenols (see Patent Document 3).

特開2006−304777号公報JP 2006-304777 A 特開2009−159855号公報JP 2009-159855 A 特開2003−9665号公報Japanese Patent Laid-Open No. 2003-9665

しかしながら、このような照射方法にあっては、光強度を通常の5倍以上に上げて照射しなければならず、しかも12時間照射する必要があるので、その照射時間の条件ではキャベツやホウレンソウなどは、長日で抽台して(薹が立って)花を咲かせるため、商品価値がなくなってしまうという問題がある。しかも、日長の照射ストレス与える条件が必ずしもその植物の最適な日長の照射条件とは限らない。従って、植物の品目によっては、日長の照明条件が制限されてしまう問題もある。品質管理の観点から、なるべく日長光の照射条件(照射時間、照射強度)は調節できるようにしておくべきである。   However, in such an irradiation method, it is necessary to increase the light intensity to 5 times or more than usual, and it is necessary to irradiate for 12 hours. There is a problem that the product value is lost because the lottery is drawn (the buds are standing) and the flowers are bloomed for a long time. In addition, the conditions for applying day length irradiation stress are not necessarily the optimum day length irradiation conditions for the plant. Therefore, depending on the item of the plant, there is a problem that the lighting condition of day length is limited. From the viewpoint of quality control, it should be possible to adjust the irradiation conditions (irradiation time, irradiation intensity) of day long light as much as possible.

本発明は、上記問題点に鑑みてなされたもので、生育中の葉菜類の日長照射条件を変更することなく葉菜類のビタミン類やポリフェノール類などの機能性成分の含有量の増加を図ることのできる緑色光を利用した葉菜類の生産方法を提供することを目的とする。   The present invention has been made in view of the above problems, and it is possible to increase the content of functional components such as vitamins and polyphenols in leaf vegetables without changing the day length irradiation conditions of growing leaf vegetables. An object of the present invention is to provide a method for producing leafy vegetables using green light.

本発明は、葉菜類の生産方法であって、暗黒条件下、前記葉菜類に緑色光のみを照射する照射工程を含み、前記照射工程により、前記葉菜類の機能性成分を増加させることを特徴とする。   The present invention is a method for producing leaf vegetables, which includes an irradiation step of irradiating the leaf vegetables only with green light under dark conditions, and the functional component of the leaf vegetables is increased by the irradiation step.

本発明によれば、生育中の葉菜類の日長照射条件を変更することなく葉菜類のビタミン類やポリフェノール類などの機能性成分の含有量を増加させることができる。   According to the present invention, the content of functional components such as vitamins and polyphenols in leafy vegetables can be increased without changing the day length irradiation conditions of growing leafy vegetables.

また、本発明によれば、生育中の葉菜類の硝酸態窒素を低下させることもできる。なお、硝酸態窒素とは、硝酸イオンのように酸化窒素の形で存在する窒素のことである。通常はNO3 -の形の硝酸イオンに金属が結合した硝酸塩の形で存在している。また、硝酸態窒素は通常、窒素化合物の酸化によって生じる最終生成物である。 Moreover, according to this invention, the nitrate nitrogen of leaf vegetables growing can also be reduced. In addition, nitrate nitrogen is nitrogen which exists in the form of nitric oxide like nitrate ions. Usually NO 3 - metal in the form of nitrate ions are present in the form of nitrate bound. Nitrate nitrogen is usually the final product produced by the oxidation of nitrogen compounds.

図1は、試験1のチンゲンサイの生育推移(個体数n=12)を照射強度別に示すグラフである。FIG. 1 is a graph showing the growth transition (number of individuals n = 12) of Chingensai in Test 1 according to irradiation intensity. 図2は、試験1のチンゲンサイの最大葉長、葉幅、葉数および地上部重量を照射強度別に示す表である。FIG. 2 is a table showing the maximum leaf length, leaf width, leaf number, and above-ground weight of Chingensai of Test 1 according to irradiation intensity. 図3(A)は、試験2のリーフレタス「晩抽レッドファイア」の生育推移(n=12)を照射強度別に示すグラフである。図3(B)は、試験2のリーフレタス「晩抽レッドファイア」の最大葉長および葉数を照射強度別に示す表である。FIG. 3A is a graph showing the growth transition (n = 12) of leaf lettuce “Evening Red Fire” in Test 2 according to irradiation intensity. FIG. 3B is a table showing the maximum leaf length and the number of leaves of the leaf lettuce “evening red fire” of Test 2 according to irradiation intensity. 図4は、試験2のリーフレタス「晩抽レッドファイア」の葉面積、根長および総ポリフェノールを照射強度別に示す表である。FIG. 4 is a table showing leaf area, root length, and total polyphenol by irradiation intensity of leaf lettuce “evening red fire” of Test 2. 図5(A)は、試験3のリーフレタス「フリルアイス」の単位重量あたりの総ポリフェノール量を照射強度別に示すグラフである。図5(B)は、試験3のリーフレタス「フリルアイス」の葉数、葉面積、葉色(SPAD値)および株径を示す表である。FIG. 5A is a graph showing the total amount of polyphenol per unit weight of leaf lettuce “Frill ice” in Test 3 according to irradiation intensity. FIG. 5B is a table showing the leaf number, leaf area, leaf color (SPAD value), and stock diameter of leaf lettuce “frilled ice” in Test 3. 図6(A)は、試験4のリーフレタス「晩抽レッドファイア」の単位重量あたりの総ポリフェノール量を照射強度別に示すグラフである。図6(B)は、試験4のリーフレタス「晩抽レッドファイア」の葉面積を照射強度別に示す表である。FIG. 6A is a graph showing the total amount of polyphenol per unit weight of leaf lettuce “evening red fire” of Test 4 according to irradiation intensity. FIG. 6B is a table showing the leaf area of leaf lettuce “Evening Red Fire” in Test 4 according to irradiation intensity. 図7(A)は、試験5のホウレンソウについて、照射強度別に、草丈を示すグラフである。図7(B)は、試験5のホウレンソウの株径、根長、地上部重量を示す表である。図7(C)は、試験5のホウレンソウのビタミンC含有量、総ポリフェノール量を示す表である。FIG. 7 (A) is a graph showing the plant height for each spin intensity of spinach of test 5. FIG. FIG. 7B is a table showing the stock diameter, root length, and above-ground part weight of spinach in Test 5. FIG. 7C is a table showing the vitamin C content and total polyphenol content of spinach in Test 5. 図8(A)は、試験6のバジルの主茎長、葉面積、葉色(SPAD値)、茎径および単位重量当りのビタミンCの量を照射強度別に示す表である。図8(B)は、単位重量あたりのビタミンCの量を示すグラフである。FIG. 8 (A) is a table showing the main stem length, leaf area, leaf color (SPAD value), stem diameter and amount of vitamin C per unit weight of test 6 according to irradiation intensity. FIG. 8B is a graph showing the amount of vitamin C per unit weight. 図9(A)は、試験7のオオバの写真を照射強度別に示す。図9(B)は、試験7のオオバの茎径、葉面積および葉色(SPAD値)を照射強度別に示す表である。FIG. 9 (A) shows photographs of the barley of Test 7 according to irradiation intensity. FIG. 9B is a table showing the stem diameter, leaf area, and leaf color (SPAD value) of the grasshopper of Test 7 according to irradiation intensity. 図10(A)(B)は、試験3−2におけるリーフレタス「フリルアイス」の生育に及ぼす影響を示す表及びグラフである。10 (A) and 10 (B) are a table and a graph showing the influence on the growth of leaf lettuce “frilled ice” in Test 3-2. 図11(A)(B)は、試験3−2におけるリーフレタス「フリルアイス」の品質に及ぼす影響を示すグラフである。FIGS. 11A and 11B are graphs showing the effect on the quality of leaf lettuce “frilled ice” in Test 3-2. 図12(A)(B)は、試験4−2におけるリーフレタス「晩抽レッドファイア」の生育に及ぼす影響を示す表及びグラフである。12 (A) and 12 (B) are a table and a graph showing the influence on the growth of leaf lettuce “Evening Red Fire” in Test 4-2. 図13(A)(B)(C)は、試験4−2におけるリーフレタス「晩抽レッドファイア」の品質に及ぼす影響を示すグラフである。FIGS. 13A, 13B, and 13C are graphs showing the influence on the quality of leaf lettuce “evening red fire” in Test 4-2. 図14(A)〜(D)は、試験5−2におけるホウレンソウの生育に及ぼす影響を示すグラフである。14 (A) to 14 (D) are graphs showing the influence of spinach on the growth of Test 5-2. 図15(A)(B)(C)は、試験5−2におけるホウレンソウの品質に及ぼす影響を示すグラフである。FIGS. 15A, 15B and 15C are graphs showing the influence on the quality of spinach in Test 5-2. 図16は、試験7−2におけるオオバの根の活性に及ぼす影響を示すグラフである。FIG. 16 is a graph showing the effect on the activity of roots of plantain in Test 7-2. 図17(A)(B)は、試験7−3におけるオオバの生育に及ぼす影響を示す表およびグラフである。17 (A) and 17 (B) are a table and a graph showing the effect on the growth of barley in Test 7-3. 図18(A)(B)(C)は、試験7−4におけるオオバの生育に及ぼす影響を示すグラフである。18 (A), (B), and (C) are graphs showing the effect on the growth of barn in Test 7-4. 図19(A)〜(E)は、試験7−4におけるオオバの品質に及ぼす影響を示すグラフである。19 (A) to 19 (E) are graphs showing the influence on the quality of the grass in Test 7-4. 図20は、試験7−5におけるオオバの葉の光沢に及ぼす影響を示すグラフである。FIG. 20 is a graph showing the effect on the gloss of the leaves of the plantain in Test 7-5. 図21は、試験8における葉菜類の生育に及ぼす影響を示すグラフである。FIG. 21 is a graph showing the influence on the growth of leaf vegetables in Test 8. 図22は、試験8における葉菜類の品質に及ぼす影響を示すグラフである。FIG. 22 is a graph showing the influence on the quality of leaf vegetables in Test 8.

本発明の前記照射工程において、照射強度が、0.1〜200μmol/m/sの範囲であり、照射時間が1〜5時間であることが好ましい。 In the said irradiation process of this invention, it is preferable that irradiation intensity | strength is the range of 0.1-200 micromol / m < 2 > / s, and irradiation time is 1 to 5 hours.

本発明の前記照射工程の前後の少なくとも一方において、前記葉菜類を暗黒条件下に置く暗黒工程を含むことが好ましい。この場合、前記暗黒条件下に置く時間が、1時間以上であることが好ましい。   It is preferable that at least one before and after the irradiation step of the present invention includes a dark step of placing the leaf vegetables under dark conditions. In this case, it is preferable that the time for the dark condition is 1 hour or longer.

本発明において、前記照射工程を複数回で間欠的に実施することが好ましい。この場合、前記照射工程の間欠的に実施する割合が、1〜7日に1回の割合又は週に1〜7回の割合であることが好ましい。   In this invention, it is preferable to implement the said irradiation process intermittently in multiple times. In this case, it is preferable that the rate of intermittently performing the irradiation step is a rate of once every 1 to 7 days or a rate of 1 to 7 times per week.

本発明において、前記機能性成分は、ポリフェノール及びビタミンCの少なくとも一方を含むことが好ましい。   In the present invention, the functional component preferably contains at least one of polyphenol and vitamin C.

次に、本発明について例を挙げて詳細に説明する。   Next, the present invention will be described in detail with examples.

本発明の葉菜類の生産方法は、暗黒条件下、葉菜類に対し、緑色光を照射する照射工程を含むことを特徴とする。前記照射工程により、葉菜類のビタミンC及びポリフェノール等の機能性成分の含有量が増加し、かつ、硝酸態窒素の含有量を低下させることができる。したがって、本発明は、別の観点から言えば、「前記照射工程を含む葉菜類の機能性成分の増加方法」、及び、「前記照射工程を含む葉菜類の硝酸態窒素の低下方法」ともいうことができる。   The leaf vegetable production method of the present invention includes an irradiation step of irradiating the leaf vegetable with green light under dark conditions. By the irradiation step, the content of functional components such as vitamin C and polyphenols in leaf vegetables can be increased, and the content of nitrate nitrogen can be decreased. Therefore, from another viewpoint, the present invention can also be referred to as “a method for increasing the functional components of leaf vegetables including the irradiation step” and “a method for reducing nitrate nitrogen in leaf vegetables including the irradiation step”. it can.

本発明において、前記葉菜類とは、主に葉の部分を食用とする植物をいう。前記葉菜類の例としては、ネギ、ワケギ、タマネギ、ラッキョウ、ニラ、ショウガ、ミョウガ、タデ類、ホウレンソウ、オカヒジキ、ツルナ、ツルムラサキ、ジュンサイ、ハス、ワサビダイコン、タイサイ、キョウナ、ヒサゴナ、アブラナ、ハクサイ、カブ、カラシナ、タカナ、タニクタカナ、ケール、カイラン、カリフラワー、キャベツ、メキャベツ、コールラビ、ブロッコリー、ワサビ、ダイコン、ハツカダイコン、ウオータークレス、サンショウ、アシタバ、セルリー、ミツバ、ニンジン、ウイキョウ、ハマボウフウ、セリ、パセリー、エンサイ、シソ、セージ、タイム、バジル、シュンギク、エンダイブ、チコリー、ツワブキ、スイゼンジナ、チシャ、カキチシャ、レタス、タチチシャ、フキ、ハーブ類等があげられる。   In the present invention, the leafy vegetables refer to plants that mainly use edible leaves. Examples of the leafy vegetables include leek, scallion, onion, rakkyo, leek, ginger, myoga, scallops, spinach, okajiki, tuna, tsurumasaki, junsai, lotus, horseradish, taisai, kyouna, hisagona, rape, hakusai, , Mustard, takana, tanikutakana, kale, kairan, cauliflower, cabbage, me cabbage, kohlrabi, broccoli, wasabi, Japanese radish, Japanese radish, watercress, salamander, seaweed, celery, honey bee, carrot, fennel, hamboufu, seri, parsley , Perilla, sage, thyme, basil, shungiku, endive, chicory, tsuwabuki, suizenjina, chisha, kakichisha, lettuce, tachichisha, fuki, herbs and the like.

本発明の生産方法は、前記照射工程を含む以外は、葉菜類の栽培方法と同様の方法で実施でき、例えば、肥料及び水の供給、生育のための光照射(自然光又は人工光)、温度管理等は、一般的な葉菜類の栽培方法を適用できる。また、本発明は、路地栽培及びハウス栽培を問わず適用できる。葉菜類への照射方法の一例としては、例えば、ビニル温室などの施設栽培における葉菜類や、育苗庫内で育苗における実生苗や接ぎ木苗に上述のように前記緑色光を照射する。   The production method of the present invention can be carried out in the same manner as the method for cultivating leafy vegetables except that it includes the irradiation step. For example, supply of fertilizer and water, light irradiation for growth (natural light or artificial light), temperature control For example, a general leaf vegetable cultivation method can be applied. Moreover, this invention is applicable regardless of alley cultivation and house cultivation. As an example of the method of irradiating the leafy vegetables, the green light is irradiated to the leafy vegetables in the facility cultivation such as a vinyl greenhouse or the seedlings and grafted seedlings in the nursery in the nursery stock as described above.

本発明の照射工程で照射する緑色光は、例えば、480nm〜560nmの波長域の光である。緑色光の光源は、緑色光を照射できるものであれば、特に制限されず、例えば、緑色蛍光灯、緑色LED(発光ダイオード)、緑色冷陰管、緑色アーク管等の緑色光の照明器具があげられる。この他に、太陽光、白色蛍光灯、白色灯等の光を緑色フィルターを透過させて緑色光に変換したものを葉菜類に照射してもよい。また、移動式の光源により葉菜類を順番に照射していく方法や、ミラーボール方式の反射光を使用する方法で葉菜類を照射してもよく、葉菜類の栽培形態や栽培場所に応じて選択することができる。   The green light irradiated in the irradiation process of the present invention is, for example, light having a wavelength range of 480 nm to 560 nm. The green light source is not particularly limited as long as it can emit green light. For example, a green light luminaire such as a green fluorescent lamp, a green LED (light emitting diode), a green cold cathode tube, and a green arc tube is used. can give. In addition to this, the leaf vegetables may be irradiated with light such as sunlight, white fluorescent light, and white light that has been transmitted through a green filter and converted to green light. In addition, leaf vegetables may be irradiated by a method of sequentially irradiating leaf vegetables with a mobile light source or a method using reflected light of a mirror ball method, and it should be selected according to the cultivation form and cultivation place of leaf vegetables. Can do.

前記緑色光の照射は、葉菜類の一部でもよいし全体でもよい。   The green light irradiation may be part or all of leafy vegetables.

本発明において、前記照射工程の照射条件は特に制限されない。照射強度は、0.1〜200μmol/m/sの範囲が好ましく、より好ましくは20〜80μmol/m/sの範囲である。照射時間は、1〜5時間が好ましく、より好ましくは、2〜4時間であり、さらに好ましくは2〜3時間である。なお、照射強度と照射時間との好ましい条件は負の相関関係がある場合があり、この場合、照射強度が強い場合は、照射時間を短くすることができる。また、前記照射工程の照射は、連続照射でもよいし、点滅を繰り返すような照射であってもよい。 In the present invention, the irradiation conditions in the irradiation step are not particularly limited. The irradiation intensity is preferably in the range of 0.1 to 200 μmol / m 2 / s, more preferably in the range of 20 to 80 μmol / m 2 / s. The irradiation time is preferably 1 to 5 hours, more preferably 2 to 4 hours, and further preferably 2 to 3 hours. Note that a preferable condition between the irradiation intensity and the irradiation time may have a negative correlation. In this case, when the irradiation intensity is strong, the irradiation time can be shortened. The irradiation in the irradiation step may be continuous irradiation or irradiation that repeats blinking.

前述のように、本発明において、前記照射工程の前後の少なくとも一方に、暗黒条件下に葉菜類を置く暗黒工程を設けることが好ましく、より好ましくは、前記照射工程の前後の双方に暗黒工程を設けることである。前記暗黒工程を設けることにより、葉菜類の機能性成分の向上及び硝酸態窒素の低下をより効果的に生じさせることが可能となる。前記暗黒工程の時間は、1時間以上が好ましく、より好ましくは2時間以上であり、さらに好ましくは3時間以上である。例えば、夜に前記照射工程及び暗黒工程を実施する場合、日没から数時間後に照射工程を1〜5時間(好ましくは2時間)実施して、そのまま日の出まで放置してもよい。また、暗黒条件は、夜を利用することも可能であるが、昼であっても、例えば、ビニールハウスをシート等で覆う等して太陽光を遮断して暗黒条件を実現することも可能である。   As described above, in the present invention, it is preferable to provide a dark process in which leaf vegetables are placed under dark conditions at least one before and after the irradiation process, and more preferably, a dark process is provided both before and after the irradiation process. That is. By providing the dark process, it is possible to more effectively cause the functional components of leafy vegetables to be improved and nitrate nitrogen to be reduced. The time for the dark process is preferably 1 hour or longer, more preferably 2 hours or longer, and further preferably 3 hours or longer. For example, when the irradiation process and the dark process are performed at night, the irradiation process may be performed for 1 to 5 hours (preferably 2 hours) several hours after sunset and left as it is until sunrise. The dark conditions can be used at night, but even in the daytime, it is possible to realize the dark conditions by blocking sunlight, for example, by covering a greenhouse with a sheet or the like. is there.

前述のように、本発明において、前記照射工程は、複数回(2回以上)で、間欠的に実施することが好ましい。本発明において、「間欠的に実施する」とは、照射工程と照射工程との間に一定時間を置くことを意味する。前記照射工程と照射工程との間の一定時間は、特に制限されず、時間で表現する場合は、例えば、1〜168時間、1〜144時間、1〜120時間、1〜96時間、1〜72時間、1〜48時間、1〜24時間、1〜12時間、1〜6時間である。また、間欠的な照射工程の割合を、日で表現する場合、照射工程の実施の割合は、例えば、1〜7日に1回〜3回若しくは1回〜2回、2〜6日に1回若しくは2回、好ましくは、3日に1回若しくは2回であり、週で表現する場合は、週に1〜7回、好ましくは週に2回若しくは3回である。なお、間欠的な照射工程は、照射と照射との間に一定時間を置く限り、毎日実施してもよい。また、間欠的な照射工程において、照射時間と間欠照射の割合との関係は、例えば、照射時間が1〜5時間、好ましくは2〜4時間、より好ましくは2〜3時間の照射工程を、日で表現する場合、照射工程の実施の割合は、例えば、1〜7日に1回〜3回若しくは1回〜2回、2〜6日に1回若しくは2回、好ましくは、3日に1回若しくは2回であり、週で表現する場合は、週に1〜7回、好ましくは週に2回若しくは3回である。間欠的な照射工程において、前記照射工程と照射工程との間の一定時間は、前記暗黒工程を兼ねていてもよい。この場合の暗黒工程の条件は、前述のとおりである。   As described above, in the present invention, it is preferable that the irradiation step is intermittently performed a plurality of times (two times or more). In the present invention, “perform intermittently” means that a certain time is placed between the irradiation process. The fixed time between the irradiation process and the irradiation process is not particularly limited, and when expressed in time, for example, 1 to 168 hours, 1 to 144 hours, 1 to 120 hours, 1 to 96 hours, 1 to 96 hours, 72 hours, 1-48 hours, 1-24 hours, 1-12 hours, 1-6 hours. Moreover, when expressing the ratio of an intermittent irradiation process with a day, the ratio of implementation of an irradiation process is 1 to 3 times or 1 to 2 times for 1 to 7 days, 1 to 2 to 6 days, for example. Once or twice, preferably once or twice every three days. When expressed in weeks, it is 1 to 7 times a week, preferably 2 or 3 times a week. Note that the intermittent irradiation process may be performed every day as long as a certain time is provided between the irradiation. Moreover, in the intermittent irradiation process, the relationship between the irradiation time and the ratio of the intermittent irradiation is, for example, an irradiation process in which the irradiation time is 1 to 5 hours, preferably 2 to 4 hours, more preferably 2 to 3 hours. When expressed in days, the rate of performing the irradiation step is, for example, 1 to 3 times or 1 to 2 times in 1 to 7 days, 1 or 2 times in 2 to 6 days, preferably 3 days. Once or twice, when expressed in a week, it is 1 to 7 times a week, preferably 2 or 3 times a week. In the intermittent irradiation process, a certain time between the irradiation process and the irradiation process may also serve as the dark process. The conditions of the dark process in this case are as described above.

緑色光照射の具体例としては、例えば、前後に1時間以上の暗黒工程を設けて照射強度20μmol/m/sの緑色光を2時間照射する照射工程を、3日に一回又は週に2回若しくは3回の割合で実施することを、葉菜類の育成期間中に実施することがあげられる。なお、本発明は、葉菜類の育成期間の全期間または一部の期間で実施することが好ましい。前記育成期間とは、例えば、出芽から収穫までの期間をいう。 As a specific example of the green light irradiation, for example, an irradiation process in which a dark process for 1 hour or more is provided before and after and green light with an irradiation intensity of 20 μmol / m 2 / s is irradiated for 2 hours is once every three days or once a week. Implementing at a rate of 2 or 3 times can be performed during the leaf vegetable growing period. In addition, it is preferable to implement this invention in the whole period or the one part period of the cultivation period of leaf vegetables. The growing period refers to a period from emergence to harvesting, for example.

以下、実施例(試験)および対照区により、この発明を説明するが、実施例によりこの発明は何等限定されるものではない。   Hereinafter, the present invention will be described with reference to examples (tests) and control groups, but the present invention is not limited to the examples.

[試験1]
葉菜類(チンゲンサイ)を用いた水耕栽培において、緑色光を照射しながら栽培を行い生育に及ぼす緑色光照射の影響を調査した。また、比較例として、白色光を照射しながら栽培を行い、生育に及ぼす影響を調査した。
[Test 1]
In hydroponics using leafy vegetables (Chingensai), cultivation was performed while irradiating green light, and the effect of green light irradiation on growth was investigated. Moreover, as a comparative example, cultivation was performed while irradiating white light, and the influence on growth was investigated.

[材料および方法]
(材料)
供試材料としてチンゲンサイ「クーニャン」(サカタのタネ)を用いた。ウレタン培地に播種し、公知の育苗方法で2週間育苗した苗を用いた。
(水耕栽培の試験条件)
育苗したチンゲンサイを、プレハブ庫内に設置したNFT水耕栽培装置に定植し、各試験区と対照区とに分けて栽培を開始した。試験区1,2では緑色光を照射し、対照区1では白色光を照射した。この照射はNFT水耕栽培装置に設置した緑色蛍光灯又は白色蛍光灯を用いた。
[Materials and methods]
(material)
Chingensai “Cunyan” (Sakata Seed) was used as a test material. The seedlings that were sown in a urethane medium and grown for 2 weeks by a known seedling raising method were used.
(Test conditions for hydroponics)
The seedlings that were raised were planted in an NFT hydroponic cultivation apparatus installed in a prefabricated warehouse, and cultivation was started separately for each test group and control group. In test groups 1 and 2, green light was irradiated, and in control group 1, white light was irradiated. For this irradiation, a green fluorescent lamp or a white fluorescent lamp installed in the NFT hydroponic cultivation apparatus was used.

各区の照射は、日照や補光をチンゲンサイに当てていない暗黒時(例えば22〜24時)に行った。この照射は照射日ごとに略同じ時間帯に行った。   Irradiation of each section was performed in the dark (for example, 22:00 to 24:00) when sunshine and supplementary light were not applied to Ching Gensai. This irradiation was performed at substantially the same time zone for each irradiation day.

試験区1,2では、チンゲンサイの露出部全体に緑色光を照射し、光の照射強度を80μmol/m/s(試験区1)、40μmol/m/s(試験区2)とし、照射時間:2時間/回、照射頻度:1回/3日とした。 In the test groups 1 and 2 , green light is irradiated to the whole exposed part of the chingensai, and the light irradiation intensity is set to 80 μmol / m 2 / s (test group 1) and 40 μmol / m 2 / s (test group 2). Time: 2 hours / time, irradiation frequency: 1 time / 3 days.

対照区1では、チンゲンサイの露出部全体に白色光を照射し、光の照射強度:80μmol/m/s、照射時間:2時間/回、照射頻度:1回/3日とした。 In the control group 1, the whole exposed part of the chingensai was irradiated with white light, the light irradiation intensity: 80 μmol / m 2 / s, the irradiation time: 2 hours / time, and the irradiation frequency: once / 3 days.

対照区2では、無照射(0μmol/m/s)で栽培を行った。 In the control group 2, the cultivation was performed without irradiation (0 μmol / m 2 / s).

他の栽培条件は、プレハブ庫内の栽培温度20℃、人工日長12時間とするなど試験区1,2と対照区1,2で同一とし、公知のNFT水耕栽培方法に従った。
(調査項目)
栽培期間中、定期的に各区(17株)において、生育調査(最大葉長、葉幅、葉数、地上部重量)、葉色調査、葉中の成分分析(ビタミンC、総ポリフェノール)を行った。
Other cultivation conditions were the same in the test groups 1 and 2 and the control groups 1 and 2 such that the cultivation temperature in the prefabricated warehouse was 20 ° C. and the artificial day length was 12 hours, and the known NFT hydroponics method was followed.
(Survey item)
During the cultivation period, in each ward (17 strains), a growth survey (maximum leaf length, leaf width, number of leaves, above-ground weight), leaf color survey, and component analysis (vitamin C, total polyphenol) were conducted. .

葉色(SPAD値)の調査の結果から、葉菜類の窒素栄養状態を知ることができる。これは窒素含量が多くなると葉緑素含量が多くなり葉の緑色が濃くなることによる。
(結果)
チンゲンサイに緑色光照射しながら水耕栽培を行い生育への影響を調査した。
From the results of the leaf color (SPAD value) investigation, the nitrogen nutrition status of leafy vegetables can be known. This is because as the nitrogen content increases, the chlorophyll content increases and the green color of the leaves increases.
(result)
Hydroponics was carried out while irradiating green radish with green light, and the influence on growth was investigated.

図1および図2に、各区のチンゲンサイの生育推移(最大葉長、葉幅、葉数および地上部重量)を示す。   In FIG. 1 and FIG. 2, the growth transition (maximum leaf length, leaf width, the number of leaves, and the weight of the above-ground part) of Chingensai in each section is shown.

図1に示すように、緑色光を照射した試験区1,2で最大葉長が増加する傾向が見られた。図2の表1に示すように、緑色光を照射した試験区1,2で最大葉長、葉幅、葉数、地上部重量について有意な増加が見られた。   As shown in FIG. 1, the maximum leaf length tended to increase in the test groups 1 and 2 irradiated with green light. As shown in Table 1 of FIG. 2, significant increases were observed for the maximum leaf length, the leaf width, the number of leaves, and the above-ground weight in Test Groups 1 and 2 irradiated with green light.

一方、白色光を照射した対照区1では、緑色光を照射した試験区1,2ほどには生育促進されなかった。   On the other hand, in the control group 1 irradiated with white light, the growth was not promoted as much as the test groups 1 and 2 irradiated with green light.

試験区1,2で、最終的に最大葉長がほぼ同じとなるが地上部重量、葉幅で優るので試験区1のように80(μmol/m/s)が好ましい。 In the test groups 1 and 2, the maximum leaf length is finally almost the same, but the ground part weight and the leaf width are superior, so 80 (μmol / m 2 / s) is preferable as in the test group 1.

[試験2]
供試材料として赤系のリーフレタス「晩抽レッドファイア」(タキイ種苗(株))の苗を用いたこと以外は、試験1と同様にして、生育に及ぼす緑色光照射の影響を調査した。照射強度80μmol/m/sの試験区を試験区3、照射強度40μmol/m/sの試験区を試験区4とした。また、比較例として、供試材料を前記「晩抽レッドファイア」とした以外は試験1の対照区1と同様にして、白色光が生育に及ぼす影響を調査した(対照区3)。また、無照射を対照区4とした。その結果を図3に示す。
(結果)
リーフレタス「晩抽レッドファイア」に緑色光照射しながら水耕栽培を行い生育への影響を調査した。
[Test 2]
The effect of green light irradiation on growth was investigated in the same manner as in Test 1 except that seedlings of red leaf lettuce “Evening Red Fire” (Takii Seedling Co., Ltd.) were used as test materials. Irradiation intensity 80μmol / m 2 / s of the test group to test group 3 were the test groups of the irradiation intensity 40μmol / m 2 / s and test group 4. In addition, as a comparative example, the influence of white light on growth was investigated in the same manner as in the control group 1 of the test 1 except that the test material was the above-mentioned “evening red fire” (control group 3). In addition, non-irradiation was designated as control group 4. The result is shown in FIG.
(result)
Hydroponic cultivation was carried out while irradiating green leaf light to leaf lettuce “Evening Red Fire”, and the effect on growth was investigated.

図3(A)および図3(B)に、各区の生育推移(最大葉長、葉数)を示す。   FIG. 3 (A) and FIG. 3 (B) show the growth transition (maximum leaf length, number of leaves) in each section.

図3(A)に示すように、緑色光を照射した試験区3,4では、白色光照射と比べて、最終的に最大葉長が増加する傾向が見られた。また、図3(B)の表2に示すように、緑色光を照射した試験区3,4で最大葉長、葉数について有意な増加が見られた。なお、表2において、「緑色光80」が試験区3、「緑色光40」が試験区4である。   As shown in FIG. 3 (A), in the test sections 3 and 4 irradiated with green light, there was a tendency that the maximum leaf length finally increased as compared with the white light irradiation. Moreover, as shown in Table 2 of FIG. 3 (B), significant increases were observed in the maximum leaf length and the number of leaves in the test sections 3 and 4 irradiated with green light. In Table 2, “green light 80” is test group 3, and “green light 40” is test group 4.

一方、白色光を照射した対照区3では、緑色光を照射した試験区ほどには生育が促進されなかった。   On the other hand, in the control group 3 irradiated with white light, the growth was not promoted as much as the test group irradiated with green light.

また、葉面積、根長、総ポリフェノール量を調査した。図4の表3に示すように、緑色光を照射した試験区3および4では、無照射と比較して葉面積、根長が増加し、生育促進効果が得られた。また、総ポリフェノール量について、試験区4では631mg/100g、試験区3では584mg/100gとなり、無照射と比較して総ポリフェノール量が増加した。   In addition, leaf area, root length, and total polyphenol content were investigated. As shown in Table 3 of FIG. 4, in the test sections 3 and 4 irradiated with green light, the leaf area and root length were increased as compared with non-irradiation, and a growth promoting effect was obtained. Moreover, about the total polyphenol amount, it was 631 mg / 100g in the test group 4, and 584 mg / 100g in the test group 3, and the total polyphenol amount increased compared with non-irradiation.

弱い照射強度の試験区4(40μmol/m/s)で総ポリフェノールが増えた理由は、リーフレタス「晩抽レッドファイア」は赤色系の葉色であり、緑色系の葉色を有する他の葉菜類とは、緑色光の浸透度合が異なり、生育、ポリフェノール生産に適した緑色光の光量のピークが異なることによると考えられる。 The reason for the increase in total polyphenols in the test group 4 (40 μmol / m 2 / s) with low irradiation intensity is that leaf lettuce “Even Red Red Fire” has a red leaf color and other leaf vegetables having a green leaf color. This is considered to be due to the difference in the degree of penetration of green light and the difference in the peak of the amount of green light suitable for growth and polyphenol production.

また、図3の表2の結果から、リーフレタス「晩抽レッドファイア」の2週齢苗に対する照射開始時点から約10日までは緑色光を40μmol/m/sで照射し、それ以降は80μmol/m/sに変更するようにしてもよい。 In addition, from the results in Table 2 of FIG. 3, green light was irradiated at 40 μmol / m 2 / s from the start of irradiation to the 2-week-old seedlings of leaf lettuce “Evening Red Fire” from about 10 days, and thereafter You may make it change to 80 micromol / m < 2 > / s.

[試験3]
緑系のリーフレタス「フリルアイス」(雪印種苗(株))を用いたNFT水耕栽培において、緑色光を照射しながら栽培を行い、生育及び品質に及ぼす緑色光照射の影響を調査した。
(材料)
「フリルアイス」をウレタン培地に播種し、公知の育苗方法で2週間育苗した苗を用いた。
(水耕栽培の試験条件)
育苗したリーフレタスの苗を、ビニル温室に設置したNFT水耕栽培装置に定植し、各試験区と対照区とに分けて栽培を開始した。試験区5〜7では緑色光を照射し、対照区5では無照射とした。この照射はNFT水耕栽培装置に設置した緑色蛍光灯を用いた。
[Test 3]
In NFT hydroponics using green leaf lettuce “Frill Ice” (Snow Brand Seed Co., Ltd.), cultivation was performed while irradiating with green light, and the influence of green light irradiation on growth and quality was investigated.
(material)
“Frill ice” was sown on a urethane medium, and seedlings grown for 2 weeks by a known seedling raising method were used.
(Test conditions for hydroponics)
The seedlings of leaf lettuce that had been nurtured were planted in an NFT hydroponic cultivation apparatus installed in a vinyl greenhouse, and cultivation was started separately for each test group and control group. In test groups 5 to 7, green light was irradiated, and in control group 5, no irradiation was performed. For this irradiation, a green fluorescent lamp installed in an NFT hydroponic cultivation apparatus was used.

各区の照射は、日照や補光を「フリルアイス」に当てていない暗黒時(例えば22〜24時)に行った。この照射は照射日ごとに略同じ時間帯に行った。   Irradiation of each section was performed in the dark (for example, 22:00 to 24:00) when sunlight and supplementary light were not applied to the “frill ice”. This irradiation was performed at substantially the same time zone for each irradiation day.

試験区5〜7では、「フリルアイス」の露出部全体に緑色光を照射し、光の照射強度をそれぞれ、20μmol/m/s(試験区5)、40μmol/m/s(試験区6)、80μmol/m/s(試験区7)とし、照射時間:2時間/回、照射頻度:1回/3日とした。 In test group 5-7, the green light is irradiated to the entire exposed portion of the "furyl ice", respectively irradiation intensity of light, 20μmol / m 2 / s (test group 5), 40μmol / m 2 / s ( test group 6), 80 μmol / m 2 / s (test group 7), irradiation time: 2 hours / time, irradiation frequency: 1 time / 3 days.

対照区5では、「フリルアイス」に対し無照射で生育させた。   In the control group 5, “frill ice” was grown without irradiation.

他の栽培条件は、定期的に20〜35℃、自然日長とするなど試験区5〜7および対照区5で同一とし、公知のNFT水耕栽培方法に従った。
(調査項目)
培期間中、定期的に各区(10株)において、生育調査(葉数、葉面積、株径)、葉色調査(SPAD)、成分分析(総ポリフェノール)を行った。この結果を図5に示す。
(結果)
リーフレタス「フリルアイス」に緑色光照射しながらNFT水耕栽培を行い生育への影響を調査した。
Other cultivation conditions were the same in the test groups 5 to 7 and the control group 5 such as 20 to 35 ° C. and natural day length regularly, and the known NFT hydroponics method was followed.
(Survey item)
During each culturing period, growth surveys (number of leaves, leaf area, stock diameter), leaf color survey (SPAD), and component analysis (total polyphenols) were conducted in each group (10 strains). The result is shown in FIG.
(result)
NFT hydroponic cultivation was conducted while irradiating leaf lettuce “Frill Ice” with green light to investigate the influence on growth.

対象植物の生育への影響については、図5(B)の表4に示すように、無照射区(対照区5)を基準とした場合に、照射強度20μmol/m/s(試験区5)で葉面積、株径が増加し、生育促進効果が得られた。 Regarding the influence on the growth of the target plant, as shown in Table 4 of FIG. 5 (B), when the non-irradiated group (control group 5) is used as a reference, the irradiation intensity is 20 μmol / m 2 / s (test group 5). ) Increased the leaf area and the stock diameter, and the growth promoting effect was obtained.

総ポリフェノール含有量は、図5(A)に示すように、照射強度20μmol/m/s(試験区5)、40μmol/m/s(試験区6)において、無照射と比較して増加した。なお、総ポリフェノール含有量は収穫時のものを示す。 As shown in FIG. 5 (A), the total polyphenol content is increased as compared with no irradiation at irradiation intensity of 20 μmol / m 2 / s (test group 5) and 40 μmol / m 2 / s (test group 6). did. In addition, total polyphenol content shows the thing at the time of harvest.

総ポリフェノール含有量と生育度合の関係から、総ポリフェノール含有量が増加する約50μmol/m/s以下の照射強度の範囲で最も生育が高まる約20μmol/m/s前後の照射強度が特に好ましい。 From the relationship between the total polyphenol content and the degree of growth, an irradiation intensity of about 20 μmol / m 2 / s, in which the growth is highest in the range of irradiation intensity of about 50 μmol / m 2 / s or less where the total polyphenol content increases, is particularly preferable. .

[試験3−2]
試験3と同様にして、草丈、根長、根の活性の調査を行った。また、照射強度を20μmol/m/sとした以外は、試験3と同様にして、ビタミンC、硝酸態窒素含有量の調査を行った。本試験において、試料数(n)は、図10および図11に示すとおりとした。
[Test 3-2]
In the same manner as in Test 3, plant height, root length, and root activity were investigated. Further, vitamin C and nitrate nitrogen content were investigated in the same manner as in Test 3 except that the irradiation intensity was 20 μmol / m 2 / s. In this test, the number of samples (n) was as shown in FIGS.

その結果を、図10、図11に示す。図10(A)に示すように、無照射と比較して、緑色光照射によって草丈、根長が増加した。また、図10(B)に示すように、無照射と比較して、40μmol/m/s、80μmol/m/sの緑色光照射によって、根のTTC活性が増加した。また、図11(A)に示すように、無照射と比較して、緑色光照射によってビタミンC含有量が増加した。さらに、図11(B)に示すように、無照射と比較して、緑色光照射によって、人体に悪影響を及ぼす可能性のある硝酸態窒素の含有量が低下した。 The results are shown in FIGS. As shown in FIG. 10A, the plant height and root length were increased by green light irradiation as compared to non-irradiation. Further, as shown in FIG. 10 (B), as compared with the non irradiated, 40μmol / m 2 / s, the green light irradiation of 80μmol / m 2 / s, TTC activity roots increased. Moreover, as shown to FIG. 11 (A), vitamin C content increased by green light irradiation compared with non-irradiation. Furthermore, as shown in FIG. 11B, the content of nitrate nitrogen, which may adversely affect the human body, was reduced by green light irradiation as compared to non-irradiation.

[試験4]
材料として「晩抽レッドファイア」(タキイ種苗(株))を用いた以外は、試験3と同様に試験を行った。
[Test 4]
The test was conducted in the same manner as in Test 3 except that “Evening Red Fire” (Takii Seedling Co., Ltd.) was used as the material.

すなわち、各区の緑色光の照射強度を20μmol/m/s(試験区8)、40μmol/m/s(試験区9)、80μmol/m/s(試験区10)、無照射(対照区6)とする等、試験3と同様に行った。その結果を図6に示す。
(結果)
対象植物の生育に与える緑色光照射の影響については、図6(B)の表5に示すように、無照射区(対照区6)を基準とした場合、照射強度20〜80μmol/m/s(試験区8〜10)のときに対象植物の葉面積が増加した。また、これらの結果から、照射強度20μmol/m/s未満で照射した場合や80μmol/m/sを超える範囲で照射した場合にも、植物の生育が促進されることが分かる。
That is, the irradiation intensity of the green light of each group 20μmol / m 2 / s (test group 8), 40μmol / m 2 / s ( test group 9), 80μmol / m 2 / s ( test section 10), non-irradiated (control The test was conducted in the same manner as in Test 3 such as “Cut 6). The result is shown in FIG.
(result)
About the influence of the green light irradiation on the growth of the target plant, as shown in Table 5 of FIG. 6 (B), when the non-irradiated group (control group 6) is used as a reference, the irradiation intensity is 20 to 80 μmol / m 2 / The leaf area of the target plant increased at s (test zone 8 to 10). These results also show that plant growth is promoted when irradiated at an irradiation intensity of less than 20 μmol / m 2 / s or when irradiated at a range exceeding 80 μmol / m 2 / s.

総ポリフェノール含有量については、図6(A)に示すように、照射強度20〜80μmol/m/s(試験区8〜10)のときに増加したが、これらの結果から、照射強度20μmol/m/s未満で照射した場合や80μmol/m/sを超える範囲で照射した場合でも、増加することが分かる。 As shown in FIG. 6 (A), the total polyphenol content increased when the irradiation intensity was 20 to 80 μmol / m 2 / s (test section 8 to 10). From these results, the irradiation intensity was 20 μmol / It can be seen that even when irradiated at less than m 2 / s or when irradiated at a range exceeding 80 μmol / m 2 / s, it increases.

試験区8〜10の中では、照射強度80μmol/m/s(試験区10)のときに最も総ポリフェノール含有量が増加した。これは、緑系のリーフレタス「フリルアイス」と対照的である。 Among the test groups 8 to 10, the total polyphenol content increased most when the irradiation intensity was 80 μmol / m 2 / s (test group 10). This is in contrast to the green leaf lettuce “Frill Ice”.

同じリーフレタスでありながら、赤系のリーフレタス「レッドファイア」では、緑系のリーフレタス「フリルアイス」と比較して、緑色光の照射強度に応じて総ポリフェノール含有量が増加し、植物体の単位重量当りの総ポリフェノール含有量が約2倍程度となった(図5(A)と図6(A)を対比して参照)。   The red leaf lettuce “Red Fire” is the same leaf lettuce, but the total polyphenol content increases according to the irradiation intensity of green light, compared to the green leaf lettuce “Frill Ice”. The total polyphenol content per unit weight was about doubled (see FIG. 5 (A) and FIG. 6 (A) in comparison).

[試験4−2]
試験4と同様にして、草丈、根長、根の活性の調査を行った。また、照射強度を80μmol/m/sとした以外は、試験4と同様にして、抗酸化能、ビタミンC、硝酸態窒素含有量の調査を行った。本試験において、試料数(n)は、図12および図13に示すとおりとした。
[Test 4-2]
In the same manner as in Test 4, plant height, root length, and root activity were examined. Further, the antioxidant ability, vitamin C, and nitrate nitrogen content were investigated in the same manner as in Test 4 except that the irradiation intensity was set to 80 μmol / m 2 / s. In this test, the number of samples (n) was as shown in FIGS.

その結果を、図12、図13に示す。図12(A)に示すように、無照射と比較して、緑色光照射によって、草丈、根長が増加した。また、図12(B)に示すように、無照射と比較して、20μmol/m/s、80μmol/m/sの緑色光照射によって、根のTTC活性が増加した。また、図13(A)および(B)に示すように、無照射と比較して、緑色光照射によって、抗酸化能およびビタミンC含有量が増加した。さらに、図13(C)に示すように、無照射と比較して、緑色光照射によって、硝酸態窒素の含有量は低下した。 The results are shown in FIGS. As shown in FIG. 12 (A), the plant height and root length were increased by green light irradiation as compared to non-irradiation. In addition, as shown in FIG. 12B, root TTC activity was increased by 20 μmol / m 2 / s and 80 μmol / m 2 / s green light irradiation as compared to no irradiation. Moreover, as shown to FIG. 13 (A) and (B), compared with non-irradiation, antioxidant ability and vitamin C content increased by green light irradiation. Furthermore, as shown in FIG. 13C, the content of nitrate nitrogen was reduced by green light irradiation as compared to non-irradiation.

[試験5]
ホウレンソウの水耕栽培で、緑色光を照射しつつ栽培を行い、生育に及ぼす緑色光照射の影響を調べた。
(材料)
使用したホウレンソウの品種には「アクティオン」(サカタのタネ)を用いた。ウレタン培地に播種し、公知の育苗方法で2週間育苗したものを用いた。
(水耕栽培の試験条件)
育苗したホウレンソウの苗を、ビニル温室内に設置したNFT水耕栽培装置に定植し、各試験区と対照区とに分けて栽培を開始した。試験区11〜13では緑色光を照射し、対照区7では無照射とした。この照射はNFT水耕栽培装置に設置した緑色蛍光灯を用いた。
[Test 5]
In hydroponic cultivation of spinach, cultivation was performed while irradiating green light, and the influence of green light irradiation on growth was examined.
(material)
The spinach variety used was "Action" (Sakata Seed). What was seed | inoculated to the urethane culture medium and was raised for 2 weeks by the well-known seedling raising method was used.
(Test conditions for hydroponics)
The seedlings of spinach grown were planted in an NFT hydroponic cultivation apparatus installed in a vinyl greenhouse, and cultivation was started separately for each test group and control group. In test groups 11 to 13, green light was irradiated, and in control group 7, no irradiation was performed. For this irradiation, a green fluorescent lamp installed in an NFT hydroponic cultivation apparatus was used.

各区の照射は、日照や補光をホウレンソウに当てていない暗黒時(例えば22〜24時)に行った。この照射は照射日ごとに略同じ時間帯に行った。   Irradiation of each section was performed in the dark (for example, 22:00 to 24:00) when sunlight and supplementary light were not applied to the spinach. This irradiation was performed at substantially the same time zone for each irradiation day.

試験区11〜13では、ホウレンソウの地上露出部全体に緑色光を照射し、光の照射強度を40μmol/m/s(試験区11)、60μmol/m/s(試験区12)、80μmol/m/s(試験区13)とし、照射時間:2時間/回、照射頻度:1回/3日とした。 In the test groups 11 to 13, the entire ground exposed portion of spinach is irradiated with green light, and the light irradiation intensity is 40 μmol / m 2 / s (test group 11), 60 μmol / m 2 / s (test group 12), 80 μmol. / M 2 / s (test section 13), irradiation time: 2 hours / time, irradiation frequency: 1 time / 3 days.

他の栽培条件は、栽培温度10〜25℃、自然日長とする等、試験区11〜13及び対照区7で同一とし、公知のNFT水耕栽方法に従った。
(調査項目)
栽培期間中、定期的に各区(10株)において、生育調査(草丈、株径、根長、地上部重量)、葉中の成分分析(ビタミンC、総ポリフェノール)を行った。
(結果)
葉菜類(ホウレンソウ)に緑色光を照射しながら水耕栽培を行い生育への影響を調べた。
Other cultivation conditions were the same in the test groups 11 to 13 and the control group 7 such as a cultivation temperature of 10 to 25 ° C. and a natural day length, and the known NFT hydroponic method was followed.
(Survey item)
During the cultivation period, in each section (10 strains), a growth survey (plant height, stock diameter, root length, above-ground weight) and component analysis in leaves (vitamin C, total polyphenol) were conducted.
(result)
Hydroponics was performed while irradiating green leaf light to spinach (spinach), and the effect on growth was examined.

図7にホウレンソウの生育への緑色光照射の影響を示した。   FIG. 7 shows the effect of green light irradiation on the growth of spinach.

図7(A)に示すように、栽培中に緑色光を40〜80μmol/m/s照射した試験区11〜13で生育が促進され草丈が有意に増加した。また、図7(B)に示すように、無照射と比較して、緑色光照射によって、株径、根長、地上部重量が有意に増加した。 As shown to FIG. 7 (A), growth was accelerated | stimulated and the plant height increased significantly in the test sections 11-13 which irradiated green light 40-80micromol / m < 2 > / s during cultivation. Moreover, as shown in FIG.7 (B), compared with non-irradiation, a stock diameter, a root length, and the above-ground part weight increased significantly by green light irradiation.

また、図7(C)にホウレンソウ葉の成分分析結果を示した。図7(C)に示すように、40μmol/m/s、80μmol/m/sの緑色光照射により、ビタミンCおよび総ポリフェノールの含有量が増加した。 Moreover, the component analysis result of the spinach leaf was shown in FIG.7 (C). As shown in FIG. 7 (C), 40μmol / m 2 / s, the green light irradiation of 80μmol / m 2 / s, the content of vitamin C and total polyphenols were increased.

ホウレンソウでは緑色光を照射しながら栽培した結果、有意に生育が促進される結果となった。   As a result of cultivating spinach while irradiating with green light, the growth was significantly promoted.

[試験5−2]
光源として緑色LEDロープライトを用い、前記ロープライトを株元に設置した区と、株の上方に設置した区とを設け、前記ロープライトを株元に設置した区においては、照射強度5〜40μmol/m/s、株上方に設置した区においては、照射強度40μmol/m/sとした以外は、試験5と同様にして、生育調査(地上部新鮮重、株径、草丈、根のTTC活性)および品質調査(総ポリフェノール量、ビタミンC、硝酸態窒素含有量)を行った。本試験において、試料数(n)は、図14および図15に示すとおりとした。
[Test 5-2]
Using a green LED rope light as a light source, a section where the rope light is installed at the stock and a section where the rope light is installed above the stock are provided, and the irradiation intensity is 5 to 40 μmol in the section where the rope light is installed at the stock. / M 2 / s, in the section placed above the strain, growth investigation (ground fresh weight, stock diameter, plant height, roots, etc.) was conducted in the same manner as in Test 5 except that the irradiation intensity was 40 μmol / m 2 / s. TTC activity) and quality survey (total polyphenol content, vitamin C, nitrate nitrogen content). In this test, the number of samples (n) was as shown in FIGS.

その結果を、図14および図15に示す。図14(A)〜(D)に示すように、無照射と比較して、緑色光照射によって、地上部新鮮重、株径、草丈および根のTTC活性が増加した。また、図15(A)〜(C)に示すように、無照射と比較して、緑色光照射により、総ポリフェノール量およびビタミンC含有量が増加し、硝酸態窒素の含有量が低下した。   The results are shown in FIG. 14 and FIG. As shown in FIGS. 14 (A) to (D), compared with no irradiation, green light irradiation increased the above-ground fresh weight, strain diameter, plant height, and TTC activity of roots. Moreover, as shown to FIG.15 (A)-(C), compared with non-irradiation, the amount of total polyphenol and vitamin C content increased, and the content of nitrate nitrogen fell by green light irradiation.

[試験6]
バジルを用いたロックウール栽培で緑色光を照射しながら栽培を行い、生育および品質に及ぼす緑色光照射の影響を調査した。
(材料)
使用したバジルの品種には「スイートバジル」(タキイ種苗)を用いた。ロックウールキューブに播種し、公知の育苗方法で約4週間育苗したものを用いた。
(ロックウール栽培の試験条件)
育てたバジルの苗をビニル温室内に設置したロックウールの栽培ベッドに定植し、栽培を開始した。緑色光の照射には緑色蛍光灯を用いた。
[Test 6]
Cultivation was performed while irradiating green light in rock wool cultivation using basil, and the effect of green light irradiation on growth and quality was investigated.
(material)
As a variety of basil used, “sweet basil” (Takii seedling) was used. What was seed | inoculated to the rock wool cube and was raised for about 4 weeks by the well-known seedling raising method was used.
(Test conditions for rock wool cultivation)
The grown basil seedlings were planted in a rock wool cultivation bed installed in a vinyl greenhouse, and cultivation was started. A green fluorescent lamp was used for green light irradiation.

試験区における前記緑色光照射は、日照や補光をバジルに当てていない暗黒時(例えば22〜24時)に行った。この照射は照射日ごとに略同じ時間帯に行った。   The green light irradiation in the test section was performed in the dark (for example, 22:00 to 24:00) when sunlight and supplementary light were not applied to basil. This irradiation was performed at substantially the same time zone for each irradiation day.

試験区14では緑色光を照射し、対照区8では無照射とした。この照射は栽培ベッドに設置した緑色蛍光灯を用いた。   The test group 14 was irradiated with green light, and the control group 8 was not irradiated. For this irradiation, a green fluorescent lamp installed on the cultivation bed was used.

試験区14では、バジル全体に緑色光を照射し、光の照射強度を80μmol/m/sとし、照射時間:2時間/回、照射頻度:1回/3日とした。 In the test group 14, the whole basil was irradiated with green light, the light irradiation intensity was 80 μmol / m 2 / s, the irradiation time was 2 hours / time, and the irradiation frequency was 1 time / 3 days.

他の栽培条件は、栽培温度10〜25℃、自然日長とする等、試験区14及び対照区8で同一とし、公知のロックウール栽培方法に従った。
(調査項目)
定植後約2ヶ月間栽培し、各区(6株)において、生育調査(主茎長、葉面積、茎径)と葉色調査および成分分析(ビタミンC、総ポリフェノール)を行った。
(調査結果)
バジルに緑色光を照射しながらロックウール栽培を行い生育への影響を調査した。
Other cultivation conditions were the same in the test group 14 and the control group 8, such as a cultivation temperature of 10 to 25 ° C. and a natural day length, and followed a known rock wool cultivation method.
(Survey item)
The plant was cultivated for about 2 months after the planting, and in each group (6 strains), growth survey (main stem length, leaf area, stem diameter), leaf color survey and component analysis (vitamin C, total polyphenol) were conducted.
(Investigation result)
Rock wool was cultivated while irradiating basil with green light, and the influence on growth was investigated.

図8(A),(B)にバジルの生育と品質への緑色光照射の影響を示した。栽培中に緑色光を照射した試験区では顕著に生育が促進し葉面積が増大し、また葉中のビタミンC含有量も増加した。   FIGS. 8A and 8B show the influence of green light irradiation on the growth and quality of basil. In the test area irradiated with green light during cultivation, the growth was remarkably promoted, the leaf area was increased, and the vitamin C content in the leaf was also increased.

緑色光を照射した試験区では、枝と枝の角度がより大角となり、群葉中により空間が形成され株の内部にも日光を取り入れやすくなる。   In the test area irradiated with green light, the angle between the branches becomes larger, and more space is formed in the foliage, making it easier to incorporate sunlight into the stock.

[試験7]
青シソを用いたロックウール栽培で緑色光を照射しながら栽培を行い、生育および品質に及ぼす緑色光照射の影響を調査した。
(材料)
使用した青シソの品種には「オオバ」(タキイ種苗)を用いた。ロックウールキューブに播種し、公知の育苗方法で約4週間育苗したものを用いた。
(ロックウール栽培の試験条件)
育てた青シソの苗をビニル温室内に設置したロックウールの栽培ベッドに定植し、栽培を開始した。緑色光の照射には緑色蛍光灯を用いた。
[Test 7]
We cultivated rock wool using blue perilla while irradiating with green light, and investigated the effect of green light irradiation on growth and quality.
(material)
“Ooba” (Takii seedling) was used for the blue perilla varieties used. What was seed | inoculated to the rock wool cube and was raised for about 4 weeks by the well-known seedling raising method was used.
(Test conditions for rock wool cultivation)
The grown blue perilla seedlings were planted in a rock wool cultivation bed installed in a vinyl greenhouse, and cultivation was started. A green fluorescent lamp was used for green light irradiation.

試験区における前記緑色光照射は、日照や補光を青シソに当てていない暗黒時(例えば22〜24時)に行った。この照射は照射日ごとに略同じ時間帯に行った。   The green light irradiation in the test area was performed in the dark (for example, 22:00 to 24:00) when sunlight and supplementary light were not applied to the blue perilla. This irradiation was performed at substantially the same time zone for each irradiation day.

試験区15では緑色光を照射し、対照区9では無照射とした。この照射は栽培ベッドに設置した緑色蛍光灯を用いた。   The test group 15 was irradiated with green light, and the control group 9 was not irradiated. For this irradiation, a green fluorescent lamp installed on the cultivation bed was used.

試験区15では、青シソ全体に緑色光を照射し、光の照射強度を80μmol/m/sとし、照射時間:2時間/回、照射頻度:1回/3日とした。 In the test group 15, green light was irradiated to the whole blue perilla, the light irradiation intensity was 80 μmol / m 2 / s, the irradiation time was 2 hours / time, and the irradiation frequency was 1 time / 3 days.

他の栽培条件は、栽培温度10〜25℃、自然日長とする等、試験区15及び対照区9で同一とし、公知のロックウール栽培方法に従った。
(調査項目)
定植後約2ヶ月間栽培し、各区(6株)において、生育調査(茎径、葉面積)と葉色調査を行った。
(調査結果)
青シソに緑色光を照射しながらロックウール栽培を行い生育への影響を調査した。
Other cultivation conditions were the same in the test group 15 and the control group 9 such as a cultivation temperature of 10 to 25 ° C. and a natural day length, and the known rock wool cultivation method was followed.
(Survey item)
The plants were cultivated for about 2 months after planting, and the growth survey (stem diameter, leaf area) and leaf color survey were conducted in each group (6 strains).
(Investigation result)
Rock wool cultivation was performed while irradiating green perilla with green light, and the influence on growth was investigated.

図9(A)および図9(B)の表8に青シソの生育と品質への緑色光照射の影響を示した。栽培中に緑色光を照射した試験区15では顕著に生育が促進し葉面積が増大した。   Table 8 in FIGS. 9A and 9B shows the influence of green light irradiation on the growth and quality of blue perilla. In the test section 15 irradiated with green light during cultivation, the growth was remarkably promoted and the leaf area increased.

[試験7−2]
試験7と同様にして、オオバの根の活性に及ぼす緑色光照射の影響を調査した。その結果を、図16に示す。図16に示すように、無照射と比較して、緑色光照射により、根のTTC活性が増加することがわかった。
[Test 7-2]
In the same manner as in Test 7, the effect of green light irradiation on the activity of the roots of plantain was investigated. The result is shown in FIG. As shown in FIG. 16, it was found that the TTC activity of the roots was increased by green light irradiation as compared with non-irradiation.

[試験7−3]
光源として緑色LEDロープライトを使用し、照射強度を平均値7.5μmol/m/s、照射時間5時間(18時〜23時)、毎日照射とした以外は、試験7と同様にして、オオバの生育に及ぼす緑色光照射の影響を調査した。本試験において、試料数(n)は6とした。
[Test 7-3]
Except for using a green LED rope light as a light source, with an irradiation intensity of an average value of 7.5 μmol / m 2 / s, an irradiation time of 5 hours (18:00 to 23:00), and daily irradiation, the same as in Test 7, The effect of green light irradiation on the growth of barley was investigated. In this test, the number of samples (n) was 6.

その結果を図17に示す。図17(A)(B)に示すように、無照射と比較して、緑色光照射により、葉面積、側枝数、主枝節数、地上部新鮮重、根のTTC活性が増加し、生育促進効果が得られた。   The result is shown in FIG. As shown in FIGS. 17 (A) and 17 (B), green light irradiation increases leaf area, number of side branches, number of main branch nodes, ground fresh weight, and root TTC activity, as compared to no irradiation, and promotes growth. The effect was obtained.

[試験7−4]
ビニル温室において、照射強度0.8μmol/m/s、照射時間1〜2時間として、毎日、緑色光をオオバ(香北在来種)に照射し、オオバの生育および品質に及ぼす緑色光照射の影響を調査した。前記緑色光の照射には、緑色LED電球を使用した。前記オオバとしては、オオバ生産者による慣行土耕栽培の方法で育てたものを用いた。
[Test 7-4]
In a vinyl greenhouse, with an irradiation intensity of 0.8 μmol / m 2 / s and an irradiation time of 1 to 2 hours, green light is radiated daily to green grass (Kohoku native species), and green light irradiation affects the growth and quality of the grass. The effect of was investigated. A green LED bulb was used for the green light irradiation. As the above-mentioned mackerel, the one grown by the conventional soil cultivation method by the mackerel producer was used.

また、比較例として、緑色LED電球に代えて、白熱灯を使用し、生育および品質に及ぼす影響を調査した。   As a comparative example, an incandescent lamp was used instead of the green LED bulb, and the influence on growth and quality was investigated.

調査結果を、図18、図19に示す。図18(A)〜(C)に示すように、白熱灯を使用した場合と比較して、緑色光照射により、主枝節数、茎径、側枝節数が増加し、生育が促進することがわかった。   The survey results are shown in FIGS. As shown in FIGS. 18 (A) to 18 (C), the number of main branches, stem diameter, and number of side branches are increased and the growth is promoted by irradiation with green light as compared with the case where an incandescent lamp is used. all right.

また、図19において、(A)はビタミンC含有量、(B)は総ポリフェノール量、(C)は硝酸態窒素含有量、(D)はリン酸含有量、(E)はカリウム含有量の結果である。図示のとおり、白熱灯を使用した場合と比較して、緑色光照射により、ビタミンC、総ポリフェノール、リン酸、カリウム全ての含有量が増加した。また、図示のとおり、白熱灯と比較して、緑色光照射により、硝酸態窒素が減少した。   Moreover, in FIG. 19, (A) is vitamin C content, (B) is total polyphenol content, (C) is nitrate nitrogen content, (D) is phosphoric acid content, (E) is potassium content. It is a result. As shown in the figure, the contents of vitamin C, total polyphenols, phosphoric acid, and potassium were all increased by irradiation with green light as compared with the case of using an incandescent lamp. In addition, as shown in the figure, nitrate nitrogen was reduced by green light irradiation compared to incandescent lamps.

[試験7−5]
照射光強度を0.8μmol/m/sとした以外は、試験7−4と同様にして、オオバの葉の光沢に及ぼす緑色光照射の影響を調査した。その結果を、図20に示す。図20に示すように、白熱灯と比較して、緑色光照射により、葉の光沢が増加し、品質の向上効果が得られた。
[Test 7-5]
Except that the irradiation light intensity was set to 0.8 μmol / m 2 / s, the effect of green light irradiation on the gloss of the leaves of barn was investigated in the same manner as in Test 7-4. The result is shown in FIG. As shown in FIG. 20, as compared with an incandescent lamp, the gloss of the leaf was increased by the green light irradiation, and the quality improvement effect was obtained.

[試験8]
ビニル温室において、照射強度を5〜40μmol/m/s、照射時間夜間2時間、照射頻度3日に1回として、緑色光をシュンギク(中葉春菊、タキイ種苗株式会社製)、ネギ(鴨頭ねぎ、中原採種場株式会社製)、ミツバ(白茎三ツ葉(関西系)、タキイ種苗株式会社製)、ロケットサラダ(ロケット、タキイ種苗株式会社製)、グランドパセリ(グランドパセリ、タキイ種苗株式会社製)、イタリアンパセリ(イタリアンパセリ、タキイ種苗株式会社製)に照射し、それぞれ、生育に及ぼす影響、品質に及ぼす影響を調査した。前記各対象植物は、NFT水耕栽培の方法で育てたものを用いた。本試験において、生育調査においては、試料数(n)は、それぞれ6とし、品質調査においては、シュンギクおよびミツバはn=5、ネギはn=6、ロケットサラダはn=10、イタリアンパセリ及びグランドパセリはn=7とした。
[Test 8]
In a vinyl greenhouse, the irradiation intensity is 5 to 40 μmol / m 2 / s, the irradiation time is 2 hours at night, the irradiation frequency is once every 3 days, and the green light is changed to Sungiku (Nakaha Shungiku, manufactured by Takii Seed Co., Ltd.), green onions (Duckhead) Green onions, made by Nakahara Seed Co., Ltd., bees (white stem three leaves (Kansai), Takii Seed Co., Ltd.), rocket salad (rocket, Takii Seed Co., Ltd.), ground parsley (Grand Parsley, Takii Seed Stock) Company) and Italian parsley (Italian parsley, manufactured by Takii Seed Co., Ltd.), and the effects on growth and quality were investigated. Each said target plant used what was raised by the method of NFT hydroponics. In this study, the number of samples (n) was 6 in the growth survey, and n = 5 for sengoku and honey, n = 6 for leek, n = 10 for rocket salad, Italian parsley and ground in the quality survey. Parsley was set to n = 7.

その結果を、図21、図22に示す。図21に示すように、無照射と比較して、緑色光照射により、地上部新鮮重量が増加した。また、図22に示すように、無照射と比較して、緑色光照射により、シュンギク、ミツバは総ポリフェノール量が増加し、ネギ、ロケットサラダ、グランドパセリ、イタリアンパセリはビタミンC含有量が増加した。   The results are shown in FIGS. As shown in FIG. 21, compared with non-irradiation, the fresh weight of the above-ground part increased by green light irradiation. Moreover, as shown in FIG. 22, compared with non-irradiation, the amount of total polyphenols increased in sengoku and honeybee by green light irradiation, and the vitamin C content increased in leek, rocket salad, grand parsley, and Italian parsley. .

以上のことから、暗黒時に葉菜類に緑色光を照射すれば、葉菜類の機能性成分の含有量を増加させることができ、しかも、葉や茎の生育も向上させることができる。また、短時間の照射で良いので生育中の葉菜類の日長照射条件を変更してしまうこともない。   From the above, if the leaf vegetables are irradiated with green light in the dark, the content of the functional components of the leaf vegetables can be increased, and the growth of leaves and stems can be improved. Moreover, since irradiation for a short time is sufficient, it does not change the day length irradiation conditions of the growing leafy vegetables.

以上、この発明に係る葉菜類の栽培方法を実施の形態、実施例に基づき説明してきたが、これらの実施の形態や実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、変更や追加等は許容される。   As mentioned above, although the cultivation method of the leaf vegetables which concerns on this invention has been demonstrated based on embodiment and an Example, it is not restricted to these embodiment and an Example, The invention which concerns on each claim of a claim Modifications and additions are allowed without departing from the gist of the above.

本発明によれば、生育中の葉菜類の日長照射条件を変更することなく葉菜類のビタミン類やポリフェノール類などの機能性成分の含有量を増加させることができる。したがって、本発明は、例えば、葉菜類の生産において、有効に利用することができるが、その用途は限定されず、広い分野で使用することができる。

According to the present invention, the content of functional components such as vitamins and polyphenols in leafy vegetables can be increased without changing the day length irradiation conditions of growing leafy vegetables. Therefore, the present invention can be effectively used, for example, in the production of leafy vegetables, but its application is not limited and can be used in a wide field.

Claims (6)

葉菜類の生産方法であって、
暗黒条件下、前記葉菜類に緑色光のみを照射する照射工程と、前記照射工程の前後の少なくとも一方において、暗黒条件下、前記葉菜類に緑色光を照射しない暗黒工程とを含み、
前記照射工程を実施する割合が、1〜7日に1回の割合又は週に1〜7回の割合であり、前記照射工程により、前記葉菜類の機能性成分を増加させることを特徴する葉菜類の生産方法。
A method for producing leafy vegetables,
An irradiation step of irradiating only green light to the leaf vegetables under dark conditions, and a dark step of not irradiating the leaf vegetables under dark conditions at least before or after the irradiation step ,
Wherein the irradiation step the actual Hodokosuru ratio is the ratio of 1-7 times a single fraction or week 1-7 days, by the irradiation step, characterized by increasing the functional components of the leaf vegetables leaf vegetables Production method.
前記照射工程において、照射強度が、0.1〜200μmol/m/sの範囲であり、照射時間が1〜5時間であることを特徴とする請求項1記載の葉菜類の生産方法。 2. The method for producing leafy vegetables according to claim 1, wherein in the irradiation step, the irradiation intensity is in the range of 0.1 to 200 μmol / m 2 / s, and the irradiation time is 1 to 5 hours. 前記暗黒工程が、1時間以上であることを特徴とする請求項1または2記載の葉菜類の生産方法。 The method for producing leafy vegetables according to claim 1 or 2 , wherein the darkening step is 1 hour or longer. 前記照射工程を複数回で実施することを特徴とする請求項1から3のいずれか一項に記載の葉菜類の生産方法。 Leafy vegetables method of producing according to any one of claims 1 to 3, wherein the irradiation step be a multiple times real Hodokosuru. 前記機能性成分が、ポリフェノール及びビタミンCの少なくとも一方を含む請求項1からのいずれか一項に記載の葉菜類の生産方法。 The method for producing leafy vegetables according to any one of claims 1 to 4 , wherein the functional component contains at least one of polyphenol and vitamin C. 前記照射工程により、前記葉菜類の硝酸態窒素を低下させることを特徴とする請求項1からのいずれか一項に記載の葉菜類の生産方法。 The method for producing leafy vegetables according to any one of claims 1 to 5 , wherein nitrate nitrogen of the leafy vegetables is reduced by the irradiation step.
JP2012006609A 2011-01-17 2012-01-16 Leafy vegetables production method Active JP5988420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006609A JP5988420B2 (en) 2011-01-17 2012-01-16 Leafy vegetables production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011006748 2011-01-17
JP2011006748 2011-01-17
JP2012006609A JP5988420B2 (en) 2011-01-17 2012-01-16 Leafy vegetables production method

Publications (2)

Publication Number Publication Date
JP2012161313A JP2012161313A (en) 2012-08-30
JP5988420B2 true JP5988420B2 (en) 2016-09-07

Family

ID=46841389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006609A Active JP5988420B2 (en) 2011-01-17 2012-01-16 Leafy vegetables production method

Country Status (1)

Country Link
JP (1) JP5988420B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078308A (en) * 2011-09-21 2013-05-02 Shikoku Res Inst Inc Budding suppressing method for green perilla and resting suppressing method for strawberry
JP2014131506A (en) * 2012-12-03 2014-07-17 Nobuyuki Takahashi Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase
CN103718846B (en) * 2013-12-23 2015-12-02 广西大学 A kind of LED light source reduces the method for Nitrate
JP6362135B2 (en) * 2014-08-13 2018-07-25 株式会社 光植栽研究所 Plant production method
JP6912073B2 (en) * 2017-01-20 2021-07-28 株式会社キーストーンテクノロジー Leafy vegetable production method and leafy vegetable production equipment
JP6924057B2 (en) * 2017-03-30 2021-08-25 株式会社四国総合研究所 How to produce tomato fruits and how to keep them fresh
JP2019062838A (en) * 2017-10-03 2019-04-25 特定非営利活動法人植物工場研究会 Method for inhibiting bolting of head-forming vegetable and method for greening inner leaves of head-forming vegetable
KR102572520B1 (en) * 2021-04-22 2023-08-29 충북대학교 산학협력단 Cultivation method of Glehnia littoralis in plant factory
CN114717044B (en) * 2022-03-29 2024-06-11 中华全国供销合作总社济南果品研究所 Processing method of peony fresh flower liquid

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1243237A (en) * 1983-03-17 1988-10-18 Prakash G. Kadkade Application of specific lighting treatments for promotion of anthocyanin in economically important crops
JPH08205677A (en) * 1995-01-31 1996-08-13 Mitsubishi Chem Corp Regulation of nutrient ingredient content of plant body
JP2002315569A (en) * 2001-04-24 2002-10-29 Tokai Sangyo Kk Method for culturing algae
JP2002360067A (en) * 2001-06-12 2002-12-17 Harison Toshiba Lighting Corp Fluorescent lamp for growing plant
KR100846215B1 (en) * 2003-05-23 2008-07-15 포토프레쉬 리미티드 Methods for altering the level of phytochemicals in plant cells by applying wave lengths of light from 400 nm to 700 nm and apparatus therefore
JP2005087205A (en) * 2004-03-22 2005-04-07 Koji Hasegawa Manufacturing method for (special) bean sprouts
JP2006340689A (en) * 2005-06-10 2006-12-21 Central Res Inst Of Electric Power Ind Method for cultivating green vegetables and installation for the same
JP2007075073A (en) * 2005-09-16 2007-03-29 Masanobu Kojima Method for cultivating sprouts
JP2007267668A (en) * 2006-03-31 2007-10-18 Koji Hasegawa Method for increasing vitamin c of food material
KR100705770B1 (en) * 2006-05-24 2007-04-09 주식회사 대우일렉트로닉스 Shelf of refrigerator capable of photosynthesis function of vegetable
JP2008118957A (en) * 2006-11-15 2008-05-29 Shokubutsu Kojo Kaihatsu:Kk Full controlling type organic cultivation type plant factory
JP2010038533A (en) * 2008-07-08 2010-02-18 Panasonic Corp Food storage
JP5481968B2 (en) * 2009-06-05 2014-04-23 信之 高橋 Control method for increasing the number of flowers using light
JP5666217B2 (en) * 2010-09-07 2015-02-12 一般財団法人電力中央研究所 Leaf lettuce cultivation method and cultivation facility

Also Published As

Publication number Publication date
JP2012161313A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5988420B2 (en) Leafy vegetables production method
Kim et al. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes
Kim et al. An effect of light emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry
JP5364163B2 (en) Cultivation method of fruit and vegetables using green light irradiation
CN111988986B (en) Bolting control using light with high levels of far-red
US20200260651A1 (en) Method for cultivating plant seedling by artificial light
JP6795176B2 (en) How to grow plants
JP2007222039A (en) Plant raising method and raising house
JP2018121590A (en) Seedling growth method using artificial light
JP2011055816A (en) Method for controlling growth of plant utilizing light ray
JP2011055816A5 (en)
JP2013162757A (en) Cultivation method of parsley and parsley with adjusted eating quality
Rakutko et al. Comparative evaluation of tomato transplant growth parameters under led, fluorescent and high-pressure sodium lamps
KR102320916B1 (en) Disease-free seed potato production technology in smart farm system
JP4974213B2 (en) Plant vitality agent
JP2018143203A (en) Method for controlling form of matricaria recutita l
WO2020067266A1 (en) Kale cultivation method and salad
Bodolan et al. Heat and light requirements of vegetable plants
Gupta et al. Impact of sprout management on growth, quality and yield of pointed gourd (Trichosanthes dioica Roxb.)
WO2023105939A1 (en) Plant cultivation method, plant cultivation device, and photosynthetic organism production method
JP7166213B2 (en) Method for producing SGS-rich cruciferous vegetables, method for producing food and drink, and food and drink
JP5906085B2 (en) Method for improving content of useful components in plants in hydroponics
Shin et al. Effects of supplemental light on quality, yield, and growth rate of tomatoes
Al-Rukabi et al. Reaction of Tomato Hybrids to Different Ripeness in Conditions of a Multi-Tube Hydroponic, Soil and Lighting Options
JP2024538318A (en) Hydrangea cultivation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160805

R150 Certificate of patent or registration of utility model

Ref document number: 5988420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250