JPH08205677A - Regulation of nutrient ingredient content of plant body - Google Patents

Regulation of nutrient ingredient content of plant body

Info

Publication number
JPH08205677A
JPH08205677A JP1415595A JP1415595A JPH08205677A JP H08205677 A JPH08205677 A JP H08205677A JP 1415595 A JP1415595 A JP 1415595A JP 1415595 A JP1415595 A JP 1415595A JP H08205677 A JPH08205677 A JP H08205677A
Authority
JP
Japan
Prior art keywords
plant
light
light source
wavelength
vitamin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1415595A
Other languages
Japanese (ja)
Inventor
Fumihiro Tanaka
史宏 田中
Hiroyuki Watanabe
博之 渡辺
Makoto Murase
誠 村瀬
Masahiro Endo
政弘 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP1415595A priority Critical patent/JPH08205677A/en
Publication of JPH08205677A publication Critical patent/JPH08205677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PURPOSE: To efficiently regulate the content of nutrient ingredients in a plant body, increase a specific nutrient ingredient and remarkably improve the added value of the plant by controlling the strength of blue light, etc., contained in an artificial light source. CONSTITUTION: The content of a nutrient ingredient such as vitamin A or vitamin C of a plant body belonging to the family Compositate, Cruciferae, etc., is regulated by controlling the intensities of blue light at 400-500nm wavelength, red light at 600-700nm wavelength and far infrared light at 670-760nm wavelength contained in an artificial light source of a semiconductor device, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人工光源を用いて植物
を成長させる際に、植物に照射する光の波長分布を調節
することにより、植物の特定栄養成分を調節する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a specific nutritional component of a plant by controlling the wavelength distribution of light applied to the plant when the plant is grown using an artificial light source.

【0002】[0002]

【従来の技術】近年、植物、特に野菜類の収穫を、天候
に左右されず、安定して供給するため、人工光源を用い
て生育環境を人工的に制御した施設栽培が試みられ、一
部、実用化されている。人工光源としては、高圧ナトリ
ウムランプ、メタルハライドランプ、蛍光灯、発光ダイ
オード、レーザーダイオード等の光半導体装置などが使
用されている。
2. Description of the Related Art In recent years, in order to stably supply the harvest of plants, particularly vegetables, regardless of the weather, it has been attempted to carry out facility cultivation in which the growth environment is artificially controlled using an artificial light source. Has been put to practical use. As an artificial light source, a high pressure sodium lamp, a metal halide lamp, a fluorescent lamp, an optical semiconductor device such as a light emitting diode, a laser diode, or the like is used.

【0003】これら光源の内、高圧ナトリウムランプ、
メタルハライドランプ、蛍光灯等は入手容易であるが、
効率が悪く、発熱が大であるので、照明及び冷房のため
の電力コストが大きいという問題があり、最近は光半導
体装置が採用することが提案されている(特開平4ー1
21117号公報、特開平5ー115219号公報)。
Of these light sources, a high pressure sodium lamp,
Metal halide lamps, fluorescent lamps, etc. are readily available,
Since the efficiency is low and the heat generation is large, there is a problem that the electric power cost for lighting and cooling is large. Recently, it has been proposed to be used in an optical semiconductor device (Japanese Patent Laid-Open No. 4-11 / 1999).
21117, JP-A-5-115219).

【0004】さらに、人工光源を用いる施設栽培におい
て、植物の生育と照射する光の波長の関係に関しては既
に研究がなされており、赤色光は主として光合成に、青
色光は主として屈光性に、また、遠赤色光は主として光
形態形成に関与しているとされている。しかしながら、
従来、照射光の波長と分布と植物の体内に於ける栄養成
分がどの様な影響を受けるかは知られておらず、実際に
施設栽培において実施されていなっかった。
Further, in the cultivation in a facility using an artificial light source, studies have already been made on the relationship between the growth of plants and the wavelength of light to be radiated. Red light is mainly for photosynthesis, blue light is mainly for phototropism, and Far-red light is said to be mainly involved in photomorphogenesis. However,
Heretofore, it has not been known how the wavelength and distribution of irradiation light and the nutritional components in the body of the plant are affected, and it has not been actually practiced in institutional cultivation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、人工光
源を用いる施設栽培において、照射光の波長分布を調節
して、植物体に含まれる栄養成分含有量をを調節できれ
ば当該植物の付加価値が飛躍的に向上し、また、特定成
分の生物学的な製造方法を提供することになると期待さ
れる。
However, in facility cultivation using an artificial light source, if the wavelength distribution of the irradiation light can be adjusted to adjust the nutrient content contained in the plant, the added value of the plant will be dramatically increased. In addition, it is expected to provide a method for biologically producing a specific component.

【0006】[0006]

【課題を解決するための手段】本発明の目的は、人工光
源を用いる植物の施設栽培において、照射光の波長分布
を調節して植物体の栄養成分含有量を調節する方法提供
することである。本発明の上記の目的は、人工光源を用
いて植物を栽培する方法において、人工光源に含まれる
青色光、赤色光及び遠赤色光それぞれの強度を調節する
ことにより達せられる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for adjusting the wavelength distribution of irradiation light to adjust the nutrient content of a plant in plant cultivation using an artificial light source. . The above-mentioned object of the present invention can be achieved by adjusting the intensities of blue light, red light, and far-red light contained in the artificial light source in a method of cultivating a plant using the artificial light source.

【0007】人工光源からの照射光に含まれる青色光
は、400〜500nmの波長範囲が適当である。ま
た、赤色光としては、600〜700nm、さらに、遠
赤色光としては670〜760nmの波長範囲の光がそ
れぞれ適当である。本発明方法で用いられる人工光源と
して特に制限されず、従来用いられている光源に適当な
フィルターを組み合わせたものでよいが、光半導体装
置、特に発光ダイオードを用いるのが好ましい。
The wavelength range of 400 to 500 nm is suitable for the blue light contained in the irradiation light from the artificial light source. Further, as the red light, 600 to 700 nm is suitable, and as the far red light, light in the wavelength range of 670 to 760 nm is suitable. The artificial light source used in the method of the present invention is not particularly limited and may be a conventionally used light source combined with an appropriate filter, but it is preferable to use an optical semiconductor device, particularly a light emitting diode.

【0008】これは、光半導体装置は、特定の波長範囲
の光のみ発生するので、植物の生育に必要な光のみを照
射することができ、他の光源に比べて、エネルギー効率
(単位エネルギー当たりの生長量)が優れていること、
熱の発生が少ないこと、寿命が長くかつ小型であること
などによる。
This is because the optical semiconductor device emits only light in a specific wavelength range, so that it can irradiate only the light necessary for plant growth, and energy efficiency (per unit energy) is higher than that of other light sources. The growth amount of) is excellent,
This is because it generates less heat, has a long life, and is compact.

【0009】400〜500nmの青色光を発光する光
半導体装置としては、例えばZnSSe系、GaN系の
材料を用いたものが光出力が大であり好ましい。600
〜700nm及び670〜760nmの赤色系及び遠赤
色光を発光する光半導体装置としては、例えば、Zn−
OドープGaP、GaAlAs系材料を用いたものが好
ましい。
As an optical semiconductor device that emits blue light of 400 to 500 nm, for example, a device using a ZnSSe-based or GaN-based material has a large optical output and is preferable. 600
Examples of the optical semiconductor device that emits reddish and far-red light of ˜700 nm and 670 to 760 nm include Zn—
It is preferable to use an O-doped GaP or GaAlAs-based material.

【0010】これらの光半導体装置は、必要に応じて、
それぞれ単独でも二つ以上組み合わせて用いてもよい。
例えば、ビタミンA効力の増大を目的とする場合は青色
光と赤色光を組み合わせて用いることが好ましい。アブ
ラナ科植物の糖質を増大させる場合、キク科植物のビタ
ミンCを増大させる場合は赤色光が用いられる。赤色光
と遠赤色光の組合わせは総ビタミンCの増加に有効であ
る。670〜700nmの波長範囲、特に、680nm
の光は赤色系と遠赤色光の両方の作用を示す場合があ
る。
These optical semiconductor devices are, if necessary,
Each may be used alone or in combination of two or more.
For example, in order to increase the vitamin A efficacy, it is preferable to use a combination of blue light and red light. Red light is used to increase sugars in cruciferous plants and to increase vitamin C in asteraceae plants. The combination of red and far red light is effective in increasing total vitamin C. Wavelength range of 670-700 nm, especially 680 nm
Light may exhibit both reddish and far-red light effects.

【0011】照射法は特に限定されないが、例えば、発
光部に光半導体チップを樹脂封止、もしくは窒素等で密
封封止した光半導体ランプを板状支持体に取り付けて用
いたり、光半導体チップを透明電極上に直接載せて面
状、列状等に並べた光半導体パネルを支持体に取り付け
た装置を、植物から数センチ乃至数十センチの高さに配
置し、光源とする。
The irradiation method is not particularly limited, but for example, an optical semiconductor lamp in which an optical semiconductor chip is resin-sealed in the light emitting portion or hermetically sealed with nitrogen or the like is used by attaching it to a plate-shaped support, or by using an optical semiconductor chip. An apparatus in which optical semiconductor panels placed directly on a transparent electrode and arranged in a plane or a row are attached to a support is arranged at a height of several centimeters to several tens of centimeters from a plant to serve as a light source.

【0012】本発明の適用対象として好ましい植物は、
例えば、リーフレタス、結球レタス、サラダナ等のキク
科植物、或いは、コマツナ、チンゲンサイ、キャベツ、
白菜等のアブラナ科植物などの葉菜類、苺、キュウリな
どの果菜類、ミカン、キウイなどの果実類が挙げられ
る。
Plants to which the present invention is preferably applied include
For example, leaf lettuce, heading lettuce, asteraceae plants such as saladana, or komatsuna, bok choy, cabbage,
Leafy vegetables such as cruciferous plants such as Chinese cabbage, fruit vegetables such as strawberries and cucumbers, and fruits such as mandarin oranges and kiwi.

【0013】植物の栽培方法は特に限定されるものでは
ない。例えば、葉菜類や果菜類の場合は、種子を、シャ
ーレ上で発芽させ、双葉が展開した後、培土を詰めた栽
培トレイに、仮植え、定植する。
The method of cultivating the plant is not particularly limited. For example, in the case of leaf vegetables and fruit vegetables, seeds are germinated on a petri dish, and after the leaves are developed, they are temporarily planted and planted in a cultivation tray filled with soil.

【0014】水耕で栽培する場合には、スポンジキュー
ブ上で発芽させた後、スポンジキューブごと水耕装置に
仮植え、定植することもできる。また、従来の施設栽培
の手法に則って、定植、栽培することもできる。また、
光半導体光のみで栽培しても良いし、必要により、太陽
光を利用しつつ、補光として、または、収穫前に特定の
波長の光半導体光を照射することにより栄養成分を調節
することも可能である。
In the case of hydroponics, it is possible to germinate on a sponge cube and then temporarily plant or plant the whole sponge cube in a hydroponic device. In addition, planting and cultivation can be performed according to the conventional method of facility cultivation. Also,
It may be cultivated only with optical semiconductor light, or if necessary, while using sunlight, as a supplementary light, or by irradiating with a photo-semiconductor light of a specific wavelength before harvesting, it is possible to adjust the nutritional components. It is possible.

【0015】[0015]

【実施例】以下に、本発明を実施例により具体的に説明
するが、本発明は、その要旨を超えない限り以下の実施
例に制約されるものではない。以下の実施例において、
栄養成分の分析は次の方法で行った。 (1)ビタミンC: ヒドラジンで誘導体化後、高速液
体クロマトグラフ法で定量した。 (2)ビタミンA: 総カロチンから算出した。総カロ
チンは可視吸光光度法で定量した。 (3)糖質: 6成分中5成分(水分、タンパク質、脂
質、繊維、灰分)を測定し、全量から差し引いた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. In the examples below,
The nutritional components were analyzed by the following method. (1) Vitamin C: Derivatized with hydrazine, and then quantified by high performance liquid chromatography. (2) Vitamin A: Calculated from total carotene. Total carotene was quantified by visible absorption spectrophotometry. (3) Carbohydrate: Five components (moisture, protein, lipid, fiber, ash) out of the six components were measured and subtracted from the total amount.

【0016】[0016]

【実施例1】660nmと450nmにピーク波長を持
つ2種類の発光ダイオードを、それぞれ600個及び4
00個を交互に、一辺が45cmの正方形のパネル上に
配列し、内壁を反射板で覆った暗箱内で、40cmの高
さに配置し、単位面積当たりの電力量を162W/m2
となるように設置した。この暗箱内でコマツナ(品種:
東京こまつな)を、温度23−24C、日長24時間連
続照射で30日間栽培した後、収穫し、栄養成分を分析
した。
Example 1 Two kinds of light emitting diodes having peak wavelengths of 660 nm and 450 nm, 600 and 4 respectively.
00 pieces are arranged alternately on a square panel with a side of 45 cm, and are arranged at a height of 40 cm in a dark box whose inner wall is covered with a reflection plate, and the electric energy per unit area is 162 W / m 2
It was installed so that Komatsuna (variety:
(Tokyo Komatsuna) was cultivated for 30 days at a temperature of 23-24C and continuously irradiated for 24 hours, and then harvested and analyzed for nutritional components.

【0017】[0017]

【比較例1及び実施例2〜3】それぞれ次の光源を用
い、その他は実施例1と同様にしてコマツナを栽培し
た。いずれの光源も単位面積当たりの電力量は162W
/m2である。 比較例1:20W白色蛍光灯2本 実施例2:660nmにピーク波長を持つ発光ダイオー
ド1000個 実施例3:660nmと730nmにピーク波長を持つ
2種類の発光ダイオードをそれぞれ760個、240個 以上4区に付き、生体内の糖質、ビタミンA効力及び総
ビタミンC含量を比較し表1に示した。
[Comparative Example 1 and Examples 2 to 3] Komatsuna was cultivated in the same manner as in Example 1 except that the following light sources were used. The electric energy per unit area of any light source is 162W
/ M 2 . Comparative Example 1: Two 20 W white fluorescent lamps Example 2: 1000 light emitting diodes having peak wavelengths at 660 nm Example 3: Two types of light emitting diodes having peak wavelengths at 660 nm and 730 nm, 760 and 240, respectively 4 or more 4 Table 1 shows the comparison of in vivo carbohydrate, vitamin A efficacy and total vitamin C content for each group.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から明らかなように比較例1に対し、
実施例1ではビタミンA効力が、実施例2では糖質が、
実施例3では総ビタミンC含量がそれぞれ増加した。
As is clear from Table 1, in comparison with Comparative Example 1,
In Example 1, vitamin A efficacy was obtained, and in Example 2, carbohydrates were obtained.
In Example 3, the total vitamin C content was increased respectively.

【0020】[0020]

【実施例4−6、比較例2】植物をコマツナからレタス
(品種:グランドラピッド)に変更し、次の光源を用
い、栽培期間を28日間とした以外は実施例1と同様に
栽培した。各栄養成分を比較した結果を表2に示す。 実施例4:実施例1と同じ 実施例5:680nmにピーク波長を持つ発光ダイオー
ド1000個を実施例1と同様に配置した。 比較例2:比較例1と同じ
Example 4-6, Comparative Example 2 The plant was cultivated in the same manner as in Example 1 except that the plant was changed from Komatsuna to lettuce (variety: Grand Rapid), the following light sources were used, and the cultivation period was 28 days. Table 2 shows the results of comparing the nutritional components. Example 4: Same as Example 1 Example 5: 1000 light emitting diodes having a peak wavelength at 680 nm were arranged in the same manner as in Example 1. Comparative Example 2: Same as Comparative Example 1.

【0021】[0021]

【表2】 [Table 2]

【0022】表2から明らかなように比較例2に対し、
実施例4ではビタミンA効力が、実施例5では総ビタミ
ンC含量が増加した。
As is clear from Table 2, in comparison with Comparative Example 2,
Example 4 increased vitamin A potency and Example 5 increased total vitamin C content.

【0023】[0023]

【実施例6、7、比較例3】次の光源を用い、実施例1
と同様にしてコマツナを40日間栽培した。各栄養成分
を比較した結果を表3に示す。 実施例6:実施例2と同じ 実施例7:実施例5と同じ 比較例3:比較例2と同じ
[Embodiments 6 and 7 and Comparative Example 3]
Komatsuna was cultivated for 40 days in the same manner as in. Table 3 shows the results of comparing the nutritional components. Example 6: Same as Example 2 Example 7: Same as Example 5 Comparative Example 3: Same as Comparative Example 2.

【0024】[0024]

【表3】 [Table 3]

【0025】表3から明らかなように、比較例3に対
し、実施例6では糖質が、実施例7では糖質と総ビタミ
ン含量が増加した。
As is clear from Table 3, the carbohydrates in Example 6 and the carbohydrates and the total vitamin content increased in Example 7, as compared with Comparative Example 3.

【0026】[0026]

【発明の効果】本発明は、特定のピーク波長を有する光
半導体光を単独または組み合わせて植物に照射する事に
より、従来の特定の栄養成分の増加した植物を得ること
が出来る。
INDUSTRIAL APPLICABILITY According to the present invention, a conventional plant having an increased specific nutritional component can be obtained by irradiating a plant with an optical semiconductor light having a specific peak wavelength, alone or in combination.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 政弘 東京都千代田区丸の内二丁目5番2号 三 菱化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Endo 2-5-2 Marunouchi, Chiyoda-ku, Tokyo Sanryo Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】人工光源を用いて植物を栽培する方法にお
いて、人工光源に含まれる青色系光、赤色光及び遠赤色
光の強度を調節することを特徴とする植物体の栄養成分
含有量の調節方法。
1. A method for cultivating a plant using an artificial light source, which comprises controlling the intensity of blue light, red light, and far-red light contained in the artificial light source, the nutrient content of the plant Adjustment method.
【請求項2】青色光の波長範囲が400〜500nm、
赤色光の波長範囲が600〜700nmまた遠赤色光の
波長範囲が670〜760nmである請求項1記載の植
物体の栄養成分含有量の調節方法。
2. The wavelength range of blue light is 400 to 500 nm,
The method for controlling the nutrient content of a plant according to claim 1, wherein the wavelength range of red light is 600 to 700 nm and the wavelength range of far red light is 670 to 760 nm.
【請求項3】人工光源が光半導体装置である請求項1記
載の植物体の栄養成分含有量の調節方法。
3. The method for adjusting the nutrient content of a plant according to claim 1, wherein the artificial light source is an optical semiconductor device.
【請求項4】植物がキク科またはアブラナ科の植物であ
る請求項1記載の植物体の栄養成分含有量の調節方法。
4. The method for controlling the nutrient content of a plant according to claim 1, wherein the plant is a plant of the Asteraceae or Brassicaceae family.
JP1415595A 1995-01-31 1995-01-31 Regulation of nutrient ingredient content of plant body Pending JPH08205677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1415595A JPH08205677A (en) 1995-01-31 1995-01-31 Regulation of nutrient ingredient content of plant body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1415595A JPH08205677A (en) 1995-01-31 1995-01-31 Regulation of nutrient ingredient content of plant body

Publications (1)

Publication Number Publication Date
JPH08205677A true JPH08205677A (en) 1996-08-13

Family

ID=11853271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1415595A Pending JPH08205677A (en) 1995-01-31 1995-01-31 Regulation of nutrient ingredient content of plant body

Country Status (1)

Country Link
JP (1) JPH08205677A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272272A (en) * 2001-03-22 2002-09-24 Hamamatsu Photonics Kk Device for raising seeding of cruciferous plant with artificial light and method for raising the seedling
JP2002345337A (en) * 2001-03-22 2002-12-03 Hamamatsu Photonics Kk Seedling-growing device for plant of gramineae by using artificial light
GB2402037A (en) * 2003-05-23 2004-12-01 Phytelum Ltd Increasing the level of nutrients in plants by irradiating with visible light
WO2005013673A1 (en) * 2003-08-06 2005-02-17 Kabushiki Kaisha Paiteku Osaka Light source device and method of cultivating plant
JP2006121975A (en) * 2004-10-28 2006-05-18 Ishiyama Miso Shoyu Kk Method for cultivating plant body
JP2006304610A (en) * 2005-04-26 2006-11-09 Ccs Inc Method and device for cultivating lettuce
JP2011041539A (en) * 2009-08-24 2011-03-03 Hokuriku Electric Power Co Inc:The Method for producing long chain polyunsaturated fatty acid of liverwort
JP2012070727A (en) * 2010-09-03 2012-04-12 Hamamatsu Photonics Kk Method for increasing nutrient component content per unit dry weight of tomato fruit
JP2012161313A (en) * 2011-01-17 2012-08-30 Shikoku Res Inst Inc Method for producing leaf vegetable
JP2014064479A (en) * 2012-09-24 2014-04-17 Aomori Prefectural Industrial Technology Research Center Cultivation method and cultivation device of plant using led light source
CN103929944A (en) * 2011-12-16 2014-07-16 松下电器产业株式会社 Plant-cultivation illumination device
JP2015526104A (en) * 2012-09-04 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ Method for enhancing nutritional value of edible plant parts by light and lighting device therefor
JP2015178489A (en) * 2014-02-25 2015-10-08 日本メナード化粧品株式会社 External preparation or internal preparation for skin containing extract of fenugreek which is raised by being irradiated with light having a specific wavelength range
WO2017000508A1 (en) * 2015-07-01 2017-01-05 吴健 Method for increasing nutritional ingredients of fruits and vegetables based on led pulsed light
WO2017126681A1 (en) * 2016-01-21 2017-07-27 株式会社 東芝 Lighting device and cultivation equipment
JP2017127274A (en) * 2016-01-21 2017-07-27 株式会社東芝 Illuminator and cultivation apparatus
JP2020145993A (en) * 2019-03-14 2020-09-17 大和ハウス工業株式会社 Cultivation method of hedyotis diffusa

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272272A (en) * 2001-03-22 2002-09-24 Hamamatsu Photonics Kk Device for raising seeding of cruciferous plant with artificial light and method for raising the seedling
JP2002345337A (en) * 2001-03-22 2002-12-03 Hamamatsu Photonics Kk Seedling-growing device for plant of gramineae by using artificial light
JP4684444B2 (en) * 2001-03-22 2011-05-18 浜松ホトニクス株式会社 Flower bud differentiation promoting device and flower bud differentiation promoting method using artificial light
GB2402037A (en) * 2003-05-23 2004-12-01 Phytelum Ltd Increasing the level of nutrients in plants by irradiating with visible light
GB2402037B (en) * 2003-05-23 2006-03-01 Phytelum Ltd Plant treatment method and means therefor
JP2007511202A (en) * 2003-05-23 2007-05-10 スタニスラウ・カルピンスキ Method and apparatus for changing the concentration of phytochemicals in plant cells by applying a wavelength of light from 400 NM to 700 NM
EP2090154A3 (en) * 2003-05-23 2009-08-26 Fotofresh Limited Methods for altering the level of vitamin c and glutathione in plant cells by applying wavelengths of light from 400 nm to 700 nm.
WO2005013673A1 (en) * 2003-08-06 2005-02-17 Kabushiki Kaisha Paiteku Osaka Light source device and method of cultivating plant
JP2006121975A (en) * 2004-10-28 2006-05-18 Ishiyama Miso Shoyu Kk Method for cultivating plant body
JP4702770B2 (en) * 2004-10-28 2011-06-15 石山味噌醤油株式会社 Plant cultivation method
JP2006304610A (en) * 2005-04-26 2006-11-09 Ccs Inc Method and device for cultivating lettuce
JP2011041539A (en) * 2009-08-24 2011-03-03 Hokuriku Electric Power Co Inc:The Method for producing long chain polyunsaturated fatty acid of liverwort
JP2012070727A (en) * 2010-09-03 2012-04-12 Hamamatsu Photonics Kk Method for increasing nutrient component content per unit dry weight of tomato fruit
JP2012161313A (en) * 2011-01-17 2012-08-30 Shikoku Res Inst Inc Method for producing leaf vegetable
CN103929944A (en) * 2011-12-16 2014-07-16 松下电器产业株式会社 Plant-cultivation illumination device
JP2015526104A (en) * 2012-09-04 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ Method for enhancing nutritional value of edible plant parts by light and lighting device therefor
US10172296B2 (en) 2012-09-04 2019-01-08 Philips Lighting Holding B.V. Method for enhancing the nutritional value in an edible plant part by light, and lighting device therefore
JP2014064479A (en) * 2012-09-24 2014-04-17 Aomori Prefectural Industrial Technology Research Center Cultivation method and cultivation device of plant using led light source
JP2015178489A (en) * 2014-02-25 2015-10-08 日本メナード化粧品株式会社 External preparation or internal preparation for skin containing extract of fenugreek which is raised by being irradiated with light having a specific wavelength range
WO2017000508A1 (en) * 2015-07-01 2017-01-05 吴健 Method for increasing nutritional ingredients of fruits and vegetables based on led pulsed light
WO2017126681A1 (en) * 2016-01-21 2017-07-27 株式会社 東芝 Lighting device and cultivation equipment
JP2017127273A (en) * 2016-01-21 2017-07-27 株式会社東芝 Illuminator and cultivation apparatus
JP2017127274A (en) * 2016-01-21 2017-07-27 株式会社東芝 Illuminator and cultivation apparatus
WO2017126679A1 (en) * 2016-01-21 2017-07-27 株式会社 東芝 Lighting device and cultivation equipment
JP2020145993A (en) * 2019-03-14 2020-09-17 大和ハウス工業株式会社 Cultivation method of hedyotis diffusa

Similar Documents

Publication Publication Date Title
JPH08205677A (en) Regulation of nutrient ingredient content of plant body
EP3278020B1 (en) Method and apparatus for stimulation of plant growth and development with near infrared and visible lights
Ménard et al. Developmental and physiological responses of tomato and cucumber to additional blue light
RU2411715C2 (en) System with controlled medium and method for quick cultivation of seed potato
US11116143B2 (en) Method and an apparatus for stimulation of plant growth and development with near infrared and visible lights
US5269093A (en) Method and apparatus for controlling plant growth with artificial light
US20120198762A1 (en) Spectural specific horticulture apparatus
JP2001028947A (en) Method for raising useful plant
KR102621190B1 (en) Light irradiation method to promote plant growth
ES2960319T3 (en) Control of premature flowering using a high level of far red
KR102285707B1 (en) Plant cultivation apparatus and plant cultivation method using light source for plant cultivation
JP5102190B2 (en) Plant cultivation method
JP2020500027A (en) Segmented addressable light engine for horticulture
JP2001054320A (en) Method for culturing plant
JP2007222039A (en) Plant raising method and raising house
JPH08242694A (en) Method for culturing plant
JP4015251B2 (en) Rice cultivation method
JPH0937648A (en) Culture of plant by using light semiconductor as light source
KR101397193B1 (en) Raising seedling device for rooting grafting young trees using led light source
Watjanatepin Modification of growth and yield of the leafy vegetable under phosphor-converted light-emitting diode
JP2001258389A (en) Method for cultivating plant
Andersen Comparison of fluorescent lamps as an energy source for production of tomato plants in a controlled environment
Yamazaki et al. Growth of rice plants under red laser-diode light supplemented with blue light
JP7157489B1 (en) Plant cultivation method and plant cultivation device
Hao et al. Optimizing vertical light spectral distribution to improve yield and quality in greenhouse fruit vegetable production