WO2017126681A1 - Lighting device and cultivation equipment - Google Patents
Lighting device and cultivation equipment Download PDFInfo
- Publication number
- WO2017126681A1 WO2017126681A1 PCT/JP2017/001991 JP2017001991W WO2017126681A1 WO 2017126681 A1 WO2017126681 A1 WO 2017126681A1 JP 2017001991 W JP2017001991 W JP 2017001991W WO 2017126681 A1 WO2017126681 A1 WO 2017126681A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength component
- ppf
- illuminator
- less
- wavelength
- Prior art date
Links
- 230000004907 flux Effects 0.000 claims abstract description 36
- 238000000295 emission spectrum Methods 0.000 claims abstract description 16
- 238000005286 illumination Methods 0.000 claims description 63
- 230000029553 photosynthesis Effects 0.000 claims description 37
- 238000010672 photosynthesis Methods 0.000 claims description 37
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 26
- 235000019640 taste Nutrition 0.000 claims description 14
- 230000036433 growing body Effects 0.000 claims description 13
- 235000000346 sugar Nutrition 0.000 claims description 11
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 8
- 229910017604 nitric acid Inorganic materials 0.000 claims description 8
- 230000000243 photosynthetic effect Effects 0.000 claims description 6
- 235000021049 nutrient content Nutrition 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 235000013311 vegetables Nutrition 0.000 description 6
- 238000003306 harvesting Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000002537 cosmetic Substances 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 239000004954 Polyphthalamide Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000003501 hydroponics Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920006375 polyphtalamide Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 235000019583 umami taste Nutrition 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- VAVLERLMKVITFW-UHFFFAOYSA-N C(C1)CC1=C1CCCC1 Chemical compound C(C1)CC1=C1CCCC1 VAVLERLMKVITFW-UHFFFAOYSA-N 0.000 description 1
- NWFRTAWIKBCJRH-UHFFFAOYSA-N C1C2=C1CC=C2 Chemical compound C1C2=C1CC=C2 NWFRTAWIKBCJRH-UHFFFAOYSA-N 0.000 description 1
- FLWGCAJANMGQBB-UHFFFAOYSA-N CCCC1=CCCC1 Chemical compound CCCC1=CCCC1 FLWGCAJANMGQBB-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 206010013911 Dysgeusia Diseases 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- UAHZTKVCYHJBJQ-UHFFFAOYSA-N [P].S=O Chemical compound [P].S=O UAHZTKVCYHJBJQ-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- -1 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 235000012045 salad Nutrition 0.000 description 1
- 235000019643 salty taste Nutrition 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- Embodiment of this invention is related with an illuminator and cultivation equipment.
- a remote monitoring system for grasping the cultivation status, a sterilization system for disinfecting packing materials, and an air conditioning system for realizing an environment of uniform temperature and humidity are introduced.
- lighting devices such as fluorescent lamps and LEDs are installed for plant cultivation.
- An object of the present invention is to provide an illuminator and a cultivation facility having a high effect of growing a growing body such as a plant.
- the illuminator of the embodiment includes a first wavelength component having a light intensity of 600 nm to 700 nm, a second wavelength component having a light intensity of 500 nm to less than 600 nm, and a third wavelength component having a light intensity of 400 nm to less than 500 nm. It is a growing illuminator that emits an emission spectrum including a wavelength component.
- the content ratio (PPF-R) of the photosynthesis effective photon flux of the first wavelength component to the photosynthesis effective photon flux of the three wavelength components of the first, second, and third wavelength components is 50%.
- the content ratio of the photosynthesis effective photon flux of the second wavelength component (PPF-G) is 30% or more and 40% or less, and the content ratio of the photosynthesis effective photon flux of the third wavelength component (PPF-G) B) satisfies the condition of 1% to 15%.
- FIG. 1 is a diagram illustrating an example of a schematic configuration of a hydroponic cultivation system (cultivation equipment) common to the first and second embodiments.
- the hydroponics system 1 has the cultivation bed 11 arrange
- the cultivation shelf 10 is provided in three stages, but the number of cultivation shelves 10 is arbitrary.
- a plurality of seedling receiving cups 14 for holding plants to be cultivated are arranged on top of the cultivation basket 13 that stores the culture solution 12.
- the seedling receiving cup 14 is held on top of the cultivation basket 13 via a flat cultivation tray 15 formed of foamable resin or the like.
- the seedling receiving cup 14 and the cultivation tray 15 constitute a growing body holding unit.
- the seedling receiving cup 14 is formed into a cup shape by, for example, a resin material, and a circular hole 14a is formed on the bottom surface.
- a medium for growing the growing body 5 such as plant seedlings and seeds is accommodated together with the growing body 5.
- a fibrous material excellent in air permeability and water absorption, a block-like porous resin, a granular material, or the like can be used.
- the hole 14 a on the bottom surface of the seedling receiving cup 14 is used to absorb the culture solution 12 in the cultivation basket 13 into the culture medium and to extend the root 5 a of the growing body 5 in the seedling receiving cup 14 into the culture solution 12. .
- the culture solution 12 is supplied to the inside through the water supply unit 16, and the culture solution 12 exceeding a predetermined water level is discharged to the outside from the drain port 17.
- the water supply part 16 is arrange
- the drain port 17 is formed in the bottom face of the other end side of the cultivation basket 13 in the longitudinal direction.
- the drainage port 17 is formed in a cylindrical drainage cylinder 18 that protrudes downward from the bottom wall of the cultivation basket 13.
- the positions of the drain ports 17 (drain tubes 18) of the cultivation rods 13 arranged in the vertical direction are set to be staggered in the longitudinal direction.
- a connecting pipe 19 is connected to the drain cylinder 18.
- connection pipe 19 connected to the drain cylinder 18 of the upper cultivation basket 13 is connected to the water supply unit 16 of the suspended cultivation basket 13.
- a connecting pipe 19 connected to the drain tube 18 of the middle cultivation basket 13 is connected to the water supply unit 16 of the lower cultivation basket 13.
- the connection pipe 19 connected to the drain cylinder 18 of the lower cultivation basket 13 is connected to the culture medium tank 21.
- a foreign matter removal net that captures foreign matters such as dust flowing in with the culture solution is installed inside the culture solution tank 21.
- the culture tank 21 is connected to the water supply unit 16 of the upper cultivation rod 13 via the circulation pump 20.
- a cylindrical water level adjusting cylinder 22 is detachably inserted into the drain port 17 of each cultivation basket 13.
- the water level adjusting cylinder 22 has an opening 22 a communicating with the upper space in the cultivation basket 13.
- the water level adjusting cylinder 22 discharges the culture solution 12 exceeding the predetermined water level in the cultivation basket 13 to the drain port 17 through the opening 22a.
- an illuminating device 30 for nurturing a growing body of the LED light source cylinder is installed above the seedling receiving cup 14 of each cultivation shelf 10.
- the illuminating device 30 includes a reflector (reflecting material) 30a, an illuminator 31 (or illuminators 32 and 33), and the like.
- the lighting device 30 will be described in detail later.
- FIG. 2 is a diagram illustrating an example of a schematic configuration of the illumination device 30 according to the first embodiment.
- the illumination device 30 includes a plurality of illuminators 31.
- the illuminator 31 is an illuminator having an emission spectrum having RGB wavelength components, and includes a plurality of LED (Light Emitting Diode) lamps 41 arranged in a straight line.
- LED Light Emitting Diode
- 1st Embodiment demonstrates the case where several LED lamp 41 is arrange
- FIG. 3 is a cross-sectional view showing an example of a schematic configuration of the LED lamp 41.
- the LED lamp 41 has an LED chip 412 as a light emitting element.
- a blue light emitting type LED chip is used as the LED chip 412.
- This LED chip 412 is mounted on a circuit pattern 415 provided on a substrate 413 via an electrical insulating layer 414.
- the substrate 413 is made of a flat plate made of aluminum (Al), nickel (Ni), glass epoxy or the like having heat dissipation and rigidity.
- the circuit pattern 415 is made of an alloy of copper (Cu) and nickel (Ni), gold (Au), or the like, and has circuit patterns 415 on the anode side and the cathode side.
- the LED chip 412 is placed on one (for example, the anode side) circuit pattern 415, the bottom electrode is electrically connected, and the top surface electrode is electrically connected to the other (for example, the cathode side) circuit pattern 415 by the bonding wire 416. It is connected to the.
- a frame 418 is provided on the substrate 413 to form a truncated cone-shaped recess 417 that gradually increases in diameter upward, and the LED chip 412 is disposed in the recess 417.
- the frame 418 is made of, for example, polybutylene terephthalate (PBT), polyphthalamide (PPA), polycarbonate (PC), etc., and the recess 417 has a truncated cone shape with a depth of 0.5 to 1.0 mm, for example. Is formed.
- a phosphor-containing resin layer 419 mainly containing a transparent resin (thermosetting resin) and containing two or more kinds of phosphors (arbitrary phosphors) having different main wavelengths.
- the LED chip 412 is sealed in the recess 417 by the phosphor-containing resin layer 419.
- the phosphor-containing resin layer 419 is prepared by using a phosphor-containing resin (phosphor dispersion liquid) in which two or more kinds of phosphors are mixed and dispersed in a liquid transparent resin (thermosetting resin) and an injection device such as a dispenser. It is formed by injecting into the concave portion 417 in which the LED chip 412 is arranged and heat-curing.
- a phosphor-containing resin phosphor dispersion liquid
- a liquid transparent resin thermosetting resin
- an injection device such as a dispenser. It is formed by injecting into the concave portion 417 in which the LED chip 412 is arranged and heat-curing.
- the transparent resin include a silicone resin and an epoxy resin.
- the use of a liquid silicone resin is preferred, and the use of a silicone resin having a viscosity of 1 to 70 Pa ⁇ s at 25 ° C. is particularly preferred from the viewpoint of ease of injection.
- the injection amount of the phosphor-containing resin in which two or more kinds of the phosphors are mixed and dispersed is approximately 5 to 10 mg.
- the upper surface of the phosphor-containing resin layer 419 is formed to be substantially flush with the upper end of the concave portion 417.
- the present invention is not limited to this.
- the main wavelengths of the two or more kinds of phosphors to be contained in the transparent resin are not particularly limited, and can be appropriately selected according to the emission color of the target LED lamp 411.
- a yellow phosphor that is excited by blue light emitted from the blue light emitting type LED chip 412 and emits light between yellow light and orange light is used. Further, at least one of a green or yellow-green phosphor having a dominant wavelength of 500 to 560 nm and a red phosphor having a dominant wavelength of 620 to 650 nm can be used together with the yellow phosphor.
- a yellow phosphor that emits light between yellow light and orange light when excited by blue light
- RE is selected from Y, Gd, and La
- YAG phosphor such as AE2SiO4: Eu phosphor
- AE represents an alkaline earth element such as Sr, Ba, Ca, etc.
- Sr3SiO5 Eu2 + phosphor
- silicate phosphors, sialon phosphors for example, CaxSiyAlzON: Eu2 +
- Ca3Sc2O4 Ce phosphors, and the like, which are selected from these.
- green or yellow-green phosphor examples include YAG phosphors such as RE3 (Al, Ga) 5O12: Ce phosphors, silicate phosphors such as AE2SiO4: Eu phosphors and Ca3Sc2Si3O12: Ce phosphors, and sialon phosphors.
- Body for example, CaxSiyAlzON: Eu2 +
- Ca3Sc2O4 Ce phosphor, and the like, which are selected from these.
- an oxysulfide phosphor such as a La2O2S: Eu phosphor, a nitride-based phosphor (for example, AE2Si5N8: Eu2 +, CaAlSiN3: Eu2 +), or the like is used, but is not particularly limited.
- the applied electric energy is converted by the LED chip 412 into blue light having a dominant wavelength of 420 to 480 nm (for example, 460 nm) and emitted, and the emitted blue light is converted into a phosphor.
- Two or more kinds of phosphors contained in the containing resin layer 419 are converted into light having a longer wavelength.
- white light which is a color based on the blue light emitted from the LED chip 412 and the emission colors of these phosphors, is emitted from the LED lamp 41.
- the lighting device 30 has the following characteristics (1) and (1-2). Or have the following characteristics (2) and (2-1).
- the illumination device 30 has a first wavelength component (red light: R) having a light intensity at 600 to 700 nm (600 nm to 700 nm or less) and a first wavelength component having a light intensity at 500 to 600 nm (for example, 500 nm to less than 600 nm).
- An emission spectrum including two wavelength components (green light: G) and a third wavelength component (blue light: B) having a light intensity at 400 to 500 nm (for example, 400 nm to less than 500 nm) is emitted.
- the lighting device 30 includes the photosynthesis effective photon flux of the first wavelength component with respect to the photosynthesis effective photon flux (PPF: Photosynthetic Photon Flux) of the three wavelength components of the first, second, and third wavelength components.
- Ratio (PPF-R) is 50% or more and 65% or less
- the content ratio of the photosynthesis effective photon flux of the second wavelength component (PPF-G) is 30% or more and 40% or less
- the effective photon flux content (PPF-B) satisfies the condition of not less than 1% and not more than 15% (the lighting device 30 corresponds to one of the lighting devices L3 and L4 shown in FIG. 11).
- the lighting device 30 emits light in a range where the color temperature is 2200K or higher and 3200K or lower and the chromaticity deviation is ⁇ 0.015 or higher and 0.000 or lower (the lighting device 30 includes the lighting device L3 shown in FIG. 11). Corresponding to any of L4).
- the illumination device 30 has a first wavelength component (red light: R) having a light intensity at 600 to 700 nm (600 nm to 700 nm or less) and a first wavelength component having a light intensity at 500 to 600 nm (for example, 500 nm to less than 600 nm).
- An emission spectrum including two wavelength components (green light: G) and a third wavelength component (blue light: B) having a light intensity at 400 to 500 nm (for example, 400 nm to less than 500 nm) is emitted.
- the illumination device 30 includes a content ratio (PPF-R) of the photosynthesis effective photon bundle of the first wavelength component with respect to the photosynthesis effective photon bundle of the three wavelength components of the first, second, and third wavelength components
- the content ratio (PPF-G) of the photosynthesis effective photon flux of the second wavelength component and the content ratio (PPF-B) of the photosynthesis effective photon flux of the third wavelength component are PPF-R>PPF-G> PPF-B relationship
- the photosynthesis effective photon flux content of the second wavelength component (PPF-G) satisfies the condition of 30% to 40%, color temperature of 2200K to 3200K, and chromaticity Light is emitted when the deviation is in the range of ⁇ 0.015 or more and 0.000 or less (the illumination device 30 corresponds to any one of the illumination devices L1 to L4 shown in FIG. 11).
- the illumination device 30 satisfies the condition that the content ratio (PPF-B) of the photosynthesis effective photon flux of the third wavelength component is
- FIG. 4 is a diagram illustrating an example of a schematic configuration of the illumination device 30 according to the second embodiment.
- the illuminating device 30 includes a plurality of illuminators (illuminators 32 and 33).
- the illuminator 32 is an illuminator having a white emission spectrum having RGB wavelength components, and includes a plurality of white LED lamps 42 arranged in a straight line.
- the basic configuration of the illuminator 32 and the LED lamp 42 is the same as that of the illuminator 31 and the LED lamp 41.
- the illuminator 33 is, for example, an LED lamp configured by a white LED 43 having an emission spectrum different from that of the illuminator 32.
- the lighting device 30 has the following characteristics (1) and (1-2) by controlling the outputs of the illuminator 32 and the illuminator 33, or the following (2) and (2 -1).
- the illumination device 30 has a first wavelength component (red light: R) having a light intensity at 600 to 700 nm (600 nm to 700 nm or less) and a first wavelength component having a light intensity at 500 to 600 nm (for example, 500 nm to less than 600 nm).
- An emission spectrum including two wavelength components (green light: G) and a third wavelength component (blue light: B) having a light intensity at 400 to 500 nm (for example, 400 nm to less than 500 nm) is emitted.
- the lighting device 30 includes the photosynthesis effective photon flux of the first wavelength component with respect to the photosynthesis effective photon flux (PPF: Photosynthetic Photon Flux) of the three wavelength components of the first, second, and third wavelength components.
- Ratio (PPF-R) is 50% or more and 65% or less
- the content ratio of the photosynthesis effective photon flux of the second wavelength component (PPF-G) is 30% or more and 40% or less
- the effective photon flux content (PPF-B) satisfies the condition of not less than 1% and not more than 15% (the lighting device 30 corresponds to one of the lighting devices L3 and L4 shown in FIG. 11).
- the lighting device 30 emits light in a range where the color temperature is 2200K or higher and 3200K or lower and the chromaticity deviation is ⁇ 0.015 or higher and 0.000 or lower (the lighting device 30 includes the lighting device L3 shown in FIG. 11). Corresponding to any of L4).
- the illumination device 30 has a first wavelength component (red light: R) having a light intensity at 600 to 700 nm (600 nm to 700 nm or less) and a first wavelength component having a light intensity at 500 to 600 nm (for example, 500 nm to less than 600 nm).
- An emission spectrum including two wavelength components (green light: G) and a third wavelength component (blue light: B) having a light intensity at 400 to 500 nm (for example, 400 nm to less than 500 nm) is emitted.
- the illumination device 30 includes a content ratio (PPF-R) of the photosynthesis effective photon bundle of the first wavelength component with respect to the photosynthesis effective photon bundle of the three wavelength components of the first, second, and third wavelength components
- the content ratio (PPF-G) of the photosynthesis effective photon flux of the second wavelength component and the content ratio (PPF-B) of the photosynthesis effective photon flux of the third wavelength component are PPF-R>PPF-G> PPF-B relationship
- the photosynthesis effective photon flux content of the second wavelength component (PPF-G) satisfies the condition of 30% to 40%, color temperature of 2200K to 3200K, and chromaticity Light is emitted when the deviation is in the range of ⁇ 0.015 or more and 0.000 or less (the illumination device 30 corresponds to any one of the illumination devices L1 to L4 shown in FIG. 11).
- the illumination device 30 satisfies the condition that the content ratio (PPF-B) of the photosynthesis effective photon flux of the third wavelength component is
- the white LED lamp is not limited to the one described above.
- an LED lamp that realizes white light emission using three LED chips that emit light in blue, green, and red colors. May be applied, or an LED lamp that realizes white light emission may be applied by combining an LED chip that emits ultraviolet light and a three-color mixed phosphor that emits blue, green, and red light. .
- FIG. 5 is a block diagram showing an example of a schematic configuration of a hydroponic cultivation system common to the first and second embodiments.
- the hydroponics system includes an input unit 51, a storage unit 52, an information processing unit 53, a lighting control unit 54, and a lighting device 30.
- the input unit 51 is configured by a keyboard, a display, and the like, and corresponds to the input operation of the user, for example, of the desired taste, nutrient content, sugar content, nitrate value, etc. Enter at least one piece of information.
- the storage unit 52 stores conversion data.
- the information processing unit 53 generates and outputs illumination control information based on the conversion data stored in the storage unit 52 and information input from the input unit 51.
- the illumination control unit 54 controls the illumination device 30 based on the illumination control information. For example, the illumination control unit 54 independently controls the output of each illuminator constituting the illumination device 30.
- the illumination control unit 54 controls the output balance, intensity, output days (cultivation days), and the like of the plurality of illuminators 31 that configure the illumination device 30 based on the illumination control information.
- the illumination control part 54 controls the output balance, intensity
- the average value of the value of the photosynthesis effective photon flux density is 150 umol m-2 s-1 or more.
- FIG. 6A is a diagram showing an example of xy chromaticity coordinates.
- FIG. 6B is a diagram showing an example of experimental results regarding the color temperatures of the lighting devices L1 to L9.
- the illumination devices L1 to L5 and L9 are LED illuminations that realize white light emission
- the illumination device L6 is white LED illumination and blue single color LED illumination
- the illumination device L7 is white LED illumination and It is a red single color LED illumination
- the illumination device L8 is a FL (Fluorescent lamp) illumination.
- the illumination device 30 described above corresponds to the illumination devices L1 to L4, for example.
- the data shown in FIG. 6B is data obtained by using a measuring instrument (MK-350) manufactured by UPR tek, and measuring the detector toward the light source (illumination devices L1 to L9). is there.
- FIG. 7 is a diagram showing a first example of the strain weight cultivated by the lighting devices L1 to L9 having different characteristics.
- FIG. 8 is a diagram showing a second example of the strain weight cultivated by the lighting devices L1 to L9.
- FIG. 9 is a diagram showing a third example of the strain weight cultivated by the lighting devices L1 to L9.
- FIG. 10 is a diagram illustrating an example of the relationship between the RGB ratio of the illumination light of the illumination devices L1 to L5, L8, and L9 and the stock weight.
- FIG. 11 is a diagram illustrating an example of the relationship between the RGB ratio of the illumination light of the lighting devices L1 to L9 and the stock weight, with the stock weight cultivated by the hydroponic cultivation system (the lighting device L8) being 100%.
- MK-350 measuring instrument manufactured by UPR tek
- the lighting device 30 of the hydroponic cultivation system according to the first and second embodiments corresponds to the lighting device L1, L2, L3, or L4, and can promote cultivation (improvement of harvest weight and reduction of cultivation days). it can.
- the weight of cosmetics has a high correlation with PPFD (R).
- R: G: B 6: 3: 1, and this RGB ratio is appropriate. It is an example of a proper ratio.
- FIG. 12 is a diagram showing an example of taste analysis data of cosmetics grown by FL (Fluorescent lamp) lighting.
- examples of taste analysis data of cosmetus cultivated by white FL (Fluorescent ⁇ Lamp) illumination, white FL illumination and blue monochromatic LED illumination, and white FL illumination and red monochromatic LED illumination FIG. 12 as shown in FIG. 12, for example, when blue light is strong, salty taste (taste) is strong, and when red light is strong, umami (prior taste) and umami richness (aftertaste) are suppressed. The longer the cultivation days, the higher the sugar content. By adjusting the spectrum of the light irradiated to the growing body from the illuminating device 30, the taste of the harvested growing body can be adjusted.
- FIG. 13 is a diagram showing an example of the relationship between the cultivation days and sugar content. As shown in FIG. 13, the sugar content tends to increase according to the number of cultivation days.
- L4 in FIG. 13 shows an example of the relationship between the number of cultivation days by the lighting device 30 and the sugar content.
- FIG. 14 is a figure which shows an example of the relationship between the cultivation days and nitric acid. As shown in FIG. 13, the nitric acid value increases until the 20th day of cultivation, but then tends to decrease. Thus, the nutrients (sugar content, nitric acid value, etc.) of the harvested growing bodies can be controlled (adjusted) by adjusting the cultivation days.
- L8 in FIG. 12 shows an example of the relationship between the number of cultivation days by the lighting device 30 and the nitric acid value.
- the storage unit 52 of the hydroponic cultivation system of the first and second embodiments stores taste analysis data shown in FIG. 12, sugar content change data shown in FIG. 13, nitrate value change data shown in FIG.
- the input unit 51 inputs at least one information of a desired taste, nutrient content, sugar content, nitric acid value, and the like of the growing body to be cultivated.
- the information processing unit 53 generates and outputs illumination control information based on the data stored in the storage unit 52 and information input from the input unit 51.
- the illumination control unit 54 controls the illumination device 30 based on the illumination control information.
- breeding bodies such as the taste which the breeding body to grow, content of nutrients, sugar content, and a nitric acid value, can be grown.
- FIG. 15 is a diagram illustrating a first example of a combination of a plurality of illuminators.
- the lighting device 30 shown in the second embodiment includes illuminators 32 and 33.
- the illuminating device 30 according to the second embodiment can combine a plurality of illuminators (illuminators 32 and 33) having different wavelength components so that a desired combined spectrum is obtained. Can be released. That is, the lighting device 30 shown in the second embodiment has the characteristics (1), (1-2), (2), and (2-1).
- FIG. 16 is a diagram showing a second example of a combination of a plurality of illuminators
- FIG. 17 is a diagram showing a third example of a combination of a plurality of illuminators.
- the lighting device 30 shown in the second embodiment includes illuminators 32 and 33.
- the illuminating device 30 illustrated in the second embodiment is configured by combining (combining) a plurality of illuminators (illuminators 32 (LED1) and 33 (LED2)) having different wavelength components.
- the desired synthetic spectrum can be emitted. That is, the lighting device 30 shown in the second embodiment has the characteristics (1), (1-2), (2), and (2-1).
- FIG. 16 is a diagram showing a second example of a combination of a plurality of illuminators
- FIG. 17 is a diagram showing a third example of a combination of a plurality of illuminators.
- the lighting device 30 shown in the second embodiment includes illuminators 32 and 33.
- the illuminating device 30 illustrated in the second embodiment
- the illumination apparatus 30 shown in 2nd Embodiment can discharge
- the lighting device 30 shown in the second embodiment has the characteristics (1), (1-2), (2), and (2-1).
- the hydroponic cultivation system described above it is possible to improve the harvest weight, shorten the cultivation days, and adjust the taste components by adjusting the RGB ratio in the spectrum of light irradiated to the growing body such as plants.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Biodiversity & Conservation Biology (AREA)
- Botany (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Environmental Sciences (AREA)
- Cultivation Of Plants (AREA)
Abstract
Provided is a lighting device with which a cultivation body for plants or the like has a high cultivating effect. A cultivation lighting device of an embodiment of the present invention emits an emission spectrum including a first wavelength component having a light intensity between 600 nm and 700 nm, a second wavelength component having a light intensity between 500 nm and less than 600 nm, and a third wavelength component having a light intensity between 400 nm and less than 500 nm. The lighting device satisfies the condition that relative to the photosynthetically active photon flux of the three wavelength components, i.e., the first, second, and third wavelength components, the content (PPF-R) of the photosynthetically active photon flux of the first wavelength component is 50% to 65%, the content (PPF-G) of the photosynthetically active photon flux of the second wavelength component is 30% to 40%, and the content (PPF-B) of the photosynthetically active photon flux of the third wavelength component is 1% to 15%.
Description
本発明の実施形態は、照明器及び栽培設備に関する。
Embodiment of this invention is related with an illuminator and cultivation equipment.
近年、屋内施設における野菜等の栽培に関する研究開発が盛んになっている。屋内施設は、菌の侵入を制限したクリーンルームとする。これにより、雑菌の少ない野菜等を生産することが可能となる。このようなクリーンルームで生産される野菜等は、雑菌による傷みが少なく長期保存が可能であり、高い鮮度が長期的に求められるカット野菜やサラダ用に適する。
In recent years, research and development related to the cultivation of vegetables and the like in indoor facilities has become active. The indoor facility will be a clean room with limited invasion of bacteria. Thereby, it becomes possible to produce vegetables with few germs. Vegetables and the like produced in such a clean room can be stored for a long time with little damage caused by germs, and are suitable for cut vegetables and salads that require high freshness over the long term.
屋内施設における野菜等の生産には、栽培状況を把握するための遠隔監視システム、梱包材などを消毒する除菌システム、及び均一な温度・湿度の環境を実現する空調システム等が導入される。加えて、植物育成向けに蛍光灯やLED等の照明装置が設置される。
For the production of vegetables and the like in indoor facilities, a remote monitoring system for grasping the cultivation status, a sterilization system for disinfecting packing materials, and an air conditioning system for realizing an environment of uniform temperature and humidity are introduced. In addition, lighting devices such as fluorescent lamps and LEDs are installed for plant cultivation.
上記の通り、屋内施設における野菜等の栽培に関する研究開発が盛んになっており、例えば植物等の育成体の育成効果を高める照明技術が望まれている。
As described above, research and development related to the cultivation of vegetables and the like in indoor facilities has become active. For example, lighting technology that enhances the effect of growing plants and the like is desired.
本発明の目的は、植物等の育成体の育成効果の高い照明器及び栽培設備を提供することである。
An object of the present invention is to provide an illuminator and a cultivation facility having a high effect of growing a growing body such as a plant.
実施形態の照明器は、600nm以上700nm以下に光強度を有する第1の波長成分、500nm以上600nm未満に光強度を有する第2の波長成分、及び400nm以上500nm未満に光強度を有する第3の波長成分を含む発光スペクトルを放出する育成用の照明器である。前記照明器は、前記第1、第2、及び第3の波長成分の3波長成分の光合成有効光子束に対する前記第1の波長成分の光合成有効光子束の含有率(PPF-R)が50%以上65%以下、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)が30%以上40%以下、及び前記第3の波長成分の光合成有効光子束の含有率(PPF-B)が1%以上15%以下の条件を満たす。
The illuminator of the embodiment includes a first wavelength component having a light intensity of 600 nm to 700 nm, a second wavelength component having a light intensity of 500 nm to less than 600 nm, and a third wavelength component having a light intensity of 400 nm to less than 500 nm. It is a growing illuminator that emits an emission spectrum including a wavelength component. In the illuminator, the content ratio (PPF-R) of the photosynthesis effective photon flux of the first wavelength component to the photosynthesis effective photon flux of the three wavelength components of the first, second, and third wavelength components is 50%. 65% or less, the content ratio of the photosynthesis effective photon flux of the second wavelength component (PPF-G) is 30% or more and 40% or less, and the content ratio of the photosynthesis effective photon flux of the third wavelength component (PPF-G) B) satisfies the condition of 1% to 15%.
図1は、第1及び第2の実施形態に共通の水耕栽培システム(栽培設備)の概略構成の一例を示す図である。図1に示すように、水耕栽培システム1は、上下方向に複数段設けられた栽培棚10上に、栽培ベッド11が配置されている。本実施形態においては、栽培棚10は三段設けられているが、栽培棚10の段数は任意である。栽培ベッド11は、培養液12を貯留する栽培桶13の上部に栽培する植物を保持する複数の苗受けカップ14が配置されている。苗受けカップ14は、発泡性樹脂等によって形成された平板状の栽培トレー15を介して栽培桶13の上部に保持されている。本実施形態においては、苗受けカップ14と栽培トレー15が生育体保持部を構成している。
FIG. 1 is a diagram illustrating an example of a schematic configuration of a hydroponic cultivation system (cultivation equipment) common to the first and second embodiments. As shown in FIG. 1, the hydroponics system 1 has the cultivation bed 11 arrange | positioned on the cultivation shelf 10 provided in multiple steps in the up-down direction. In this embodiment, the cultivation shelf 10 is provided in three stages, but the number of cultivation shelves 10 is arbitrary. In the cultivation bed 11, a plurality of seedling receiving cups 14 for holding plants to be cultivated are arranged on top of the cultivation basket 13 that stores the culture solution 12. The seedling receiving cup 14 is held on top of the cultivation basket 13 via a flat cultivation tray 15 formed of foamable resin or the like. In the present embodiment, the seedling receiving cup 14 and the cultivation tray 15 constitute a growing body holding unit.
苗受けカップ14は、例えば、樹脂材料等によってカップ状に形成され、底面には円形状の孔14aが形成されている。苗受けカップ14内には、植物の苗や種子等の生育体5を育成するための培地が生育体5とともに収容されている。培地としては、通気性と吸水性に優れた繊維質素材やブロック状の多孔質樹脂、粒状物等を採用することができる。苗受けカップ14の底面の孔14aは、栽培桶13内の培養液12を培地に吸水させるとともに、苗受けカップ14内の生育体5の根5aを培養液12内に伸ばすために利用される。なお、苗受けカップ14からは、培地に培養液12を吸わせるために吸水布を垂らすようにしてもよい。
The seedling receiving cup 14 is formed into a cup shape by, for example, a resin material, and a circular hole 14a is formed on the bottom surface. In the seedling receiving cup 14, a medium for growing the growing body 5 such as plant seedlings and seeds is accommodated together with the growing body 5. As the medium, a fibrous material excellent in air permeability and water absorption, a block-like porous resin, a granular material, or the like can be used. The hole 14 a on the bottom surface of the seedling receiving cup 14 is used to absorb the culture solution 12 in the cultivation basket 13 into the culture medium and to extend the root 5 a of the growing body 5 in the seedling receiving cup 14 into the culture solution 12. . In addition, you may make it hang a water absorption cloth from the seedling receiving cup 14 in order to make the culture medium 12 suck to a culture medium.
栽培桶13は、給水部16を通して内部に培養液12が供給され、所定水位を超えた培養液12が排水口17から外部に排出される。給水部16は、栽培桶13の長手方向の一端側の上部に配置されている。
In the cultivation basket 13, the culture solution 12 is supplied to the inside through the water supply unit 16, and the culture solution 12 exceeding a predetermined water level is discharged to the outside from the drain port 17. The water supply part 16 is arrange | positioned at the upper part of the one end side of the longitudinal direction of the cultivation basket 13. As shown in FIG.
排水口17は、栽培桶13の長手方向の他端側の底面に形成されている。排水口17は、栽培桶13の底壁から下方に突出して形成された円筒状の排水筒18に形成されている。上下方向に配列される各栽培桶13の排水口17(排水筒18)の位置は、長手方向で互い違いとなるように設定されている。排水筒18には接続管19が接続されている。
The drain port 17 is formed in the bottom face of the other end side of the cultivation basket 13 in the longitudinal direction. The drainage port 17 is formed in a cylindrical drainage cylinder 18 that protrudes downward from the bottom wall of the cultivation basket 13. The positions of the drain ports 17 (drain tubes 18) of the cultivation rods 13 arranged in the vertical direction are set to be staggered in the longitudinal direction. A connecting pipe 19 is connected to the drain cylinder 18.
上段の栽培桶13の排水筒18に接続された接続管19は、中断の栽培桶13の給水部16に接続されている。中段の栽培桶13の排水筒18に接続された接続管19は、下段の栽培桶13の給水部16に接続されている。また、下段の栽培桶13の排水筒18に接続された接続管19は、培養液タンク21に接続されている。なお、培養液タンク21の内部には、培養液とともに流れ込んだゴミ等の異物を捕捉する異物除去網が設置されている。また、培養液タンク21には、循環ポンプ20を介して上段の栽培桶13の給水部16が接続されている。
The connection pipe 19 connected to the drain cylinder 18 of the upper cultivation basket 13 is connected to the water supply unit 16 of the suspended cultivation basket 13. A connecting pipe 19 connected to the drain tube 18 of the middle cultivation basket 13 is connected to the water supply unit 16 of the lower cultivation basket 13. Further, the connection pipe 19 connected to the drain cylinder 18 of the lower cultivation basket 13 is connected to the culture medium tank 21. In addition, a foreign matter removal net that captures foreign matters such as dust flowing in with the culture solution is installed inside the culture solution tank 21. The culture tank 21 is connected to the water supply unit 16 of the upper cultivation rod 13 via the circulation pump 20.
各栽培桶13の排水口17には、円筒状の水位調整筒22が着脱可能に嵌入されている。水位調整筒22は、栽培桶13内の上部空間に連通する開口部22aを有している。水位調整筒22は、栽培桶13内で所定水位を超えた培養液12を、開口部22aを通して排水口17に排出する。
A cylindrical water level adjusting cylinder 22 is detachably inserted into the drain port 17 of each cultivation basket 13. The water level adjusting cylinder 22 has an opening 22 a communicating with the upper space in the cultivation basket 13. The water level adjusting cylinder 22 discharges the culture solution 12 exceeding the predetermined water level in the cultivation basket 13 to the drain port 17 through the opening 22a.
また、各栽培棚10の苗受けカップ14の上方位置には、LED光源筒の育成体の育成用の照明装置30が設置されている。この照明装置30は、反射板(反射材)30a、及び照明器31(又は照明器32及び33)等を備える。この照明装置30については後に詳しく説明する。
Further, an illuminating device 30 for nurturing a growing body of the LED light source cylinder is installed above the seedling receiving cup 14 of each cultivation shelf 10. The illuminating device 30 includes a reflector (reflecting material) 30a, an illuminator 31 (or illuminators 32 and 33), and the like. The lighting device 30 will be described in detail later.
図2は、第1の実施形態に係る照明装置30の概略構成の一例を示す図である。図2に示すように、照明装置30は、複数の照明器31を備える。照明器31は、RGBの各波長成分を有する発光スペクトルを有する照明器であり、直線状に配置された複数のLED(Light Emitting Diode)ランプ41を備える。なお、第1の実施形態では、複数のLEDランプ41が直線状(一列)に配置されるケースについて説明するが、複数のLEDランプ41が2以上の直線状(複数列)に配置されてもよい。
FIG. 2 is a diagram illustrating an example of a schematic configuration of the illumination device 30 according to the first embodiment. As shown in FIG. 2, the illumination device 30 includes a plurality of illuminators 31. The illuminator 31 is an illuminator having an emission spectrum having RGB wavelength components, and includes a plurality of LED (Light Emitting Diode) lamps 41 arranged in a straight line. In addition, although 1st Embodiment demonstrates the case where several LED lamp 41 is arrange | positioned at linear form (one line), even if the several LED lamp 41 is arrange | positioned at two or more linear forms (multiple line). Good.
図3は、LEDランプ41の概略構成の一例を示す断面図である。図3に示すように、LEDランプ41は、発光素子としてLEDチップ412を有している。LEDチップ412としては、例えば青色発光タイプのLEDチップが用いられている。このLEDチップ412は、基板413上に電気絶縁層414を介して設けられた回路パターン415上に搭載されている。
FIG. 3 is a cross-sectional view showing an example of a schematic configuration of the LED lamp 41. As shown in FIG. 3, the LED lamp 41 has an LED chip 412 as a light emitting element. For example, a blue light emitting type LED chip is used as the LED chip 412. This LED chip 412 is mounted on a circuit pattern 415 provided on a substrate 413 via an electrical insulating layer 414.
基板413は、放熱性と剛性を有するアルミニウム(Al)、ニッケル(Ni)、ガラスエポキシ等の平板から成る。また、回路パターン415は、銅(Cu)とニッケル(Ni)の合金、金(Au)等により構成され、陽極側と陰極側の回路パターン415を有している。LEDチップ412は、一方(例えば陽極側)の回路パターン415上に載置されて底面電極が電気的に接続され、上面電極が他方(例えば陰極側)の回路パターン415にボンディングワイヤ416により電気的に接続されている。基板413上には、上方に向けて徐々に拡径する円錐台状の凹部417を形成するフレーム418が設けられており、LEDチップ412はこの凹部417内に配置されている。フレーム418は、例えばポリブチレンテレフタレート(PBT)、ポリフタルアミド(PPA)、ポリカーボネート(PC)等により形成されており、凹部417は、例えば深さが0.5~1.0mmの円錐台状に形成されている。
The substrate 413 is made of a flat plate made of aluminum (Al), nickel (Ni), glass epoxy or the like having heat dissipation and rigidity. The circuit pattern 415 is made of an alloy of copper (Cu) and nickel (Ni), gold (Au), or the like, and has circuit patterns 415 on the anode side and the cathode side. The LED chip 412 is placed on one (for example, the anode side) circuit pattern 415, the bottom electrode is electrically connected, and the top surface electrode is electrically connected to the other (for example, the cathode side) circuit pattern 415 by the bonding wire 416. It is connected to the. A frame 418 is provided on the substrate 413 to form a truncated cone-shaped recess 417 that gradually increases in diameter upward, and the LED chip 412 is disposed in the recess 417. The frame 418 is made of, for example, polybutylene terephthalate (PBT), polyphthalamide (PPA), polycarbonate (PC), etc., and the recess 417 has a truncated cone shape with a depth of 0.5 to 1.0 mm, for example. Is formed.
LEDチップ412が配置された凹部417内には、透明樹脂(熱硬化性樹脂)を主体とし、主波長の異なる2種類以上の蛍光体(任意の蛍光体)を含有する蛍光体含有樹脂層419が設けられており、LEDチップ412はこの蛍光体含有樹脂層419により凹部417内に封止されている。
In the concave portion 417 in which the LED chip 412 is disposed, a phosphor-containing resin layer 419 mainly containing a transparent resin (thermosetting resin) and containing two or more kinds of phosphors (arbitrary phosphors) having different main wavelengths. The LED chip 412 is sealed in the recess 417 by the phosphor-containing resin layer 419.
蛍光体含有樹脂層419は、液状の透明樹脂(熱硬化性樹脂)に2種類以上の前記蛍光体を混合・分散させた蛍光体含有樹脂(蛍光体分散液)を、ディスペンサなどの注入装置を用いてLEDチップ412が配置された凹部417内に注入し、加熱硬化させることにより形成されている。透明樹脂としては、シリコーン樹脂、エポキシ樹脂等が挙げられる。液状のシリコーン樹脂の使用が好ましく、注入の容易さの観点から、25℃における粘度が1~70Pa・sのシリコーン樹脂の使用が特に好ましい。2種類以上の前記蛍光体が混合・分散された蛍光体含有樹脂の注入量は、ほぼ5~10mgである。なお、図面では、蛍光体含有樹脂層419の上面が凹部417の上端とほぼ面一に形成されているが、特にこれに限定されるものではない。透明樹脂に含有させる2種類以上の蛍光体の主波長は、特に限定されるものではなく、目的とするLEDランプ411の発光色などに応じて適宜選択することができる。
The phosphor-containing resin layer 419 is prepared by using a phosphor-containing resin (phosphor dispersion liquid) in which two or more kinds of phosphors are mixed and dispersed in a liquid transparent resin (thermosetting resin) and an injection device such as a dispenser. It is formed by injecting into the concave portion 417 in which the LED chip 412 is arranged and heat-curing. Examples of the transparent resin include a silicone resin and an epoxy resin. The use of a liquid silicone resin is preferred, and the use of a silicone resin having a viscosity of 1 to 70 Pa · s at 25 ° C. is particularly preferred from the viewpoint of ease of injection. The injection amount of the phosphor-containing resin in which two or more kinds of the phosphors are mixed and dispersed is approximately 5 to 10 mg. In the drawing, the upper surface of the phosphor-containing resin layer 419 is formed to be substantially flush with the upper end of the concave portion 417. However, the present invention is not limited to this. The main wavelengths of the two or more kinds of phosphors to be contained in the transparent resin are not particularly limited, and can be appropriately selected according to the emission color of the target LED lamp 411.
蛍光体としては、例えば、青色発光タイプのLEDチップ412から発光される青色光により励起されて黄色光から橙色光間の光を発光する黄色系蛍光体が用いられる。また、主波長が500~560nmの緑色あるいは黄緑色蛍光体と、主波長が620~650nmの赤色蛍光体の少なくとも一方を前記黄色系蛍光体とともに用いることができる。ここで、青色光により励起されて黄色光から橙色光間の光を発光する黄色系蛍光体としては、例えばRE3(Al,Ga)5O12:Ce蛍光体(REはY、GdおよびLaから選ばれる少なくとも1種を示す。以下同じ。)等のYAG系蛍光体、AE2SiO4:Eu蛍光体(AEは、Sr、Ba、Caなどのアルカリ土類元素を示す。以下同じ。)やSr3SiO5:Eu2+蛍光体等のケイ酸塩(シリケート)蛍光体、サイアロン系蛍光体(例えば、CaxSiyAlzON:Eu2+)、およびCa3Sc2O4:Ce蛍光体等があり、これらの中から選択される。緑色あるいは黄緑色蛍光体としては、例えばRE3(Al,Ga)5O12:Ce蛍光体等のYAG系蛍光体、AE2SiO4:Eu蛍光体やCa3Sc2Si3O12:Ce蛍光体等のケイ酸塩蛍光体、サイアロン系蛍光体(例えば、CaxSiyAlzON:Eu2+)、およびCa3Sc2O4:Ce蛍光体等があり、これらの中から選択される。赤色蛍光体としては、La2O2S:Eu蛍光体のような酸硫化物蛍光体、窒化物系蛍光体(例えば、AE2Si5N8:Eu2+やCaAlSiN3:Eu2+)等が用いられるが、特に限定されるものではない。
As the phosphor, for example, a yellow phosphor that is excited by blue light emitted from the blue light emitting type LED chip 412 and emits light between yellow light and orange light is used. Further, at least one of a green or yellow-green phosphor having a dominant wavelength of 500 to 560 nm and a red phosphor having a dominant wavelength of 620 to 650 nm can be used together with the yellow phosphor. Here, as a yellow phosphor that emits light between yellow light and orange light when excited by blue light, for example, RE3 (Al, Ga) 5O12: Ce phosphor (RE is selected from Y, Gd, and La) YAG phosphor such as AE2SiO4: Eu phosphor (AE represents an alkaline earth element such as Sr, Ba, Ca, etc. The same shall apply hereinafter) or Sr3SiO5: Eu2 + phosphor And silicate phosphors, sialon phosphors (for example, CaxSiyAlzON: Eu2 +), Ca3Sc2O4: Ce phosphors, and the like, which are selected from these. Examples of the green or yellow-green phosphor include YAG phosphors such as RE3 (Al, Ga) 5O12: Ce phosphors, silicate phosphors such as AE2SiO4: Eu phosphors and Ca3Sc2Si3O12: Ce phosphors, and sialon phosphors. Body (for example, CaxSiyAlzON: Eu2 +), Ca3Sc2O4: Ce phosphor, and the like, which are selected from these. As the red phosphor, an oxysulfide phosphor such as a La2O2S: Eu phosphor, a nitride-based phosphor (for example, AE2Si5N8: Eu2 +, CaAlSiN3: Eu2 +), or the like is used, but is not particularly limited.
このように構成されるLEDランプ41では、印加された電気エネルギーがLEDチップ412で主波長が420~480nm(例えば460nm)の青色光に変換されて放射され、放射された青色光は、蛍光体含有樹脂層419中に含有された2種類以上の蛍光体で、より長波長の光に変換される。そして、LEDチップ412から放射される青色光とこれらの蛍光体の発光色とに基づく色である白色光がLEDランプ41から放出される。
In the LED lamp 41 configured as described above, the applied electric energy is converted by the LED chip 412 into blue light having a dominant wavelength of 420 to 480 nm (for example, 460 nm) and emitted, and the emitted blue light is converted into a phosphor. Two or more kinds of phosphors contained in the containing resin layer 419 are converted into light having a longer wavelength. Then, white light, which is a color based on the blue light emitted from the LED chip 412 and the emission colors of these phosphors, is emitted from the LED lamp 41.
例えば、LEDランプ41の蛍光体含有樹脂層419の2種類以上の蛍光体の含有量及び混合比等を調整することにより、照明装置30は、以下(1)、(1-2)の特性を有する、又は以下(2)、(2-1)の特性を有する。
For example, by adjusting the content and mixing ratio of two or more kinds of phosphors in the phosphor-containing resin layer 419 of the LED lamp 41, the lighting device 30 has the following characteristics (1) and (1-2). Or have the following characteristics (2) and (2-1).
(1)照明装置30は、600-700nm(600nm以上700nm以下)に光強度を有する第1の波長成分(赤色光:R)、500-600nm(例えば500nm以上600nm未満)に光強度を有する第2の波長成分(緑色光:G)、及び400-500nm(例えば400nm以上500nm未満)に光強度を有する第3の波長成分(青色光:B)を含む発光スペクトルを放出する。さらに、照明装置30は、前記第1、第2、及び第3の波長成分の3波長成分の光合成有効光子束(PPF:Photosynthetic Photon Flux)に対する前記第1の波長成分の光合成有効光子束の含有率(PPF-R)が50%以上65%以下、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)が30%以上40%以下、及び前記第3の波長成分の光合成有効光子束の含有率(PPF-B)が1%以上15%以下の条件を満たす(照明装置30は図11に示す照明装置L3及びL4の何れかに相当する)。
(1) The illumination device 30 has a first wavelength component (red light: R) having a light intensity at 600 to 700 nm (600 nm to 700 nm or less) and a first wavelength component having a light intensity at 500 to 600 nm (for example, 500 nm to less than 600 nm). An emission spectrum including two wavelength components (green light: G) and a third wavelength component (blue light: B) having a light intensity at 400 to 500 nm (for example, 400 nm to less than 500 nm) is emitted. Further, the lighting device 30 includes the photosynthesis effective photon flux of the first wavelength component with respect to the photosynthesis effective photon flux (PPF: Photosynthetic Photon Flux) of the three wavelength components of the first, second, and third wavelength components. Ratio (PPF-R) is 50% or more and 65% or less, the content ratio of the photosynthesis effective photon flux of the second wavelength component (PPF-G) is 30% or more and 40% or less, and the photosynthesis of the third wavelength component The effective photon flux content (PPF-B) satisfies the condition of not less than 1% and not more than 15% (the lighting device 30 corresponds to one of the lighting devices L3 and L4 shown in FIG. 11).
(1-2)さらに、照明装置30は、色温度が2200K以上3200K以下、及び色度偏差が-0.015以上0.000以下の範囲で光を放出する(照明装置30は図11に示す照明装置L3及びL4の何れかに相当する)。
(1-2) Further, the lighting device 30 emits light in a range where the color temperature is 2200K or higher and 3200K or lower and the chromaticity deviation is −0.015 or higher and 0.000 or lower (the lighting device 30 includes the lighting device L3 shown in FIG. 11). Corresponding to any of L4).
(2)照明装置30は、600-700nm(600nm以上700nm以下)に光強度を有する第1の波長成分(赤色光:R)、500-600nm(例えば500nm以上600nm未満)に光強度を有する第2の波長成分(緑色光:G)、及び400-500nm(例えば400nm以上500nm未満)に光強度を有する第3の波長成分(青色光:B)を含む発光スペクトルを放出する。さらに、照明装置30は、前記第1、第2、及び第3の波長成分の3波長成分の光合成有効光子束に対する前記第1の波長成分の光合成有効光子束の含有率(PPF-R)、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)、及び前記第3の波長成分の光合成有効光子束の含有率(PPF-B)は、PPF-R>PPF-G>PPF-Bの関係であり、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)が30%以上40%以下の条件を満たし、色温度が2200K以上3200K以下、及び色度偏差が-0.015以上0.000以下の範囲で光を放出する(照明装置30は図11に示す照明装置L1~L4の何れかに相当する)。
(2-1)さらに、照明装置30は、前記第3の波長成分の光合成有効光子束の含有率(PPF-B)が1%以上15%以下の条件を満たす。 (2) Theillumination device 30 has a first wavelength component (red light: R) having a light intensity at 600 to 700 nm (600 nm to 700 nm or less) and a first wavelength component having a light intensity at 500 to 600 nm (for example, 500 nm to less than 600 nm). An emission spectrum including two wavelength components (green light: G) and a third wavelength component (blue light: B) having a light intensity at 400 to 500 nm (for example, 400 nm to less than 500 nm) is emitted. Further, the illumination device 30 includes a content ratio (PPF-R) of the photosynthesis effective photon bundle of the first wavelength component with respect to the photosynthesis effective photon bundle of the three wavelength components of the first, second, and third wavelength components, The content ratio (PPF-G) of the photosynthesis effective photon flux of the second wavelength component and the content ratio (PPF-B) of the photosynthesis effective photon flux of the third wavelength component are PPF-R>PPF-G> PPF-B relationship, the photosynthesis effective photon flux content of the second wavelength component (PPF-G) satisfies the condition of 30% to 40%, color temperature of 2200K to 3200K, and chromaticity Light is emitted when the deviation is in the range of −0.015 or more and 0.000 or less (the illumination device 30 corresponds to any one of the illumination devices L1 to L4 shown in FIG. 11).
(2-1) Further, theillumination device 30 satisfies the condition that the content ratio (PPF-B) of the photosynthesis effective photon flux of the third wavelength component is 1% or more and 15% or less.
(2-1)さらに、照明装置30は、前記第3の波長成分の光合成有効光子束の含有率(PPF-B)が1%以上15%以下の条件を満たす。 (2) The
(2-1) Further, the
図4は、第2の実施形態に係る照明装置30の概略構成の一例を示す図である。図4に示すように、照明装置30は、複数の照明器(照明器32及び33)を備える。照明器32は、RGBの各波長成分を有する白色系の発光スペクトルを有する照明器であり、一直線状に配置された複数の白色系LEDランプ42を備える。なお、照明器32及びLEDランプ42の基本的な構成は照明器31及びLEDランプ41と同様である。照明器33は、例えば、単色青色系のLED43(ピーク発光波長λp=400nm以上500nm未満)により構成されるLEDランプである。或いは、照明器33は、例えば、単色赤色系のLED43(ピーク発光波長λp=600nm以上700nm以下)により構成されるLEDランプである。或いは、照明器33は、例えば、照明器32とは発光スペクトルが異なる白色系のLED43により構成されるLEDランプである。
FIG. 4 is a diagram illustrating an example of a schematic configuration of the illumination device 30 according to the second embodiment. As shown in FIG. 4, the illuminating device 30 includes a plurality of illuminators (illuminators 32 and 33). The illuminator 32 is an illuminator having a white emission spectrum having RGB wavelength components, and includes a plurality of white LED lamps 42 arranged in a straight line. The basic configuration of the illuminator 32 and the LED lamp 42 is the same as that of the illuminator 31 and the LED lamp 41. The illuminator 33 is, for example, an LED lamp composed of a monochromatic blue LED 43 (peak emission wavelength λp = 400 nm or more and less than 500 nm). Alternatively, the illuminator 33 is, for example, an LED lamp composed of a monochromatic red LED 43 (peak emission wavelength λp = 600 nm to 700 nm). Alternatively, the illuminator 33 is, for example, an LED lamp configured by a white LED 43 having an emission spectrum different from that of the illuminator 32.
第2の実施形態に係る照明装置30は、照明器32及び照明器33の出力を制御することにより、以下(1)、(1-2)の特性を有する、又は以下(2)、(2-1)の特性を有する。
The lighting device 30 according to the second embodiment has the following characteristics (1) and (1-2) by controlling the outputs of the illuminator 32 and the illuminator 33, or the following (2) and (2 -1).
(1)照明装置30は、600-700nm(600nm以上700nm以下)に光強度を有する第1の波長成分(赤色光:R)、500-600nm(例えば500nm以上600nm未満)に光強度を有する第2の波長成分(緑色光:G)、及び400-500nm(例えば400nm以上500nm未満)に光強度を有する第3の波長成分(青色光:B)を含む発光スペクトルを放出する。さらに、照明装置30は、前記第1、第2、及び第3の波長成分の3波長成分の光合成有効光子束(PPF:Photosynthetic Photon Flux)に対する前記第1の波長成分の光合成有効光子束の含有率(PPF-R)が50%以上65%以下、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)が30%以上40%以下、及び前記第3の波長成分の光合成有効光子束の含有率(PPF-B)が1%以上15%以下の条件を満たす(照明装置30は図11に示す照明装置L3及びL4の何れかに相当する)。
(1) The illumination device 30 has a first wavelength component (red light: R) having a light intensity at 600 to 700 nm (600 nm to 700 nm or less) and a first wavelength component having a light intensity at 500 to 600 nm (for example, 500 nm to less than 600 nm). An emission spectrum including two wavelength components (green light: G) and a third wavelength component (blue light: B) having a light intensity at 400 to 500 nm (for example, 400 nm to less than 500 nm) is emitted. Further, the lighting device 30 includes the photosynthesis effective photon flux of the first wavelength component with respect to the photosynthesis effective photon flux (PPF: Photosynthetic Photon Flux) of the three wavelength components of the first, second, and third wavelength components. Ratio (PPF-R) is 50% or more and 65% or less, the content ratio of the photosynthesis effective photon flux of the second wavelength component (PPF-G) is 30% or more and 40% or less, and the photosynthesis of the third wavelength component The effective photon flux content (PPF-B) satisfies the condition of not less than 1% and not more than 15% (the lighting device 30 corresponds to one of the lighting devices L3 and L4 shown in FIG. 11).
(1-2)さらに、照明装置30は、色温度が2200K以上3200K以下、及び色度偏差が-0.015以上0.000以下の範囲で光を放出する(照明装置30は図11に示す照明装置L3及びL4の何れかに相当する)。
(1-2) Further, the lighting device 30 emits light in a range where the color temperature is 2200K or higher and 3200K or lower and the chromaticity deviation is −0.015 or higher and 0.000 or lower (the lighting device 30 includes the lighting device L3 shown in FIG. 11). Corresponding to any of L4).
(2)照明装置30は、600-700nm(600nm以上700nm以下)に光強度を有する第1の波長成分(赤色光:R)、500-600nm(例えば500nm以上600nm未満)に光強度を有する第2の波長成分(緑色光:G)、及び400-500nm(例えば400nm以上500nm未満)に光強度を有する第3の波長成分(青色光:B)を含む発光スペクトルを放出する。さらに、照明装置30は、前記第1、第2、及び第3の波長成分の3波長成分の光合成有効光子束に対する前記第1の波長成分の光合成有効光子束の含有率(PPF-R)、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)、及び前記第3の波長成分の光合成有効光子束の含有率(PPF-B)は、PPF-R>PPF-G>PPF-Bの関係であり、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)が30%以上40%以下の条件を満たし、色温度が2200K以上3200K以下、及び色度偏差が-0.015以上0.000以下の範囲で光を放出する(照明装置30は図11に示す照明装置L1~L4の何れかに相当する)。
(2-1)さらに、照明装置30は、前記第3の波長成分の光合成有効光子束の含有率(PPF-B)が1%以上15%以下の条件を満たす。 (2) Theillumination device 30 has a first wavelength component (red light: R) having a light intensity at 600 to 700 nm (600 nm to 700 nm or less) and a first wavelength component having a light intensity at 500 to 600 nm (for example, 500 nm to less than 600 nm). An emission spectrum including two wavelength components (green light: G) and a third wavelength component (blue light: B) having a light intensity at 400 to 500 nm (for example, 400 nm to less than 500 nm) is emitted. Further, the illumination device 30 includes a content ratio (PPF-R) of the photosynthesis effective photon bundle of the first wavelength component with respect to the photosynthesis effective photon bundle of the three wavelength components of the first, second, and third wavelength components, The content ratio (PPF-G) of the photosynthesis effective photon flux of the second wavelength component and the content ratio (PPF-B) of the photosynthesis effective photon flux of the third wavelength component are PPF-R>PPF-G> PPF-B relationship, the photosynthesis effective photon flux content of the second wavelength component (PPF-G) satisfies the condition of 30% to 40%, color temperature of 2200K to 3200K, and chromaticity Light is emitted when the deviation is in the range of −0.015 or more and 0.000 or less (the illumination device 30 corresponds to any one of the illumination devices L1 to L4 shown in FIG. 11).
(2-1) Further, theillumination device 30 satisfies the condition that the content ratio (PPF-B) of the photosynthesis effective photon flux of the third wavelength component is 1% or more and 15% or less.
(2-1)さらに、照明装置30は、前記第3の波長成分の光合成有効光子束の含有率(PPF-B)が1%以上15%以下の条件を満たす。 (2) The
(2-1) Further, the
なお、白色系のLEDランプは、上記説明のものだけに限定されるものではなく、例えば、青、緑、及び赤の各色に発光する3つのLEDチップを使用して白色発光を実現するLEDランプを適用するようにしてもよいし、紫外線発光のLEDチップと青、緑、及び赤の各色発光の三色混合蛍光体とを組合せて白色発光を実現するLEDランプを適用するようにしてもよい。
The white LED lamp is not limited to the one described above. For example, an LED lamp that realizes white light emission using three LED chips that emit light in blue, green, and red colors. May be applied, or an LED lamp that realizes white light emission may be applied by combining an LED chip that emits ultraviolet light and a three-color mixed phosphor that emits blue, green, and red light. .
図5は、第1及び第2の実施形態に共通の水耕栽培システムの概略構成の一例を示すブロック図である。図5に示すように、水耕栽培システムは、入力部51、記憶部52、情報処理部53、照明制御部54、及び照明装置30を備える。
FIG. 5 is a block diagram showing an example of a schematic configuration of a hydroponic cultivation system common to the first and second embodiments. As shown in FIG. 5, the hydroponics system includes an input unit 51, a storage unit 52, an information processing unit 53, a lighting control unit 54, and a lighting device 30.
入力部51は、キーボード及びディスプレイ等により構成され、ユーザの入力操作に対応して、例えば、栽培する植物等の育成体の希望する味、栄養素の含有量、糖度、及び硝酸値等のうちの少なくとも一つの情報を入力する。記憶部52は、換算データを記憶する。情報処理部53は、記憶部52に記憶された換算データ及び入力部51から入力される情報に基づき、照明制御情報を生成し出力する。照明制御部54は、照明制御情報に基づき照明装置30を制御する。例えば、照明制御部54は、照明装置30を構成する各照明器の出力をそれぞれ独立に制御する。例えば、照明制御部54は、照明制御情報に基づき照明装置30を構成する複数の照明器31の出力バランス、強度、及び出力日数(栽培日数)等を制御する。また、照明制御部54は、照明制御情報に基づき照明装置30を構成する複数の照明器32及び複数の照明器33の出力バランス、強度、及び出力日数(栽培日数)等を制御する。これにより、例えば、栽培面の明るさが光合成有効光子束密度(PPFD:Photosynthetic Photon Flux Density)の値の平均値が150umol m-2 s-1以上となる。
The input unit 51 is configured by a keyboard, a display, and the like, and corresponds to the input operation of the user, for example, of the desired taste, nutrient content, sugar content, nitrate value, etc. Enter at least one piece of information. The storage unit 52 stores conversion data. The information processing unit 53 generates and outputs illumination control information based on the conversion data stored in the storage unit 52 and information input from the input unit 51. The illumination control unit 54 controls the illumination device 30 based on the illumination control information. For example, the illumination control unit 54 independently controls the output of each illuminator constituting the illumination device 30. For example, the illumination control unit 54 controls the output balance, intensity, output days (cultivation days), and the like of the plurality of illuminators 31 that configure the illumination device 30 based on the illumination control information. Moreover, the illumination control part 54 controls the output balance, intensity | strength, output days (cultivation days), etc. of the some illuminator 32 and the some illuminator 33 which comprise the illuminating device 30 based on illumination control information. Thereby, for example, the average value of the value of the photosynthesis effective photon flux density (PPFD: Photosynthetic Photon Flux Density) is 150 umol m-2 s-1 or more.
以下、第1及び第2の実施形態に係る水耕栽培システムの作用効果について説明する。
Hereinafter, the operational effects of the hydroponic cultivation system according to the first and second embodiments will be described.
図6Aは、x-y色度座標の一例を示す図である。図6Aに示す色度範囲R1(ANSI規格2700K)、R2(ANSI規格3000K)、R3、R4、R5、R6(2000K)により、植物等の育成体の栽培における収穫重量、栽培日数、味成分等について実験を行った。
FIG. 6A is a diagram showing an example of xy chromaticity coordinates. Harvest weight, cultivation days, taste components, etc. in cultivation of a growing body such as a plant by chromaticity ranges R1 (ANSI standard 2700K), R2 (ANSI standard 3000K), R3, R4, R5, R6 (2000K) shown in FIG. 6A The experiment was conducted.
図6Bは、照明装置L1~L9の色温度に関する実験結果の一例を示す図である。例えば、照明装置L1~L5、L9は白色系発光を実現するLED照明であり、照明装置L6は白色系のLED照明及び青色系単色のLED照明であり、照明装置L7は白色系のLED照明及び赤色系単色のLED照明であり、照明装置L8はFL(Fluorescent Lamp)照明である。上記説明した照明装置30は、例えば照明装置L1~L4に相当する。照明装置L1~L4において(特に照明装置L3、L4において)、収穫重量の向上、栽培日数の短縮、味成分の向上に関して良好な結果が得られた。なお、図6Bに示すデータは、UPR tek社製の測定器(MK-350)を使用し、測定器の検出部を、光源(照明装置L1~L9)に向けて測定し取得されたデータである。
FIG. 6B is a diagram showing an example of experimental results regarding the color temperatures of the lighting devices L1 to L9. For example, the illumination devices L1 to L5 and L9 are LED illuminations that realize white light emission, the illumination device L6 is white LED illumination and blue single color LED illumination, and the illumination device L7 is white LED illumination and It is a red single color LED illumination, and the illumination device L8 is a FL (Fluorescent lamp) illumination. The illumination device 30 described above corresponds to the illumination devices L1 to L4, for example. In the lighting devices L1 to L4 (especially in the lighting devices L3 and L4), good results were obtained with respect to improvement in harvest weight, shortening of cultivation days, and improvement in taste components. The data shown in FIG. 6B is data obtained by using a measuring instrument (MK-350) manufactured by UPR tek, and measuring the detector toward the light source (illumination devices L1 to L9). is there.
図7は、特性の異なる照明装置L1~L9により栽培された株重量の第1例を示す図である。図8は、照明装置L1~L9により栽培された株重量の第2例を示す図である。図9は、照明装置L1~L9により栽培された株重量の第3例を示す図である。図10は、照明装置L1~L5、L8、L9の照明光のRGB比率と株重量の関係の一例を示す図である。図11は、水耕栽培システム(照明装置L8)により栽培された株重量を100%として、照明装置L1~L9の照明光のRGB比率と株重量の関係の一例を示す図である。なお、図11に示すデータは、UPR tek社製の測定器(MK-350)を使用し、測定器の検出部を、光源(照明装置L1~L9)に向けて測定し取得されたデータから生成されたデータである。
FIG. 7 is a diagram showing a first example of the strain weight cultivated by the lighting devices L1 to L9 having different characteristics. FIG. 8 is a diagram showing a second example of the strain weight cultivated by the lighting devices L1 to L9. FIG. 9 is a diagram showing a third example of the strain weight cultivated by the lighting devices L1 to L9. FIG. 10 is a diagram illustrating an example of the relationship between the RGB ratio of the illumination light of the illumination devices L1 to L5, L8, and L9 and the stock weight. FIG. 11 is a diagram illustrating an example of the relationship between the RGB ratio of the illumination light of the lighting devices L1 to L9 and the stock weight, with the stock weight cultivated by the hydroponic cultivation system (the lighting device L8) being 100%. Note that the data shown in FIG. 11 is based on data obtained by using a measuring instrument (MK-350) manufactured by UPR tek and measuring the detector toward the light source (illuminating devices L1 to L9). It is the generated data.
図7~図9に示すように、照明装置L1~L4(特にL3、L4)において、栽培促進効果(収穫重量の向上及び栽培日数の短縮)に関して良好な結果が得られた。第1及び第2の実施形態に係る水耕栽培システムの照明装置30は照明装置L1、L2、L3、又はL4に相当し、栽培促進(収穫重量の向上及び栽培日数の短縮)を図ることができる。また、図11に示すように、コスレタスの重量は、PPFD(R)と相関が高く、例えば照明装置L4においては、概ねR:G:B=6:3:1であり、このRGB比率は適切な比率の一例である。図11に示すように、RGB比率のうち、Gを30-40%に調整する第1の条件、及びBを1-15%に調整する第2の条件のうち、少なくとも一方の条件を満たすことにより、良好な結果が得られる。また、第1の条件、第2の条件、及びRを50-65%に調整する第3の条件の全てを満たすことにより、より良好な結果が得られる。また、この照明装置L1~L4により栽培されたコスレタスの栄養素を分析して最適化することができる。
As shown in FIGS. 7 to 9, in the lighting devices L1 to L4 (particularly L3 and L4), good results were obtained with respect to the cultivation promotion effect (improvement of harvest weight and reduction of cultivation days). The lighting device 30 of the hydroponic cultivation system according to the first and second embodiments corresponds to the lighting device L1, L2, L3, or L4, and can promote cultivation (improvement of harvest weight and reduction of cultivation days). it can. Moreover, as shown in FIG. 11, the weight of cosmetics has a high correlation with PPFD (R). For example, in the lighting device L4, R: G: B = 6: 3: 1, and this RGB ratio is appropriate. It is an example of a proper ratio. As shown in FIG. 11, at least one of the first condition for adjusting G to 30-40% and the second condition for adjusting B to 1-15% of the RGB ratio is satisfied. Thus, good results can be obtained. Further, by satisfying all of the first condition, the second condition, and the third condition for adjusting R to 50-65%, a better result can be obtained. Further, it is possible to analyze and optimize the nutrients of cosmetics cultivated by the lighting devices L1 to L4.
図12は、FL(Fluorescent Lamp)照明により栽培されたコスレタスの味覚分析データの一例を示す図である。例えば、白色系のFL(Fluorescent Lamp)照明、白色系のFL照明と青色系単色のLED照明、及び白色系のFL照明と赤色系単色のLED照明により栽培されたコスレタスの味覚分析データの一例を示す図である。図12に示すように、例えば、青色光が強いと塩味(先味)が強く、赤色光が強いと旨味(先味)や、旨味コク(後味)が抑えられる。栽培日数が長いほど糖度が高くなる。照明装置30から育成体に照射される光のスペクトルを調整することにより、収穫される育成体の味を調整することが出来る。
FIG. 12 is a diagram showing an example of taste analysis data of cosmetics grown by FL (Fluorescent lamp) lighting. For example, examples of taste analysis data of cosmetus cultivated by white FL (Fluorescent 照明 Lamp) illumination, white FL illumination and blue monochromatic LED illumination, and white FL illumination and red monochromatic LED illumination FIG. As shown in FIG. 12, for example, when blue light is strong, salty taste (taste) is strong, and when red light is strong, umami (prior taste) and umami richness (aftertaste) are suppressed. The longer the cultivation days, the higher the sugar content. By adjusting the spectrum of the light irradiated to the growing body from the illuminating device 30, the taste of the harvested growing body can be adjusted.
図13は、栽培日数と糖度の関係の一例を示す図である。図13に示すように、栽培日数に応じて糖度は増加傾向にある。図13中のL4は、照明装置30による栽培日数と糖度の関係の一例を示している。また、図14は、栽培日数と硝酸の関係の一例を示す図である。図13に示すように、栽培日数20日目まで硝酸値は増加するが、その後、減少する傾向にある。このように、栽培日数を調整することにより、収穫される育成体の栄養素(糖度や硝酸値等)を制御(調整)することができる。図12中のL8は、照明装置30による栽培日数と硝酸値の関係の一例を示している。
FIG. 13 is a diagram showing an example of the relationship between the cultivation days and sugar content. As shown in FIG. 13, the sugar content tends to increase according to the number of cultivation days. L4 in FIG. 13 shows an example of the relationship between the number of cultivation days by the lighting device 30 and the sugar content. Moreover, FIG. 14 is a figure which shows an example of the relationship between the cultivation days and nitric acid. As shown in FIG. 13, the nitric acid value increases until the 20th day of cultivation, but then tends to decrease. Thus, the nutrients (sugar content, nitric acid value, etc.) of the harvested growing bodies can be controlled (adjusted) by adjusting the cultivation days. L8 in FIG. 12 shows an example of the relationship between the number of cultivation days by the lighting device 30 and the nitric acid value.
第1及び第2の実施形態の水耕栽培システムの記憶部52は、図12に示す味覚分析データ、図13に示す糖度変化データ、図14に示す硝酸値変化データ等を記憶し、また、入力部51は、栽培する育成体の希望する味、栄養素の含有量、糖度、及び硝酸値等のうちの少なくとも一つの情報を入力する。情報処理部53は、記憶部52に記憶されたデータ及び入力部51から入力される情報に基づき、照明制御情報を生成し出力する。照明制御部54は、照明制御情報に基づき照明装置30を制御する。これにより、栽培する育成体の希望する味、栄養素の含有量、糖度、及び硝酸値等の育成体を育成することができる。
The storage unit 52 of the hydroponic cultivation system of the first and second embodiments stores taste analysis data shown in FIG. 12, sugar content change data shown in FIG. 13, nitrate value change data shown in FIG. The input unit 51 inputs at least one information of a desired taste, nutrient content, sugar content, nitric acid value, and the like of the growing body to be cultivated. The information processing unit 53 generates and outputs illumination control information based on the data stored in the storage unit 52 and information input from the input unit 51. The illumination control unit 54 controls the illumination device 30 based on the illumination control information. Thereby, breeding bodies, such as the taste which the breeding body to grow, content of nutrients, sugar content, and a nitric acid value, can be grown.
図15は、複数の照明器の組み合わせの第1例を示す図である。例えば、第2の実施形態に示す照明装置30は、照明器32及び33を備える。例えば、図15に示すように、異なる波長成分の複数の照明器(照明器32及び33)を組み合わせる(合成する)ことで、第2の実施形態に示す照明装置30が、所望の合成スペクトルを放出することができる。即ち、第2の実施形態に示す照明装置30が、上記(1)、(1-2)、(2)、及び(2-1)の特性を有する。
FIG. 15 is a diagram illustrating a first example of a combination of a plurality of illuminators. For example, the lighting device 30 shown in the second embodiment includes illuminators 32 and 33. For example, as illustrated in FIG. 15, the illuminating device 30 according to the second embodiment can combine a plurality of illuminators (illuminators 32 and 33) having different wavelength components so that a desired combined spectrum is obtained. Can be released. That is, the lighting device 30 shown in the second embodiment has the characteristics (1), (1-2), (2), and (2-1).
図16は、複数の照明器の組み合わせの第2例を示す図であり、図17は、複数の照明器の組み合わせの第3例を示す図である。例えば、第2の実施形態に示す照明装置30は、照明器32及び33を備える。例えば、図16に示すように、異なる波長成分の複数の照明器(照明器32(LED1)及び33(LED2))を組み合わせる(合成する)ことで、第2の実施形態に示す照明装置30が、所望の合成スペクトルを放出することができる。即ち、第2の実施形態に示す照明装置30が、上記(1)、(1-2)、(2)、及び(2-1)の特性を有する。さらに、図17に示すように、照明装置30に反射板(反射材)30aを設けることで、第2の実施形態に示す照明装置30が、所望の合成スペクトルを放出することができる。即ち、第2の実施形態に示す照明装置30が、上記(1)、(1-2)、(2)、及び(2-1)の特性を有する。
FIG. 16 is a diagram showing a second example of a combination of a plurality of illuminators, and FIG. 17 is a diagram showing a third example of a combination of a plurality of illuminators. For example, the lighting device 30 shown in the second embodiment includes illuminators 32 and 33. For example, as illustrated in FIG. 16, the illuminating device 30 illustrated in the second embodiment is configured by combining (combining) a plurality of illuminators (illuminators 32 (LED1) and 33 (LED2)) having different wavelength components. The desired synthetic spectrum can be emitted. That is, the lighting device 30 shown in the second embodiment has the characteristics (1), (1-2), (2), and (2-1). Furthermore, as shown in FIG. 17, the illumination apparatus 30 shown in 2nd Embodiment can discharge | release a desired synthetic | combination spectrum by providing the reflecting plate (reflecting material) 30a in the illumination apparatus 30. As shown in FIG. That is, the lighting device 30 shown in the second embodiment has the characteristics (1), (1-2), (2), and (2-1).
上記説明した水耕栽培システムによれば、植物等の育成体に照射する光のスペクトル中のRGB比率を調整することにより収穫重量の向上、栽培日数の短縮、味成分の調整が可能となる。
According to the hydroponic cultivation system described above, it is possible to improve the harvest weight, shorten the cultivation days, and adjust the taste components by adjusting the RGB ratio in the spectrum of light irradiated to the growing body such as plants.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
Claims (12)
- 600nm以上700nm以下に光強度を有する第1の波長成分、500nm以上600nm未満に光強度を有する第2の波長成分、及び400nm以上500nm未満に光強度を有する第3の波長成分を含む発光スペクトルを放出する育成用の照明器であって、
前記第1、第2、及び第3の波長成分の3波長成分の光合成有効光子束に対する前記第1の波長成分の光合成有効光子束の含有率(PPF-R)が50%以上65%以下、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)が30%以上40%以下、及び前記第3の波長成分の光合成有効光子束の含有率(PPF-B)が1%以上15%以下の条件を満たすことを特徴とする照明器。 An emission spectrum including a first wavelength component having a light intensity of 600 nm to 700 nm, a second wavelength component having a light intensity of 500 nm to less than 600 nm, and a third wavelength component having a light intensity of 400 nm to less than 500 nm. An illuminating illuminator that emits,
The content ratio (PPF-R) of the photosynthesis effective photon bundle of the first wavelength component to the photosynthesis effective photon bundle of the three wavelength components of the first, second, and third wavelength components is 50% or more and 65% or less, The photosynthesis effective photon flux content (PPF-G) of the second wavelength component is 30% or more and 40% or less, and the photosynthesis effective photon flux content (PPF-B) of the third wavelength component is 1%. An illuminator characterized by satisfying the condition of 15% or less. - 色温度が2200K以上3200K以下、及び色度偏差が-0.015以上0.000以下の範囲で光を放出することを特徴とする請求項1の照明器。 The illuminator according to claim 1, wherein the illuminator emits light in a color temperature range of 2200K to 3200K and a chromaticity deviation of -0.015 to 0.000.
- 600nm以上700nm以下に光強度を有する第1の波長成分、500nm以上600nm未満に光強度を有する第2の波長成分、及び400nm以上500nm未満に光強度を有する第3の波長成分を含む発光スペクトルを放出する育成用の照明器であって、
前記第1、第2、及び第3の波長成分の3波長成分の光合成有効光子束に対する前記第1の波長成分の光合成有効光子束の含有率(PPF-R)、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)、及び前記第3の波長成分の光合成有効光子束の含有率(PPF-B)は、PPF-R>PPF-G>PPF-Bの関係であり、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)が30%以上40%以下の条件を満たし、色温度が2200K以上3200K以下、及び色度偏差が-0.015以上0.000以下の範囲で光を放出することを特徴とする照明器。 An emission spectrum including a first wavelength component having a light intensity of 600 nm to 700 nm, a second wavelength component having a light intensity of 500 nm to less than 600 nm, and a third wavelength component having a light intensity of 400 nm to less than 500 nm. An illuminating illuminator that emits,
The content ratio (PPF-R) of the photosynthesis effective photon bundle of the first wavelength component with respect to the photosynthesis effective photon bundle of the three wavelength components of the first, second, and third wavelength components, and the second wavelength component The content ratio of the photosynthetic effective photon flux (PPF-G) and the photosynthesis effective photon flux content of the third wavelength component (PPF-B) are in the relationship of PPF-R>PPF-G> PPF-B. The content ratio (PPF-G) of the photosynthesis effective photon flux of the second wavelength component satisfies the condition of 30% to 40%, the color temperature is 2200K to 3200K, and the chromaticity deviation is -0.015 to 0.000 An illuminator characterized by emitting light in the range of. - 前記第3の波長成分の光合成有効光子束の含有率が1%以上15%以下の条件を満たす請求項3の照明器。 The illuminator according to claim 3, wherein the content ratio of the photosynthesis effective photon flux of the third wavelength component satisfies a condition of 1% or more and 15% or less.
- 青色単色LEDチップ、及び任意の蛍光体により構成されるLED照明であることを特徴とする請求項1乃至4の何れか一つの照明器。 5. The illuminator according to claim 1, wherein the illuminator is an LED illumination composed of a blue monochromatic LED chip and an arbitrary phosphor.
- 複数の照明器により構成される照明装置と、
各照明器から所望の発光スペクトルを育成体に照射するため、各照明器の出力をそれぞれ独立に制御する制御部と、
を備え、
前記照明装置は、600nm以上700nm以下に光強度を有する第1の波長成分、500nm以上600nm未満に光強度を有する第2の波長成分、及び400nm以上500nm未満に光強度を有する第3の波長成分を含む発光スペクトルを放出する育成用の照明装置であって、
前記照明装置は、前記第1、第2、及び第3の波長成分の3波長成分の光合成有効光子束に対する前記第1の波長成分の光合成有効光子束の含有率(PPF-R)が50%以上65%以下の第1の条件、前記第2の波長成分の光合成有効光子束の含有率(PPF-G)が30%以上40%以下の第2の条件、及び前記第3の波長成分の光合成有効光子束の含有率(PPF-B)が1%以上15%以下の第3の条件を満たすことを特徴とする栽培設備。 An illumination device comprising a plurality of illuminators;
In order to irradiate a growing body with a desired emission spectrum from each illuminator, a control unit that independently controls the output of each illuminator
With
The illumination device includes a first wavelength component having a light intensity of 600 nm to 700 nm, a second wavelength component having a light intensity of 500 nm to less than 600 nm, and a third wavelength component having a light intensity of 400 nm to less than 500 nm. An illuminating device for emitting an emission spectrum including:
In the illumination device, the content ratio (PPF-R) of the photosynthesis effective photon bundle of the first wavelength component to the photosynthesis effective photon bundle of the three wavelength components of the first, second, and third wavelength components is 50%. The first condition of 65% or less, the second condition that the content ratio (PPF-G) of the photosynthesis effective photon flux of the second wavelength component is 30% or more and 40% or less, and the third wavelength component A cultivation facility characterized in that the content rate (PPF-B) of the photosynthetic effective photon bundle satisfies the third condition of 1% or more and 15% or less. - 前記育成体の栽培面の光合成有効光子束密度の平均値が150umol m-2 s-1以上であることを特徴とする請求項6の栽培設備。 The cultivation facility according to claim 6, wherein the average value of the photosynthetic effective photon flux density on the cultivation surface of the grown body is 150 umol150m-2 s-1 or more.
- 前記照明装置は、第1及び第2の照明器を含み、
前記第1の照明器は、前記第1、第2、及び第3の波長成分を含む白色系の発光スペクトルを放出し、 前記第2の照明器は、前記第3の波長成分の青色系LED照明であることを特徴とする請求項6又は7の栽培設備。 The lighting device includes first and second illuminators,
The first illuminator emits a white-based emission spectrum including the first, second, and third wavelength components, and the second illuminator includes a blue-based LED having the third wavelength component. The cultivation facility according to claim 6 or 7, wherein the cultivation facility is illumination. - 前記照明装置は、第1及び第2の照明器を含み、
前記第1の照明器は、前記第1、第2、及び第3の波長成分を含む白色系の発光スペクトルを放出し、
前記第2の照明器は、前記第1の波長成分の赤色系LED照明であることを特徴とする請求項6又は7の栽培設備。 The lighting device includes first and second illuminators,
The first illuminator emits a white-based emission spectrum including the first, second, and third wavelength components;
The cultivation facility according to claim 6 or 7, wherein the second illuminator is red LED illumination of the first wavelength component. - 前記照明装置は、白色系の発光スペクトルを2種類以上有することを特徴とする請求項6又は7の栽培設備。 The cultivation equipment according to claim 6 or 7, wherein the lighting device has two or more types of white emission spectra.
- 希望する味、栄養素の含有量、糖度、及び硝酸値のうちの少なくとも一つの情報を設定する設定部と、
前記情報に基づいて照明装置の出力を制御する制御部と、
を備える請求項6乃至10の何れか一つの栽培設備。 A setting unit for setting at least one of desired taste, nutrient content, sugar content, and nitric acid value;
A control unit for controlling the output of the lighting device based on the information;
A cultivation facility according to any one of claims 6 to 10. - 前記第1、第2、第3の条件を満たすため前記照明装置からの光を反射させる光反射板を備える請求項6乃至11の何れか一つの栽培設備。 The cultivation equipment according to any one of claims 6 to 11, further comprising a light reflection plate that reflects light from the illumination device in order to satisfy the first, second, and third conditions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-010155 | 2016-01-21 | ||
JP2016010155A JP2017127273A (en) | 2016-01-21 | 2016-01-21 | Illuminator and cultivation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126681A1 true WO2017126681A1 (en) | 2017-07-27 |
Family
ID=59361884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001991 WO2017126681A1 (en) | 2016-01-21 | 2017-01-20 | Lighting device and cultivation equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017127273A (en) |
WO (1) | WO2017126681A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020230742A1 (en) * | 2019-05-13 | 2020-11-19 | シチズン電子株式会社 | Semiconductor light-emitting device for plant growth, lighting method, and design method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6780715B2 (en) * | 2019-02-05 | 2020-11-04 | 大日本印刷株式会社 | LED lighting device for growing animals and plants, LED lighting module for growing animals and plants, shelf board for growing shelves for animals and plants, growing shelves for animals and plants, and plant for growing animals and plants. |
KR20210048621A (en) | 2019-10-23 | 2021-05-04 | 삼성전자주식회사 | Light emitting device and light apparatus for plant growth |
JP2021022572A (en) * | 2020-10-15 | 2021-02-18 | 大日本印刷株式会社 | Led lighting device for animal/plant growth, led lighting module for animal/plant growth, shelf board for animal/plant growth shelf, animal/plant growth shelf, and animal/plant growth factory |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08205677A (en) * | 1995-01-31 | 1996-08-13 | Mitsubishi Chem Corp | Regulation of nutrient ingredient content of plant body |
JP2000135031A (en) * | 1998-10-30 | 2000-05-16 | Nisshoku Corp | Culture of plant |
JP2015033367A (en) * | 2013-08-09 | 2015-02-19 | シャープ株式会社 | Illumination device for plants, cultivation shelf, plant factory, and plant cultivation method |
-
2016
- 2016-01-21 JP JP2016010155A patent/JP2017127273A/en active Pending
-
2017
- 2017-01-20 WO PCT/JP2017/001991 patent/WO2017126681A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08205677A (en) * | 1995-01-31 | 1996-08-13 | Mitsubishi Chem Corp | Regulation of nutrient ingredient content of plant body |
JP2000135031A (en) * | 1998-10-30 | 2000-05-16 | Nisshoku Corp | Culture of plant |
JP2015033367A (en) * | 2013-08-09 | 2015-02-19 | シャープ株式会社 | Illumination device for plants, cultivation shelf, plant factory, and plant cultivation method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020230742A1 (en) * | 2019-05-13 | 2020-11-19 | シチズン電子株式会社 | Semiconductor light-emitting device for plant growth, lighting method, and design method |
JPWO2020230742A1 (en) * | 2019-05-13 | 2020-11-19 | ||
JP7145328B2 (en) | 2019-05-13 | 2022-09-30 | シチズン電子株式会社 | Semiconductor light-emitting device for growing plants, lighting method and design method |
Also Published As
Publication number | Publication date |
---|---|
JP2017127273A (en) | 2017-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2580325C2 (en) | Light emitting device, light source based on light-emitting diode for plant cultivation and plant factory | |
US10098289B2 (en) | Illumination system, illumination control method, and plant cultivation device | |
WO2017126681A1 (en) | Lighting device and cultivation equipment | |
JP2011155948A (en) | Light-emitting device for raising plant | |
WO2020200326A1 (en) | Full spectrum led lighting source for plants | |
US11953163B2 (en) | Light source unit for plant cultivation and plant cultivation assembly having the same | |
KR101389929B1 (en) | Led lamp for plant | |
JP5688382B2 (en) | Light emitting diode for plant cultivation | |
US11953195B2 (en) | Solid-state grow-lights for plant cultivation | |
JP5917482B2 (en) | LED light source for plant cultivation | |
KR20130067205A (en) | Light emitting diode for plant groth | |
US9927075B2 (en) | LED lighting module for plant factory and LED lighting device for plant factory having same mounted thereon | |
WO2017126679A1 (en) | Lighting device and cultivation equipment | |
KR101463982B1 (en) | Plant cultivation device equipped with LED lighting | |
TW201507605A (en) | Led lighting module for plant-culture factory, and led lighting apparatus for plant-culture factory using the same | |
KR20150061740A (en) | Led light device for plant growth using nitride-based red-fluorescent substance | |
KR101578142B1 (en) | Led package for growing plants | |
JP2015163053A (en) | plant lighting system | |
KR101183666B1 (en) | Led lamp module for plant cultivating | |
CN206112653U (en) | Supplementary vegetation's lighting apparatus | |
KR102616929B1 (en) | White led lighting for antibacterial plant growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17741558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17741558 Country of ref document: EP Kind code of ref document: A1 |