JP2015168609A - 13族窒化物結晶の製造方法 - Google Patents

13族窒化物結晶の製造方法 Download PDF

Info

Publication number
JP2015168609A
JP2015168609A JP2014046442A JP2014046442A JP2015168609A JP 2015168609 A JP2015168609 A JP 2015168609A JP 2014046442 A JP2014046442 A JP 2014046442A JP 2014046442 A JP2014046442 A JP 2014046442A JP 2015168609 A JP2015168609 A JP 2015168609A
Authority
JP
Japan
Prior art keywords
crystal
group
seed
gas
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014046442A
Other languages
English (en)
Other versions
JP6337526B2 (ja
Inventor
浩和 岩田
Hirokazu Iwata
浩和 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014046442A priority Critical patent/JP6337526B2/ja
Publication of JP2015168609A publication Critical patent/JP2015168609A/ja
Application granted granted Critical
Publication of JP6337526B2 publication Critical patent/JP6337526B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】フラックス法において雑晶の付着や成長速度の低下を招くことなく、高品質な13族窒化物結晶を安定して製造できるようにする。【解決手段】種結晶7は13族窒化物がc軸に配向して結晶成長する主面を有し、その長手方向と13族窒化物結晶5のa軸とが略平行な短冊状の単結晶である。種結晶7は主面とは反対側の面が反応容器12の内側面14に接するように、且つ長手方向が混合融液6の気液界面18と略平行となるように、且つ気液界面18の近傍部に位置するように混合融液6中に設置される。13族窒化物結晶5のa軸と平行な{10−11}面が主な成長面となるように種結晶7の主面から13族窒化物を結晶成長させる。【選択図】図1

Description

本発明は、13族窒化物結晶の製造方法に関する。
現在、紫外、紫〜青緑色レーザーダイオードに用いられているInAlGaN系(13族窒化物)半導体はc面GaN基板を用いて製造されている。GaNの自立基板は、サファイア基板又はGaAs基板等の異種基板上に、ELO(Epitaxially Lateral Overgrowth)、advance−DEEP法、VAS(Void-Assisted Separation)法等の転位密度を低減する成長方法を駆使して、HVPE(Hydride Vapor Phase Epitaxy)法でGaNを厚く成長させた後、異種基板からGaN厚膜を分離する方法で製造されている。このようにして製造されるGaN基板は、転移密度が10cm-2程度まで低減されており、大きさが2インチのものが実用化されている。
一方、液相成長によるGaN基板を実現する手法の一つとして、金属ナトリウムと金属Gaの混合融液中に窒素を溶解してGaNを結晶成長するフラックス法が研究開発されている。フラックス法は700〜900℃と比較的低温での結晶成長が可能であり、容器内圧力も3〜8MPa程度と比較的低く、工業化可能な結晶成長方法である。また、研究開発段階ではあるが、フラックス法を用いてφ2インチのテンプレート基板に液層エピタキシャル成長させてGaNの自立基板を製造することが実現されている。
特許文献1には、テンプレート基板上に結晶成長を行う際に、転位とインクルージョンを抑制するため、融液の攪拌条件を変えて成長する方法が開示されている。まず、成長面が凹凸となるように設定された第1の攪拌条件を採用して結晶を成長させ、次に成長面が平滑となるように設定された第2の攪拌条件を採用して結晶を成長させている。
また、特許文献2には、転位密度が小さく且つ表面の平坦性が高い13族窒化物基板を製造することが可能な製造方法を提供する目的で、(i)13族窒化物半導体層を準備する工程と、(ii)半導体層の上部にパターニングされたマスク膜を形成する工程と、(iii)マスク膜から露出する複数の半導体層を種結晶として半導体層上にFlux法で13族窒化物結晶を成長させる工程を含む13族窒化物基板の製造方法が開示されている。
特許文献3には、c面基板上にGaNをc面成長させる方法では成長速度が遅いため、厚いc面のGaN基板を得るのが難しいことを解決する方法として、種結晶のa面に結晶成長する方法が開示されている。この方法では、種結晶は長手方向をm軸方向とする帯状にIII族窒化物半導体のa面が形成されており、種結晶のa面にIII族窒化物半導体結晶をa軸方向に板状に成長させることで、III族窒化物半導体のc面基板を製造している。
現在、実用化されているφ2インチ以上のGaN自立基板はHVPE法で製造されたc面基板である。c面基板を用いて紫外、紫〜青緑色レーザーダイオードが実用化されている。しかしながら、活性層のInGaN量子井戸のIn組成が大きくなるにつれてGaNとの格子定数差が大きくなる。これにより、結晶構造の歪が増大し、c面は極性面であるためピエゾ電界が発生し、発光効率が大きく低下する。すなわち、青色から緑色へ長波長になるにつれて発光効率が低下し、純緑色でのレーザー発振が難しくなる。
また、強電流注入においては、発光波長が短くなるいわゆるブルーシフトが生じ、これも緑色領域でのレーザー発振を阻害している。これを解決するため、c面以外の半極性又は無極性基板を用いた純緑色レーザーの開発が行われている。最近では、半極性{20−21}面基板上に作製された純緑色レーザーが報告されている。然るに、HVPE法で半極性{20−21}面基板を製造するには、c軸方向に厚く結晶成長する必要があるため、大きな基板を製造することは困難である。また、基板の欠陥も>10cm−2程度である。
フラックス法においては、c面に液層エピタキシャル成長して、c軸方向に結晶を成長してバルクを作製する試みがなされている。しかしながら、c軸方向に結晶成長させる場合、結晶成長時に結晶内に金属ナトリウム、金属ガリウム、又はナトリウムとガリウムの混合物といった融液成分がインクルージョンとして入りやすいため、攪拌などの手段を用いて融液の精密制御が必要になる。
また、バルク結晶では異なる方向に成長した結晶領域は等価な結晶面であっても不純物の取り込まれ方が異なること等に起因して、不純物濃度や光学特性が異なる成長セクターを形成する。例えば、等価な{10−11}面であっても、(10−11)面が[10−11]方向に成長した領域と(1−101)面が[1−101]方向に成長した領域では特性に違いが現れる場合がある。
また、フラックス法では、気液界面近傍で自然核発生した雑晶が、種結晶から成長した結晶に付着する問題もある。さらに、フラックス法では、13族窒化物が結晶成長すると、混合融液中の13族原料が減少するため、混合融液のNaの量比が大きくなり、結晶成長条件がずれてしまう。Naの量比変化を緩和するため、混合融液量を多くすると融液が深くなる。その結果、種結晶を反応容器底部に保持する場合には、気液界面から種結晶まで窒素が拡散する時間が長くなるため、成長速度が遅くなるという問題もある。
本発明は、上記に鑑みてなされたものであって、フラックス法による13族窒化物結晶の製造方法において、雑晶の付着や成長速度の低下を招くことなく、高品質な13族窒化物結晶を安定して製造できるようにすることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、反応容器に保持された少なくともアルカリ金属と13族金属を含む混合融液中に種結晶を設置し、気相から前記混合融液中に窒素を溶解することにより、前記混合融液中で前記種結晶を核として13族窒化物を結晶成長させる13族窒化物結晶の製造方法であって、前記種結晶は、前記13族窒化物がc軸に配向して結晶成長する主面を有し、その長手方向と前記13族窒化物結晶のa軸とが略平行な短冊状の単結晶であり、前記種結晶は、前記主面とは反対側の面が前記反応容器の内側面に接するように、且つ前記長手方向が前記混合融液の気液界面と略平行となるように、且つ前記気液界面の近傍部に位置するように前記混合融液中に設置され、前記a軸と平行な{10−11}面が主な成長面となるように前記主面から前記13族窒化物を結晶成長させることを特徴とする。
本発明によれば、フラックス法において雑晶の付着や成長速度の低下を招くことなく、高品質な13族窒化物結晶を安定して製造することが可能となる。
図1は、第1の実施の形態に係る13族窒化物結晶の製造方法で用いられる製造装置の構成を示す図である。 図2Aは、第1の実施の形態において使用される第1の種結晶の構造を示す上面図である。 図2Bは、図2AのIIB−IIB断面図である。 図3Aは、第1の実施の形態において使用される第2の種結晶の構造を示す上面図である。 図3Bは、図3AのIIIB−IIIB断面図である。 図4は、第1の実施の形態における反応容器の内部の状態を示す図である。 図5は、図4に示す状態を正面からみた図である。 図6は、第1の実施の形態における第1のGaN結晶の成長過程を示す図である。 図7は、第1の実施の形態における第2のGaN結晶の成長過程を示す図である。 図8は、第1及び第2のGaN結晶の構造を示す斜視図である。 図9Aは、第1及び第2のGaN結晶の構造を示す上面図である。 図9Bは、図9AのIXB−IXB断面図である。 図10Aは、第2の実施の形態において使用される第3の種結晶の構造を示す上面図である。 図10Bは、図10AのXB−XB断面図である。 図11は、第2の実施の形態(実施例2)における反応容器の内部の状態を示す図である。 図12は、第2の実施の形態(実施例2)における第3のGaN結晶の成長過程を示す図である。 図13は、第2の実施の形態(実施例2)における第3のGaN結晶の構造を示す斜視図である。 図14Aは、第2の実施の形態(実施例2)における第3のGaN結晶の構造を示す上面図である。 図14Bは、図14AのXIVB−XIVB断面図である。 図15は、実施例3における反応容器の内部の状態を示す図である。 図16は、実施例3における第3のGaN結晶の成長過程を示す図である。 図17は、実施例3における第3のGaN結晶の構造を示す斜視図である。 図18Aは、実施例3における第3のGaN結晶の構造を示す上面図である。 図18Bは、図18AのXVIIIB−XVIIIB断面図である。
(第1の実施の形態)
以下に添付図面を参照して、13族窒化物結晶の製造方法の第1の実施の形態を詳細に説明する。図1は、第1の実施の形態に係る13族窒化物結晶の製造方法で用いられる製造装置1の構成を示す図である。
製造装置1はフラックス法により13族窒化物結晶5を製造するための装置である。耐圧容器11は例えばステンレスにより構成される。耐圧容器11の内部には反応容器12が設置されている。反応容器12は混合融液(フラックス)6を保持して13族窒化物結晶10を結晶成長させるための容器である。
混合融液6は、アルカリ金属と13族金属とを含む融液である。アルカリ金属としては、ナトリウム(Na)、リチウム(Li)、及びカリウム(K)から選ばれる少なくとも1つが挙げられる。好ましくは、ナトリウム又はカリウムである。また、アルカリ土類金属が含まれていてもよい。アルカリ土類金属としては、カルシウム(Ca)、マグネシウム(Mg)、ストロンチウム(Sr)、及びバリウム(Ba)から選ばれる少なくとも1つが挙げられる。13族金属(元素)としては、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、及びタリウム(Tl)から選ばれる少なくとも1つが挙げられる。好ましくは、ガリウムである。代表的な混合融液6としては、Ga−Na混合融液が挙げられる。
反応容器12の内部には、種結晶7が混合融液6中に浸漬するように配置される。種結晶7は13族窒化物結晶5の結晶成長の核となる窒化物結晶である。また、反応容器12の内側面14は、側面を形成する複数の平面部15を有している。
耐圧容器11の内部には、窒素を含む原料ガスが供給される。耐圧容器11の内部空間及び反応容器12の内部空間には、13族窒化物結晶5の原料である窒素(N)ガス及び全圧調整用の希釈ガス(Ar)を供給する配管21が接続されている。配管21は窒素供給管22と希釈ガス供給管23とに分岐している。窒素供給管22及び希釈ガス供給管23にはそれぞれバルブ24,25が設けられている。尚、希釈ガスとしては、不活性ガスのアルゴンガスを用いることが望ましいが、これに限定されず、ヘリウム(He)等を用いてもよい。
窒素ガスは、ガスボンベ等から窒素ガス供給管22に流入し、圧力制御装置26で圧力が調整された後、バルブ24を介して配管21に流入する。一方、希釈ガスは、ガスボンベ等から希釈ガス供給管23に流入し、圧力制御装置27で圧力が調整された後、バルブ25を介して配管21に流入する。このようにして圧力が調整された窒素ガス及び希釈ガスは配管21内で混合ガスとなる。
上記混合ガスは、バルブ28を経て耐圧容器11及び反応容器12の内部空間に供給される。また、配管21には圧力計29が設けられている。圧力計29を監視することにより耐圧容器11及び反応容器12内の圧力を調整することができる。このように、窒素ガス及び希釈ガスの圧力をバルブ24,25,28と圧力制御装置26,27により調整することにより、反応容器12内の窒素分圧を調整することができる。また、耐圧容器11及び反応容器12の全圧を調整できるので、反応容器12内の全圧を高くして反応容器12内の混合融液6(例えばナトリウム)の蒸発を抑制することができる。すなわち、窒化ガリウムの結晶成長条件に影響を与える窒素分圧と、混合融液6の蒸発に影響を与える全圧とを別々に制御することができる。尚、上記図1に示す製造装置1は例示に過ぎず、反応容器12内に窒素を含むガスを供給する機構等の変更は本発明の技術的範囲に影響を与えるものではない。
また、図1に示すように、耐圧容器11の外側にはヒータ31が設置されている。ヒータ31は耐圧容器11内の反応容器12を加熱し、混合融液6の温度を調整する。
尚、反応容器12内に種結晶7、原料(アルカリ金属及び13族金属)、C等の添加剤、Ge等のドーパント等を投入する作業は、例えばアルゴンガスのような不活性ガス雰囲気のグローブボックスに反応容器12を入れた状態で行うとよい。
このように原料等を投入した後、ヒータ31に通電して反応容器12を加熱すると、反応容器12内で原料のアルカリ金属、13族金属、その他の添加物等が溶融し、混合融液6が生成する。この混合融液6に所定の窒素分圧の原料ガスを接触させることにより、混合融液6中に窒素が溶解する。このような混合融液6中に溶解している原料は種結晶7の表面に供給され、13族窒化物結晶5が結晶成長していく。
本実施の形態においては、上記種結晶7として2種類の短冊状の種結晶が用いられている。図2Aは、本実施の形態において使用される第1の種結晶41の構造を示す上面図である。図2Bは、図2Aに示す第1の種結晶41のIIB−IIB断面図である。図3Aは、本実施の形態において使用される第2の種結晶46の構造を示す上面図である。図3Bは、図3Aに示す第2の種結晶46のIIIB−IIIB断面図である。
第1の種結晶41は、サファイア基板42とGaN結晶層43とからなる。第1の種結晶41は、例えばサファイア基板42上にMOCVD法によりGaN結晶層43をエピタキシャル成長させたテンプレート基板から短冊状に切り出すことにより得られる。第1の種結晶41は、13族窒化物がc軸に配向して結晶成長する主面44と、主面44とは反対側の底面45とを有する。第1の種結晶41の長手方向は、GaN結晶層43のa軸と略平行になっている。このような短冊状の第1の種結晶41は、例えばダイシング装置でサファイア基板42の裏面にそのm軸に沿って何本かの溝を形成した後、圧力をかけて分割することにより得られる。尚、上記第1の種結晶41を得るための方法は上記に限られるものではない。
第2の種結晶46は、単独のGaN結晶層からなる。第2の種結晶46は、例えばHVPE法により製造したGaN自立基板から短冊状に切り出すことにより得られる。第2の種結晶46は、13族窒化物がc軸に配向して結晶成長する主面47と、主面47とは反対側の底面48とを有する。第2の種結晶46の長手方向は、GaN結晶層のa軸と略平行になっている。このような短冊状の第2の種結晶46は、例えばダイヤモンドペンでGaN自立基板の裏面をそのGaN結晶のa軸(m面)に沿って数回卦がくことにより得られる。尚、上記第2の種結晶46を得るための方法は上記に限られるものではない。
図4は、本実施の形態における反応容器12の内部の状態を示す図である。図5は、図4に示す状態を正面からみた図である。反応容器12の内側面14の対面する2つの平面部15にそれぞれ第1の種結晶41と第2の種結晶46が固定されている。第1及び第2の種結晶41,46は混合融液6内であって混合融液6の気液界面18の近傍部に固定されている。尚、近傍部とは、例えば気液界面18と第1及び第2の種結晶41,46との距離が所定範囲内にあることをいう。所定範囲とは、後述する第1及び第2のGaN結晶55,56の結晶成長速度が実質的に高く保たれる範囲である。結晶成長速度を実質的に高く保つためには、混合融液中の窒素濃度がある程度高い状態でなければならない。
第1の種結晶41の底面45及び第2の種結晶46の底面48はそれぞれ平面部15に接するように固定されている。第1の種結晶41の主面44及び第2の種結晶46の主面47はそれぞれ反応容器12の内部側を向いている。第1及び第2の種結晶41,46はそれぞれネジ等の適宜な固定部材51により平面部15に固定されている。当該固定の手段は特に限定されるものではない。
第1及び第2の種結晶41,46が上記のように設置され、反応容器12内に所定の結晶成長条件が整うことにより、第1の種結晶41を核として第1のGaN結晶55が成長し、第2の種結晶46を核として第2のGaN結晶56が成長する。図6は、第1のGaN結晶55の成長過程を示す図である。図7は、第2のGaN結晶56の成長過程を示す図である。第1のGaN結晶55は第1の種結晶41の主面44から成長を開始する。第2のGaN結晶56は第2の種結晶46の主面47から成長を開始する。結晶成長を継続していくと、第1及び第2のGaN結晶55,56はそれぞれ主面44,47からはみ出して成長していく。
図8は、第1及び第2のGaN結晶55,56の構造を示す斜視図である。図9Aは、第1及び第2のGaN結晶55,56の構造を示す上面図である。図9Bは、図9AのIXB−IXB断面図である。
図6〜図9に示すように、第1及び第2の種結晶41,46の長手方向(a軸)に対して垂直な第1及び第2のGaN結晶55,56の断面形状は略三角形となっている。第1及び第2のGaN結晶55,56の主な結晶成長面は(10−11)面及び(−1011)面となっている。第1及び第2のGaN結晶55,56のc軸上の頂部には、a軸方向に沿ったくぼみ59,60が形成されている。第2のGaN結晶56のくぼみ60は第1のGaN結晶55のくぼみ59より小さくなっている(図6及び図7参照)。
上記2つの結晶成長面のうち、(−1011)面は混合融液6の気液界面18側を向いており、(10−11)面は気液界面18とは反対側を向いている(図5参照)。気液界面18とは反対側を向いている(10−11)面は、雑晶が生じやすい気液界面18側を向いている(−1011)面よりも雑晶が付着しにくいため、より良好な結晶状態となる。
(実施例1)
以下に、第1の実施の形態における一実施例を示す。本実施例では、φ2インチのサファイア基板42上にMOCVD法によりGaN結晶層43をエピタキシャル成長させたテンプレート基板から短冊状に切り出した第1の種結晶41と、HVPE法により製造した主面が(0001)c面でありφ2インチのGaN自立基板から短冊状に切り出した第2の種結晶46を使用した。
第1の種結晶41は長手方向がGaN結晶層43のa軸に略平行になるように切り出された。第1の種結晶41はダイシング装置でサファイア基板42の裏面にそのm軸に沿って何本かの溝を形成した後、圧力をかけて分割することによって作製された。このような手法により、長手方向がサファイア基板42のm軸に沿った、すなわち長手方向がGaN結晶層43のa軸と略平行な短冊状の第1の種結晶41を切り出すことができる。本実施例では、第1の種結晶41の長手方向の長さを45mm、幅(短手方向の長さ)を1mmとした。
第2の種結晶46はダイヤモンドペンでGaN自立基板の裏面をそのa軸(m面)に沿って数回卦がくことで短冊状の結晶を切り出したものである。本実施例では、第2の種結晶46の長手方向の長さを45mm、幅を0.8mmとした。
ステンレス製の閉じた形状を有する耐圧容器11内に設置された反応容器12内に金属ナトリウムと金属ガリウムを含む混合融液6を保持した。反応容器12は直方体であり、内側面14は側面を形成する4つの平面部15を有するものである。反応容器12の外寸は縦70mm、横70mm、高さ60mmであり、内寸は縦64mm、横64mm、深さ67mmである。平面部15はネジ穴が複数設けられたものである。第1及び第2の種結晶41,46はこれらのネジ穴を利用してネジで固定した。混合融液6の気液界面18と第1及び第2の種結晶41,46の長手方向が略平行となるように固定した(図4参照)。
反応容器12とネジは純度99.99%のアルミナ製のものを使用した。その他の使用可能な材質としては、サファイア、アルミナ、YAG等の酸化物、SiC等の炭化物等の使用が挙げられる。反応容器12は耐圧容器11から取り外すことができるものである。
耐圧容器11の内部空間に窒素ガスとアルゴンガスを充満させた。耐圧容器11内の窒素圧力とアルゴンガス圧力をバルブ24,25,28、圧力制御装置26,27等を調節することにより制御した。配管21は窒素供給管22と希釈ガス供給管23に分岐しており、それぞれバルブ24,25で分離することが可能となっている。また、それぞれの圧力を圧力制御装置26,27で調整する事ができるようになっている。また、耐圧容器11内の全圧力を圧力計29によってモニターした。反応容器12の温度を耐圧容器11の外側に設置されたヒータ31を用いて制御した。
なお、窒化ガリウムの原料である窒素ガスに不活性ガスであるアルゴンを混合するのは、反応容器12内の全圧を高くしてナトリウムの蒸発を抑制しつつ、窒素ガスの圧力を独立して制御するためである。これにより、制御性の高い結晶成長が可能となる。また、耐圧容器11はバルブ28部分で製造装置1から取り外すことが可能であり、耐圧容器11部分のみをグローブボックスに入れて作業することが可能なものである。
以下に上記製造装置1を使用して第1及び第2のGaN結晶55,56を結晶成長させた手順を説明する。先ず、耐圧容器11をバルブ28部分で製造装置1から分離し、酸素1ppm以下、露点−80℃以下の高純度のAr雰囲気のグローブボックスに入れた。
次いで、反応容器12の対向した2つの平面部15に第1及び第2の種結晶41,46をそれぞれ設置した(図4、図5参照)。第1の種結晶41の底面45及び第2の種結晶56の底面48をそれぞれ平面部15に密着させた。第1及び第2の種結晶41,46の各主面44,47が混合融液6に接するように、且つそれらの長手方向が混合融液6の気液界面18と略平行になるように第1及び第2の種結晶41,46の両端をネジ(固定部材51)で固定した。また、第1及び第2種結晶41,46の上端が反応容器12の底(内側)から40mmの高さになるようにした。
第1及び第2の種結晶41,46の主面44,47とは反対側の底面45,48が平面部15に密着することで、成長した結晶の裏面側、すなわち(000−1)c面の窒素極性面が平面部15側を向くことになる。(000−1)c面は多結晶化しやすいため、単結晶を成長させるためには(000−1)c面側の成長を継続させないことが望まれる。(000−1)c面が平面部15側に向くことにより(000−1)c面側の成長が継続されず、多結晶化を抑制することができる。
次いで、反応容器12内に13族金属原料であるガリウム(Ga)とナトリウム(Na)を入れた。本実施例では、ガリウムを200gとナトリウムを140g入れ、ガリウムとナトリウムのモル比を0.32:0.68とした。また、カーボンを0.65g添加した。ナトリウムは溶解して液体状態で反応容器12内に入れ、固化させた後にガリウムとカーボンを入れた。
成長温度870℃でのガリウムとナトリウムの混合融液6の深さは、約56mmであった。第1及び第2の種結晶41,46の固定位置はそれらの上端が反応容器12の底から40mmの高さであるので、結晶成長温度870℃において第1及び第2の種結晶41,46は気液界面18から16mm〜17mmの位置に保持された。
次いで、反応容器12にフタをかぶせた後、反応容器12を耐圧容器11内に設置した。次いで、耐圧容器11を密閉し、バルブ28を閉じ、反応容器12内部を外部雰囲気と遮断した。この一連の作業は高純度のArガス雰囲気のグローブボックス内で行ったので、耐圧容器11内部はArガスが充填されていた。
次いで、耐圧容器11をグローブボックスから出し、製造装置1に組み込んだ。すなわち、耐圧容器11をヒータ31がある所定の位置に設置し、バルブ28部分で窒素とアルゴンの配管21に接続した。次いで、バルブ28とバルブ25を開け、Arガスを入れ、耐圧容器11の内部空間をArガスで満たした。このとき、反応容器12のフタの隙間からガスが入り、反応容器12内の内部空間もArガスで満たされた。圧力制御装置27により耐圧容器11内の全圧を2.6MPaにした後バルブ25を閉じた。
次いで、窒素供給管22から窒素ガスを入れ、圧力制御装置26で圧力を調整した後バルブ24を開け、耐圧容器11内の全圧を4MPaにした。すなわち、耐圧容器11の内部空間の窒素の分圧を1.4MPaにした。その後、バルブ24を閉じ、圧力制御装置26を8MPaに設定した。
次いで、ヒータ31に通電し、反応容器12を結晶成長温度まで昇温した。結晶成長温度を870℃とした。結晶成長温度において反応容器12内のガリウムとナトリウムが融解し、混合融液6を生成した。なお、混合融液6の温度は反応容器12の温度と同温である。また、この温度まで昇温すると本実施例の製造装置1では、耐圧容器11内の気体が熱せられ全圧は8MPaとなる。すなわち、窒素分圧は2.8MPaとなる。
次いで、バルブ24を開け、窒素ガス圧力を8MPaかけた。これは窒素が窒化ガリウムの結晶成長で消費されても耐圧容器11内の窒素分圧を2.8MPaに維持するためである。
このようにして窒素を混合融液6中に溶解させ、第1及び第2の種結晶41,46の主面44,47から第1及び第2のGaN結晶55,56の結晶成長を開始させた(図6、図7参照)。反応容器12内の温度を870℃、窒素ガス分圧を2.8MPaに保持して300時間結晶成長を継続させた。
第1及び第2のGaN結晶55,56はそれぞれ第1及び第2の種結晶41,46の主面44,47から成長を開始し、成長を継続すると混合融液6と接している結晶領域が第1及び第2の種結晶41,46の主面44,47からはみ出して成長する。本実施例では、(10−10)面が主な結晶成長面となり結晶成長が継続された(図6、図7参照)。
300時間結晶成長を継続した後、ヒータ31の通電を止め、混合融液6の温度を室温まで降温した。耐圧容器11内のガスの圧力を下げた後、耐圧容器11を開けると、反応容器12内の第1及び第2の種結晶41,46上に第1及び第2のGaN結晶55,56がそれぞれ結晶成長していた。また、反応容器12の気液界面18近傍には微結晶が雑晶として付着していたが、底には雑結晶はなかった。
結晶成長した第1及び第2のGaN結晶55,56の状態が図8、図9A、図9Bに示されている。結晶成長した第1及び第2のGaN結晶55,56は、平面部15に接している底面が広く、第1及び第2の種結晶41,46の長手方向に平行な2辺が長い形状であり、第1及び第2の種結晶41,46の長手方向と垂直な断面の形状が略三角形の単結晶であった。
第1のGaN結晶55上部には、第1の種結晶41の長手方向に沿ってわずかにくぼみ59が形成されていた。第2のGaN結晶56上部にも、第2の種結晶46の長手方向に沿ってくぼみ60が形成されていたが、当該くぼみ60は第1のGaN結晶55のくぼみ59よりも小さかった。
第1及び第2のGaN結晶55,56の斜面は比較的平坦な(−1011)面及び(10−11)面であった。気液界面18側を向いた(−1011)面には、微結晶の雑晶が1,2個付着していたが、気液界面18と反対側を向いた(10−11)面には雑晶の付着は無かった。
第1及び第2のGaN結晶55,56の底面には、c面の窒素極性面(000−1)面が形成されていた。この面にはわずかに微結晶63,64(図6及び図7参照)が付着していたが、反応容器12の内側面(平面部15)に結晶成長が制限されていた。第1及び第2のGaN結晶55,56の底面の略中央に第1及び第2の種結晶41,46が位置していた。
第1の種結晶41のサファイア基板42にはクラックが発生していた。第2の種結晶46にはクラックの発生はなかった。結晶成長した第1及び第2のGaN結晶55,56のサイズは、それらの長さがネジ(固定部材51)で制限されたため約40mm、底面の幅が約13mm、高さが約11.3mmであった。
第1及び第2のGaN単結晶55,56中には、SIMS分析で1014〜1015cm−3台のナトリウムが検出された。また、第1及び第2のGaN結晶55,56には不純物レベルでナトリウムが含まれていたが、クラックやボイドの発生原因となるような金属ガリウム、金属ナトリウム、ガリウムとナトリウムの合金といったインクルージョンは無かった。
(第2の実施の形態)
以下に、第2の実施の形態について図面を参照して説明する。上記第1の実施の形態と同一又は同様の箇所については説明を省略する場合がある。図10Aは、第2の実施の形態において使用される第3の種結晶65の構造を示す上面図である。図10Bは、図10Aに示す第3の種結晶65のXB−XB断面図である。図11は、本実施の形態における反応容器12の内部の状態を示す図である。
第3の種結晶65は、a軸に対して垂直な断面の形状が略三角形であるGaN結晶である。第3の種結晶65は、第1の実施の形態に係る第2の種結晶46(図3A及び図3B参照)を用い、フラックス法により(10−11)面及び(−1011)面を主な成長面として結晶成長させたものである。第3の種結晶65は、その長手方向とGaN結晶のa軸とが略平行であり、底面66と2つの斜面67A,67Bを有する。底面66は(000−1)面であり、第1の斜面67Aは(10−11)面であり、第2の斜面67Bは(−1011)面である。
図11に示すように、反応容器12の内側面14の対面する2つの平面部15にそれぞれ第3の種結晶65が1つずつ固定されている。第3の種結晶65の底面66は平面部15に固定されている。第3の種結晶65の長手方向(a軸方向)は混合融液6の気液界面18と略平行となっている。第3の種結晶65は混合融液6内であって気液界面18の近傍部に固定されている。
第3の種結晶65が上記のように設置され、反応容器12内に所定の結晶成長条件が整うことにより、第3の種結晶65を核として第3のGaN結晶71が成長する。図12は、第3のGaN結晶71の成長過程を示す図である。第3のGaN結晶71は第3の種結晶65の斜面67A,67Bから成長を開始する。結晶成長を継続していくと、第3のGaN結晶71は底面66からはみ出して成長していく。
図13は、第3のGaN結晶71の構造を示す斜視図である。図14Aは、第3のGaN結晶71の構造を示す上面図である。図14Bは、図14AのXIVB−XIVB断面図である。第3の種結晶65の長手方向(a軸)に対して垂直な第3のGaN結晶71の断面形状は略三角形となっている。第3のGaN結晶71の主な結晶成長面は(10−11)面及び(−1011)面となっている。第3のGaN結晶71のc軸上の頂部には、a軸方向に沿ったくぼみ73が形成されている。
上記2つの主な結晶成長面のうち、(−1011)面は混合融液6の気液界面18側を向いており、(10−11)面は気液界面18とは反対側を向いている(図11参照)。気液界面18とは反対側を向いている(10−11)面は、雑晶が生じやすい気液界面18側を向いている(−1011)面よりも雑晶が付着しにくいため、より良好な結晶状態となる。
(実施例2)
以下に第2の実施の形態における一実施例を示す。先ず、GaN結晶であって、その3方向のa軸のうちの1方向のa軸を長手方向とし、(000−1)面を底面66とし、当該a軸と平行な(10−11)面と(−1011)面を斜面67A,67Bとする第3の種結晶65を2つ準備した。本実施例では、これらの第3の種結晶65をフラックス法により製造した。第3の種結晶65のa軸に対する断面の形状は三角形であり、その底面66の形状は六角形である。第3の種結晶65は1つのa軸<11−20>方向に伸びたバー状の単結晶である。第3の種結晶65の底面66は(000−1)c面の窒素極性面である。第3の種結晶65の長手方向であるa軸に平行な斜面67A,67Bはそれぞれ(10−11)面及び(−1011)面と表記されている。
上記第3の種結晶65は、反応容器12の底(平面部15)に、図3A及び図3Bに示すような短冊状の第2のGaN単結晶46をその主面47((0001)c面)が上となるように設置し、主面47上に{10−11}面が成長するように製造したものである。尚、(−1011)面と(10−11)面に微結晶の雑晶の付着が無かった物を選別して第3の種結晶65として用いた。用いた第3の種結晶65の長手方向の長さは約50mm、短手方向の底面66の長さは約5mm、高さは約4.7mmであった。
次に、結晶成長工程を説明する。ここでは主に実施例1と異なる点について説明する。先ず、第3の種結晶65を反応容器12の平面部15に固定した。反応容器12内の対面する2つの平面部15にそれぞれ第3の種結晶65の底面66を密着させ、(10−11)面である斜面67Aが気液界面18とは反対側を向くように、且つ第3の種結晶65の長手方向が気液界面18と略平行になるようにネジ(固定部材51)で固定した。第3の種結晶65の上端が反応容器12の底(内側)から44mmの高さとなるように第3の種結晶65を固定した。
次いで、反応容器12内に原料を仕込み、反応容器12を耐圧容器11に設置した後、実施例1と同様の操作により結晶成長を行った。原料の仕込み量、成長温度、窒素ガス分圧、成長時間、種結晶の保持位置等の結晶成長条件を実施例1と同じにした。
第3の種結晶65の固定位置はその上端が反応容器12の底(内側)から44mmの高さとなる位置であるので、結晶成長温度870℃においては第3の種結晶65は気液界面18から12mm〜17mmの位置に保持される。図12は本実施例の結晶成長過程を模式的に表している。図13、図14A、及び図14Bは第3の種結晶65から成長した第3のGaN結晶71の状態を模式的に示している。第3のGaN結晶71はその長手方向と垂直な断面の形状が略三角形の単結晶であった。第3のGaN結晶71の平面部15側の底面が広く、長手方向に平行な2辺が長かった。第3のGaN結晶71の頂部には、第3の種結晶65の長手方向に沿ってわずかなくぼみ73が形成されていた。
第3のGaN結晶71の2つ斜面は比較的平坦な(−1011)面及び(10−11)面であった。気液界面18側を向いた(−1011)面には微結晶の雑晶が1,2個付着していたが、気液界面18とは反対側を向いた(10−11)面には雑晶の付着は無かった。
第3のGaN結晶71の底面にはc面である窒素極性面(000−1)面が形成されていた。この面にはわずかに微結晶75(図12参照)が付着していたが、反応容器12の平面部15により結晶成長が制限されていた。第3のGaN結晶71の底面のほぼ中央に第3の種結晶65が位置していた。
第3の種結晶65上に成長した第3のGaN単結晶71の長手方向の長さはネジ(固定部材51)で制限されたため約40mmであり、底面の幅は約18mmであり、高さは約16mmであった。尚、反応容器12の気液界面18近傍部には微結晶が雑晶として付着していたが、底には付着していなかった。また、第3のGaN単結晶71中には、SIMS分析で1014〜1015cm−3台のナトリウムが検出された。また、第3のGaN結晶71には不純物レベルでナトリウムが含まれていたが、クラックやボイドの発生原因となるような金属ガリウム、金属ナトリウム、又はガリウムとナトリウムの合金といったインクルージョンは無かった。
(実施例3)
以下に、第2の実施の形態における他の実施例を示す。図15は、本実施例における反応容器12の内部の状態を示す図である。本実施例における第3の種結晶65は実施例2における第3の種結晶65と同様のものである。本実施例は、結晶成長の継続時間を長時間として第3のGaN結晶71を大きく成長させたことにより、第3のGaN結晶71の一部が気液界面18に達している点で実施例2と相違する。
本実施例における第3の種結晶65のサイズは実施例2と同様であり、長手方向の長さが約50mm、短手方向の底面の長さが約5mm、高さが約4.7mmである。以下に、本実施例の結晶成長工程を説明する。先ず、第3の種結晶65を反応容器12の平面部15に固定した。反応容器12の対面する2つの平面部15にそれぞれ第3の種結晶65の底面66を密着させ、(10−11)面である斜面67Aが気液界面18とは反対側を向くように、且つ第3の種結晶65の長手方向が気液界面18と略平行となるようにネジ(固定部材51)で固定した。第3の種結晶65の上端が反応容器12の底(内側)から44mmの高さとなるように第3の種結晶65を固定した。
次いで、反応容器12内に原料を仕込み、反応容器12を耐圧容器11に設置した後、実施例1と同様の操作により600時間結晶成長を行った。原料の仕込み量、成長温度、窒素ガス分圧、第3の種結晶65の保持位置等の結晶成長条件は実施例1と同じにした。第3の種結晶65の固定位置はその上端が反応容器12の底(内側)から44mmの高さとなる位置であるので、結晶成長温度870℃においては第3の種結晶65は気液界面18から12mm〜17mmの位置に保持される。
図16は、本実施例における第3のGaN結晶71の成長過程を示す図である。図17は、本実施例における第3のGaN結晶71の構造を示す斜視図である。図18Aは、本実施例における第3のGaN結晶71の構造を示す上面図である。図18Bは、図18AのXVIIIB−XVIIIB断面図である。
第3のGaN結晶71の気液界面18側を向いた(−1011)面は成長途中で気液界面18に達し、雑晶81が付着した多結晶になっていた。気液界面18とは反対方向を向いた(10−11)面は平坦であり、雑晶18の付着は無かった。
第3のGaN結晶71の底面にはc面である窒素極性面(000−1)面が形成されていた。この面にはわずかに微結晶75(図16参照)が付着していたが、反応容器12の平面部15により結晶成長が制限されていた。
第3の種結晶65上に成長した第3のGaN単結晶71の長手方向の長さはネジ(固定部材51)で制限されたため約40mmであり、底面の幅は約26.5mmであり、高さは約25mmであった。尚、反応容器12の気液界面18近傍部には微結晶が雑晶として付着していたが、底には付着していなかった。また、第3のGaN単結晶71中には、SIMS分析で1014〜1015cm−3台のナトリウムが検出された。また、第3のGaN結晶71には不純物レベルでナトリウムが含まれていたが、クラックやボイドの発生原因となるような金属ガリウム、金属ナトリウム、又はガリウムとナトリウムの合金といったインクルージョンは無かった。
以上のように、種結晶7(41,46,65)を反応容器12の内側面14(対面する平面部15)に上記実施の形態及び実施例に示したように設置することにより、結晶成長したGaN結晶(55,56,71)の気液界面18とは反対側を向いた(10−11)面には雑晶が付着しない。また、種結晶7(41,46,65)は気液界面18の近傍に設置されることから、反応容器12の底部に設置される場合に比べて窒素濃度が高い状態で結晶成長を行うことができる。これにより、成長速度の低下を招くことなく高品質なGaN結晶を製造することが可能となる。
尚、上記実施の形態及び実施例においては、13族金属としてガリウム、アルカリ金属としてナトリウムを用いて窒化ガリウムを製造する例を示したが、本発明はこれに限られるものではなく、他の13族金属及びアルカリ金属を用いて他の13族窒化物を製造する場合にも適用可能なものである。
1 製造装置
5 13族窒化物結晶
6 混合融液
7 種結晶
11 耐圧容器
12 反応容器
14 内側面
15 平面部
18 気液界面
21 配管
22 窒素供給管
23 希釈ガス供給管
24,25,28 バルブ
26,27 圧力制御装置
29 圧力計
31 ヒータ
41 第1の種結晶
42 サファイア基板
43 GaN結晶層
44,47 主面
45,48 底面
46 第2の種結晶
51 固定部材
55 第1のGaN結晶
56 第2のGaN結晶
59,60,73 くぼみ
63,64,75 微結晶
65 第3の種結晶
66 底面
67A,67B 斜面
71 第3のGaN結晶
81 雑晶
国際公開第2010/092736号 特開2005−12171号公報 特開2010−37153号公報

Claims (7)

  1. 反応容器に保持された少なくともアルカリ金属と13族金属を含む混合融液中に種結晶を設置し、気相から前記混合融液中に窒素を溶解することにより、前記混合融液中で前記種結晶を核として13族窒化物を結晶成長させる13族窒化物結晶の製造方法であって、
    前記種結晶は、前記13族窒化物がc軸に配向して結晶成長する主面を有し、その長手方向と前記13族窒化物結晶のa軸とが略平行な短冊状の単結晶であり、
    前記種結晶は、前記主面とは反対側の面が前記反応容器の内側面に接するように、且つ前記長手方向が前記混合融液の気液界面と略平行となるように、且つ前記気液界面の近傍部に位置するように前記混合融液中に設置され、
    前記a軸と平行な{10−11}面が主な成長面となるように前記主面から前記13族窒化物を結晶成長させる
    ことを特徴とする13族窒化物結晶の製造方法。
  2. 前記種結晶は、前記主面が(0001)面である窒化ガリウムの単結晶である
    ことを特徴とする請求項1に記載の13族窒化物結晶の製造方法。
  3. 前記種結晶の前記主面の短手方向の幅が1mm以下である
    ことを特徴とする請求項1又は2に記載の13族窒化物結晶の製造方法。
  4. 反応容器に保持された少なくともアルカリ金属と13族金属を含む混合融液中に種結晶を設置し、気相から前記混合融液中に窒素を溶解することにより、前記混合融液中で前記種結晶を核として13族窒化物を結晶成長させる13族窒化物結晶の製造方法であって、
    前記種結晶は、前記13族窒化物からなる単結晶であって、その長手方向と前記13族窒化物結晶のa軸とが略平行であり、(000−1)面を底面とし、前記a軸と平行な(10−11)面と(−1011)面を斜面とし、
    前記種結晶は、前記底面が前記反応容器の内側面に接するように、且つ前記長手方向が前記混合融液の気液界面と略平行となるように、且つ前記気液界面の近傍部に位置するように前記混合融液中に設置され、
    前記斜面と平行な面が主な成長面となるように前記斜面から前記13族窒化物を結晶成長させる
    ことを特徴とする13族窒化物結晶の製造方法。
  5. 前記主な成長面は、前記斜面のうち前記気液界面とは反対側を向いた面と平行である
    ことを特徴とする請求項4に記載の13族窒化物結晶の製造方法。
  6. 前記種結晶は、前記気液界面から20mm以内の距離に設置される
    請求項1〜5のいずれか1項に記載の13族窒化物結晶の製造方法。
  7. 前記内側面は、1つ以上の平面部を有し、
    前記種結晶は、前記平面部に設置される
    請求項1〜6のいずれか1項に記載の13族窒化物結晶の製造方法。
JP2014046442A 2014-03-10 2014-03-10 13族窒化物結晶の製造方法 Expired - Fee Related JP6337526B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046442A JP6337526B2 (ja) 2014-03-10 2014-03-10 13族窒化物結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046442A JP6337526B2 (ja) 2014-03-10 2014-03-10 13族窒化物結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2015168609A true JP2015168609A (ja) 2015-09-28
JP6337526B2 JP6337526B2 (ja) 2018-06-06

Family

ID=54201671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046442A Expired - Fee Related JP6337526B2 (ja) 2014-03-10 2014-03-10 13族窒化物結晶の製造方法

Country Status (1)

Country Link
JP (1) JP6337526B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307322A (ja) * 2003-03-25 2004-11-04 Ricoh Co Ltd Iii族窒化物の結晶成長方法及びiii族窒化物結晶及び半導体デバイス及びシステム
JP2005247625A (ja) * 2004-03-03 2005-09-15 Ricoh Co Ltd Iii族窒化物の結晶成長方法およびiii族窒化物結晶および基板および半導体デバイス
JP2007137735A (ja) * 2005-11-21 2007-06-07 Ricoh Co Ltd Iii族窒化物結晶およびその製造方法
JP2008290929A (ja) * 2007-04-24 2008-12-04 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法
WO2009157347A1 (ja) * 2008-06-26 2009-12-30 日本碍子株式会社 窒化物単結晶の育成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307322A (ja) * 2003-03-25 2004-11-04 Ricoh Co Ltd Iii族窒化物の結晶成長方法及びiii族窒化物結晶及び半導体デバイス及びシステム
JP2005247625A (ja) * 2004-03-03 2005-09-15 Ricoh Co Ltd Iii族窒化物の結晶成長方法およびiii族窒化物結晶および基板および半導体デバイス
JP2007137735A (ja) * 2005-11-21 2007-06-07 Ricoh Co Ltd Iii族窒化物結晶およびその製造方法
JP2008290929A (ja) * 2007-04-24 2008-12-04 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法
WO2009157347A1 (ja) * 2008-06-26 2009-12-30 日本碍子株式会社 窒化物単結晶の育成方法

Also Published As

Publication number Publication date
JP6337526B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
US10266965B2 (en) Method for producing group-III nitride crystal, group-III nitride crystal, semiconductor device, and device for producing group-III nitride crystal
JP5112983B2 (ja) Iii族窒化物半導体製造方法およびiii族窒化物半導体育成用の種結晶
US10202710B2 (en) Process for producing group III nitride crystal and apparatus for producing group III nitride crystal
JP2012012259A (ja) 窒化物結晶およびその製造方法
JP2017200858A (ja) 窒化物結晶基板の製造方法および結晶成長用基板
JP2013060344A (ja) 窒化ガリウム結晶、13族窒化物結晶の製造方法および13族窒化物結晶基板
JP2004231447A (ja) Iii族窒化物結晶成長方法およびiii族窒化物結晶および半導体デバイス
JP5953683B2 (ja) 13族窒化物結晶、及び13族窒化物結晶基板
JP2011073894A (ja) Iii族窒化物系化合物半導体の製造方法
JP4278330B2 (ja) Iii族窒化物結晶製造方法およびiii族窒化物結晶製造装置
JP5426178B2 (ja) Iii族金属窒化物単結晶の製造方法
JP5699493B2 (ja) Iii族窒化物単結晶の製造方法
US10329687B2 (en) Method for producing Group III nitride semiconductor including growing Group III nitride semiconductor through flux method
JP6841195B2 (ja) Iii族窒化物半導体の製造方法
JP6337526B2 (ja) 13族窒化物結晶の製造方法
JP4551203B2 (ja) Iii族窒化物の結晶製造方法
JP6848242B2 (ja) Iii族窒化物半導体の製造方法
JP5842490B2 (ja) 13族窒化物結晶、及び13族窒化物結晶基板
JP6307818B2 (ja) 13族窒化物結晶の製造方法
JP6390157B2 (ja) 13族窒化物結晶の製造方法
JP6252169B2 (ja) 13族窒化物結晶の製造方法
JP6398213B2 (ja) 13族窒化物結晶の製造方法
JP6186763B2 (ja) 13族窒化物結晶の製造方法、13族窒化物結晶基板の製造方法、及び13族窒化物結晶基板
JP2018065716A (ja) 13族窒化物結晶の製造方法及び窒化ガリウム結晶
JP5883912B2 (ja) 窒化物結晶およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R151 Written notification of patent or utility model registration

Ref document number: 6337526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees